The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/xen/netfront/netfront.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2004-2006 Kip Macy
    5  * Copyright (c) 2015 Wei Liu <wei.liu2@citrix.com>
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include "opt_inet.h"
   34 #include "opt_inet6.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/sockio.h>
   38 #include <sys/limits.h>
   39 #include <sys/mbuf.h>
   40 #include <sys/malloc.h>
   41 #include <sys/module.h>
   42 #include <sys/kernel.h>
   43 #include <sys/socket.h>
   44 #include <sys/sysctl.h>
   45 #include <sys/taskqueue.h>
   46 
   47 #include <net/if.h>
   48 #include <net/if_var.h>
   49 #include <net/if_arp.h>
   50 #include <net/ethernet.h>
   51 #include <net/if_media.h>
   52 #include <net/bpf.h>
   53 #include <net/if_types.h>
   54 
   55 #include <netinet/in.h>
   56 #include <netinet/ip.h>
   57 #include <netinet/if_ether.h>
   58 #include <netinet/tcp.h>
   59 #include <netinet/tcp_lro.h>
   60 
   61 #include <vm/vm.h>
   62 #include <vm/pmap.h>
   63 
   64 #include <sys/bus.h>
   65 
   66 #include <xen/xen-os.h>
   67 #include <xen/hypervisor.h>
   68 #include <xen/xen_intr.h>
   69 #include <xen/gnttab.h>
   70 #include <contrib/xen/memory.h>
   71 #include <contrib/xen/io/netif.h>
   72 #include <xen/xenbus/xenbusvar.h>
   73 
   74 #include <machine/bus.h>
   75 
   76 #include "xenbus_if.h"
   77 
   78 /* Features supported by all backends.  TSO and LRO can be negotiated */
   79 #define XN_CSUM_FEATURES        (CSUM_TCP | CSUM_UDP)
   80 
   81 #define NET_TX_RING_SIZE __CONST_RING_SIZE(netif_tx, PAGE_SIZE)
   82 #define NET_RX_RING_SIZE __CONST_RING_SIZE(netif_rx, PAGE_SIZE)
   83 
   84 #define NET_RX_SLOTS_MIN (XEN_NETIF_NR_SLOTS_MIN + 1)
   85 
   86 /*
   87  * Should the driver do LRO on the RX end
   88  *  this can be toggled on the fly, but the
   89  *  interface must be reset (down/up) for it
   90  *  to take effect.
   91  */
   92 static int xn_enable_lro = 1;
   93 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro);
   94 
   95 /*
   96  * Number of pairs of queues.
   97  */
   98 static unsigned long xn_num_queues = 4;
   99 TUNABLE_ULONG("hw.xn.num_queues", &xn_num_queues);
  100 
  101 /**
  102  * \brief The maximum allowed data fragments in a single transmit
  103  *        request.
  104  *
  105  * This limit is imposed by the backend driver.  We assume here that
  106  * we are dealing with a Linux driver domain and have set our limit
  107  * to mirror the Linux MAX_SKB_FRAGS constant.
  108  */
  109 #define MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2)
  110 
  111 #define RX_COPY_THRESHOLD 256
  112 
  113 #define net_ratelimit() 0
  114 
  115 struct netfront_rxq;
  116 struct netfront_txq;
  117 struct netfront_info;
  118 struct netfront_rx_info;
  119 
  120 static void xn_txeof(struct netfront_txq *);
  121 static void xn_rxeof(struct netfront_rxq *);
  122 static void xn_alloc_rx_buffers(struct netfront_rxq *);
  123 static void xn_alloc_rx_buffers_callout(void *arg);
  124 
  125 static void xn_release_rx_bufs(struct netfront_rxq *);
  126 static void xn_release_tx_bufs(struct netfront_txq *);
  127 
  128 static void xn_rxq_intr(struct netfront_rxq *);
  129 static void xn_txq_intr(struct netfront_txq *);
  130 static void xn_intr(void *);
  131 static int xn_assemble_tx_request(struct netfront_txq *, struct mbuf *);
  132 static int xn_ioctl(struct ifnet *, u_long, caddr_t);
  133 static void xn_ifinit_locked(struct netfront_info *);
  134 static void xn_ifinit(void *);
  135 static void xn_stop(struct netfront_info *);
  136 static void xn_query_features(struct netfront_info *np);
  137 static int xn_configure_features(struct netfront_info *np);
  138 static void netif_free(struct netfront_info *info);
  139 static int netfront_detach(device_t dev);
  140 
  141 static int xn_txq_mq_start_locked(struct netfront_txq *, struct mbuf *);
  142 static int xn_txq_mq_start(struct ifnet *, struct mbuf *);
  143 
  144 static int talk_to_backend(device_t dev, struct netfront_info *info);
  145 static int create_netdev(device_t dev);
  146 static void netif_disconnect_backend(struct netfront_info *info);
  147 static int setup_device(device_t dev, struct netfront_info *info,
  148     unsigned long);
  149 static int xn_ifmedia_upd(struct ifnet *ifp);
  150 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
  151 
  152 static int xn_connect(struct netfront_info *);
  153 static void xn_kick_rings(struct netfront_info *);
  154 
  155 static int xn_get_responses(struct netfront_rxq *,
  156     struct netfront_rx_info *, RING_IDX, RING_IDX *,
  157     struct mbuf **);
  158 
  159 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
  160 
  161 #define INVALID_P2M_ENTRY (~0UL)
  162 #define XN_QUEUE_NAME_LEN  8    /* xn{t,r}x_%u, allow for two digits */
  163 struct netfront_rxq {
  164         struct netfront_info    *info;
  165         u_int                   id;
  166         char                    name[XN_QUEUE_NAME_LEN];
  167         struct mtx              lock;
  168 
  169         int                     ring_ref;
  170         netif_rx_front_ring_t   ring;
  171         xen_intr_handle_t       xen_intr_handle;
  172 
  173         grant_ref_t             gref_head;
  174         grant_ref_t             grant_ref[NET_RX_RING_SIZE + 1];
  175 
  176         struct mbuf             *mbufs[NET_RX_RING_SIZE + 1];
  177 
  178         struct lro_ctrl         lro;
  179 
  180         struct callout          rx_refill;
  181 };
  182 
  183 struct netfront_txq {
  184         struct netfront_info    *info;
  185         u_int                   id;
  186         char                    name[XN_QUEUE_NAME_LEN];
  187         struct mtx              lock;
  188 
  189         int                     ring_ref;
  190         netif_tx_front_ring_t   ring;
  191         xen_intr_handle_t       xen_intr_handle;
  192 
  193         grant_ref_t             gref_head;
  194         grant_ref_t             grant_ref[NET_TX_RING_SIZE + 1];
  195 
  196         struct mbuf             *mbufs[NET_TX_RING_SIZE + 1];
  197         int                     mbufs_cnt;
  198         struct buf_ring         *br;
  199 
  200         struct taskqueue        *tq;
  201         struct task             defrtask;
  202 
  203         bus_dma_segment_t       segs[MAX_TX_REQ_FRAGS];
  204         struct mbuf_xennet {
  205                 struct m_tag    tag;
  206                 bus_dma_tag_t   dma_tag;
  207                 bus_dmamap_t    dma_map;
  208                 struct netfront_txq *txq;
  209                 SLIST_ENTRY(mbuf_xennet) next;
  210                 u_int           count;
  211         }                       xennet_tag[NET_TX_RING_SIZE + 1];
  212         SLIST_HEAD(, mbuf_xennet) tags;
  213 
  214         bool                    full;
  215 };
  216 
  217 struct netfront_info {
  218         struct ifnet            *xn_ifp;
  219 
  220         struct mtx              sc_lock;
  221 
  222         u_int  num_queues;
  223         struct netfront_rxq     *rxq;
  224         struct netfront_txq     *txq;
  225 
  226         u_int                   carrier;
  227         u_int                   maxfrags;
  228 
  229         device_t                xbdev;
  230         uint8_t                 mac[ETHER_ADDR_LEN];
  231 
  232         int                     xn_if_flags;
  233 
  234         struct ifmedia          sc_media;
  235 
  236         bus_dma_tag_t           dma_tag;
  237 
  238         bool                    xn_reset;
  239 };
  240 
  241 struct netfront_rx_info {
  242         struct netif_rx_response rx;
  243         struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
  244 };
  245 
  246 #define XN_RX_LOCK(_q)         mtx_lock(&(_q)->lock)
  247 #define XN_RX_UNLOCK(_q)       mtx_unlock(&(_q)->lock)
  248 
  249 #define XN_TX_LOCK(_q)         mtx_lock(&(_q)->lock)
  250 #define XN_TX_TRYLOCK(_q)      mtx_trylock(&(_q)->lock)
  251 #define XN_TX_UNLOCK(_q)       mtx_unlock(&(_q)->lock)
  252 
  253 #define XN_LOCK(_sc)           mtx_lock(&(_sc)->sc_lock);
  254 #define XN_UNLOCK(_sc)         mtx_unlock(&(_sc)->sc_lock);
  255 
  256 #define XN_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->sc_lock, MA_OWNED);
  257 #define XN_RX_LOCK_ASSERT(_q)  mtx_assert(&(_q)->lock, MA_OWNED);
  258 #define XN_TX_LOCK_ASSERT(_q)  mtx_assert(&(_q)->lock, MA_OWNED);
  259 
  260 #define netfront_carrier_on(netif)      ((netif)->carrier = 1)
  261 #define netfront_carrier_off(netif)     ((netif)->carrier = 0)
  262 #define netfront_carrier_ok(netif)      ((netif)->carrier)
  263 
  264 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */
  265 
  266 static inline void
  267 add_id_to_freelist(struct mbuf **list, uintptr_t id)
  268 {
  269 
  270         KASSERT(id != 0,
  271                 ("%s: the head item (0) must always be free.", __func__));
  272         list[id] = list[0];
  273         list[0]  = (struct mbuf *)id;
  274 }
  275 
  276 static inline unsigned short
  277 get_id_from_freelist(struct mbuf **list)
  278 {
  279         uintptr_t id;
  280 
  281         id = (uintptr_t)list[0];
  282         KASSERT(id != 0,
  283                 ("%s: the head item (0) must always remain free.", __func__));
  284         list[0] = list[id];
  285         return (id);
  286 }
  287 
  288 static inline int
  289 xn_rxidx(RING_IDX idx)
  290 {
  291 
  292         return idx & (NET_RX_RING_SIZE - 1);
  293 }
  294 
  295 static inline struct mbuf *
  296 xn_get_rx_mbuf(struct netfront_rxq *rxq, RING_IDX ri)
  297 {
  298         int i;
  299         struct mbuf *m;
  300 
  301         i = xn_rxidx(ri);
  302         m = rxq->mbufs[i];
  303         rxq->mbufs[i] = NULL;
  304         return (m);
  305 }
  306 
  307 static inline grant_ref_t
  308 xn_get_rx_ref(struct netfront_rxq *rxq, RING_IDX ri)
  309 {
  310         int i = xn_rxidx(ri);
  311         grant_ref_t ref = rxq->grant_ref[i];
  312 
  313         KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n"));
  314         rxq->grant_ref[i] = GRANT_REF_INVALID;
  315         return (ref);
  316 }
  317 
  318 #define MTAG_COOKIE 1218492000
  319 #define MTAG_XENNET 0
  320 
  321 static void mbuf_grab(struct mbuf *m)
  322 {
  323         struct mbuf_xennet *ref;
  324 
  325         ref = (struct mbuf_xennet *)m_tag_locate(m, MTAG_COOKIE,
  326             MTAG_XENNET, NULL);
  327         KASSERT(ref != NULL, ("Cannot find refcount"));
  328         ref->count++;
  329 }
  330 
  331 static void mbuf_release(struct mbuf *m)
  332 {
  333         struct mbuf_xennet *ref;
  334 
  335         ref = (struct mbuf_xennet *)m_tag_locate(m, MTAG_COOKIE,
  336             MTAG_XENNET, NULL);
  337         KASSERT(ref != NULL, ("Cannot find refcount"));
  338         KASSERT(ref->count > 0, ("Invalid reference count"));
  339 
  340         if (--ref->count == 0)
  341                 m_freem(m);
  342 }
  343 
  344 static void tag_free(struct m_tag *t)
  345 {
  346         struct mbuf_xennet *ref = (struct mbuf_xennet *)t;
  347 
  348         KASSERT(ref->count == 0, ("Free mbuf tag with pending refcnt"));
  349         bus_dmamap_sync(ref->dma_tag, ref->dma_map, BUS_DMASYNC_POSTWRITE);
  350         bus_dmamap_destroy(ref->dma_tag, ref->dma_map);
  351         SLIST_INSERT_HEAD(&ref->txq->tags, ref, next);
  352 }
  353 
  354 #define IPRINTK(fmt, args...) \
  355     printf("[XEN] " fmt, ##args)
  356 #ifdef INVARIANTS
  357 #define WPRINTK(fmt, args...) \
  358     printf("[XEN] " fmt, ##args)
  359 #else
  360 #define WPRINTK(fmt, args...)
  361 #endif
  362 #ifdef DEBUG
  363 #define DPRINTK(fmt, args...) \
  364     printf("[XEN] %s: " fmt, __func__, ##args)
  365 #else
  366 #define DPRINTK(fmt, args...)
  367 #endif
  368 
  369 /**
  370  * Read the 'mac' node at the given device's node in the store, and parse that
  371  * as colon-separated octets, placing result the given mac array.  mac must be
  372  * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h).
  373  * Return 0 on success, or errno on error.
  374  */
  375 static int
  376 xen_net_read_mac(device_t dev, uint8_t mac[])
  377 {
  378         int error, i;
  379         char *s, *e, *macstr;
  380         const char *path;
  381 
  382         path = xenbus_get_node(dev);
  383         error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
  384         if (error == ENOENT) {
  385                 /*
  386                  * Deal with missing mac XenStore nodes on devices with
  387                  * HVM emulation (the 'ioemu' configuration attribute)
  388                  * enabled.
  389                  *
  390                  * The HVM emulator may execute in a stub device model
  391                  * domain which lacks the permission, only given to Dom0,
  392                  * to update the guest's XenStore tree.  For this reason,
  393                  * the HVM emulator doesn't even attempt to write the
  394                  * front-side mac node, even when operating in Dom0.
  395                  * However, there should always be a mac listed in the
  396                  * backend tree.  Fallback to this version if our query
  397                  * of the front side XenStore location doesn't find
  398                  * anything.
  399                  */
  400                 path = xenbus_get_otherend_path(dev);
  401                 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
  402         }
  403         if (error != 0) {
  404                 xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
  405                 return (error);
  406         }
  407 
  408         s = macstr;
  409         for (i = 0; i < ETHER_ADDR_LEN; i++) {
  410                 mac[i] = strtoul(s, &e, 16);
  411                 if (s == e || (e[0] != ':' && e[0] != 0)) {
  412                         free(macstr, M_XENBUS);
  413                         return (ENOENT);
  414                 }
  415                 s = &e[1];
  416         }
  417         free(macstr, M_XENBUS);
  418         return (0);
  419 }
  420 
  421 /**
  422  * Entry point to this code when a new device is created.  Allocate the basic
  423  * structures and the ring buffers for communication with the backend, and
  424  * inform the backend of the appropriate details for those.  Switch to
  425  * Connected state.
  426  */
  427 static int
  428 netfront_probe(device_t dev)
  429 {
  430 
  431         if (xen_pv_nics_disabled())
  432                 return (ENXIO);
  433 
  434         if (!strcmp(xenbus_get_type(dev), "vif")) {
  435                 device_set_desc(dev, "Virtual Network Interface");
  436                 return (0);
  437         }
  438 
  439         return (ENXIO);
  440 }
  441 
  442 static int
  443 netfront_attach(device_t dev)
  444 {
  445         int err;
  446 
  447         err = create_netdev(dev);
  448         if (err != 0) {
  449                 xenbus_dev_fatal(dev, err, "creating netdev");
  450                 return (err);
  451         }
  452 
  453         SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
  454             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
  455             OID_AUTO, "enable_lro", CTLFLAG_RW,
  456             &xn_enable_lro, 0, "Large Receive Offload");
  457 
  458         SYSCTL_ADD_ULONG(device_get_sysctl_ctx(dev),
  459             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
  460             OID_AUTO, "num_queues", CTLFLAG_RD,
  461             &xn_num_queues, "Number of pairs of queues");
  462 
  463         return (0);
  464 }
  465 
  466 static int
  467 netfront_suspend(device_t dev)
  468 {
  469         struct netfront_info *np = device_get_softc(dev);
  470         u_int i;
  471 
  472         for (i = 0; i < np->num_queues; i++) {
  473                 XN_RX_LOCK(&np->rxq[i]);
  474                 XN_TX_LOCK(&np->txq[i]);
  475         }
  476         netfront_carrier_off(np);
  477         for (i = 0; i < np->num_queues; i++) {
  478                 XN_RX_UNLOCK(&np->rxq[i]);
  479                 XN_TX_UNLOCK(&np->txq[i]);
  480         }
  481         return (0);
  482 }
  483 
  484 /**
  485  * We are reconnecting to the backend, due to a suspend/resume, or a backend
  486  * driver restart.  We tear down our netif structure and recreate it, but
  487  * leave the device-layer structures intact so that this is transparent to the
  488  * rest of the kernel.
  489  */
  490 static int
  491 netfront_resume(device_t dev)
  492 {
  493         struct netfront_info *info = device_get_softc(dev);
  494         u_int i;
  495 
  496         if (xen_suspend_cancelled) {
  497                 for (i = 0; i < info->num_queues; i++) {
  498                         XN_RX_LOCK(&info->rxq[i]);
  499                         XN_TX_LOCK(&info->txq[i]);
  500                 }
  501                 netfront_carrier_on(info);
  502                 for (i = 0; i < info->num_queues; i++) {
  503                         XN_RX_UNLOCK(&info->rxq[i]);
  504                         XN_TX_UNLOCK(&info->txq[i]);
  505                 }
  506                 return (0);
  507         }
  508 
  509         netif_disconnect_backend(info);
  510         return (0);
  511 }
  512 
  513 static int
  514 write_queue_xenstore_keys(device_t dev,
  515     struct netfront_rxq *rxq,
  516     struct netfront_txq *txq,
  517     struct xs_transaction *xst, bool hierarchy)
  518 {
  519         int err;
  520         const char *message;
  521         const char *node = xenbus_get_node(dev);
  522         char *path;
  523         size_t path_size;
  524 
  525         KASSERT(rxq->id == txq->id, ("Mismatch between RX and TX queue ids"));
  526         /* Split event channel support is not yet there. */
  527         KASSERT(rxq->xen_intr_handle == txq->xen_intr_handle,
  528             ("Split event channels are not supported"));
  529 
  530         if (hierarchy) {
  531                 path_size = strlen(node) + 10;
  532                 path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO);
  533                 snprintf(path, path_size, "%s/queue-%u", node, rxq->id);
  534         } else {
  535                 path_size = strlen(node) + 1;
  536                 path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO);
  537                 snprintf(path, path_size, "%s", node);
  538         }
  539 
  540         err = xs_printf(*xst, path, "tx-ring-ref","%u", txq->ring_ref);
  541         if (err != 0) {
  542                 message = "writing tx ring-ref";
  543                 goto error;
  544         }
  545         err = xs_printf(*xst, path, "rx-ring-ref","%u", rxq->ring_ref);
  546         if (err != 0) {
  547                 message = "writing rx ring-ref";
  548                 goto error;
  549         }
  550         err = xs_printf(*xst, path, "event-channel", "%u",
  551             xen_intr_port(rxq->xen_intr_handle));
  552         if (err != 0) {
  553                 message = "writing event-channel";
  554                 goto error;
  555         }
  556 
  557         free(path, M_DEVBUF);
  558 
  559         return (0);
  560 
  561 error:
  562         free(path, M_DEVBUF);
  563         xenbus_dev_fatal(dev, err, "%s", message);
  564 
  565         return (err);
  566 }
  567 
  568 /* Common code used when first setting up, and when resuming. */
  569 static int
  570 talk_to_backend(device_t dev, struct netfront_info *info)
  571 {
  572         const char *message;
  573         struct xs_transaction xst;
  574         const char *node = xenbus_get_node(dev);
  575         int err;
  576         unsigned long num_queues, max_queues = 0;
  577         unsigned int i;
  578 
  579         err = xen_net_read_mac(dev, info->mac);
  580         if (err != 0) {
  581                 xenbus_dev_fatal(dev, err, "parsing %s/mac", node);
  582                 goto out;
  583         }
  584 
  585         err = xs_scanf(XST_NIL, xenbus_get_otherend_path(info->xbdev),
  586             "multi-queue-max-queues", NULL, "%lu", &max_queues);
  587         if (err != 0)
  588                 max_queues = 1;
  589         num_queues = xn_num_queues;
  590         if (num_queues > max_queues)
  591                 num_queues = max_queues;
  592 
  593         err = setup_device(dev, info, num_queues);
  594         if (err != 0)
  595                 goto out;
  596 
  597  again:
  598         err = xs_transaction_start(&xst);
  599         if (err != 0) {
  600                 xenbus_dev_fatal(dev, err, "starting transaction");
  601                 goto free;
  602         }
  603 
  604         if (info->num_queues == 1) {
  605                 err = write_queue_xenstore_keys(dev, &info->rxq[0],
  606                     &info->txq[0], &xst, false);
  607                 if (err != 0)
  608                         goto abort_transaction_no_def_error;
  609         } else {
  610                 err = xs_printf(xst, node, "multi-queue-num-queues",
  611                     "%u", info->num_queues);
  612                 if (err != 0) {
  613                         message = "writing multi-queue-num-queues";
  614                         goto abort_transaction;
  615                 }
  616 
  617                 for (i = 0; i < info->num_queues; i++) {
  618                         err = write_queue_xenstore_keys(dev, &info->rxq[i],
  619                             &info->txq[i], &xst, true);
  620                         if (err != 0)
  621                                 goto abort_transaction_no_def_error;
  622                 }
  623         }
  624 
  625         err = xs_printf(xst, node, "request-rx-copy", "%u", 1);
  626         if (err != 0) {
  627                 message = "writing request-rx-copy";
  628                 goto abort_transaction;
  629         }
  630         err = xs_printf(xst, node, "feature-rx-notify", "%d", 1);
  631         if (err != 0) {
  632                 message = "writing feature-rx-notify";
  633                 goto abort_transaction;
  634         }
  635         err = xs_printf(xst, node, "feature-sg", "%d", 1);
  636         if (err != 0) {
  637                 message = "writing feature-sg";
  638                 goto abort_transaction;
  639         }
  640         if ((info->xn_ifp->if_capenable & IFCAP_LRO) != 0) {
  641                 err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1);
  642                 if (err != 0) {
  643                         message = "writing feature-gso-tcpv4";
  644                         goto abort_transaction;
  645                 }
  646         }
  647         if ((info->xn_ifp->if_capenable & IFCAP_RXCSUM) == 0) {
  648                 err = xs_printf(xst, node, "feature-no-csum-offload", "%d", 1);
  649                 if (err != 0) {
  650                         message = "writing feature-no-csum-offload";
  651                         goto abort_transaction;
  652                 }
  653         }
  654 
  655         err = xs_transaction_end(xst, 0);
  656         if (err != 0) {
  657                 if (err == EAGAIN)
  658                         goto again;
  659                 xenbus_dev_fatal(dev, err, "completing transaction");
  660                 goto free;
  661         }
  662 
  663         return 0;
  664 
  665  abort_transaction:
  666         xenbus_dev_fatal(dev, err, "%s", message);
  667  abort_transaction_no_def_error:
  668         xs_transaction_end(xst, 1);
  669  free:
  670         netif_free(info);
  671  out:
  672         return (err);
  673 }
  674 
  675 static void
  676 xn_rxq_intr(struct netfront_rxq *rxq)
  677 {
  678 
  679         XN_RX_LOCK(rxq);
  680         xn_rxeof(rxq);
  681         XN_RX_UNLOCK(rxq);
  682 }
  683 
  684 static void
  685 xn_txq_start(struct netfront_txq *txq)
  686 {
  687         struct netfront_info *np = txq->info;
  688         struct ifnet *ifp = np->xn_ifp;
  689 
  690         XN_TX_LOCK_ASSERT(txq);
  691         if (!drbr_empty(ifp, txq->br))
  692                 xn_txq_mq_start_locked(txq, NULL);
  693 }
  694 
  695 static void
  696 xn_txq_intr(struct netfront_txq *txq)
  697 {
  698 
  699         XN_TX_LOCK(txq);
  700         if (RING_HAS_UNCONSUMED_RESPONSES(&txq->ring))
  701                 xn_txeof(txq);
  702         xn_txq_start(txq);
  703         XN_TX_UNLOCK(txq);
  704 }
  705 
  706 static void
  707 xn_txq_tq_deferred(void *xtxq, int pending)
  708 {
  709         struct netfront_txq *txq = xtxq;
  710 
  711         XN_TX_LOCK(txq);
  712         xn_txq_start(txq);
  713         XN_TX_UNLOCK(txq);
  714 }
  715 
  716 static void
  717 disconnect_rxq(struct netfront_rxq *rxq)
  718 {
  719 
  720         xn_release_rx_bufs(rxq);
  721         gnttab_free_grant_references(rxq->gref_head);
  722         gnttab_end_foreign_access(rxq->ring_ref, NULL);
  723         /*
  724          * No split event channel support at the moment, handle will
  725          * be unbound in tx. So no need to call xen_intr_unbind here,
  726          * but we do want to reset the handler to 0.
  727          */
  728         rxq->xen_intr_handle = 0;
  729 }
  730 
  731 static void
  732 destroy_rxq(struct netfront_rxq *rxq)
  733 {
  734 
  735         callout_drain(&rxq->rx_refill);
  736         free(rxq->ring.sring, M_DEVBUF);
  737 }
  738 
  739 static void
  740 destroy_rxqs(struct netfront_info *np)
  741 {
  742         int i;
  743 
  744         for (i = 0; i < np->num_queues; i++)
  745                 destroy_rxq(&np->rxq[i]);
  746 
  747         free(np->rxq, M_DEVBUF);
  748         np->rxq = NULL;
  749 }
  750 
  751 static int
  752 setup_rxqs(device_t dev, struct netfront_info *info,
  753            unsigned long num_queues)
  754 {
  755         int q, i;
  756         int error;
  757         netif_rx_sring_t *rxs;
  758         struct netfront_rxq *rxq;
  759 
  760         info->rxq = malloc(sizeof(struct netfront_rxq) * num_queues,
  761             M_DEVBUF, M_WAITOK|M_ZERO);
  762 
  763         for (q = 0; q < num_queues; q++) {
  764                 rxq = &info->rxq[q];
  765 
  766                 rxq->id = q;
  767                 rxq->info = info;
  768                 rxq->ring_ref = GRANT_REF_INVALID;
  769                 rxq->ring.sring = NULL;
  770                 snprintf(rxq->name, XN_QUEUE_NAME_LEN, "xnrx_%u", q);
  771                 mtx_init(&rxq->lock, rxq->name, "netfront receive lock",
  772                     MTX_DEF);
  773 
  774                 for (i = 0; i <= NET_RX_RING_SIZE; i++) {
  775                         rxq->mbufs[i] = NULL;
  776                         rxq->grant_ref[i] = GRANT_REF_INVALID;
  777                 }
  778 
  779                 /* Start resources allocation */
  780 
  781                 if (gnttab_alloc_grant_references(NET_RX_RING_SIZE,
  782                     &rxq->gref_head) != 0) {
  783                         device_printf(dev, "allocating rx gref");
  784                         error = ENOMEM;
  785                         goto fail;
  786                 }
  787 
  788                 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF,
  789                     M_WAITOK|M_ZERO);
  790                 SHARED_RING_INIT(rxs);
  791                 FRONT_RING_INIT(&rxq->ring, rxs, PAGE_SIZE);
  792 
  793                 error = xenbus_grant_ring(dev, virt_to_mfn(rxs),
  794                     &rxq->ring_ref);
  795                 if (error != 0) {
  796                         device_printf(dev, "granting rx ring page");
  797                         goto fail_grant_ring;
  798                 }
  799 
  800                 callout_init(&rxq->rx_refill, 1);
  801         }
  802 
  803         return (0);
  804 
  805 fail_grant_ring:
  806         gnttab_free_grant_references(rxq->gref_head);
  807         free(rxq->ring.sring, M_DEVBUF);
  808 fail:
  809         for (; q >= 0; q--) {
  810                 disconnect_rxq(&info->rxq[q]);
  811                 destroy_rxq(&info->rxq[q]);
  812         }
  813 
  814         free(info->rxq, M_DEVBUF);
  815         return (error);
  816 }
  817 
  818 static void
  819 disconnect_txq(struct netfront_txq *txq)
  820 {
  821 
  822         xn_release_tx_bufs(txq);
  823         gnttab_free_grant_references(txq->gref_head);
  824         gnttab_end_foreign_access(txq->ring_ref, NULL);
  825         xen_intr_unbind(&txq->xen_intr_handle);
  826 }
  827 
  828 static void
  829 destroy_txq(struct netfront_txq *txq)
  830 {
  831         unsigned int i;
  832 
  833         free(txq->ring.sring, M_DEVBUF);
  834         buf_ring_free(txq->br, M_DEVBUF);
  835         taskqueue_drain_all(txq->tq);
  836         taskqueue_free(txq->tq);
  837 
  838         for (i = 0; i <= NET_TX_RING_SIZE; i++) {
  839                 bus_dmamap_destroy(txq->info->dma_tag,
  840                     txq->xennet_tag[i].dma_map);
  841                 txq->xennet_tag[i].dma_map = NULL;
  842         }
  843 }
  844 
  845 static void
  846 destroy_txqs(struct netfront_info *np)
  847 {
  848         int i;
  849 
  850         for (i = 0; i < np->num_queues; i++)
  851                 destroy_txq(&np->txq[i]);
  852 
  853         free(np->txq, M_DEVBUF);
  854         np->txq = NULL;
  855 }
  856 
  857 static int
  858 setup_txqs(device_t dev, struct netfront_info *info,
  859            unsigned long num_queues)
  860 {
  861         int q, i;
  862         int error;
  863         netif_tx_sring_t *txs;
  864         struct netfront_txq *txq;
  865 
  866         info->txq = malloc(sizeof(struct netfront_txq) * num_queues,
  867             M_DEVBUF, M_WAITOK|M_ZERO);
  868 
  869         for (q = 0; q < num_queues; q++) {
  870                 txq = &info->txq[q];
  871 
  872                 txq->id = q;
  873                 txq->info = info;
  874 
  875                 txq->ring_ref = GRANT_REF_INVALID;
  876                 txq->ring.sring = NULL;
  877 
  878                 snprintf(txq->name, XN_QUEUE_NAME_LEN, "xntx_%u", q);
  879 
  880                 mtx_init(&txq->lock, txq->name, "netfront transmit lock",
  881                     MTX_DEF);
  882                 SLIST_INIT(&txq->tags);
  883 
  884                 for (i = 0; i <= NET_TX_RING_SIZE; i++) {
  885                         txq->mbufs[i] = (void *) ((u_long) i+1);
  886                         txq->grant_ref[i] = GRANT_REF_INVALID;
  887                         txq->xennet_tag[i].txq = txq;
  888                         txq->xennet_tag[i].dma_tag = info->dma_tag;
  889                         error = bus_dmamap_create(info->dma_tag, 0,
  890                             &txq->xennet_tag[i].dma_map);
  891                         if (error != 0) {
  892                                 device_printf(dev,
  893                                     "failed to allocate dma map\n");
  894                                 goto fail;
  895                         }
  896                         m_tag_setup(&txq->xennet_tag[i].tag,
  897                             MTAG_COOKIE, MTAG_XENNET,
  898                             sizeof(txq->xennet_tag[i]) -
  899                             sizeof(txq->xennet_tag[i].tag));
  900                         txq->xennet_tag[i].tag.m_tag_free = &tag_free;
  901                         SLIST_INSERT_HEAD(&txq->tags, &txq->xennet_tag[i],
  902                             next);
  903                 }
  904                 txq->mbufs[NET_TX_RING_SIZE] = (void *)0;
  905 
  906                 /* Start resources allocation. */
  907 
  908                 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE,
  909                     &txq->gref_head) != 0) {
  910                         device_printf(dev, "failed to allocate tx grant refs\n");
  911                         error = ENOMEM;
  912                         goto fail;
  913                 }
  914 
  915                 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF,
  916                     M_WAITOK|M_ZERO);
  917                 SHARED_RING_INIT(txs);
  918                 FRONT_RING_INIT(&txq->ring, txs, PAGE_SIZE);
  919 
  920                 error = xenbus_grant_ring(dev, virt_to_mfn(txs),
  921                     &txq->ring_ref);
  922                 if (error != 0) {
  923                         device_printf(dev, "failed to grant tx ring\n");
  924                         goto fail_grant_ring;
  925                 }
  926 
  927                 txq->br = buf_ring_alloc(NET_TX_RING_SIZE, M_DEVBUF,
  928                     M_WAITOK, &txq->lock);
  929                 TASK_INIT(&txq->defrtask, 0, xn_txq_tq_deferred, txq);
  930 
  931                 txq->tq = taskqueue_create(txq->name, M_WAITOK,
  932                     taskqueue_thread_enqueue, &txq->tq);
  933 
  934                 error = taskqueue_start_threads(&txq->tq, 1, PI_NET,
  935                     "%s txq %d", device_get_nameunit(dev), txq->id);
  936                 if (error != 0) {
  937                         device_printf(dev, "failed to start tx taskq %d\n",
  938                             txq->id);
  939                         goto fail_start_thread;
  940                 }
  941 
  942                 error = xen_intr_alloc_and_bind_local_port(dev,
  943                     xenbus_get_otherend_id(dev), /* filter */ NULL, xn_intr,
  944                     &info->txq[q], INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY,
  945                     &txq->xen_intr_handle);
  946 
  947                 if (error != 0) {
  948                         device_printf(dev, "xen_intr_alloc_and_bind_local_port failed\n");
  949                         goto fail_bind_port;
  950                 }
  951         }
  952 
  953         return (0);
  954 
  955 fail_bind_port:
  956         taskqueue_drain_all(txq->tq);
  957 fail_start_thread:
  958         buf_ring_free(txq->br, M_DEVBUF);
  959         taskqueue_free(txq->tq);
  960         gnttab_end_foreign_access(txq->ring_ref, NULL);
  961 fail_grant_ring:
  962         gnttab_free_grant_references(txq->gref_head);
  963         free(txq->ring.sring, M_DEVBUF);
  964 fail:
  965         for (; q >= 0; q--) {
  966                 disconnect_txq(&info->txq[q]);
  967                 destroy_txq(&info->txq[q]);
  968         }
  969 
  970         free(info->txq, M_DEVBUF);
  971         return (error);
  972 }
  973 
  974 static int
  975 setup_device(device_t dev, struct netfront_info *info,
  976     unsigned long num_queues)
  977 {
  978         int error;
  979         int q;
  980 
  981         if (info->txq)
  982                 destroy_txqs(info);
  983 
  984         if (info->rxq)
  985                 destroy_rxqs(info);
  986 
  987         info->num_queues = 0;
  988 
  989         error = setup_rxqs(dev, info, num_queues);
  990         if (error != 0)
  991                 goto out;
  992         error = setup_txqs(dev, info, num_queues);
  993         if (error != 0)
  994                 goto out;
  995 
  996         info->num_queues = num_queues;
  997 
  998         /* No split event channel at the moment. */
  999         for (q = 0; q < num_queues; q++)
 1000                 info->rxq[q].xen_intr_handle = info->txq[q].xen_intr_handle;
 1001 
 1002         return (0);
 1003 
 1004 out:
 1005         KASSERT(error != 0, ("Error path taken without providing an error code"));
 1006         return (error);
 1007 }
 1008 
 1009 #ifdef INET
 1010 /**
 1011  * If this interface has an ipv4 address, send an arp for it. This
 1012  * helps to get the network going again after migrating hosts.
 1013  */
 1014 static void
 1015 netfront_send_fake_arp(device_t dev, struct netfront_info *info)
 1016 {
 1017         struct ifnet *ifp;
 1018         struct ifaddr *ifa;
 1019 
 1020         ifp = info->xn_ifp;
 1021         CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 1022                 if (ifa->ifa_addr->sa_family == AF_INET) {
 1023                         arp_ifinit(ifp, ifa);
 1024                 }
 1025         }
 1026 }
 1027 #endif
 1028 
 1029 /**
 1030  * Callback received when the backend's state changes.
 1031  */
 1032 static void
 1033 netfront_backend_changed(device_t dev, XenbusState newstate)
 1034 {
 1035         struct netfront_info *sc = device_get_softc(dev);
 1036 
 1037         DPRINTK("newstate=%d\n", newstate);
 1038 
 1039         CURVNET_SET(sc->xn_ifp->if_vnet);
 1040 
 1041         switch (newstate) {
 1042         case XenbusStateInitialising:
 1043         case XenbusStateInitialised:
 1044         case XenbusStateUnknown:
 1045         case XenbusStateReconfigured:
 1046         case XenbusStateReconfiguring:
 1047                 break;
 1048         case XenbusStateInitWait:
 1049                 if (xenbus_get_state(dev) != XenbusStateInitialising)
 1050                         break;
 1051                 if (xn_connect(sc) != 0)
 1052                         break;
 1053                 /* Switch to connected state before kicking the rings. */
 1054                 xenbus_set_state(sc->xbdev, XenbusStateConnected);
 1055                 xn_kick_rings(sc);
 1056                 break;
 1057         case XenbusStateClosing:
 1058                 xenbus_set_state(dev, XenbusStateClosed);
 1059                 break;
 1060         case XenbusStateClosed:
 1061                 if (sc->xn_reset) {
 1062                         netif_disconnect_backend(sc);
 1063                         xenbus_set_state(dev, XenbusStateInitialising);
 1064                         sc->xn_reset = false;
 1065                 }
 1066                 break;
 1067         case XenbusStateConnected:
 1068 #ifdef INET
 1069                 netfront_send_fake_arp(dev, sc);
 1070 #endif
 1071                 break;
 1072         }
 1073 
 1074         CURVNET_RESTORE();
 1075 }
 1076 
 1077 /**
 1078  * \brief Verify that there is sufficient space in the Tx ring
 1079  *        buffer for a maximally sized request to be enqueued.
 1080  *
 1081  * A transmit request requires a transmit descriptor for each packet
 1082  * fragment, plus up to 2 entries for "options" (e.g. TSO).
 1083  */
 1084 static inline int
 1085 xn_tx_slot_available(struct netfront_txq *txq)
 1086 {
 1087 
 1088         return (RING_FREE_REQUESTS(&txq->ring) > (MAX_TX_REQ_FRAGS + 2));
 1089 }
 1090 
 1091 static void
 1092 xn_release_tx_bufs(struct netfront_txq *txq)
 1093 {
 1094         int i;
 1095 
 1096         for (i = 1; i <= NET_TX_RING_SIZE; i++) {
 1097                 struct mbuf *m;
 1098 
 1099                 m = txq->mbufs[i];
 1100 
 1101                 /*
 1102                  * We assume that no kernel addresses are
 1103                  * less than NET_TX_RING_SIZE.  Any entry
 1104                  * in the table that is below this number
 1105                  * must be an index from free-list tracking.
 1106                  */
 1107                 if (((uintptr_t)m) <= NET_TX_RING_SIZE)
 1108                         continue;
 1109                 gnttab_end_foreign_access_ref(txq->grant_ref[i]);
 1110                 gnttab_release_grant_reference(&txq->gref_head,
 1111                     txq->grant_ref[i]);
 1112                 txq->grant_ref[i] = GRANT_REF_INVALID;
 1113                 add_id_to_freelist(txq->mbufs, i);
 1114                 txq->mbufs_cnt--;
 1115                 if (txq->mbufs_cnt < 0) {
 1116                         panic("%s: tx_chain_cnt must be >= 0", __func__);
 1117                 }
 1118                 mbuf_release(m);
 1119         }
 1120 }
 1121 
 1122 static struct mbuf *
 1123 xn_alloc_one_rx_buffer(struct netfront_rxq *rxq)
 1124 {
 1125         struct mbuf *m;
 1126 
 1127         m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1128         if (m == NULL)
 1129                 return NULL;
 1130         m->m_len = m->m_pkthdr.len = MJUMPAGESIZE;
 1131 
 1132         return (m);
 1133 }
 1134 
 1135 static void
 1136 xn_alloc_rx_buffers(struct netfront_rxq *rxq)
 1137 {
 1138         RING_IDX req_prod;
 1139         int notify;
 1140 
 1141         XN_RX_LOCK_ASSERT(rxq);
 1142 
 1143         if (__predict_false(rxq->info->carrier == 0))
 1144                 return;
 1145 
 1146         for (req_prod = rxq->ring.req_prod_pvt;
 1147              req_prod - rxq->ring.rsp_cons < NET_RX_RING_SIZE;
 1148              req_prod++) {
 1149                 struct mbuf *m;
 1150                 unsigned short id;
 1151                 grant_ref_t ref;
 1152                 struct netif_rx_request *req;
 1153                 unsigned long pfn;
 1154 
 1155                 m = xn_alloc_one_rx_buffer(rxq);
 1156                 if (m == NULL)
 1157                         break;
 1158 
 1159                 id = xn_rxidx(req_prod);
 1160 
 1161                 KASSERT(rxq->mbufs[id] == NULL, ("non-NULL xn_rx_chain"));
 1162                 rxq->mbufs[id] = m;
 1163 
 1164                 ref = gnttab_claim_grant_reference(&rxq->gref_head);
 1165                 KASSERT(ref != GNTTAB_LIST_END,
 1166                     ("reserved grant references exhuasted"));
 1167                 rxq->grant_ref[id] = ref;
 1168 
 1169                 pfn = atop(vtophys(mtod(m, vm_offset_t)));
 1170                 req = RING_GET_REQUEST(&rxq->ring, req_prod);
 1171 
 1172                 gnttab_grant_foreign_access_ref(ref,
 1173                     xenbus_get_otherend_id(rxq->info->xbdev), pfn, 0);
 1174                 req->id = id;
 1175                 req->gref = ref;
 1176         }
 1177 
 1178         rxq->ring.req_prod_pvt = req_prod;
 1179 
 1180         /* Not enough requests? Try again later. */
 1181         if (req_prod - rxq->ring.rsp_cons < NET_RX_SLOTS_MIN) {
 1182                 callout_reset_curcpu(&rxq->rx_refill, hz/10,
 1183                     xn_alloc_rx_buffers_callout, rxq);
 1184                 return;
 1185         }
 1186 
 1187         wmb();          /* barrier so backend seens requests */
 1188 
 1189         RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rxq->ring, notify);
 1190         if (notify)
 1191                 xen_intr_signal(rxq->xen_intr_handle);
 1192 }
 1193 
 1194 static void xn_alloc_rx_buffers_callout(void *arg)
 1195 {
 1196         struct netfront_rxq *rxq;
 1197 
 1198         rxq = (struct netfront_rxq *)arg;
 1199         XN_RX_LOCK(rxq);
 1200         xn_alloc_rx_buffers(rxq);
 1201         XN_RX_UNLOCK(rxq);
 1202 }
 1203 
 1204 static void
 1205 xn_release_rx_bufs(struct netfront_rxq *rxq)
 1206 {
 1207         int i,  ref;
 1208         struct mbuf *m;
 1209 
 1210         for (i = 0; i < NET_RX_RING_SIZE; i++) {
 1211                 m = rxq->mbufs[i];
 1212 
 1213                 if (m == NULL)
 1214                         continue;
 1215 
 1216                 ref = rxq->grant_ref[i];
 1217                 if (ref == GRANT_REF_INVALID)
 1218                         continue;
 1219 
 1220                 gnttab_end_foreign_access_ref(ref);
 1221                 gnttab_release_grant_reference(&rxq->gref_head, ref);
 1222                 rxq->mbufs[i] = NULL;
 1223                 rxq->grant_ref[i] = GRANT_REF_INVALID;
 1224                 m_freem(m);
 1225         }
 1226 }
 1227 
 1228 static void
 1229 xn_rxeof(struct netfront_rxq *rxq)
 1230 {
 1231         struct ifnet *ifp;
 1232         struct netfront_info *np = rxq->info;
 1233 #if (defined(INET) || defined(INET6))
 1234         struct lro_ctrl *lro = &rxq->lro;
 1235 #endif
 1236         struct netfront_rx_info rinfo;
 1237         struct netif_rx_response *rx = &rinfo.rx;
 1238         struct netif_extra_info *extras = rinfo.extras;
 1239         RING_IDX i, rp;
 1240         struct mbuf *m;
 1241         struct mbufq mbufq_rxq, mbufq_errq;
 1242         int err, work_to_do;
 1243 
 1244         XN_RX_LOCK_ASSERT(rxq);
 1245 
 1246         if (!netfront_carrier_ok(np))
 1247                 return;
 1248 
 1249         /* XXX: there should be some sane limit. */
 1250         mbufq_init(&mbufq_errq, INT_MAX);
 1251         mbufq_init(&mbufq_rxq, INT_MAX);
 1252 
 1253         ifp = np->xn_ifp;
 1254 
 1255         do {
 1256                 rp = rxq->ring.sring->rsp_prod;
 1257                 rmb();  /* Ensure we see queued responses up to 'rp'. */
 1258 
 1259                 i = rxq->ring.rsp_cons;
 1260                 while ((i != rp)) {
 1261                         memcpy(rx, RING_GET_RESPONSE(&rxq->ring, i), sizeof(*rx));
 1262                         memset(extras, 0, sizeof(rinfo.extras));
 1263 
 1264                         m = NULL;
 1265                         err = xn_get_responses(rxq, &rinfo, rp, &i, &m);
 1266 
 1267                         if (__predict_false(err)) {
 1268                                 if (m)
 1269                                         (void )mbufq_enqueue(&mbufq_errq, m);
 1270                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 1271                                 continue;
 1272                         }
 1273 
 1274                         m->m_pkthdr.rcvif = ifp;
 1275                         if (rx->flags & NETRXF_data_validated) {
 1276                                 /*
 1277                                  * According to mbuf(9) the correct way to tell
 1278                                  * the stack that the checksum of an inbound
 1279                                  * packet is correct, without it actually being
 1280                                  * present (because the underlying interface
 1281                                  * doesn't provide it), is to set the
 1282                                  * CSUM_DATA_VALID and CSUM_PSEUDO_HDR flags,
 1283                                  * and the csum_data field to 0xffff.
 1284                                  */
 1285                                 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID
 1286                                     | CSUM_PSEUDO_HDR);
 1287                                 m->m_pkthdr.csum_data = 0xffff;
 1288                         }
 1289                         if ((rx->flags & NETRXF_extra_info) != 0 &&
 1290                             (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type ==
 1291                             XEN_NETIF_EXTRA_TYPE_GSO)) {
 1292                                 m->m_pkthdr.tso_segsz =
 1293                                 extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].u.gso.size;
 1294                                 m->m_pkthdr.csum_flags |= CSUM_TSO;
 1295                         }
 1296 
 1297                         (void )mbufq_enqueue(&mbufq_rxq, m);
 1298                 }
 1299 
 1300                 rxq->ring.rsp_cons = i;
 1301 
 1302                 xn_alloc_rx_buffers(rxq);
 1303 
 1304                 RING_FINAL_CHECK_FOR_RESPONSES(&rxq->ring, work_to_do);
 1305         } while (work_to_do);
 1306 
 1307         mbufq_drain(&mbufq_errq);
 1308         /*
 1309          * Process all the mbufs after the remapping is complete.
 1310          * Break the mbuf chain first though.
 1311          */
 1312         while ((m = mbufq_dequeue(&mbufq_rxq)) != NULL) {
 1313                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 1314 #if (defined(INET) || defined(INET6))
 1315                 /* Use LRO if possible */
 1316                 if ((ifp->if_capenable & IFCAP_LRO) == 0 ||
 1317                     lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) {
 1318                         /*
 1319                          * If LRO fails, pass up to the stack
 1320                          * directly.
 1321                          */
 1322                         (*ifp->if_input)(ifp, m);
 1323                 }
 1324 #else
 1325                 (*ifp->if_input)(ifp, m);
 1326 #endif
 1327         }
 1328 
 1329 #if (defined(INET) || defined(INET6))
 1330         /*
 1331          * Flush any outstanding LRO work
 1332          */
 1333         tcp_lro_flush_all(lro);
 1334 #endif
 1335 }
 1336 
 1337 static void
 1338 xn_txeof(struct netfront_txq *txq)
 1339 {
 1340         RING_IDX i, prod;
 1341         unsigned short id;
 1342         struct ifnet *ifp;
 1343         netif_tx_response_t *txr;
 1344         struct mbuf *m;
 1345         struct netfront_info *np = txq->info;
 1346 
 1347         XN_TX_LOCK_ASSERT(txq);
 1348 
 1349         if (!netfront_carrier_ok(np))
 1350                 return;
 1351 
 1352         ifp = np->xn_ifp;
 1353 
 1354         do {
 1355                 prod = txq->ring.sring->rsp_prod;
 1356                 rmb(); /* Ensure we see responses up to 'rp'. */
 1357 
 1358                 for (i = txq->ring.rsp_cons; i != prod; i++) {
 1359                         txr = RING_GET_RESPONSE(&txq->ring, i);
 1360                         if (txr->status == NETIF_RSP_NULL)
 1361                                 continue;
 1362 
 1363                         if (txr->status != NETIF_RSP_OKAY) {
 1364                                 printf("%s: WARNING: response is %d!\n",
 1365                                        __func__, txr->status);
 1366                         }
 1367                         id = txr->id;
 1368                         m = txq->mbufs[id];
 1369                         KASSERT(m != NULL, ("mbuf not found in chain"));
 1370                         KASSERT((uintptr_t)m > NET_TX_RING_SIZE,
 1371                                 ("mbuf already on the free list, but we're "
 1372                                 "trying to free it again!"));
 1373                         M_ASSERTVALID(m);
 1374 
 1375                         if (__predict_false(gnttab_query_foreign_access(
 1376                             txq->grant_ref[id]) != 0)) {
 1377                                 panic("%s: grant id %u still in use by the "
 1378                                     "backend", __func__, id);
 1379                         }
 1380                         gnttab_end_foreign_access_ref(txq->grant_ref[id]);
 1381                         gnttab_release_grant_reference(
 1382                                 &txq->gref_head, txq->grant_ref[id]);
 1383                         txq->grant_ref[id] = GRANT_REF_INVALID;
 1384 
 1385                         txq->mbufs[id] = NULL;
 1386                         add_id_to_freelist(txq->mbufs, id);
 1387                         txq->mbufs_cnt--;
 1388                         mbuf_release(m);
 1389                         /* Only mark the txq active if we've freed up at least one slot to try */
 1390                         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1391                 }
 1392                 txq->ring.rsp_cons = prod;
 1393 
 1394                 /*
 1395                  * Set a new event, then check for race with update of
 1396                  * tx_cons. Note that it is essential to schedule a
 1397                  * callback, no matter how few buffers are pending. Even if
 1398                  * there is space in the transmit ring, higher layers may
 1399                  * be blocked because too much data is outstanding: in such
 1400                  * cases notification from Xen is likely to be the only kick
 1401                  * that we'll get.
 1402                  */
 1403                 txq->ring.sring->rsp_event =
 1404                     prod + ((txq->ring.sring->req_prod - prod) >> 1) + 1;
 1405 
 1406                 mb();
 1407         } while (prod != txq->ring.sring->rsp_prod);
 1408 
 1409         if (txq->full &&
 1410             ((txq->ring.sring->req_prod - prod) < NET_TX_RING_SIZE)) {
 1411                 txq->full = false;
 1412                 xn_txq_start(txq);
 1413         }
 1414 }
 1415 
 1416 static void
 1417 xn_intr(void *xsc)
 1418 {
 1419         struct netfront_txq *txq = xsc;
 1420         struct netfront_info *np = txq->info;
 1421         struct netfront_rxq *rxq = &np->rxq[txq->id];
 1422 
 1423         /* kick both tx and rx */
 1424         xn_rxq_intr(rxq);
 1425         xn_txq_intr(txq);
 1426 }
 1427 
 1428 static void
 1429 xn_move_rx_slot(struct netfront_rxq *rxq, struct mbuf *m,
 1430     grant_ref_t ref)
 1431 {
 1432         int new = xn_rxidx(rxq->ring.req_prod_pvt);
 1433 
 1434         KASSERT(rxq->mbufs[new] == NULL, ("mbufs != NULL"));
 1435         rxq->mbufs[new] = m;
 1436         rxq->grant_ref[new] = ref;
 1437         RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->id = new;
 1438         RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->gref = ref;
 1439         rxq->ring.req_prod_pvt++;
 1440 }
 1441 
 1442 static int
 1443 xn_get_extras(struct netfront_rxq *rxq,
 1444     struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons)
 1445 {
 1446         struct netif_extra_info *extra;
 1447 
 1448         int err = 0;
 1449 
 1450         do {
 1451                 struct mbuf *m;
 1452                 grant_ref_t ref;
 1453 
 1454                 if (__predict_false(*cons + 1 == rp)) {
 1455                         err = EINVAL;
 1456                         break;
 1457                 }
 1458 
 1459                 extra = (struct netif_extra_info *)
 1460                 RING_GET_RESPONSE(&rxq->ring, ++(*cons));
 1461 
 1462                 if (__predict_false(!extra->type ||
 1463                         extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
 1464                         err = EINVAL;
 1465                 } else {
 1466                         memcpy(&extras[extra->type - 1], extra, sizeof(*extra));
 1467                 }
 1468 
 1469                 m = xn_get_rx_mbuf(rxq, *cons);
 1470                 ref = xn_get_rx_ref(rxq,  *cons);
 1471                 xn_move_rx_slot(rxq, m, ref);
 1472         } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE);
 1473 
 1474         return err;
 1475 }
 1476 
 1477 static int
 1478 xn_get_responses(struct netfront_rxq *rxq,
 1479     struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
 1480     struct mbuf  **list)
 1481 {
 1482         struct netif_rx_response *rx = &rinfo->rx;
 1483         struct netif_extra_info *extras = rinfo->extras;
 1484         struct mbuf *m, *m0, *m_prev;
 1485         grant_ref_t ref = xn_get_rx_ref(rxq, *cons);
 1486         int frags = 1;
 1487         int err = 0;
 1488         u_long ret __diagused;
 1489 
 1490         m0 = m = m_prev = xn_get_rx_mbuf(rxq, *cons);
 1491 
 1492         if (rx->flags & NETRXF_extra_info) {
 1493                 err = xn_get_extras(rxq, extras, rp, cons);
 1494         }
 1495 
 1496         if (m0 != NULL) {
 1497                 m0->m_pkthdr.len = 0;
 1498                 m0->m_next = NULL;
 1499         }
 1500 
 1501         for (;;) {
 1502 #if 0
 1503                 DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n",
 1504                         rx->status, rx->offset, frags);
 1505 #endif
 1506                 if (__predict_false(rx->status < 0 ||
 1507                         rx->offset + rx->status > PAGE_SIZE)) {
 1508                         xn_move_rx_slot(rxq, m, ref);
 1509                         if (m0 == m)
 1510                                 m0 = NULL;
 1511                         m = NULL;
 1512                         err = EINVAL;
 1513                         goto next_skip_queue;
 1514                 }
 1515 
 1516                 /*
 1517                  * This definitely indicates a bug, either in this driver or in
 1518                  * the backend driver. In future this should flag the bad
 1519                  * situation to the system controller to reboot the backed.
 1520                  */
 1521                 if (ref == GRANT_REF_INVALID) {
 1522                         printf("%s: Bad rx response id %d.\n", __func__, rx->id);
 1523                         err = EINVAL;
 1524                         goto next;
 1525                 }
 1526 
 1527                 ret = gnttab_end_foreign_access_ref(ref);
 1528                 KASSERT(ret, ("Unable to end access to grant references"));
 1529 
 1530                 gnttab_release_grant_reference(&rxq->gref_head, ref);
 1531 
 1532 next:
 1533                 if (m == NULL)
 1534                         break;
 1535 
 1536                 m->m_len = rx->status;
 1537                 m->m_data += rx->offset;
 1538                 m0->m_pkthdr.len += rx->status;
 1539 
 1540 next_skip_queue:
 1541                 if (!(rx->flags & NETRXF_more_data))
 1542                         break;
 1543 
 1544                 if (*cons + frags == rp) {
 1545                         if (net_ratelimit())
 1546                                 WPRINTK("Need more frags\n");
 1547                         err = ENOENT;
 1548                         printf("%s: cons %u frags %u rp %u, not enough frags\n",
 1549                                __func__, *cons, frags, rp);
 1550                         break;
 1551                 }
 1552                 /*
 1553                  * Note that m can be NULL, if rx->status < 0 or if
 1554                  * rx->offset + rx->status > PAGE_SIZE above.
 1555                  */
 1556                 m_prev = m;
 1557 
 1558                 rx = RING_GET_RESPONSE(&rxq->ring, *cons + frags);
 1559                 m = xn_get_rx_mbuf(rxq, *cons + frags);
 1560 
 1561                 /*
 1562                  * m_prev == NULL can happen if rx->status < 0 or if
 1563                  * rx->offset + * rx->status > PAGE_SIZE above.
 1564                  */
 1565                 if (m_prev != NULL)
 1566                         m_prev->m_next = m;
 1567 
 1568                 /*
 1569                  * m0 can be NULL if rx->status < 0 or if * rx->offset +
 1570                  * rx->status > PAGE_SIZE above.
 1571                  */
 1572                 if (m0 == NULL)
 1573                         m0 = m;
 1574                 m->m_next = NULL;
 1575                 ref = xn_get_rx_ref(rxq, *cons + frags);
 1576                 frags++;
 1577         }
 1578         *list = m0;
 1579         *cons += frags;
 1580 
 1581         return (err);
 1582 }
 1583 
 1584 /**
 1585  * Given an mbuf chain, make sure we have enough room and then push
 1586  * it onto the transmit ring.
 1587  */
 1588 static int
 1589 xn_assemble_tx_request(struct netfront_txq *txq, struct mbuf *m_head)
 1590 {
 1591         struct netfront_info *np = txq->info;
 1592         struct ifnet *ifp = np->xn_ifp;
 1593         int otherend_id, error, nfrags;
 1594         bus_dma_segment_t *segs = txq->segs;
 1595         struct mbuf_xennet *tag;
 1596         bus_dmamap_t map;
 1597         unsigned int i;
 1598 
 1599         KASSERT(!SLIST_EMPTY(&txq->tags), ("no tags available"));
 1600         tag = SLIST_FIRST(&txq->tags);
 1601         SLIST_REMOVE_HEAD(&txq->tags, next);
 1602         KASSERT(tag->count == 0, ("tag already in-use"));
 1603         map = tag->dma_map;
 1604         error = bus_dmamap_load_mbuf_sg(np->dma_tag, map, m_head, segs,
 1605             &nfrags, 0);
 1606         if (error == EFBIG || nfrags > np->maxfrags) {
 1607                 struct mbuf *m;
 1608 
 1609                 bus_dmamap_unload(np->dma_tag, map);
 1610                 m = m_defrag(m_head, M_NOWAIT);
 1611                 if (!m) {
 1612                         /*
 1613                          * Defrag failed, so free the mbuf and
 1614                          * therefore drop the packet.
 1615                          */
 1616                         SLIST_INSERT_HEAD(&txq->tags, tag, next);
 1617                         m_freem(m_head);
 1618                         return (EMSGSIZE);
 1619                 }
 1620                 m_head = m;
 1621                 error = bus_dmamap_load_mbuf_sg(np->dma_tag, map, m_head, segs,
 1622                     &nfrags, 0);
 1623                 if (error != 0 || nfrags > np->maxfrags) {
 1624                         bus_dmamap_unload(np->dma_tag, map);
 1625                         SLIST_INSERT_HEAD(&txq->tags, tag, next);
 1626                         m_freem(m_head);
 1627                         return (error ?: EFBIG);
 1628                 }
 1629         } else if (error != 0) {
 1630                 SLIST_INSERT_HEAD(&txq->tags, tag, next);
 1631                 m_freem(m_head);
 1632                 return (error);
 1633         }
 1634 
 1635         /**
 1636          * The FreeBSD TCP stack, with TSO enabled, can produce a chain
 1637          * of mbufs longer than Linux can handle.  Make sure we don't
 1638          * pass a too-long chain over to the other side by dropping the
 1639          * packet.  It doesn't look like there is currently a way to
 1640          * tell the TCP stack to generate a shorter chain of packets.
 1641          */
 1642         if (nfrags > MAX_TX_REQ_FRAGS) {
 1643 #ifdef DEBUG
 1644                 printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback "
 1645                        "won't be able to handle it, dropping\n",
 1646                        __func__, nfrags, MAX_TX_REQ_FRAGS);
 1647 #endif
 1648                 SLIST_INSERT_HEAD(&txq->tags, tag, next);
 1649                 bus_dmamap_unload(np->dma_tag, map);
 1650                 m_freem(m_head);
 1651                 return (EMSGSIZE);
 1652         }
 1653 
 1654         /*
 1655          * This check should be redundant.  We've already verified that we
 1656          * have enough slots in the ring to handle a packet of maximum
 1657          * size, and that our packet is less than the maximum size.  Keep
 1658          * it in here as an assert for now just to make certain that
 1659          * chain_cnt is accurate.
 1660          */
 1661         KASSERT((txq->mbufs_cnt + nfrags) <= NET_TX_RING_SIZE,
 1662                 ("%s: chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE "
 1663                  "(%d)!", __func__, (int) txq->mbufs_cnt,
 1664                     (int) nfrags, (int) NET_TX_RING_SIZE));
 1665 
 1666         /*
 1667          * Start packing the mbufs in this chain into
 1668          * the fragment pointers. Stop when we run out
 1669          * of fragments or hit the end of the mbuf chain.
 1670          */
 1671         otherend_id = xenbus_get_otherend_id(np->xbdev);
 1672         m_tag_prepend(m_head, &tag->tag);
 1673         for (i = 0; i < nfrags; i++) {
 1674                 netif_tx_request_t *tx;
 1675                 uintptr_t id;
 1676                 grant_ref_t ref;
 1677                 u_long mfn; /* XXX Wrong type? */
 1678 
 1679                 tx = RING_GET_REQUEST(&txq->ring, txq->ring.req_prod_pvt);
 1680                 id = get_id_from_freelist(txq->mbufs);
 1681                 if (id == 0)
 1682                         panic("%s: was allocated the freelist head!\n",
 1683                             __func__);
 1684                 txq->mbufs_cnt++;
 1685                 if (txq->mbufs_cnt > NET_TX_RING_SIZE)
 1686                         panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n",
 1687                             __func__);
 1688                 mbuf_grab(m_head);
 1689                 txq->mbufs[id] = m_head;
 1690                 tx->id = id;
 1691                 ref = gnttab_claim_grant_reference(&txq->gref_head);
 1692                 KASSERT((short)ref >= 0, ("Negative ref"));
 1693                 mfn = atop(segs[i].ds_addr);
 1694                 gnttab_grant_foreign_access_ref(ref, otherend_id,
 1695                     mfn, GNTMAP_readonly);
 1696                 tx->gref = txq->grant_ref[id] = ref;
 1697                 tx->offset = segs[i].ds_addr & PAGE_MASK;
 1698                 KASSERT(tx->offset + segs[i].ds_len <= PAGE_SIZE,
 1699                     ("mbuf segment crosses a page boundary"));
 1700                 tx->flags = 0;
 1701                 if (i == 0) {
 1702                         /*
 1703                          * The first fragment has the entire packet
 1704                          * size, subsequent fragments have just the
 1705                          * fragment size. The backend works out the
 1706                          * true size of the first fragment by
 1707                          * subtracting the sizes of the other
 1708                          * fragments.
 1709                          */
 1710                         tx->size = m_head->m_pkthdr.len;
 1711 
 1712                         /*
 1713                          * The first fragment contains the checksum flags
 1714                          * and is optionally followed by extra data for
 1715                          * TSO etc.
 1716                          */
 1717                         /**
 1718                          * CSUM_TSO requires checksum offloading.
 1719                          * Some versions of FreeBSD fail to
 1720                          * set CSUM_TCP in the CSUM_TSO case,
 1721                          * so we have to test for CSUM_TSO
 1722                          * explicitly.
 1723                          */
 1724                         if (m_head->m_pkthdr.csum_flags
 1725                             & (CSUM_DELAY_DATA | CSUM_TSO)) {
 1726                                 tx->flags |= (NETTXF_csum_blank
 1727                                     | NETTXF_data_validated);
 1728                         }
 1729                         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
 1730                                 struct netif_extra_info *gso =
 1731                                         (struct netif_extra_info *)
 1732                                         RING_GET_REQUEST(&txq->ring,
 1733                                                          ++txq->ring.req_prod_pvt);
 1734 
 1735                                 tx->flags |= NETTXF_extra_info;
 1736 
 1737                                 gso->u.gso.size = m_head->m_pkthdr.tso_segsz;
 1738                                 gso->u.gso.type =
 1739                                         XEN_NETIF_GSO_TYPE_TCPV4;
 1740                                 gso->u.gso.pad = 0;
 1741                                 gso->u.gso.features = 0;
 1742 
 1743                                 gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
 1744                                 gso->flags = 0;
 1745                         }
 1746                 } else {
 1747                         tx->size = segs[i].ds_len;
 1748                 }
 1749                 if (i != nfrags - 1)
 1750                         tx->flags |= NETTXF_more_data;
 1751 
 1752                 txq->ring.req_prod_pvt++;
 1753         }
 1754         bus_dmamap_sync(np->dma_tag, map, BUS_DMASYNC_PREWRITE);
 1755         BPF_MTAP(ifp, m_head);
 1756 
 1757         if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 1758         if_inc_counter(ifp, IFCOUNTER_OBYTES, m_head->m_pkthdr.len);
 1759         if (m_head->m_flags & M_MCAST)
 1760                 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
 1761 
 1762         xn_txeof(txq);
 1763 
 1764         return (0);
 1765 }
 1766 
 1767 /* equivalent of network_open() in Linux */
 1768 static void
 1769 xn_ifinit_locked(struct netfront_info *np)
 1770 {
 1771         struct ifnet *ifp;
 1772         int i;
 1773         struct netfront_rxq *rxq;
 1774 
 1775         XN_LOCK_ASSERT(np);
 1776 
 1777         ifp = np->xn_ifp;
 1778 
 1779         if (ifp->if_drv_flags & IFF_DRV_RUNNING || !netfront_carrier_ok(np))
 1780                 return;
 1781 
 1782         xn_stop(np);
 1783 
 1784         for (i = 0; i < np->num_queues; i++) {
 1785                 rxq = &np->rxq[i];
 1786                 XN_RX_LOCK(rxq);
 1787                 xn_alloc_rx_buffers(rxq);
 1788                 rxq->ring.sring->rsp_event = rxq->ring.rsp_cons + 1;
 1789                 if (RING_HAS_UNCONSUMED_RESPONSES(&rxq->ring))
 1790                         xn_rxeof(rxq);
 1791                 XN_RX_UNLOCK(rxq);
 1792         }
 1793 
 1794         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1795         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1796         if_link_state_change(ifp, LINK_STATE_UP);
 1797 }
 1798 
 1799 static void
 1800 xn_ifinit(void *xsc)
 1801 {
 1802         struct netfront_info *sc = xsc;
 1803 
 1804         XN_LOCK(sc);
 1805         xn_ifinit_locked(sc);
 1806         XN_UNLOCK(sc);
 1807 }
 1808 
 1809 static int
 1810 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1811 {
 1812         struct netfront_info *sc = ifp->if_softc;
 1813         struct ifreq *ifr = (struct ifreq *) data;
 1814         device_t dev;
 1815 #ifdef INET
 1816         struct ifaddr *ifa = (struct ifaddr *)data;
 1817 #endif
 1818         int mask, error = 0, reinit;
 1819 
 1820         dev = sc->xbdev;
 1821 
 1822         switch(cmd) {
 1823         case SIOCSIFADDR:
 1824 #ifdef INET
 1825                 XN_LOCK(sc);
 1826                 if (ifa->ifa_addr->sa_family == AF_INET) {
 1827                         ifp->if_flags |= IFF_UP;
 1828                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
 1829                                 xn_ifinit_locked(sc);
 1830                         arp_ifinit(ifp, ifa);
 1831                         XN_UNLOCK(sc);
 1832                 } else {
 1833                         XN_UNLOCK(sc);
 1834 #endif
 1835                         error = ether_ioctl(ifp, cmd, data);
 1836 #ifdef INET
 1837                 }
 1838 #endif
 1839                 break;
 1840         case SIOCSIFMTU:
 1841                 if (ifp->if_mtu == ifr->ifr_mtu)
 1842                         break;
 1843 
 1844                 ifp->if_mtu = ifr->ifr_mtu;
 1845                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1846                 xn_ifinit(sc);
 1847                 break;
 1848         case SIOCSIFFLAGS:
 1849                 XN_LOCK(sc);
 1850                 if (ifp->if_flags & IFF_UP) {
 1851                         /*
 1852                          * If only the state of the PROMISC flag changed,
 1853                          * then just use the 'set promisc mode' command
 1854                          * instead of reinitializing the entire NIC. Doing
 1855                          * a full re-init means reloading the firmware and
 1856                          * waiting for it to start up, which may take a
 1857                          * second or two.
 1858                          */
 1859                         xn_ifinit_locked(sc);
 1860                 } else {
 1861                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1862                                 xn_stop(sc);
 1863                         }
 1864                 }
 1865                 sc->xn_if_flags = ifp->if_flags;
 1866                 XN_UNLOCK(sc);
 1867                 break;
 1868         case SIOCSIFCAP:
 1869                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1870                 reinit = 0;
 1871 
 1872                 if (mask & IFCAP_TXCSUM) {
 1873                         ifp->if_capenable ^= IFCAP_TXCSUM;
 1874                         ifp->if_hwassist ^= XN_CSUM_FEATURES;
 1875                 }
 1876                 if (mask & IFCAP_TSO4) {
 1877                         ifp->if_capenable ^= IFCAP_TSO4;
 1878                         ifp->if_hwassist ^= CSUM_TSO;
 1879                 }
 1880 
 1881                 if (mask & (IFCAP_RXCSUM | IFCAP_LRO)) {
 1882                         /* These Rx features require us to renegotiate. */
 1883                         reinit = 1;
 1884 
 1885                         if (mask & IFCAP_RXCSUM)
 1886                                 ifp->if_capenable ^= IFCAP_RXCSUM;
 1887                         if (mask & IFCAP_LRO)
 1888                                 ifp->if_capenable ^= IFCAP_LRO;
 1889                 }
 1890 
 1891                 if (reinit == 0)
 1892                         break;
 1893 
 1894                 /*
 1895                  * We must reset the interface so the backend picks up the
 1896                  * new features.
 1897                  */
 1898                 device_printf(sc->xbdev,
 1899                     "performing interface reset due to feature change\n");
 1900                 XN_LOCK(sc);
 1901                 netfront_carrier_off(sc);
 1902                 sc->xn_reset = true;
 1903                 /*
 1904                  * NB: the pending packet queue is not flushed, since
 1905                  * the interface should still support the old options.
 1906                  */
 1907                 XN_UNLOCK(sc);
 1908                 /*
 1909                  * Delete the xenstore nodes that export features.
 1910                  *
 1911                  * NB: There's a xenbus state called
 1912                  * "XenbusStateReconfiguring", which is what we should set
 1913                  * here. Sadly none of the backends know how to handle it,
 1914                  * and simply disconnect from the frontend, so we will just
 1915                  * switch back to XenbusStateInitialising in order to force
 1916                  * a reconnection.
 1917                  */
 1918                 xs_rm(XST_NIL, xenbus_get_node(dev), "feature-gso-tcpv4");
 1919                 xs_rm(XST_NIL, xenbus_get_node(dev), "feature-no-csum-offload");
 1920                 xenbus_set_state(dev, XenbusStateClosing);
 1921 
 1922                 /*
 1923                  * Wait for the frontend to reconnect before returning
 1924                  * from the ioctl. 30s should be more than enough for any
 1925                  * sane backend to reconnect.
 1926                  */
 1927                 error = tsleep(sc, 0, "xn_rst", 30*hz);
 1928                 break;
 1929         case SIOCADDMULTI:
 1930         case SIOCDELMULTI:
 1931                 break;
 1932         case SIOCSIFMEDIA:
 1933         case SIOCGIFMEDIA:
 1934                 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
 1935                 break;
 1936         default:
 1937                 error = ether_ioctl(ifp, cmd, data);
 1938         }
 1939 
 1940         return (error);
 1941 }
 1942 
 1943 static void
 1944 xn_stop(struct netfront_info *sc)
 1945 {
 1946         struct ifnet *ifp;
 1947 
 1948         XN_LOCK_ASSERT(sc);
 1949 
 1950         ifp = sc->xn_ifp;
 1951 
 1952         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1953         if_link_state_change(ifp, LINK_STATE_DOWN);
 1954 }
 1955 
 1956 static void
 1957 xn_rebuild_rx_bufs(struct netfront_rxq *rxq)
 1958 {
 1959         int requeue_idx, i;
 1960         grant_ref_t ref;
 1961         netif_rx_request_t *req;
 1962 
 1963         for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) {
 1964                 struct mbuf *m;
 1965                 u_long pfn;
 1966 
 1967                 if (rxq->mbufs[i] == NULL)
 1968                         continue;
 1969 
 1970                 m = rxq->mbufs[requeue_idx] = xn_get_rx_mbuf(rxq, i);
 1971                 ref = rxq->grant_ref[requeue_idx] = xn_get_rx_ref(rxq, i);
 1972 
 1973                 req = RING_GET_REQUEST(&rxq->ring, requeue_idx);
 1974                 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT;
 1975 
 1976                 gnttab_grant_foreign_access_ref(ref,
 1977                     xenbus_get_otherend_id(rxq->info->xbdev),
 1978                     pfn, 0);
 1979 
 1980                 req->gref = ref;
 1981                 req->id   = requeue_idx;
 1982 
 1983                 requeue_idx++;
 1984         }
 1985 
 1986         rxq->ring.req_prod_pvt = requeue_idx;
 1987 }
 1988 
 1989 /* START of Xenolinux helper functions adapted to FreeBSD */
 1990 static int
 1991 xn_connect(struct netfront_info *np)
 1992 {
 1993         int i, error;
 1994         u_int feature_rx_copy;
 1995         struct netfront_rxq *rxq;
 1996         struct netfront_txq *txq;
 1997 
 1998         error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
 1999             "feature-rx-copy", NULL, "%u", &feature_rx_copy);
 2000         if (error != 0)
 2001                 feature_rx_copy = 0;
 2002 
 2003         /* We only support rx copy. */
 2004         if (!feature_rx_copy)
 2005                 return (EPROTONOSUPPORT);
 2006 
 2007         /* Recovery procedure: */
 2008         error = talk_to_backend(np->xbdev, np);
 2009         if (error != 0)
 2010                 return (error);
 2011 
 2012         /* Step 1: Reinitialise variables. */
 2013         xn_query_features(np);
 2014         xn_configure_features(np);
 2015 
 2016         /* Step 2: Release TX buffer */
 2017         for (i = 0; i < np->num_queues; i++) {
 2018                 txq = &np->txq[i];
 2019                 xn_release_tx_bufs(txq);
 2020         }
 2021 
 2022         /* Step 3: Rebuild the RX buffer freelist and the RX ring itself. */
 2023         for (i = 0; i < np->num_queues; i++) {
 2024                 rxq = &np->rxq[i];
 2025                 xn_rebuild_rx_bufs(rxq);
 2026         }
 2027 
 2028         /* Step 4: All public and private state should now be sane.  Get
 2029          * ready to start sending and receiving packets and give the driver
 2030          * domain a kick because we've probably just requeued some
 2031          * packets.
 2032          */
 2033         netfront_carrier_on(np);
 2034         wakeup(np);
 2035 
 2036         return (0);
 2037 }
 2038 
 2039 static void
 2040 xn_kick_rings(struct netfront_info *np)
 2041 {
 2042         struct netfront_rxq *rxq;
 2043         struct netfront_txq *txq;
 2044         int i;
 2045 
 2046         for (i = 0; i < np->num_queues; i++) {
 2047                 txq = &np->txq[i];
 2048                 rxq = &np->rxq[i];
 2049                 xen_intr_signal(txq->xen_intr_handle);
 2050                 XN_TX_LOCK(txq);
 2051                 xn_txeof(txq);
 2052                 XN_TX_UNLOCK(txq);
 2053                 XN_RX_LOCK(rxq);
 2054                 xn_alloc_rx_buffers(rxq);
 2055                 XN_RX_UNLOCK(rxq);
 2056         }
 2057 }
 2058 
 2059 static void
 2060 xn_query_features(struct netfront_info *np)
 2061 {
 2062         int val;
 2063 
 2064         device_printf(np->xbdev, "backend features:");
 2065 
 2066         if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
 2067                 "feature-sg", NULL, "%d", &val) != 0)
 2068                 val = 0;
 2069 
 2070         np->maxfrags = 1;
 2071         if (val) {
 2072                 np->maxfrags = MAX_TX_REQ_FRAGS;
 2073                 printf(" feature-sg");
 2074         }
 2075 
 2076         if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
 2077                 "feature-gso-tcpv4", NULL, "%d", &val) != 0)
 2078                 val = 0;
 2079 
 2080         np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO);
 2081         if (val) {
 2082                 np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO;
 2083                 printf(" feature-gso-tcp4");
 2084         }
 2085 
 2086         /*
 2087          * HW CSUM offload is assumed to be available unless
 2088          * feature-no-csum-offload is set in xenstore.
 2089          */
 2090         if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
 2091                 "feature-no-csum-offload", NULL, "%d", &val) != 0)
 2092                 val = 0;
 2093 
 2094         np->xn_ifp->if_capabilities |= IFCAP_HWCSUM;
 2095         if (val) {
 2096                 np->xn_ifp->if_capabilities &= ~(IFCAP_HWCSUM);
 2097                 printf(" feature-no-csum-offload");
 2098         }
 2099 
 2100         printf("\n");
 2101 }
 2102 
 2103 static int
 2104 xn_configure_features(struct netfront_info *np)
 2105 {
 2106         int err, cap_enabled;
 2107 #if (defined(INET) || defined(INET6))
 2108         int i;
 2109 #endif
 2110         struct ifnet *ifp;
 2111 
 2112         ifp = np->xn_ifp;
 2113         err = 0;
 2114 
 2115         if ((ifp->if_capenable & ifp->if_capabilities) == ifp->if_capenable) {
 2116                 /* Current options are available, no need to do anything. */
 2117                 return (0);
 2118         }
 2119 
 2120         /* Try to preserve as many options as possible. */
 2121         cap_enabled = ifp->if_capenable;
 2122         ifp->if_capenable = ifp->if_hwassist = 0;
 2123 
 2124 #if (defined(INET) || defined(INET6))
 2125         if ((cap_enabled & IFCAP_LRO) != 0)
 2126                 for (i = 0; i < np->num_queues; i++)
 2127                         tcp_lro_free(&np->rxq[i].lro);
 2128         if (xn_enable_lro &&
 2129             (ifp->if_capabilities & cap_enabled & IFCAP_LRO) != 0) {
 2130                 ifp->if_capenable |= IFCAP_LRO;
 2131                 for (i = 0; i < np->num_queues; i++) {
 2132                         err = tcp_lro_init(&np->rxq[i].lro);
 2133                         if (err != 0) {
 2134                                 device_printf(np->xbdev,
 2135                                     "LRO initialization failed\n");
 2136                                 ifp->if_capenable &= ~IFCAP_LRO;
 2137                                 break;
 2138                         }
 2139                         np->rxq[i].lro.ifp = ifp;
 2140                 }
 2141         }
 2142         if ((ifp->if_capabilities & cap_enabled & IFCAP_TSO4) != 0) {
 2143                 ifp->if_capenable |= IFCAP_TSO4;
 2144                 ifp->if_hwassist |= CSUM_TSO;
 2145         }
 2146 #endif
 2147         if ((ifp->if_capabilities & cap_enabled & IFCAP_TXCSUM) != 0) {
 2148                 ifp->if_capenable |= IFCAP_TXCSUM;
 2149                 ifp->if_hwassist |= XN_CSUM_FEATURES;
 2150         }
 2151         if ((ifp->if_capabilities & cap_enabled & IFCAP_RXCSUM) != 0)
 2152                 ifp->if_capenable |= IFCAP_RXCSUM;
 2153 
 2154         return (err);
 2155 }
 2156 
 2157 static int
 2158 xn_txq_mq_start_locked(struct netfront_txq *txq, struct mbuf *m)
 2159 {
 2160         struct netfront_info *np;
 2161         struct ifnet *ifp;
 2162         struct buf_ring *br;
 2163         int error, notify;
 2164 
 2165         np = txq->info;
 2166         br = txq->br;
 2167         ifp = np->xn_ifp;
 2168         error = 0;
 2169 
 2170         XN_TX_LOCK_ASSERT(txq);
 2171 
 2172         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
 2173             !netfront_carrier_ok(np)) {
 2174                 if (m != NULL)
 2175                         error = drbr_enqueue(ifp, br, m);
 2176                 return (error);
 2177         }
 2178 
 2179         if (m != NULL) {
 2180                 error = drbr_enqueue(ifp, br, m);
 2181                 if (error != 0)
 2182                         return (error);
 2183         }
 2184 
 2185         while ((m = drbr_peek(ifp, br)) != NULL) {
 2186                 if (!xn_tx_slot_available(txq)) {
 2187                         drbr_putback(ifp, br, m);
 2188                         break;
 2189                 }
 2190 
 2191                 error = xn_assemble_tx_request(txq, m);
 2192                 /* xn_assemble_tx_request always consumes the mbuf*/
 2193                 if (error != 0) {
 2194                         drbr_advance(ifp, br);
 2195                         break;
 2196                 }
 2197 
 2198                 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&txq->ring, notify);
 2199                 if (notify)
 2200                         xen_intr_signal(txq->xen_intr_handle);
 2201 
 2202                 drbr_advance(ifp, br);
 2203         }
 2204 
 2205         if (RING_FULL(&txq->ring))
 2206                 txq->full = true;
 2207 
 2208         return (0);
 2209 }
 2210 
 2211 static int
 2212 xn_txq_mq_start(struct ifnet *ifp, struct mbuf *m)
 2213 {
 2214         struct netfront_info *np;
 2215         struct netfront_txq *txq;
 2216         int i, npairs, error;
 2217 
 2218         np = ifp->if_softc;
 2219         npairs = np->num_queues;
 2220 
 2221         if (!netfront_carrier_ok(np))
 2222                 return (ENOBUFS);
 2223 
 2224         KASSERT(npairs != 0, ("called with 0 available queues"));
 2225 
 2226         /* check if flowid is set */
 2227         if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
 2228                 i = m->m_pkthdr.flowid % npairs;
 2229         else
 2230                 i = curcpu % npairs;
 2231 
 2232         txq = &np->txq[i];
 2233 
 2234         if (XN_TX_TRYLOCK(txq) != 0) {
 2235                 error = xn_txq_mq_start_locked(txq, m);
 2236                 XN_TX_UNLOCK(txq);
 2237         } else {
 2238                 error = drbr_enqueue(ifp, txq->br, m);
 2239                 taskqueue_enqueue(txq->tq, &txq->defrtask);
 2240         }
 2241 
 2242         return (error);
 2243 }
 2244 
 2245 static void
 2246 xn_qflush(struct ifnet *ifp)
 2247 {
 2248         struct netfront_info *np;
 2249         struct netfront_txq *txq;
 2250         struct mbuf *m;
 2251         int i;
 2252 
 2253         np = ifp->if_softc;
 2254 
 2255         for (i = 0; i < np->num_queues; i++) {
 2256                 txq = &np->txq[i];
 2257 
 2258                 XN_TX_LOCK(txq);
 2259                 while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
 2260                         m_freem(m);
 2261                 XN_TX_UNLOCK(txq);
 2262         }
 2263 
 2264         if_qflush(ifp);
 2265 }
 2266 
 2267 /**
 2268  * Create a network device.
 2269  * @param dev  Newbus device representing this virtual NIC.
 2270  */
 2271 int
 2272 create_netdev(device_t dev)
 2273 {
 2274         struct netfront_info *np;
 2275         int err;
 2276         struct ifnet *ifp;
 2277 
 2278         np = device_get_softc(dev);
 2279 
 2280         np->xbdev         = dev;
 2281 
 2282         mtx_init(&np->sc_lock, "xnsc", "netfront softc lock", MTX_DEF);
 2283 
 2284         ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts);
 2285         ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
 2286         ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL);
 2287 
 2288         err = xen_net_read_mac(dev, np->mac);
 2289         if (err != 0)
 2290                 goto error;
 2291 
 2292         /* Set up ifnet structure */
 2293         ifp = np->xn_ifp = if_alloc(IFT_ETHER);
 2294         ifp->if_softc = np;
 2295         if_initname(ifp, "xn",  device_get_unit(dev));
 2296         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2297         ifp->if_ioctl = xn_ioctl;
 2298 
 2299         ifp->if_transmit = xn_txq_mq_start;
 2300         ifp->if_qflush = xn_qflush;
 2301 
 2302         ifp->if_init = xn_ifinit;
 2303 
 2304         ifp->if_hwassist = XN_CSUM_FEATURES;
 2305         /* Enable all supported features at device creation. */
 2306         ifp->if_capenable = ifp->if_capabilities =
 2307             IFCAP_HWCSUM|IFCAP_TSO4|IFCAP_LRO;
 2308         ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
 2309         ifp->if_hw_tsomaxsegcount = MAX_TX_REQ_FRAGS;
 2310         ifp->if_hw_tsomaxsegsize = PAGE_SIZE;
 2311 
 2312         ether_ifattach(ifp, np->mac);
 2313         netfront_carrier_off(np);
 2314 
 2315         err = bus_dma_tag_create(
 2316             bus_get_dma_tag(dev),               /* parent */
 2317             1, PAGE_SIZE,                       /* algnmnt, boundary */
 2318             BUS_SPACE_MAXADDR,                  /* lowaddr */
 2319             BUS_SPACE_MAXADDR,                  /* highaddr */
 2320             NULL, NULL,                         /* filter, filterarg */
 2321             PAGE_SIZE * MAX_TX_REQ_FRAGS,       /* max request size */
 2322             MAX_TX_REQ_FRAGS,                   /* max segments */
 2323             PAGE_SIZE,                          /* maxsegsize */
 2324             BUS_DMA_ALLOCNOW,                   /* flags */
 2325             NULL, NULL,                         /* lockfunc, lockarg */
 2326             &np->dma_tag);
 2327 
 2328         return (err);
 2329 
 2330 error:
 2331         KASSERT(err != 0, ("Error path with no error code specified"));
 2332         return (err);
 2333 }
 2334 
 2335 static int
 2336 netfront_detach(device_t dev)
 2337 {
 2338         struct netfront_info *info = device_get_softc(dev);
 2339 
 2340         DPRINTK("%s\n", xenbus_get_node(dev));
 2341 
 2342         netif_free(info);
 2343 
 2344         return 0;
 2345 }
 2346 
 2347 static void
 2348 netif_free(struct netfront_info *np)
 2349 {
 2350 
 2351         XN_LOCK(np);
 2352         xn_stop(np);
 2353         XN_UNLOCK(np);
 2354         netif_disconnect_backend(np);
 2355         ether_ifdetach(np->xn_ifp);
 2356         free(np->rxq, M_DEVBUF);
 2357         free(np->txq, M_DEVBUF);
 2358         if_free(np->xn_ifp);
 2359         np->xn_ifp = NULL;
 2360         ifmedia_removeall(&np->sc_media);
 2361         bus_dma_tag_destroy(np->dma_tag);
 2362 }
 2363 
 2364 static void
 2365 netif_disconnect_backend(struct netfront_info *np)
 2366 {
 2367         u_int i;
 2368 
 2369         for (i = 0; i < np->num_queues; i++) {
 2370                 XN_RX_LOCK(&np->rxq[i]);
 2371                 XN_TX_LOCK(&np->txq[i]);
 2372         }
 2373         netfront_carrier_off(np);
 2374         for (i = 0; i < np->num_queues; i++) {
 2375                 XN_RX_UNLOCK(&np->rxq[i]);
 2376                 XN_TX_UNLOCK(&np->txq[i]);
 2377         }
 2378 
 2379         for (i = 0; i < np->num_queues; i++) {
 2380                 disconnect_rxq(&np->rxq[i]);
 2381                 disconnect_txq(&np->txq[i]);
 2382         }
 2383 }
 2384 
 2385 static int
 2386 xn_ifmedia_upd(struct ifnet *ifp)
 2387 {
 2388 
 2389         return (0);
 2390 }
 2391 
 2392 static void
 2393 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 2394 {
 2395 
 2396         ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
 2397         ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
 2398 }
 2399 
 2400 /* ** Driver registration ** */
 2401 static device_method_t netfront_methods[] = {
 2402         /* Device interface */
 2403         DEVMETHOD(device_probe,         netfront_probe),
 2404         DEVMETHOD(device_attach,        netfront_attach),
 2405         DEVMETHOD(device_detach,        netfront_detach),
 2406         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 2407         DEVMETHOD(device_suspend,       netfront_suspend),
 2408         DEVMETHOD(device_resume,        netfront_resume),
 2409 
 2410         /* Xenbus interface */
 2411         DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed),
 2412 
 2413         DEVMETHOD_END
 2414 };
 2415 
 2416 static driver_t netfront_driver = {
 2417         "xn",
 2418         netfront_methods,
 2419         sizeof(struct netfront_info),
 2420 };
 2421 
 2422 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, NULL, NULL);

Cache object: 1c63616450a0ca6f7a56b92336bb12e9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.