The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/drivers/net/e1000/e1000_main.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*******************************************************************************
    2 
    3   Intel PRO/1000 Linux driver
    4   Copyright(c) 1999 - 2006 Intel Corporation.
    5 
    6   This program is free software; you can redistribute it and/or modify it
    7   under the terms and conditions of the GNU General Public License,
    8   version 2, as published by the Free Software Foundation.
    9 
   10   This program is distributed in the hope it will be useful, but WITHOUT
   11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   13   more details.
   14 
   15   You should have received a copy of the GNU General Public License along with
   16   this program; if not, write to the Free Software Foundation, Inc.,
   17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
   18 
   19   The full GNU General Public License is included in this distribution in
   20   the file called "COPYING".
   21 
   22   Contact Information:
   23   Linux NICS <linux.nics@intel.com>
   24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
   25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
   26 
   27 *******************************************************************************/
   28 
   29 #include "e1000.h"
   30 #include <net/ip6_checksum.h>
   31 #include <linux/io.h>
   32 #include <linux/prefetch.h>
   33 #include <linux/bitops.h>
   34 #include <linux/if_vlan.h>
   35 
   36 /* Intel Media SOC GbE MDIO physical base address */
   37 static unsigned long ce4100_gbe_mdio_base_phy;
   38 /* Intel Media SOC GbE MDIO virtual base address */
   39 void __iomem *ce4100_gbe_mdio_base_virt;
   40 
   41 char e1000_driver_name[] = "e1000";
   42 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
   43 #define DRV_VERSION "7.3.21-k8-NAPI"
   44 const char e1000_driver_version[] = DRV_VERSION;
   45 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
   46 
   47 /* e1000_pci_tbl - PCI Device ID Table
   48  *
   49  * Last entry must be all 0s
   50  *
   51  * Macro expands to...
   52  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
   53  */
   54 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
   55         INTEL_E1000_ETHERNET_DEVICE(0x1000),
   56         INTEL_E1000_ETHERNET_DEVICE(0x1001),
   57         INTEL_E1000_ETHERNET_DEVICE(0x1004),
   58         INTEL_E1000_ETHERNET_DEVICE(0x1008),
   59         INTEL_E1000_ETHERNET_DEVICE(0x1009),
   60         INTEL_E1000_ETHERNET_DEVICE(0x100C),
   61         INTEL_E1000_ETHERNET_DEVICE(0x100D),
   62         INTEL_E1000_ETHERNET_DEVICE(0x100E),
   63         INTEL_E1000_ETHERNET_DEVICE(0x100F),
   64         INTEL_E1000_ETHERNET_DEVICE(0x1010),
   65         INTEL_E1000_ETHERNET_DEVICE(0x1011),
   66         INTEL_E1000_ETHERNET_DEVICE(0x1012),
   67         INTEL_E1000_ETHERNET_DEVICE(0x1013),
   68         INTEL_E1000_ETHERNET_DEVICE(0x1014),
   69         INTEL_E1000_ETHERNET_DEVICE(0x1015),
   70         INTEL_E1000_ETHERNET_DEVICE(0x1016),
   71         INTEL_E1000_ETHERNET_DEVICE(0x1017),
   72         INTEL_E1000_ETHERNET_DEVICE(0x1018),
   73         INTEL_E1000_ETHERNET_DEVICE(0x1019),
   74         INTEL_E1000_ETHERNET_DEVICE(0x101A),
   75         INTEL_E1000_ETHERNET_DEVICE(0x101D),
   76         INTEL_E1000_ETHERNET_DEVICE(0x101E),
   77         INTEL_E1000_ETHERNET_DEVICE(0x1026),
   78         INTEL_E1000_ETHERNET_DEVICE(0x1027),
   79         INTEL_E1000_ETHERNET_DEVICE(0x1028),
   80         INTEL_E1000_ETHERNET_DEVICE(0x1075),
   81         INTEL_E1000_ETHERNET_DEVICE(0x1076),
   82         INTEL_E1000_ETHERNET_DEVICE(0x1077),
   83         INTEL_E1000_ETHERNET_DEVICE(0x1078),
   84         INTEL_E1000_ETHERNET_DEVICE(0x1079),
   85         INTEL_E1000_ETHERNET_DEVICE(0x107A),
   86         INTEL_E1000_ETHERNET_DEVICE(0x107B),
   87         INTEL_E1000_ETHERNET_DEVICE(0x107C),
   88         INTEL_E1000_ETHERNET_DEVICE(0x108A),
   89         INTEL_E1000_ETHERNET_DEVICE(0x1099),
   90         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
   91         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
   92         /* required last entry */
   93         {0,}
   94 };
   95 
   96 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
   97 
   98 int e1000_up(struct e1000_adapter *adapter);
   99 void e1000_down(struct e1000_adapter *adapter);
  100 void e1000_reinit_locked(struct e1000_adapter *adapter);
  101 void e1000_reset(struct e1000_adapter *adapter);
  102 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  103 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  104 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  105 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  106 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  107                              struct e1000_tx_ring *txdr);
  108 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  109                              struct e1000_rx_ring *rxdr);
  110 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  111                              struct e1000_tx_ring *tx_ring);
  112 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  113                              struct e1000_rx_ring *rx_ring);
  114 void e1000_update_stats(struct e1000_adapter *adapter);
  115 
  116 static int e1000_init_module(void);
  117 static void e1000_exit_module(void);
  118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  119 static void __devexit e1000_remove(struct pci_dev *pdev);
  120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
  121 static int e1000_sw_init(struct e1000_adapter *adapter);
  122 static int e1000_open(struct net_device *netdev);
  123 static int e1000_close(struct net_device *netdev);
  124 static void e1000_configure_tx(struct e1000_adapter *adapter);
  125 static void e1000_configure_rx(struct e1000_adapter *adapter);
  126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
  127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  130                                 struct e1000_tx_ring *tx_ring);
  131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
  132                                 struct e1000_rx_ring *rx_ring);
  133 static void e1000_set_rx_mode(struct net_device *netdev);
  134 static void e1000_update_phy_info(unsigned long data);
  135 static void e1000_update_phy_info_task(struct work_struct *work);
  136 static void e1000_watchdog(unsigned long data);
  137 static void e1000_82547_tx_fifo_stall(unsigned long data);
  138 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
  139 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
  140                                     struct net_device *netdev);
  141 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  142 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  143 static int e1000_set_mac(struct net_device *netdev, void *p);
  144 static irqreturn_t e1000_intr(int irq, void *data);
  145 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
  146                                struct e1000_tx_ring *tx_ring);
  147 static int e1000_clean(struct napi_struct *napi, int budget);
  148 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
  149                                struct e1000_rx_ring *rx_ring,
  150                                int *work_done, int work_to_do);
  151 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
  152                                      struct e1000_rx_ring *rx_ring,
  153                                      int *work_done, int work_to_do);
  154 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  155                                    struct e1000_rx_ring *rx_ring,
  156                                    int cleaned_count);
  157 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
  158                                          struct e1000_rx_ring *rx_ring,
  159                                          int cleaned_count);
  160 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  161 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  162                            int cmd);
  163 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  164 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  165 static void e1000_tx_timeout(struct net_device *dev);
  166 static void e1000_reset_task(struct work_struct *work);
  167 static void e1000_smartspeed(struct e1000_adapter *adapter);
  168 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  169                                        struct sk_buff *skb);
  170 
  171 static bool e1000_vlan_used(struct e1000_adapter *adapter);
  172 static void e1000_vlan_mode(struct net_device *netdev, u32 features);
  173 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
  174 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
  175 static void e1000_restore_vlan(struct e1000_adapter *adapter);
  176 
  177 #ifdef CONFIG_PM
  178 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
  179 static int e1000_resume(struct pci_dev *pdev);
  180 #endif
  181 static void e1000_shutdown(struct pci_dev *pdev);
  182 
  183 #ifdef CONFIG_NET_POLL_CONTROLLER
  184 /* for netdump / net console */
  185 static void e1000_netpoll (struct net_device *netdev);
  186 #endif
  187 
  188 #define COPYBREAK_DEFAULT 256
  189 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
  190 module_param(copybreak, uint, 0644);
  191 MODULE_PARM_DESC(copybreak,
  192         "Maximum size of packet that is copied to a new buffer on receive");
  193 
  194 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
  195                      pci_channel_state_t state);
  196 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
  197 static void e1000_io_resume(struct pci_dev *pdev);
  198 
  199 static struct pci_error_handlers e1000_err_handler = {
  200         .error_detected = e1000_io_error_detected,
  201         .slot_reset = e1000_io_slot_reset,
  202         .resume = e1000_io_resume,
  203 };
  204 
  205 static struct pci_driver e1000_driver = {
  206         .name     = e1000_driver_name,
  207         .id_table = e1000_pci_tbl,
  208         .probe    = e1000_probe,
  209         .remove   = __devexit_p(e1000_remove),
  210 #ifdef CONFIG_PM
  211         /* Power Management Hooks */
  212         .suspend  = e1000_suspend,
  213         .resume   = e1000_resume,
  214 #endif
  215         .shutdown = e1000_shutdown,
  216         .err_handler = &e1000_err_handler
  217 };
  218 
  219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  221 MODULE_LICENSE("GPL");
  222 MODULE_VERSION(DRV_VERSION);
  223 
  224 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  225 module_param(debug, int, 0);
  226 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  227 
  228 /**
  229  * e1000_get_hw_dev - return device
  230  * used by hardware layer to print debugging information
  231  *
  232  **/
  233 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
  234 {
  235         struct e1000_adapter *adapter = hw->back;
  236         return adapter->netdev;
  237 }
  238 
  239 /**
  240  * e1000_init_module - Driver Registration Routine
  241  *
  242  * e1000_init_module is the first routine called when the driver is
  243  * loaded. All it does is register with the PCI subsystem.
  244  **/
  245 
  246 static int __init e1000_init_module(void)
  247 {
  248         int ret;
  249         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
  250 
  251         pr_info("%s\n", e1000_copyright);
  252 
  253         ret = pci_register_driver(&e1000_driver);
  254         if (copybreak != COPYBREAK_DEFAULT) {
  255                 if (copybreak == 0)
  256                         pr_info("copybreak disabled\n");
  257                 else
  258                         pr_info("copybreak enabled for "
  259                                    "packets <= %u bytes\n", copybreak);
  260         }
  261         return ret;
  262 }
  263 
  264 module_init(e1000_init_module);
  265 
  266 /**
  267  * e1000_exit_module - Driver Exit Cleanup Routine
  268  *
  269  * e1000_exit_module is called just before the driver is removed
  270  * from memory.
  271  **/
  272 
  273 static void __exit e1000_exit_module(void)
  274 {
  275         pci_unregister_driver(&e1000_driver);
  276 }
  277 
  278 module_exit(e1000_exit_module);
  279 
  280 static int e1000_request_irq(struct e1000_adapter *adapter)
  281 {
  282         struct net_device *netdev = adapter->netdev;
  283         irq_handler_t handler = e1000_intr;
  284         int irq_flags = IRQF_SHARED;
  285         int err;
  286 
  287         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
  288                           netdev);
  289         if (err) {
  290                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
  291         }
  292 
  293         return err;
  294 }
  295 
  296 static void e1000_free_irq(struct e1000_adapter *adapter)
  297 {
  298         struct net_device *netdev = adapter->netdev;
  299 
  300         free_irq(adapter->pdev->irq, netdev);
  301 }
  302 
  303 /**
  304  * e1000_irq_disable - Mask off interrupt generation on the NIC
  305  * @adapter: board private structure
  306  **/
  307 
  308 static void e1000_irq_disable(struct e1000_adapter *adapter)
  309 {
  310         struct e1000_hw *hw = &adapter->hw;
  311 
  312         ew32(IMC, ~0);
  313         E1000_WRITE_FLUSH();
  314         synchronize_irq(adapter->pdev->irq);
  315 }
  316 
  317 /**
  318  * e1000_irq_enable - Enable default interrupt generation settings
  319  * @adapter: board private structure
  320  **/
  321 
  322 static void e1000_irq_enable(struct e1000_adapter *adapter)
  323 {
  324         struct e1000_hw *hw = &adapter->hw;
  325 
  326         ew32(IMS, IMS_ENABLE_MASK);
  327         E1000_WRITE_FLUSH();
  328 }
  329 
  330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
  331 {
  332         struct e1000_hw *hw = &adapter->hw;
  333         struct net_device *netdev = adapter->netdev;
  334         u16 vid = hw->mng_cookie.vlan_id;
  335         u16 old_vid = adapter->mng_vlan_id;
  336 
  337         if (!e1000_vlan_used(adapter))
  338                 return;
  339 
  340         if (!test_bit(vid, adapter->active_vlans)) {
  341                 if (hw->mng_cookie.status &
  342                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
  343                         e1000_vlan_rx_add_vid(netdev, vid);
  344                         adapter->mng_vlan_id = vid;
  345                 } else {
  346                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  347                 }
  348                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
  349                     (vid != old_vid) &&
  350                     !test_bit(old_vid, adapter->active_vlans))
  351                         e1000_vlan_rx_kill_vid(netdev, old_vid);
  352         } else {
  353                 adapter->mng_vlan_id = vid;
  354         }
  355 }
  356 
  357 static void e1000_init_manageability(struct e1000_adapter *adapter)
  358 {
  359         struct e1000_hw *hw = &adapter->hw;
  360 
  361         if (adapter->en_mng_pt) {
  362                 u32 manc = er32(MANC);
  363 
  364                 /* disable hardware interception of ARP */
  365                 manc &= ~(E1000_MANC_ARP_EN);
  366 
  367                 ew32(MANC, manc);
  368         }
  369 }
  370 
  371 static void e1000_release_manageability(struct e1000_adapter *adapter)
  372 {
  373         struct e1000_hw *hw = &adapter->hw;
  374 
  375         if (adapter->en_mng_pt) {
  376                 u32 manc = er32(MANC);
  377 
  378                 /* re-enable hardware interception of ARP */
  379                 manc |= E1000_MANC_ARP_EN;
  380 
  381                 ew32(MANC, manc);
  382         }
  383 }
  384 
  385 /**
  386  * e1000_configure - configure the hardware for RX and TX
  387  * @adapter = private board structure
  388  **/
  389 static void e1000_configure(struct e1000_adapter *adapter)
  390 {
  391         struct net_device *netdev = adapter->netdev;
  392         int i;
  393 
  394         e1000_set_rx_mode(netdev);
  395 
  396         e1000_restore_vlan(adapter);
  397         e1000_init_manageability(adapter);
  398 
  399         e1000_configure_tx(adapter);
  400         e1000_setup_rctl(adapter);
  401         e1000_configure_rx(adapter);
  402         /* call E1000_DESC_UNUSED which always leaves
  403          * at least 1 descriptor unused to make sure
  404          * next_to_use != next_to_clean */
  405         for (i = 0; i < adapter->num_rx_queues; i++) {
  406                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
  407                 adapter->alloc_rx_buf(adapter, ring,
  408                                       E1000_DESC_UNUSED(ring));
  409         }
  410 }
  411 
  412 int e1000_up(struct e1000_adapter *adapter)
  413 {
  414         struct e1000_hw *hw = &adapter->hw;
  415 
  416         /* hardware has been reset, we need to reload some things */
  417         e1000_configure(adapter);
  418 
  419         clear_bit(__E1000_DOWN, &adapter->flags);
  420 
  421         napi_enable(&adapter->napi);
  422 
  423         e1000_irq_enable(adapter);
  424 
  425         netif_wake_queue(adapter->netdev);
  426 
  427         /* fire a link change interrupt to start the watchdog */
  428         ew32(ICS, E1000_ICS_LSC);
  429         return 0;
  430 }
  431 
  432 /**
  433  * e1000_power_up_phy - restore link in case the phy was powered down
  434  * @adapter: address of board private structure
  435  *
  436  * The phy may be powered down to save power and turn off link when the
  437  * driver is unloaded and wake on lan is not enabled (among others)
  438  * *** this routine MUST be followed by a call to e1000_reset ***
  439  *
  440  **/
  441 
  442 void e1000_power_up_phy(struct e1000_adapter *adapter)
  443 {
  444         struct e1000_hw *hw = &adapter->hw;
  445         u16 mii_reg = 0;
  446 
  447         /* Just clear the power down bit to wake the phy back up */
  448         if (hw->media_type == e1000_media_type_copper) {
  449                 /* according to the manual, the phy will retain its
  450                  * settings across a power-down/up cycle */
  451                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
  452                 mii_reg &= ~MII_CR_POWER_DOWN;
  453                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
  454         }
  455 }
  456 
  457 static void e1000_power_down_phy(struct e1000_adapter *adapter)
  458 {
  459         struct e1000_hw *hw = &adapter->hw;
  460 
  461         /* Power down the PHY so no link is implied when interface is down *
  462          * The PHY cannot be powered down if any of the following is true *
  463          * (a) WoL is enabled
  464          * (b) AMT is active
  465          * (c) SoL/IDER session is active */
  466         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
  467            hw->media_type == e1000_media_type_copper) {
  468                 u16 mii_reg = 0;
  469 
  470                 switch (hw->mac_type) {
  471                 case e1000_82540:
  472                 case e1000_82545:
  473                 case e1000_82545_rev_3:
  474                 case e1000_82546:
  475                 case e1000_ce4100:
  476                 case e1000_82546_rev_3:
  477                 case e1000_82541:
  478                 case e1000_82541_rev_2:
  479                 case e1000_82547:
  480                 case e1000_82547_rev_2:
  481                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
  482                                 goto out;
  483                         break;
  484                 default:
  485                         goto out;
  486                 }
  487                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
  488                 mii_reg |= MII_CR_POWER_DOWN;
  489                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
  490                 mdelay(1);
  491         }
  492 out:
  493         return;
  494 }
  495 
  496 void e1000_down(struct e1000_adapter *adapter)
  497 {
  498         struct e1000_hw *hw = &adapter->hw;
  499         struct net_device *netdev = adapter->netdev;
  500         u32 rctl, tctl;
  501 
  502 
  503         /* disable receives in the hardware */
  504         rctl = er32(RCTL);
  505         ew32(RCTL, rctl & ~E1000_RCTL_EN);
  506         /* flush and sleep below */
  507 
  508         netif_tx_disable(netdev);
  509 
  510         /* disable transmits in the hardware */
  511         tctl = er32(TCTL);
  512         tctl &= ~E1000_TCTL_EN;
  513         ew32(TCTL, tctl);
  514         /* flush both disables and wait for them to finish */
  515         E1000_WRITE_FLUSH();
  516         msleep(10);
  517 
  518         napi_disable(&adapter->napi);
  519 
  520         e1000_irq_disable(adapter);
  521 
  522         /*
  523          * Setting DOWN must be after irq_disable to prevent
  524          * a screaming interrupt.  Setting DOWN also prevents
  525          * timers and tasks from rescheduling.
  526          */
  527         set_bit(__E1000_DOWN, &adapter->flags);
  528 
  529         del_timer_sync(&adapter->tx_fifo_stall_timer);
  530         del_timer_sync(&adapter->watchdog_timer);
  531         del_timer_sync(&adapter->phy_info_timer);
  532 
  533         adapter->link_speed = 0;
  534         adapter->link_duplex = 0;
  535         netif_carrier_off(netdev);
  536 
  537         e1000_reset(adapter);
  538         e1000_clean_all_tx_rings(adapter);
  539         e1000_clean_all_rx_rings(adapter);
  540 }
  541 
  542 static void e1000_reinit_safe(struct e1000_adapter *adapter)
  543 {
  544         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
  545                 msleep(1);
  546         rtnl_lock();
  547         e1000_down(adapter);
  548         e1000_up(adapter);
  549         rtnl_unlock();
  550         clear_bit(__E1000_RESETTING, &adapter->flags);
  551 }
  552 
  553 void e1000_reinit_locked(struct e1000_adapter *adapter)
  554 {
  555         /* if rtnl_lock is not held the call path is bogus */
  556         ASSERT_RTNL();
  557         WARN_ON(in_interrupt());
  558         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
  559                 msleep(1);
  560         e1000_down(adapter);
  561         e1000_up(adapter);
  562         clear_bit(__E1000_RESETTING, &adapter->flags);
  563 }
  564 
  565 void e1000_reset(struct e1000_adapter *adapter)
  566 {
  567         struct e1000_hw *hw = &adapter->hw;
  568         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
  569         bool legacy_pba_adjust = false;
  570         u16 hwm;
  571 
  572         /* Repartition Pba for greater than 9k mtu
  573          * To take effect CTRL.RST is required.
  574          */
  575 
  576         switch (hw->mac_type) {
  577         case e1000_82542_rev2_0:
  578         case e1000_82542_rev2_1:
  579         case e1000_82543:
  580         case e1000_82544:
  581         case e1000_82540:
  582         case e1000_82541:
  583         case e1000_82541_rev_2:
  584                 legacy_pba_adjust = true;
  585                 pba = E1000_PBA_48K;
  586                 break;
  587         case e1000_82545:
  588         case e1000_82545_rev_3:
  589         case e1000_82546:
  590         case e1000_ce4100:
  591         case e1000_82546_rev_3:
  592                 pba = E1000_PBA_48K;
  593                 break;
  594         case e1000_82547:
  595         case e1000_82547_rev_2:
  596                 legacy_pba_adjust = true;
  597                 pba = E1000_PBA_30K;
  598                 break;
  599         case e1000_undefined:
  600         case e1000_num_macs:
  601                 break;
  602         }
  603 
  604         if (legacy_pba_adjust) {
  605                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
  606                         pba -= 8; /* allocate more FIFO for Tx */
  607 
  608                 if (hw->mac_type == e1000_82547) {
  609                         adapter->tx_fifo_head = 0;
  610                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  611                         adapter->tx_fifo_size =
  612                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  613                         atomic_set(&adapter->tx_fifo_stall, 0);
  614                 }
  615         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
  616                 /* adjust PBA for jumbo frames */
  617                 ew32(PBA, pba);
  618 
  619                 /* To maintain wire speed transmits, the Tx FIFO should be
  620                  * large enough to accommodate two full transmit packets,
  621                  * rounded up to the next 1KB and expressed in KB.  Likewise,
  622                  * the Rx FIFO should be large enough to accommodate at least
  623                  * one full receive packet and is similarly rounded up and
  624                  * expressed in KB. */
  625                 pba = er32(PBA);
  626                 /* upper 16 bits has Tx packet buffer allocation size in KB */
  627                 tx_space = pba >> 16;
  628                 /* lower 16 bits has Rx packet buffer allocation size in KB */
  629                 pba &= 0xffff;
  630                 /*
  631                  * the tx fifo also stores 16 bytes of information about the tx
  632                  * but don't include ethernet FCS because hardware appends it
  633                  */
  634                 min_tx_space = (hw->max_frame_size +
  635                                 sizeof(struct e1000_tx_desc) -
  636                                 ETH_FCS_LEN) * 2;
  637                 min_tx_space = ALIGN(min_tx_space, 1024);
  638                 min_tx_space >>= 10;
  639                 /* software strips receive CRC, so leave room for it */
  640                 min_rx_space = hw->max_frame_size;
  641                 min_rx_space = ALIGN(min_rx_space, 1024);
  642                 min_rx_space >>= 10;
  643 
  644                 /* If current Tx allocation is less than the min Tx FIFO size,
  645                  * and the min Tx FIFO size is less than the current Rx FIFO
  646                  * allocation, take space away from current Rx allocation */
  647                 if (tx_space < min_tx_space &&
  648                     ((min_tx_space - tx_space) < pba)) {
  649                         pba = pba - (min_tx_space - tx_space);
  650 
  651                         /* PCI/PCIx hardware has PBA alignment constraints */
  652                         switch (hw->mac_type) {
  653                         case e1000_82545 ... e1000_82546_rev_3:
  654                                 pba &= ~(E1000_PBA_8K - 1);
  655                                 break;
  656                         default:
  657                                 break;
  658                         }
  659 
  660                         /* if short on rx space, rx wins and must trump tx
  661                          * adjustment or use Early Receive if available */
  662                         if (pba < min_rx_space)
  663                                 pba = min_rx_space;
  664                 }
  665         }
  666 
  667         ew32(PBA, pba);
  668 
  669         /*
  670          * flow control settings:
  671          * The high water mark must be low enough to fit one full frame
  672          * (or the size used for early receive) above it in the Rx FIFO.
  673          * Set it to the lower of:
  674          * - 90% of the Rx FIFO size, and
  675          * - the full Rx FIFO size minus the early receive size (for parts
  676          *   with ERT support assuming ERT set to E1000_ERT_2048), or
  677          * - the full Rx FIFO size minus one full frame
  678          */
  679         hwm = min(((pba << 10) * 9 / 10),
  680                   ((pba << 10) - hw->max_frame_size));
  681 
  682         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
  683         hw->fc_low_water = hw->fc_high_water - 8;
  684         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
  685         hw->fc_send_xon = 1;
  686         hw->fc = hw->original_fc;
  687 
  688         /* Allow time for pending master requests to run */
  689         e1000_reset_hw(hw);
  690         if (hw->mac_type >= e1000_82544)
  691                 ew32(WUC, 0);
  692 
  693         if (e1000_init_hw(hw))
  694                 e_dev_err("Hardware Error\n");
  695         e1000_update_mng_vlan(adapter);
  696 
  697         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
  698         if (hw->mac_type >= e1000_82544 &&
  699             hw->autoneg == 1 &&
  700             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
  701                 u32 ctrl = er32(CTRL);
  702                 /* clear phy power management bit if we are in gig only mode,
  703                  * which if enabled will attempt negotiation to 100Mb, which
  704                  * can cause a loss of link at power off or driver unload */
  705                 ctrl &= ~E1000_CTRL_SWDPIN3;
  706                 ew32(CTRL, ctrl);
  707         }
  708 
  709         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  710         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
  711 
  712         e1000_reset_adaptive(hw);
  713         e1000_phy_get_info(hw, &adapter->phy_info);
  714 
  715         e1000_release_manageability(adapter);
  716 }
  717 
  718 /**
  719  *  Dump the eeprom for users having checksum issues
  720  **/
  721 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
  722 {
  723         struct net_device *netdev = adapter->netdev;
  724         struct ethtool_eeprom eeprom;
  725         const struct ethtool_ops *ops = netdev->ethtool_ops;
  726         u8 *data;
  727         int i;
  728         u16 csum_old, csum_new = 0;
  729 
  730         eeprom.len = ops->get_eeprom_len(netdev);
  731         eeprom.offset = 0;
  732 
  733         data = kmalloc(eeprom.len, GFP_KERNEL);
  734         if (!data) {
  735                 pr_err("Unable to allocate memory to dump EEPROM data\n");
  736                 return;
  737         }
  738 
  739         ops->get_eeprom(netdev, &eeprom, data);
  740 
  741         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
  742                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
  743         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
  744                 csum_new += data[i] + (data[i + 1] << 8);
  745         csum_new = EEPROM_SUM - csum_new;
  746 
  747         pr_err("/*********************/\n");
  748         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
  749         pr_err("Calculated              : 0x%04x\n", csum_new);
  750 
  751         pr_err("Offset    Values\n");
  752         pr_err("========  ======\n");
  753         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
  754 
  755         pr_err("Include this output when contacting your support provider.\n");
  756         pr_err("This is not a software error! Something bad happened to\n");
  757         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
  758         pr_err("result in further problems, possibly loss of data,\n");
  759         pr_err("corruption or system hangs!\n");
  760         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
  761         pr_err("which is invalid and requires you to set the proper MAC\n");
  762         pr_err("address manually before continuing to enable this network\n");
  763         pr_err("device. Please inspect the EEPROM dump and report the\n");
  764         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
  765         pr_err("/*********************/\n");
  766 
  767         kfree(data);
  768 }
  769 
  770 /**
  771  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
  772  * @pdev: PCI device information struct
  773  *
  774  * Return true if an adapter needs ioport resources
  775  **/
  776 static int e1000_is_need_ioport(struct pci_dev *pdev)
  777 {
  778         switch (pdev->device) {
  779         case E1000_DEV_ID_82540EM:
  780         case E1000_DEV_ID_82540EM_LOM:
  781         case E1000_DEV_ID_82540EP:
  782         case E1000_DEV_ID_82540EP_LOM:
  783         case E1000_DEV_ID_82540EP_LP:
  784         case E1000_DEV_ID_82541EI:
  785         case E1000_DEV_ID_82541EI_MOBILE:
  786         case E1000_DEV_ID_82541ER:
  787         case E1000_DEV_ID_82541ER_LOM:
  788         case E1000_DEV_ID_82541GI:
  789         case E1000_DEV_ID_82541GI_LF:
  790         case E1000_DEV_ID_82541GI_MOBILE:
  791         case E1000_DEV_ID_82544EI_COPPER:
  792         case E1000_DEV_ID_82544EI_FIBER:
  793         case E1000_DEV_ID_82544GC_COPPER:
  794         case E1000_DEV_ID_82544GC_LOM:
  795         case E1000_DEV_ID_82545EM_COPPER:
  796         case E1000_DEV_ID_82545EM_FIBER:
  797         case E1000_DEV_ID_82546EB_COPPER:
  798         case E1000_DEV_ID_82546EB_FIBER:
  799         case E1000_DEV_ID_82546EB_QUAD_COPPER:
  800                 return true;
  801         default:
  802                 return false;
  803         }
  804 }
  805 
  806 static u32 e1000_fix_features(struct net_device *netdev, u32 features)
  807 {
  808         /*
  809          * Since there is no support for separate rx/tx vlan accel
  810          * enable/disable make sure tx flag is always in same state as rx.
  811          */
  812         if (features & NETIF_F_HW_VLAN_RX)
  813                 features |= NETIF_F_HW_VLAN_TX;
  814         else
  815                 features &= ~NETIF_F_HW_VLAN_TX;
  816 
  817         return features;
  818 }
  819 
  820 static int e1000_set_features(struct net_device *netdev, u32 features)
  821 {
  822         struct e1000_adapter *adapter = netdev_priv(netdev);
  823         u32 changed = features ^ netdev->features;
  824 
  825         if (changed & NETIF_F_HW_VLAN_RX)
  826                 e1000_vlan_mode(netdev, features);
  827 
  828         if (!(changed & NETIF_F_RXCSUM))
  829                 return 0;
  830 
  831         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
  832 
  833         if (netif_running(netdev))
  834                 e1000_reinit_locked(adapter);
  835         else
  836                 e1000_reset(adapter);
  837 
  838         return 0;
  839 }
  840 
  841 static const struct net_device_ops e1000_netdev_ops = {
  842         .ndo_open               = e1000_open,
  843         .ndo_stop               = e1000_close,
  844         .ndo_start_xmit         = e1000_xmit_frame,
  845         .ndo_get_stats          = e1000_get_stats,
  846         .ndo_set_rx_mode        = e1000_set_rx_mode,
  847         .ndo_set_mac_address    = e1000_set_mac,
  848         .ndo_tx_timeout         = e1000_tx_timeout,
  849         .ndo_change_mtu         = e1000_change_mtu,
  850         .ndo_do_ioctl           = e1000_ioctl,
  851         .ndo_validate_addr      = eth_validate_addr,
  852         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
  853         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
  854 #ifdef CONFIG_NET_POLL_CONTROLLER
  855         .ndo_poll_controller    = e1000_netpoll,
  856 #endif
  857         .ndo_fix_features       = e1000_fix_features,
  858         .ndo_set_features       = e1000_set_features,
  859 };
  860 
  861 /**
  862  * e1000_init_hw_struct - initialize members of hw struct
  863  * @adapter: board private struct
  864  * @hw: structure used by e1000_hw.c
  865  *
  866  * Factors out initialization of the e1000_hw struct to its own function
  867  * that can be called very early at init (just after struct allocation).
  868  * Fields are initialized based on PCI device information and
  869  * OS network device settings (MTU size).
  870  * Returns negative error codes if MAC type setup fails.
  871  */
  872 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
  873                                 struct e1000_hw *hw)
  874 {
  875         struct pci_dev *pdev = adapter->pdev;
  876 
  877         /* PCI config space info */
  878         hw->vendor_id = pdev->vendor;
  879         hw->device_id = pdev->device;
  880         hw->subsystem_vendor_id = pdev->subsystem_vendor;
  881         hw->subsystem_id = pdev->subsystem_device;
  882         hw->revision_id = pdev->revision;
  883 
  884         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  885 
  886         hw->max_frame_size = adapter->netdev->mtu +
  887                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  888         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  889 
  890         /* identify the MAC */
  891         if (e1000_set_mac_type(hw)) {
  892                 e_err(probe, "Unknown MAC Type\n");
  893                 return -EIO;
  894         }
  895 
  896         switch (hw->mac_type) {
  897         default:
  898                 break;
  899         case e1000_82541:
  900         case e1000_82547:
  901         case e1000_82541_rev_2:
  902         case e1000_82547_rev_2:
  903                 hw->phy_init_script = 1;
  904                 break;
  905         }
  906 
  907         e1000_set_media_type(hw);
  908         e1000_get_bus_info(hw);
  909 
  910         hw->wait_autoneg_complete = false;
  911         hw->tbi_compatibility_en = true;
  912         hw->adaptive_ifs = true;
  913 
  914         /* Copper options */
  915 
  916         if (hw->media_type == e1000_media_type_copper) {
  917                 hw->mdix = AUTO_ALL_MODES;
  918                 hw->disable_polarity_correction = false;
  919                 hw->master_slave = E1000_MASTER_SLAVE;
  920         }
  921 
  922         return 0;
  923 }
  924 
  925 /**
  926  * e1000_probe - Device Initialization Routine
  927  * @pdev: PCI device information struct
  928  * @ent: entry in e1000_pci_tbl
  929  *
  930  * Returns 0 on success, negative on failure
  931  *
  932  * e1000_probe initializes an adapter identified by a pci_dev structure.
  933  * The OS initialization, configuring of the adapter private structure,
  934  * and a hardware reset occur.
  935  **/
  936 static int __devinit e1000_probe(struct pci_dev *pdev,
  937                                  const struct pci_device_id *ent)
  938 {
  939         struct net_device *netdev;
  940         struct e1000_adapter *adapter;
  941         struct e1000_hw *hw;
  942 
  943         static int cards_found = 0;
  944         static int global_quad_port_a = 0; /* global ksp3 port a indication */
  945         int i, err, pci_using_dac;
  946         u16 eeprom_data = 0;
  947         u16 tmp = 0;
  948         u16 eeprom_apme_mask = E1000_EEPROM_APME;
  949         int bars, need_ioport;
  950 
  951         /* do not allocate ioport bars when not needed */
  952         need_ioport = e1000_is_need_ioport(pdev);
  953         if (need_ioport) {
  954                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
  955                 err = pci_enable_device(pdev);
  956         } else {
  957                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
  958                 err = pci_enable_device_mem(pdev);
  959         }
  960         if (err)
  961                 return err;
  962 
  963         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
  964         if (err)
  965                 goto err_pci_reg;
  966 
  967         pci_set_master(pdev);
  968         err = pci_save_state(pdev);
  969         if (err)
  970                 goto err_alloc_etherdev;
  971 
  972         err = -ENOMEM;
  973         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  974         if (!netdev)
  975                 goto err_alloc_etherdev;
  976 
  977         SET_NETDEV_DEV(netdev, &pdev->dev);
  978 
  979         pci_set_drvdata(pdev, netdev);
  980         adapter = netdev_priv(netdev);
  981         adapter->netdev = netdev;
  982         adapter->pdev = pdev;
  983         adapter->msg_enable = (1 << debug) - 1;
  984         adapter->bars = bars;
  985         adapter->need_ioport = need_ioport;
  986 
  987         hw = &adapter->hw;
  988         hw->back = adapter;
  989 
  990         err = -EIO;
  991         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
  992         if (!hw->hw_addr)
  993                 goto err_ioremap;
  994 
  995         if (adapter->need_ioport) {
  996                 for (i = BAR_1; i <= BAR_5; i++) {
  997                         if (pci_resource_len(pdev, i) == 0)
  998                                 continue;
  999                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 1000                                 hw->io_base = pci_resource_start(pdev, i);
 1001                                 break;
 1002                         }
 1003                 }
 1004         }
 1005 
 1006         /* make ready for any if (hw->...) below */
 1007         err = e1000_init_hw_struct(adapter, hw);
 1008         if (err)
 1009                 goto err_sw_init;
 1010 
 1011         /*
 1012          * there is a workaround being applied below that limits
 1013          * 64-bit DMA addresses to 64-bit hardware.  There are some
 1014          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 1015          */
 1016         pci_using_dac = 0;
 1017         if ((hw->bus_type == e1000_bus_type_pcix) &&
 1018             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
 1019                 /*
 1020                  * according to DMA-API-HOWTO, coherent calls will always
 1021                  * succeed if the set call did
 1022                  */
 1023                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
 1024                 pci_using_dac = 1;
 1025         } else {
 1026                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
 1027                 if (err) {
 1028                         pr_err("No usable DMA config, aborting\n");
 1029                         goto err_dma;
 1030                 }
 1031                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
 1032         }
 1033 
 1034         netdev->netdev_ops = &e1000_netdev_ops;
 1035         e1000_set_ethtool_ops(netdev);
 1036         netdev->watchdog_timeo = 5 * HZ;
 1037         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
 1038 
 1039         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
 1040 
 1041         adapter->bd_number = cards_found;
 1042 
 1043         /* setup the private structure */
 1044 
 1045         err = e1000_sw_init(adapter);
 1046         if (err)
 1047                 goto err_sw_init;
 1048 
 1049         err = -EIO;
 1050         if (hw->mac_type == e1000_ce4100) {
 1051                 ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1);
 1052                 ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy,
 1053                                                 pci_resource_len(pdev, BAR_1));
 1054 
 1055                 if (!ce4100_gbe_mdio_base_virt)
 1056                         goto err_mdio_ioremap;
 1057         }
 1058 
 1059         if (hw->mac_type >= e1000_82543) {
 1060                 netdev->hw_features = NETIF_F_SG |
 1061                                    NETIF_F_HW_CSUM |
 1062                                    NETIF_F_HW_VLAN_RX;
 1063                 netdev->features = NETIF_F_HW_VLAN_TX |
 1064                                    NETIF_F_HW_VLAN_FILTER;
 1065         }
 1066 
 1067         if ((hw->mac_type >= e1000_82544) &&
 1068            (hw->mac_type != e1000_82547))
 1069                 netdev->hw_features |= NETIF_F_TSO;
 1070 
 1071         netdev->features |= netdev->hw_features;
 1072         netdev->hw_features |= NETIF_F_RXCSUM;
 1073 
 1074         if (pci_using_dac) {
 1075                 netdev->features |= NETIF_F_HIGHDMA;
 1076                 netdev->vlan_features |= NETIF_F_HIGHDMA;
 1077         }
 1078 
 1079         netdev->vlan_features |= NETIF_F_TSO;
 1080         netdev->vlan_features |= NETIF_F_HW_CSUM;
 1081         netdev->vlan_features |= NETIF_F_SG;
 1082 
 1083         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
 1084 
 1085         /* initialize eeprom parameters */
 1086         if (e1000_init_eeprom_params(hw)) {
 1087                 e_err(probe, "EEPROM initialization failed\n");
 1088                 goto err_eeprom;
 1089         }
 1090 
 1091         /* before reading the EEPROM, reset the controller to
 1092          * put the device in a known good starting state */
 1093 
 1094         e1000_reset_hw(hw);
 1095 
 1096         /* make sure the EEPROM is good */
 1097         if (e1000_validate_eeprom_checksum(hw) < 0) {
 1098                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
 1099                 e1000_dump_eeprom(adapter);
 1100                 /*
 1101                  * set MAC address to all zeroes to invalidate and temporary
 1102                  * disable this device for the user. This blocks regular
 1103                  * traffic while still permitting ethtool ioctls from reaching
 1104                  * the hardware as well as allowing the user to run the
 1105                  * interface after manually setting a hw addr using
 1106                  * `ip set address`
 1107                  */
 1108                 memset(hw->mac_addr, 0, netdev->addr_len);
 1109         } else {
 1110                 /* copy the MAC address out of the EEPROM */
 1111                 if (e1000_read_mac_addr(hw))
 1112                         e_err(probe, "EEPROM Read Error\n");
 1113         }
 1114         /* don't block initalization here due to bad MAC address */
 1115         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
 1116         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
 1117 
 1118         if (!is_valid_ether_addr(netdev->perm_addr))
 1119                 e_err(probe, "Invalid MAC Address\n");
 1120 
 1121         init_timer(&adapter->tx_fifo_stall_timer);
 1122         adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
 1123         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
 1124 
 1125         init_timer(&adapter->watchdog_timer);
 1126         adapter->watchdog_timer.function = e1000_watchdog;
 1127         adapter->watchdog_timer.data = (unsigned long) adapter;
 1128 
 1129         init_timer(&adapter->phy_info_timer);
 1130         adapter->phy_info_timer.function = e1000_update_phy_info;
 1131         adapter->phy_info_timer.data = (unsigned long)adapter;
 1132 
 1133         INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
 1134         INIT_WORK(&adapter->reset_task, e1000_reset_task);
 1135         INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
 1136 
 1137         e1000_check_options(adapter);
 1138 
 1139         /* Initial Wake on LAN setting
 1140          * If APM wake is enabled in the EEPROM,
 1141          * enable the ACPI Magic Packet filter
 1142          */
 1143 
 1144         switch (hw->mac_type) {
 1145         case e1000_82542_rev2_0:
 1146         case e1000_82542_rev2_1:
 1147         case e1000_82543:
 1148                 break;
 1149         case e1000_82544:
 1150                 e1000_read_eeprom(hw,
 1151                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
 1152                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
 1153                 break;
 1154         case e1000_82546:
 1155         case e1000_82546_rev_3:
 1156                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
 1157                         e1000_read_eeprom(hw,
 1158                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 1159                         break;
 1160                 }
 1161                 /* Fall Through */
 1162         default:
 1163                 e1000_read_eeprom(hw,
 1164                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
 1165                 break;
 1166         }
 1167         if (eeprom_data & eeprom_apme_mask)
 1168                 adapter->eeprom_wol |= E1000_WUFC_MAG;
 1169 
 1170         /* now that we have the eeprom settings, apply the special cases
 1171          * where the eeprom may be wrong or the board simply won't support
 1172          * wake on lan on a particular port */
 1173         switch (pdev->device) {
 1174         case E1000_DEV_ID_82546GB_PCIE:
 1175                 adapter->eeprom_wol = 0;
 1176                 break;
 1177         case E1000_DEV_ID_82546EB_FIBER:
 1178         case E1000_DEV_ID_82546GB_FIBER:
 1179                 /* Wake events only supported on port A for dual fiber
 1180                  * regardless of eeprom setting */
 1181                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
 1182                         adapter->eeprom_wol = 0;
 1183                 break;
 1184         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 1185                 /* if quad port adapter, disable WoL on all but port A */
 1186                 if (global_quad_port_a != 0)
 1187                         adapter->eeprom_wol = 0;
 1188                 else
 1189                         adapter->quad_port_a = 1;
 1190                 /* Reset for multiple quad port adapters */
 1191                 if (++global_quad_port_a == 4)
 1192                         global_quad_port_a = 0;
 1193                 break;
 1194         }
 1195 
 1196         /* initialize the wol settings based on the eeprom settings */
 1197         adapter->wol = adapter->eeprom_wol;
 1198         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
 1199 
 1200         /* Auto detect PHY address */
 1201         if (hw->mac_type == e1000_ce4100) {
 1202                 for (i = 0; i < 32; i++) {
 1203                         hw->phy_addr = i;
 1204                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
 1205                         if (tmp == 0 || tmp == 0xFF) {
 1206                                 if (i == 31)
 1207                                         goto err_eeprom;
 1208                                 continue;
 1209                         } else
 1210                                 break;
 1211                 }
 1212         }
 1213 
 1214         /* reset the hardware with the new settings */
 1215         e1000_reset(adapter);
 1216 
 1217         strcpy(netdev->name, "eth%d");
 1218         err = register_netdev(netdev);
 1219         if (err)
 1220                 goto err_register;
 1221 
 1222         e1000_vlan_mode(netdev, netdev->features);
 1223 
 1224         /* print bus type/speed/width info */
 1225         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
 1226                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
 1227                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
 1228                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
 1229                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
 1230                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
 1231                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
 1232                netdev->dev_addr);
 1233 
 1234         /* carrier off reporting is important to ethtool even BEFORE open */
 1235         netif_carrier_off(netdev);
 1236 
 1237         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
 1238 
 1239         cards_found++;
 1240         return 0;
 1241 
 1242 err_register:
 1243 err_eeprom:
 1244         e1000_phy_hw_reset(hw);
 1245 
 1246         if (hw->flash_address)
 1247                 iounmap(hw->flash_address);
 1248         kfree(adapter->tx_ring);
 1249         kfree(adapter->rx_ring);
 1250 err_dma:
 1251 err_sw_init:
 1252 err_mdio_ioremap:
 1253         iounmap(ce4100_gbe_mdio_base_virt);
 1254         iounmap(hw->hw_addr);
 1255 err_ioremap:
 1256         free_netdev(netdev);
 1257 err_alloc_etherdev:
 1258         pci_release_selected_regions(pdev, bars);
 1259 err_pci_reg:
 1260         pci_disable_device(pdev);
 1261         return err;
 1262 }
 1263 
 1264 /**
 1265  * e1000_remove - Device Removal Routine
 1266  * @pdev: PCI device information struct
 1267  *
 1268  * e1000_remove is called by the PCI subsystem to alert the driver
 1269  * that it should release a PCI device.  The could be caused by a
 1270  * Hot-Plug event, or because the driver is going to be removed from
 1271  * memory.
 1272  **/
 1273 
 1274 static void __devexit e1000_remove(struct pci_dev *pdev)
 1275 {
 1276         struct net_device *netdev = pci_get_drvdata(pdev);
 1277         struct e1000_adapter *adapter = netdev_priv(netdev);
 1278         struct e1000_hw *hw = &adapter->hw;
 1279 
 1280         set_bit(__E1000_DOWN, &adapter->flags);
 1281         del_timer_sync(&adapter->tx_fifo_stall_timer);
 1282         del_timer_sync(&adapter->watchdog_timer);
 1283         del_timer_sync(&adapter->phy_info_timer);
 1284 
 1285         cancel_work_sync(&adapter->reset_task);
 1286 
 1287         e1000_release_manageability(adapter);
 1288 
 1289         unregister_netdev(netdev);
 1290 
 1291         e1000_phy_hw_reset(hw);
 1292 
 1293         kfree(adapter->tx_ring);
 1294         kfree(adapter->rx_ring);
 1295 
 1296         iounmap(hw->hw_addr);
 1297         if (hw->flash_address)
 1298                 iounmap(hw->flash_address);
 1299         pci_release_selected_regions(pdev, adapter->bars);
 1300 
 1301         free_netdev(netdev);
 1302 
 1303         pci_disable_device(pdev);
 1304 }
 1305 
 1306 /**
 1307  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 1308  * @adapter: board private structure to initialize
 1309  *
 1310  * e1000_sw_init initializes the Adapter private data structure.
 1311  * e1000_init_hw_struct MUST be called before this function
 1312  **/
 1313 
 1314 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
 1315 {
 1316         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
 1317 
 1318         adapter->num_tx_queues = 1;
 1319         adapter->num_rx_queues = 1;
 1320 
 1321         if (e1000_alloc_queues(adapter)) {
 1322                 e_err(probe, "Unable to allocate memory for queues\n");
 1323                 return -ENOMEM;
 1324         }
 1325 
 1326         /* Explicitly disable IRQ since the NIC can be in any state. */
 1327         e1000_irq_disable(adapter);
 1328 
 1329         spin_lock_init(&adapter->stats_lock);
 1330 
 1331         set_bit(__E1000_DOWN, &adapter->flags);
 1332 
 1333         return 0;
 1334 }
 1335 
 1336 /**
 1337  * e1000_alloc_queues - Allocate memory for all rings
 1338  * @adapter: board private structure to initialize
 1339  *
 1340  * We allocate one ring per queue at run-time since we don't know the
 1341  * number of queues at compile-time.
 1342  **/
 1343 
 1344 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
 1345 {
 1346         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
 1347                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
 1348         if (!adapter->tx_ring)
 1349                 return -ENOMEM;
 1350 
 1351         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
 1352                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
 1353         if (!adapter->rx_ring) {
 1354                 kfree(adapter->tx_ring);
 1355                 return -ENOMEM;
 1356         }
 1357 
 1358         return E1000_SUCCESS;
 1359 }
 1360 
 1361 /**
 1362  * e1000_open - Called when a network interface is made active
 1363  * @netdev: network interface device structure
 1364  *
 1365  * Returns 0 on success, negative value on failure
 1366  *
 1367  * The open entry point is called when a network interface is made
 1368  * active by the system (IFF_UP).  At this point all resources needed
 1369  * for transmit and receive operations are allocated, the interrupt
 1370  * handler is registered with the OS, the watchdog timer is started,
 1371  * and the stack is notified that the interface is ready.
 1372  **/
 1373 
 1374 static int e1000_open(struct net_device *netdev)
 1375 {
 1376         struct e1000_adapter *adapter = netdev_priv(netdev);
 1377         struct e1000_hw *hw = &adapter->hw;
 1378         int err;
 1379 
 1380         /* disallow open during test */
 1381         if (test_bit(__E1000_TESTING, &adapter->flags))
 1382                 return -EBUSY;
 1383 
 1384         netif_carrier_off(netdev);
 1385 
 1386         /* allocate transmit descriptors */
 1387         err = e1000_setup_all_tx_resources(adapter);
 1388         if (err)
 1389                 goto err_setup_tx;
 1390 
 1391         /* allocate receive descriptors */
 1392         err = e1000_setup_all_rx_resources(adapter);
 1393         if (err)
 1394                 goto err_setup_rx;
 1395 
 1396         e1000_power_up_phy(adapter);
 1397 
 1398         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 1399         if ((hw->mng_cookie.status &
 1400                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
 1401                 e1000_update_mng_vlan(adapter);
 1402         }
 1403 
 1404         /* before we allocate an interrupt, we must be ready to handle it.
 1405          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
 1406          * as soon as we call pci_request_irq, so we have to setup our
 1407          * clean_rx handler before we do so.  */
 1408         e1000_configure(adapter);
 1409 
 1410         err = e1000_request_irq(adapter);
 1411         if (err)
 1412                 goto err_req_irq;
 1413 
 1414         /* From here on the code is the same as e1000_up() */
 1415         clear_bit(__E1000_DOWN, &adapter->flags);
 1416 
 1417         napi_enable(&adapter->napi);
 1418 
 1419         e1000_irq_enable(adapter);
 1420 
 1421         netif_start_queue(netdev);
 1422 
 1423         /* fire a link status change interrupt to start the watchdog */
 1424         ew32(ICS, E1000_ICS_LSC);
 1425 
 1426         return E1000_SUCCESS;
 1427 
 1428 err_req_irq:
 1429         e1000_power_down_phy(adapter);
 1430         e1000_free_all_rx_resources(adapter);
 1431 err_setup_rx:
 1432         e1000_free_all_tx_resources(adapter);
 1433 err_setup_tx:
 1434         e1000_reset(adapter);
 1435 
 1436         return err;
 1437 }
 1438 
 1439 /**
 1440  * e1000_close - Disables a network interface
 1441  * @netdev: network interface device structure
 1442  *
 1443  * Returns 0, this is not allowed to fail
 1444  *
 1445  * The close entry point is called when an interface is de-activated
 1446  * by the OS.  The hardware is still under the drivers control, but
 1447  * needs to be disabled.  A global MAC reset is issued to stop the
 1448  * hardware, and all transmit and receive resources are freed.
 1449  **/
 1450 
 1451 static int e1000_close(struct net_device *netdev)
 1452 {
 1453         struct e1000_adapter *adapter = netdev_priv(netdev);
 1454         struct e1000_hw *hw = &adapter->hw;
 1455 
 1456         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 1457         e1000_down(adapter);
 1458         e1000_power_down_phy(adapter);
 1459         e1000_free_irq(adapter);
 1460 
 1461         e1000_free_all_tx_resources(adapter);
 1462         e1000_free_all_rx_resources(adapter);
 1463 
 1464         /* kill manageability vlan ID if supported, but not if a vlan with
 1465          * the same ID is registered on the host OS (let 8021q kill it) */
 1466         if ((hw->mng_cookie.status &
 1467                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
 1468              !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
 1469                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
 1470         }
 1471 
 1472         return 0;
 1473 }
 1474 
 1475 /**
 1476  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
 1477  * @adapter: address of board private structure
 1478  * @start: address of beginning of memory
 1479  * @len: length of memory
 1480  **/
 1481 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
 1482                                   unsigned long len)
 1483 {
 1484         struct e1000_hw *hw = &adapter->hw;
 1485         unsigned long begin = (unsigned long)start;
 1486         unsigned long end = begin + len;
 1487 
 1488         /* First rev 82545 and 82546 need to not allow any memory
 1489          * write location to cross 64k boundary due to errata 23 */
 1490         if (hw->mac_type == e1000_82545 ||
 1491             hw->mac_type == e1000_ce4100 ||
 1492             hw->mac_type == e1000_82546) {
 1493                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
 1494         }
 1495 
 1496         return true;
 1497 }
 1498 
 1499 /**
 1500  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
 1501  * @adapter: board private structure
 1502  * @txdr:    tx descriptor ring (for a specific queue) to setup
 1503  *
 1504  * Return 0 on success, negative on failure
 1505  **/
 1506 
 1507 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 1508                                     struct e1000_tx_ring *txdr)
 1509 {
 1510         struct pci_dev *pdev = adapter->pdev;
 1511         int size;
 1512 
 1513         size = sizeof(struct e1000_buffer) * txdr->count;
 1514         txdr->buffer_info = vzalloc(size);
 1515         if (!txdr->buffer_info) {
 1516                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
 1517                       "ring\n");
 1518                 return -ENOMEM;
 1519         }
 1520 
 1521         /* round up to nearest 4K */
 1522 
 1523         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
 1524         txdr->size = ALIGN(txdr->size, 4096);
 1525 
 1526         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
 1527                                         GFP_KERNEL);
 1528         if (!txdr->desc) {
 1529 setup_tx_desc_die:
 1530                 vfree(txdr->buffer_info);
 1531                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
 1532                       "ring\n");
 1533                 return -ENOMEM;
 1534         }
 1535 
 1536         /* Fix for errata 23, can't cross 64kB boundary */
 1537         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
 1538                 void *olddesc = txdr->desc;
 1539                 dma_addr_t olddma = txdr->dma;
 1540                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
 1541                       txdr->size, txdr->desc);
 1542                 /* Try again, without freeing the previous */
 1543                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
 1544                                                 &txdr->dma, GFP_KERNEL);
 1545                 /* Failed allocation, critical failure */
 1546                 if (!txdr->desc) {
 1547                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
 1548                                           olddma);
 1549                         goto setup_tx_desc_die;
 1550                 }
 1551 
 1552                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
 1553                         /* give up */
 1554                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 1555                                           txdr->dma);
 1556                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
 1557                                           olddma);
 1558                         e_err(probe, "Unable to allocate aligned memory "
 1559                               "for the transmit descriptor ring\n");
 1560                         vfree(txdr->buffer_info);
 1561                         return -ENOMEM;
 1562                 } else {
 1563                         /* Free old allocation, new allocation was successful */
 1564                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
 1565                                           olddma);
 1566                 }
 1567         }
 1568         memset(txdr->desc, 0, txdr->size);
 1569 
 1570         txdr->next_to_use = 0;
 1571         txdr->next_to_clean = 0;
 1572 
 1573         return 0;
 1574 }
 1575 
 1576 /**
 1577  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
 1578  *                                (Descriptors) for all queues
 1579  * @adapter: board private structure
 1580  *
 1581  * Return 0 on success, negative on failure
 1582  **/
 1583 
 1584 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
 1585 {
 1586         int i, err = 0;
 1587 
 1588         for (i = 0; i < adapter->num_tx_queues; i++) {
 1589                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
 1590                 if (err) {
 1591                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
 1592                         for (i-- ; i >= 0; i--)
 1593                                 e1000_free_tx_resources(adapter,
 1594                                                         &adapter->tx_ring[i]);
 1595                         break;
 1596                 }
 1597         }
 1598 
 1599         return err;
 1600 }
 1601 
 1602 /**
 1603  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 1604  * @adapter: board private structure
 1605  *
 1606  * Configure the Tx unit of the MAC after a reset.
 1607  **/
 1608 
 1609 static void e1000_configure_tx(struct e1000_adapter *adapter)
 1610 {
 1611         u64 tdba;
 1612         struct e1000_hw *hw = &adapter->hw;
 1613         u32 tdlen, tctl, tipg;
 1614         u32 ipgr1, ipgr2;
 1615 
 1616         /* Setup the HW Tx Head and Tail descriptor pointers */
 1617 
 1618         switch (adapter->num_tx_queues) {
 1619         case 1:
 1620         default:
 1621                 tdba = adapter->tx_ring[0].dma;
 1622                 tdlen = adapter->tx_ring[0].count *
 1623                         sizeof(struct e1000_tx_desc);
 1624                 ew32(TDLEN, tdlen);
 1625                 ew32(TDBAH, (tdba >> 32));
 1626                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
 1627                 ew32(TDT, 0);
 1628                 ew32(TDH, 0);
 1629                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
 1630                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
 1631                 break;
 1632         }
 1633 
 1634         /* Set the default values for the Tx Inter Packet Gap timer */
 1635         if ((hw->media_type == e1000_media_type_fiber ||
 1636              hw->media_type == e1000_media_type_internal_serdes))
 1637                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
 1638         else
 1639                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
 1640 
 1641         switch (hw->mac_type) {
 1642         case e1000_82542_rev2_0:
 1643         case e1000_82542_rev2_1:
 1644                 tipg = DEFAULT_82542_TIPG_IPGT;
 1645                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
 1646                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
 1647                 break;
 1648         default:
 1649                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
 1650                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
 1651                 break;
 1652         }
 1653         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
 1654         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
 1655         ew32(TIPG, tipg);
 1656 
 1657         /* Set the Tx Interrupt Delay register */
 1658 
 1659         ew32(TIDV, adapter->tx_int_delay);
 1660         if (hw->mac_type >= e1000_82540)
 1661                 ew32(TADV, adapter->tx_abs_int_delay);
 1662 
 1663         /* Program the Transmit Control Register */
 1664 
 1665         tctl = er32(TCTL);
 1666         tctl &= ~E1000_TCTL_CT;
 1667         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
 1668                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
 1669 
 1670         e1000_config_collision_dist(hw);
 1671 
 1672         /* Setup Transmit Descriptor Settings for eop descriptor */
 1673         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
 1674 
 1675         /* only set IDE if we are delaying interrupts using the timers */
 1676         if (adapter->tx_int_delay)
 1677                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
 1678 
 1679         if (hw->mac_type < e1000_82543)
 1680                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
 1681         else
 1682                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
 1683 
 1684         /* Cache if we're 82544 running in PCI-X because we'll
 1685          * need this to apply a workaround later in the send path. */
 1686         if (hw->mac_type == e1000_82544 &&
 1687             hw->bus_type == e1000_bus_type_pcix)
 1688                 adapter->pcix_82544 = 1;
 1689 
 1690         ew32(TCTL, tctl);
 1691 
 1692 }
 1693 
 1694 /**
 1695  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
 1696  * @adapter: board private structure
 1697  * @rxdr:    rx descriptor ring (for a specific queue) to setup
 1698  *
 1699  * Returns 0 on success, negative on failure
 1700  **/
 1701 
 1702 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 1703                                     struct e1000_rx_ring *rxdr)
 1704 {
 1705         struct pci_dev *pdev = adapter->pdev;
 1706         int size, desc_len;
 1707 
 1708         size = sizeof(struct e1000_buffer) * rxdr->count;
 1709         rxdr->buffer_info = vzalloc(size);
 1710         if (!rxdr->buffer_info) {
 1711                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
 1712                       "ring\n");
 1713                 return -ENOMEM;
 1714         }
 1715 
 1716         desc_len = sizeof(struct e1000_rx_desc);
 1717 
 1718         /* Round up to nearest 4K */
 1719 
 1720         rxdr->size = rxdr->count * desc_len;
 1721         rxdr->size = ALIGN(rxdr->size, 4096);
 1722 
 1723         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
 1724                                         GFP_KERNEL);
 1725 
 1726         if (!rxdr->desc) {
 1727                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
 1728                       "ring\n");
 1729 setup_rx_desc_die:
 1730                 vfree(rxdr->buffer_info);
 1731                 return -ENOMEM;
 1732         }
 1733 
 1734         /* Fix for errata 23, can't cross 64kB boundary */
 1735         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
 1736                 void *olddesc = rxdr->desc;
 1737                 dma_addr_t olddma = rxdr->dma;
 1738                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
 1739                       rxdr->size, rxdr->desc);
 1740                 /* Try again, without freeing the previous */
 1741                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
 1742                                                 &rxdr->dma, GFP_KERNEL);
 1743                 /* Failed allocation, critical failure */
 1744                 if (!rxdr->desc) {
 1745                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
 1746                                           olddma);
 1747                         e_err(probe, "Unable to allocate memory for the Rx "
 1748                               "descriptor ring\n");
 1749                         goto setup_rx_desc_die;
 1750                 }
 1751 
 1752                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
 1753                         /* give up */
 1754                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 1755                                           rxdr->dma);
 1756                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
 1757                                           olddma);
 1758                         e_err(probe, "Unable to allocate aligned memory for "
 1759                               "the Rx descriptor ring\n");
 1760                         goto setup_rx_desc_die;
 1761                 } else {
 1762                         /* Free old allocation, new allocation was successful */
 1763                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
 1764                                           olddma);
 1765                 }
 1766         }
 1767         memset(rxdr->desc, 0, rxdr->size);
 1768 
 1769         rxdr->next_to_clean = 0;
 1770         rxdr->next_to_use = 0;
 1771         rxdr->rx_skb_top = NULL;
 1772 
 1773         return 0;
 1774 }
 1775 
 1776 /**
 1777  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
 1778  *                                (Descriptors) for all queues
 1779  * @adapter: board private structure
 1780  *
 1781  * Return 0 on success, negative on failure
 1782  **/
 1783 
 1784 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
 1785 {
 1786         int i, err = 0;
 1787 
 1788         for (i = 0; i < adapter->num_rx_queues; i++) {
 1789                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
 1790                 if (err) {
 1791                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
 1792                         for (i-- ; i >= 0; i--)
 1793                                 e1000_free_rx_resources(adapter,
 1794                                                         &adapter->rx_ring[i]);
 1795                         break;
 1796                 }
 1797         }
 1798 
 1799         return err;
 1800 }
 1801 
 1802 /**
 1803  * e1000_setup_rctl - configure the receive control registers
 1804  * @adapter: Board private structure
 1805  **/
 1806 static void e1000_setup_rctl(struct e1000_adapter *adapter)
 1807 {
 1808         struct e1000_hw *hw = &adapter->hw;
 1809         u32 rctl;
 1810 
 1811         rctl = er32(RCTL);
 1812 
 1813         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 1814 
 1815         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
 1816                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
 1817                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
 1818 
 1819         if (hw->tbi_compatibility_on == 1)
 1820                 rctl |= E1000_RCTL_SBP;
 1821         else
 1822                 rctl &= ~E1000_RCTL_SBP;
 1823 
 1824         if (adapter->netdev->mtu <= ETH_DATA_LEN)
 1825                 rctl &= ~E1000_RCTL_LPE;
 1826         else
 1827                 rctl |= E1000_RCTL_LPE;
 1828 
 1829         /* Setup buffer sizes */
 1830         rctl &= ~E1000_RCTL_SZ_4096;
 1831         rctl |= E1000_RCTL_BSEX;
 1832         switch (adapter->rx_buffer_len) {
 1833                 case E1000_RXBUFFER_2048:
 1834                 default:
 1835                         rctl |= E1000_RCTL_SZ_2048;
 1836                         rctl &= ~E1000_RCTL_BSEX;
 1837                         break;
 1838                 case E1000_RXBUFFER_4096:
 1839                         rctl |= E1000_RCTL_SZ_4096;
 1840                         break;
 1841                 case E1000_RXBUFFER_8192:
 1842                         rctl |= E1000_RCTL_SZ_8192;
 1843                         break;
 1844                 case E1000_RXBUFFER_16384:
 1845                         rctl |= E1000_RCTL_SZ_16384;
 1846                         break;
 1847         }
 1848 
 1849         ew32(RCTL, rctl);
 1850 }
 1851 
 1852 /**
 1853  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
 1854  * @adapter: board private structure
 1855  *
 1856  * Configure the Rx unit of the MAC after a reset.
 1857  **/
 1858 
 1859 static void e1000_configure_rx(struct e1000_adapter *adapter)
 1860 {
 1861         u64 rdba;
 1862         struct e1000_hw *hw = &adapter->hw;
 1863         u32 rdlen, rctl, rxcsum;
 1864 
 1865         if (adapter->netdev->mtu > ETH_DATA_LEN) {
 1866                 rdlen = adapter->rx_ring[0].count *
 1867                         sizeof(struct e1000_rx_desc);
 1868                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
 1869                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
 1870         } else {
 1871                 rdlen = adapter->rx_ring[0].count *
 1872                         sizeof(struct e1000_rx_desc);
 1873                 adapter->clean_rx = e1000_clean_rx_irq;
 1874                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
 1875         }
 1876 
 1877         /* disable receives while setting up the descriptors */
 1878         rctl = er32(RCTL);
 1879         ew32(RCTL, rctl & ~E1000_RCTL_EN);
 1880 
 1881         /* set the Receive Delay Timer Register */
 1882         ew32(RDTR, adapter->rx_int_delay);
 1883 
 1884         if (hw->mac_type >= e1000_82540) {
 1885                 ew32(RADV, adapter->rx_abs_int_delay);
 1886                 if (adapter->itr_setting != 0)
 1887                         ew32(ITR, 1000000000 / (adapter->itr * 256));
 1888         }
 1889 
 1890         /* Setup the HW Rx Head and Tail Descriptor Pointers and
 1891          * the Base and Length of the Rx Descriptor Ring */
 1892         switch (adapter->num_rx_queues) {
 1893         case 1:
 1894         default:
 1895                 rdba = adapter->rx_ring[0].dma;
 1896                 ew32(RDLEN, rdlen);
 1897                 ew32(RDBAH, (rdba >> 32));
 1898                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
 1899                 ew32(RDT, 0);
 1900                 ew32(RDH, 0);
 1901                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
 1902                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
 1903                 break;
 1904         }
 1905 
 1906         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
 1907         if (hw->mac_type >= e1000_82543) {
 1908                 rxcsum = er32(RXCSUM);
 1909                 if (adapter->rx_csum)
 1910                         rxcsum |= E1000_RXCSUM_TUOFL;
 1911                 else
 1912                         /* don't need to clear IPPCSE as it defaults to 0 */
 1913                         rxcsum &= ~E1000_RXCSUM_TUOFL;
 1914                 ew32(RXCSUM, rxcsum);
 1915         }
 1916 
 1917         /* Enable Receives */
 1918         ew32(RCTL, rctl);
 1919 }
 1920 
 1921 /**
 1922  * e1000_free_tx_resources - Free Tx Resources per Queue
 1923  * @adapter: board private structure
 1924  * @tx_ring: Tx descriptor ring for a specific queue
 1925  *
 1926  * Free all transmit software resources
 1927  **/
 1928 
 1929 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 1930                                     struct e1000_tx_ring *tx_ring)
 1931 {
 1932         struct pci_dev *pdev = adapter->pdev;
 1933 
 1934         e1000_clean_tx_ring(adapter, tx_ring);
 1935 
 1936         vfree(tx_ring->buffer_info);
 1937         tx_ring->buffer_info = NULL;
 1938 
 1939         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 1940                           tx_ring->dma);
 1941 
 1942         tx_ring->desc = NULL;
 1943 }
 1944 
 1945 /**
 1946  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
 1947  * @adapter: board private structure
 1948  *
 1949  * Free all transmit software resources
 1950  **/
 1951 
 1952 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
 1953 {
 1954         int i;
 1955 
 1956         for (i = 0; i < adapter->num_tx_queues; i++)
 1957                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
 1958 }
 1959 
 1960 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
 1961                                              struct e1000_buffer *buffer_info)
 1962 {
 1963         if (buffer_info->dma) {
 1964                 if (buffer_info->mapped_as_page)
 1965                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
 1966                                        buffer_info->length, DMA_TO_DEVICE);
 1967                 else
 1968                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
 1969                                          buffer_info->length,
 1970                                          DMA_TO_DEVICE);
 1971                 buffer_info->dma = 0;
 1972         }
 1973         if (buffer_info->skb) {
 1974                 dev_kfree_skb_any(buffer_info->skb);
 1975                 buffer_info->skb = NULL;
 1976         }
 1977         buffer_info->time_stamp = 0;
 1978         /* buffer_info must be completely set up in the transmit path */
 1979 }
 1980 
 1981 /**
 1982  * e1000_clean_tx_ring - Free Tx Buffers
 1983  * @adapter: board private structure
 1984  * @tx_ring: ring to be cleaned
 1985  **/
 1986 
 1987 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 1988                                 struct e1000_tx_ring *tx_ring)
 1989 {
 1990         struct e1000_hw *hw = &adapter->hw;
 1991         struct e1000_buffer *buffer_info;
 1992         unsigned long size;
 1993         unsigned int i;
 1994 
 1995         /* Free all the Tx ring sk_buffs */
 1996 
 1997         for (i = 0; i < tx_ring->count; i++) {
 1998                 buffer_info = &tx_ring->buffer_info[i];
 1999                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 2000         }
 2001 
 2002         size = sizeof(struct e1000_buffer) * tx_ring->count;
 2003         memset(tx_ring->buffer_info, 0, size);
 2004 
 2005         /* Zero out the descriptor ring */
 2006 
 2007         memset(tx_ring->desc, 0, tx_ring->size);
 2008 
 2009         tx_ring->next_to_use = 0;
 2010         tx_ring->next_to_clean = 0;
 2011         tx_ring->last_tx_tso = 0;
 2012 
 2013         writel(0, hw->hw_addr + tx_ring->tdh);
 2014         writel(0, hw->hw_addr + tx_ring->tdt);
 2015 }
 2016 
 2017 /**
 2018  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
 2019  * @adapter: board private structure
 2020  **/
 2021 
 2022 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
 2023 {
 2024         int i;
 2025 
 2026         for (i = 0; i < adapter->num_tx_queues; i++)
 2027                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
 2028 }
 2029 
 2030 /**
 2031  * e1000_free_rx_resources - Free Rx Resources
 2032  * @adapter: board private structure
 2033  * @rx_ring: ring to clean the resources from
 2034  *
 2035  * Free all receive software resources
 2036  **/
 2037 
 2038 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 2039                                     struct e1000_rx_ring *rx_ring)
 2040 {
 2041         struct pci_dev *pdev = adapter->pdev;
 2042 
 2043         e1000_clean_rx_ring(adapter, rx_ring);
 2044 
 2045         vfree(rx_ring->buffer_info);
 2046         rx_ring->buffer_info = NULL;
 2047 
 2048         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 2049                           rx_ring->dma);
 2050 
 2051         rx_ring->desc = NULL;
 2052 }
 2053 
 2054 /**
 2055  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
 2056  * @adapter: board private structure
 2057  *
 2058  * Free all receive software resources
 2059  **/
 2060 
 2061 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
 2062 {
 2063         int i;
 2064 
 2065         for (i = 0; i < adapter->num_rx_queues; i++)
 2066                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
 2067 }
 2068 
 2069 /**
 2070  * e1000_clean_rx_ring - Free Rx Buffers per Queue
 2071  * @adapter: board private structure
 2072  * @rx_ring: ring to free buffers from
 2073  **/
 2074 
 2075 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 2076                                 struct e1000_rx_ring *rx_ring)
 2077 {
 2078         struct e1000_hw *hw = &adapter->hw;
 2079         struct e1000_buffer *buffer_info;
 2080         struct pci_dev *pdev = adapter->pdev;
 2081         unsigned long size;
 2082         unsigned int i;
 2083 
 2084         /* Free all the Rx ring sk_buffs */
 2085         for (i = 0; i < rx_ring->count; i++) {
 2086                 buffer_info = &rx_ring->buffer_info[i];
 2087                 if (buffer_info->dma &&
 2088                     adapter->clean_rx == e1000_clean_rx_irq) {
 2089                         dma_unmap_single(&pdev->dev, buffer_info->dma,
 2090                                          buffer_info->length,
 2091                                          DMA_FROM_DEVICE);
 2092                 } else if (buffer_info->dma &&
 2093                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
 2094                         dma_unmap_page(&pdev->dev, buffer_info->dma,
 2095                                        buffer_info->length,
 2096                                        DMA_FROM_DEVICE);
 2097                 }
 2098 
 2099                 buffer_info->dma = 0;
 2100                 if (buffer_info->page) {
 2101                         put_page(buffer_info->page);
 2102                         buffer_info->page = NULL;
 2103                 }
 2104                 if (buffer_info->skb) {
 2105                         dev_kfree_skb(buffer_info->skb);
 2106                         buffer_info->skb = NULL;
 2107                 }
 2108         }
 2109 
 2110         /* there also may be some cached data from a chained receive */
 2111         if (rx_ring->rx_skb_top) {
 2112                 dev_kfree_skb(rx_ring->rx_skb_top);
 2113                 rx_ring->rx_skb_top = NULL;
 2114         }
 2115 
 2116         size = sizeof(struct e1000_buffer) * rx_ring->count;
 2117         memset(rx_ring->buffer_info, 0, size);
 2118 
 2119         /* Zero out the descriptor ring */
 2120         memset(rx_ring->desc, 0, rx_ring->size);
 2121 
 2122         rx_ring->next_to_clean = 0;
 2123         rx_ring->next_to_use = 0;
 2124 
 2125         writel(0, hw->hw_addr + rx_ring->rdh);
 2126         writel(0, hw->hw_addr + rx_ring->rdt);
 2127 }
 2128 
 2129 /**
 2130  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
 2131  * @adapter: board private structure
 2132  **/
 2133 
 2134 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
 2135 {
 2136         int i;
 2137 
 2138         for (i = 0; i < adapter->num_rx_queues; i++)
 2139                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
 2140 }
 2141 
 2142 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
 2143  * and memory write and invalidate disabled for certain operations
 2144  */
 2145 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
 2146 {
 2147         struct e1000_hw *hw = &adapter->hw;
 2148         struct net_device *netdev = adapter->netdev;
 2149         u32 rctl;
 2150 
 2151         e1000_pci_clear_mwi(hw);
 2152 
 2153         rctl = er32(RCTL);
 2154         rctl |= E1000_RCTL_RST;
 2155         ew32(RCTL, rctl);
 2156         E1000_WRITE_FLUSH();
 2157         mdelay(5);
 2158 
 2159         if (netif_running(netdev))
 2160                 e1000_clean_all_rx_rings(adapter);
 2161 }
 2162 
 2163 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
 2164 {
 2165         struct e1000_hw *hw = &adapter->hw;
 2166         struct net_device *netdev = adapter->netdev;
 2167         u32 rctl;
 2168 
 2169         rctl = er32(RCTL);
 2170         rctl &= ~E1000_RCTL_RST;
 2171         ew32(RCTL, rctl);
 2172         E1000_WRITE_FLUSH();
 2173         mdelay(5);
 2174 
 2175         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 2176                 e1000_pci_set_mwi(hw);
 2177 
 2178         if (netif_running(netdev)) {
 2179                 /* No need to loop, because 82542 supports only 1 queue */
 2180                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
 2181                 e1000_configure_rx(adapter);
 2182                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
 2183         }
 2184 }
 2185 
 2186 /**
 2187  * e1000_set_mac - Change the Ethernet Address of the NIC
 2188  * @netdev: network interface device structure
 2189  * @p: pointer to an address structure
 2190  *
 2191  * Returns 0 on success, negative on failure
 2192  **/
 2193 
 2194 static int e1000_set_mac(struct net_device *netdev, void *p)
 2195 {
 2196         struct e1000_adapter *adapter = netdev_priv(netdev);
 2197         struct e1000_hw *hw = &adapter->hw;
 2198         struct sockaddr *addr = p;
 2199 
 2200         if (!is_valid_ether_addr(addr->sa_data))
 2201                 return -EADDRNOTAVAIL;
 2202 
 2203         /* 82542 2.0 needs to be in reset to write receive address registers */
 2204 
 2205         if (hw->mac_type == e1000_82542_rev2_0)
 2206                 e1000_enter_82542_rst(adapter);
 2207 
 2208         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 2209         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
 2210 
 2211         e1000_rar_set(hw, hw->mac_addr, 0);
 2212 
 2213         if (hw->mac_type == e1000_82542_rev2_0)
 2214                 e1000_leave_82542_rst(adapter);
 2215 
 2216         return 0;
 2217 }
 2218 
 2219 /**
 2220  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 2221  * @netdev: network interface device structure
 2222  *
 2223  * The set_rx_mode entry point is called whenever the unicast or multicast
 2224  * address lists or the network interface flags are updated. This routine is
 2225  * responsible for configuring the hardware for proper unicast, multicast,
 2226  * promiscuous mode, and all-multi behavior.
 2227  **/
 2228 
 2229 static void e1000_set_rx_mode(struct net_device *netdev)
 2230 {
 2231         struct e1000_adapter *adapter = netdev_priv(netdev);
 2232         struct e1000_hw *hw = &adapter->hw;
 2233         struct netdev_hw_addr *ha;
 2234         bool use_uc = false;
 2235         u32 rctl;
 2236         u32 hash_value;
 2237         int i, rar_entries = E1000_RAR_ENTRIES;
 2238         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
 2239         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
 2240 
 2241         if (!mcarray) {
 2242                 e_err(probe, "memory allocation failed\n");
 2243                 return;
 2244         }
 2245 
 2246         /* Check for Promiscuous and All Multicast modes */
 2247 
 2248         rctl = er32(RCTL);
 2249 
 2250         if (netdev->flags & IFF_PROMISC) {
 2251                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
 2252                 rctl &= ~E1000_RCTL_VFE;
 2253         } else {
 2254                 if (netdev->flags & IFF_ALLMULTI)
 2255                         rctl |= E1000_RCTL_MPE;
 2256                 else
 2257                         rctl &= ~E1000_RCTL_MPE;
 2258                 /* Enable VLAN filter if there is a VLAN */
 2259                 if (e1000_vlan_used(adapter))
 2260                         rctl |= E1000_RCTL_VFE;
 2261         }
 2262 
 2263         if (netdev_uc_count(netdev) > rar_entries - 1) {
 2264                 rctl |= E1000_RCTL_UPE;
 2265         } else if (!(netdev->flags & IFF_PROMISC)) {
 2266                 rctl &= ~E1000_RCTL_UPE;
 2267                 use_uc = true;
 2268         }
 2269 
 2270         ew32(RCTL, rctl);
 2271 
 2272         /* 82542 2.0 needs to be in reset to write receive address registers */
 2273 
 2274         if (hw->mac_type == e1000_82542_rev2_0)
 2275                 e1000_enter_82542_rst(adapter);
 2276 
 2277         /* load the first 14 addresses into the exact filters 1-14. Unicast
 2278          * addresses take precedence to avoid disabling unicast filtering
 2279          * when possible.
 2280          *
 2281          * RAR 0 is used for the station MAC address
 2282          * if there are not 14 addresses, go ahead and clear the filters
 2283          */
 2284         i = 1;
 2285         if (use_uc)
 2286                 netdev_for_each_uc_addr(ha, netdev) {
 2287                         if (i == rar_entries)
 2288                                 break;
 2289                         e1000_rar_set(hw, ha->addr, i++);
 2290                 }
 2291 
 2292         netdev_for_each_mc_addr(ha, netdev) {
 2293                 if (i == rar_entries) {
 2294                         /* load any remaining addresses into the hash table */
 2295                         u32 hash_reg, hash_bit, mta;
 2296                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
 2297                         hash_reg = (hash_value >> 5) & 0x7F;
 2298                         hash_bit = hash_value & 0x1F;
 2299                         mta = (1 << hash_bit);
 2300                         mcarray[hash_reg] |= mta;
 2301                 } else {
 2302                         e1000_rar_set(hw, ha->addr, i++);
 2303                 }
 2304         }
 2305 
 2306         for (; i < rar_entries; i++) {
 2307                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
 2308                 E1000_WRITE_FLUSH();
 2309                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
 2310                 E1000_WRITE_FLUSH();
 2311         }
 2312 
 2313         /* write the hash table completely, write from bottom to avoid
 2314          * both stupid write combining chipsets, and flushing each write */
 2315         for (i = mta_reg_count - 1; i >= 0 ; i--) {
 2316                 /*
 2317                  * If we are on an 82544 has an errata where writing odd
 2318                  * offsets overwrites the previous even offset, but writing
 2319                  * backwards over the range solves the issue by always
 2320                  * writing the odd offset first
 2321                  */
 2322                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
 2323         }
 2324         E1000_WRITE_FLUSH();
 2325 
 2326         if (hw->mac_type == e1000_82542_rev2_0)
 2327                 e1000_leave_82542_rst(adapter);
 2328 
 2329         kfree(mcarray);
 2330 }
 2331 
 2332 /* Need to wait a few seconds after link up to get diagnostic information from
 2333  * the phy */
 2334 
 2335 static void e1000_update_phy_info(unsigned long data)
 2336 {
 2337         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
 2338         schedule_work(&adapter->phy_info_task);
 2339 }
 2340 
 2341 static void e1000_update_phy_info_task(struct work_struct *work)
 2342 {
 2343         struct e1000_adapter *adapter = container_of(work,
 2344                                                      struct e1000_adapter,
 2345                                                      phy_info_task);
 2346         struct e1000_hw *hw = &adapter->hw;
 2347 
 2348         rtnl_lock();
 2349         e1000_phy_get_info(hw, &adapter->phy_info);
 2350         rtnl_unlock();
 2351 }
 2352 
 2353 /**
 2354  * e1000_82547_tx_fifo_stall - Timer Call-back
 2355  * @data: pointer to adapter cast into an unsigned long
 2356  **/
 2357 static void e1000_82547_tx_fifo_stall(unsigned long data)
 2358 {
 2359         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
 2360         schedule_work(&adapter->fifo_stall_task);
 2361 }
 2362 
 2363 /**
 2364  * e1000_82547_tx_fifo_stall_task - task to complete work
 2365  * @work: work struct contained inside adapter struct
 2366  **/
 2367 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
 2368 {
 2369         struct e1000_adapter *adapter = container_of(work,
 2370                                                      struct e1000_adapter,
 2371                                                      fifo_stall_task);
 2372         struct e1000_hw *hw = &adapter->hw;
 2373         struct net_device *netdev = adapter->netdev;
 2374         u32 tctl;
 2375 
 2376         rtnl_lock();
 2377         if (atomic_read(&adapter->tx_fifo_stall)) {
 2378                 if ((er32(TDT) == er32(TDH)) &&
 2379                    (er32(TDFT) == er32(TDFH)) &&
 2380                    (er32(TDFTS) == er32(TDFHS))) {
 2381                         tctl = er32(TCTL);
 2382                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
 2383                         ew32(TDFT, adapter->tx_head_addr);
 2384                         ew32(TDFH, adapter->tx_head_addr);
 2385                         ew32(TDFTS, adapter->tx_head_addr);
 2386                         ew32(TDFHS, adapter->tx_head_addr);
 2387                         ew32(TCTL, tctl);
 2388                         E1000_WRITE_FLUSH();
 2389 
 2390                         adapter->tx_fifo_head = 0;
 2391                         atomic_set(&adapter->tx_fifo_stall, 0);
 2392                         netif_wake_queue(netdev);
 2393                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 2394                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
 2395                 }
 2396         }
 2397         rtnl_unlock();
 2398 }
 2399 
 2400 bool e1000_has_link(struct e1000_adapter *adapter)
 2401 {
 2402         struct e1000_hw *hw = &adapter->hw;
 2403         bool link_active = false;
 2404 
 2405         /* get_link_status is set on LSC (link status) interrupt or rx
 2406          * sequence error interrupt (except on intel ce4100).
 2407          * get_link_status will stay false until the
 2408          * e1000_check_for_link establishes link for copper adapters
 2409          * ONLY
 2410          */
 2411         switch (hw->media_type) {
 2412         case e1000_media_type_copper:
 2413                 if (hw->mac_type == e1000_ce4100)
 2414                         hw->get_link_status = 1;
 2415                 if (hw->get_link_status) {
 2416                         e1000_check_for_link(hw);
 2417                         link_active = !hw->get_link_status;
 2418                 } else {
 2419                         link_active = true;
 2420                 }
 2421                 break;
 2422         case e1000_media_type_fiber:
 2423                 e1000_check_for_link(hw);
 2424                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
 2425                 break;
 2426         case e1000_media_type_internal_serdes:
 2427                 e1000_check_for_link(hw);
 2428                 link_active = hw->serdes_has_link;
 2429                 break;
 2430         default:
 2431                 break;
 2432         }
 2433 
 2434         return link_active;
 2435 }
 2436 
 2437 /**
 2438  * e1000_watchdog - Timer Call-back
 2439  * @data: pointer to adapter cast into an unsigned long
 2440  **/
 2441 static void e1000_watchdog(unsigned long data)
 2442 {
 2443         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
 2444         struct e1000_hw *hw = &adapter->hw;
 2445         struct net_device *netdev = adapter->netdev;
 2446         struct e1000_tx_ring *txdr = adapter->tx_ring;
 2447         u32 link, tctl;
 2448 
 2449         link = e1000_has_link(adapter);
 2450         if ((netif_carrier_ok(netdev)) && link)
 2451                 goto link_up;
 2452 
 2453         if (link) {
 2454                 if (!netif_carrier_ok(netdev)) {
 2455                         u32 ctrl;
 2456                         bool txb2b = true;
 2457                         /* update snapshot of PHY registers on LSC */
 2458                         e1000_get_speed_and_duplex(hw,
 2459                                                    &adapter->link_speed,
 2460                                                    &adapter->link_duplex);
 2461 
 2462                         ctrl = er32(CTRL);
 2463                         pr_info("%s NIC Link is Up %d Mbps %s, "
 2464                                 "Flow Control: %s\n",
 2465                                 netdev->name,
 2466                                 adapter->link_speed,
 2467                                 adapter->link_duplex == FULL_DUPLEX ?
 2468                                 "Full Duplex" : "Half Duplex",
 2469                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
 2470                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
 2471                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
 2472                                 E1000_CTRL_TFCE) ? "TX" : "None")));
 2473 
 2474                         /* adjust timeout factor according to speed/duplex */
 2475                         adapter->tx_timeout_factor = 1;
 2476                         switch (adapter->link_speed) {
 2477                         case SPEED_10:
 2478                                 txb2b = false;
 2479                                 adapter->tx_timeout_factor = 16;
 2480                                 break;
 2481                         case SPEED_100:
 2482                                 txb2b = false;
 2483                                 /* maybe add some timeout factor ? */
 2484                                 break;
 2485                         }
 2486 
 2487                         /* enable transmits in the hardware */
 2488                         tctl = er32(TCTL);
 2489                         tctl |= E1000_TCTL_EN;
 2490                         ew32(TCTL, tctl);
 2491 
 2492                         netif_carrier_on(netdev);
 2493                         if (!test_bit(__E1000_DOWN, &adapter->flags))
 2494                                 mod_timer(&adapter->phy_info_timer,
 2495                                           round_jiffies(jiffies + 2 * HZ));
 2496                         adapter->smartspeed = 0;
 2497                 }
 2498         } else {
 2499                 if (netif_carrier_ok(netdev)) {
 2500                         adapter->link_speed = 0;
 2501                         adapter->link_duplex = 0;
 2502                         pr_info("%s NIC Link is Down\n",
 2503                                 netdev->name);
 2504                         netif_carrier_off(netdev);
 2505 
 2506                         if (!test_bit(__E1000_DOWN, &adapter->flags))
 2507                                 mod_timer(&adapter->phy_info_timer,
 2508                                           round_jiffies(jiffies + 2 * HZ));
 2509                 }
 2510 
 2511                 e1000_smartspeed(adapter);
 2512         }
 2513 
 2514 link_up:
 2515         e1000_update_stats(adapter);
 2516 
 2517         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
 2518         adapter->tpt_old = adapter->stats.tpt;
 2519         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
 2520         adapter->colc_old = adapter->stats.colc;
 2521 
 2522         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
 2523         adapter->gorcl_old = adapter->stats.gorcl;
 2524         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
 2525         adapter->gotcl_old = adapter->stats.gotcl;
 2526 
 2527         e1000_update_adaptive(hw);
 2528 
 2529         if (!netif_carrier_ok(netdev)) {
 2530                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
 2531                         /* We've lost link, so the controller stops DMA,
 2532                          * but we've got queued Tx work that's never going
 2533                          * to get done, so reset controller to flush Tx.
 2534                          * (Do the reset outside of interrupt context). */
 2535                         adapter->tx_timeout_count++;
 2536                         schedule_work(&adapter->reset_task);
 2537                         /* return immediately since reset is imminent */
 2538                         return;
 2539                 }
 2540         }
 2541 
 2542         /* Simple mode for Interrupt Throttle Rate (ITR) */
 2543         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
 2544                 /*
 2545                  * Symmetric Tx/Rx gets a reduced ITR=2000;
 2546                  * Total asymmetrical Tx or Rx gets ITR=8000;
 2547                  * everyone else is between 2000-8000.
 2548                  */
 2549                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
 2550                 u32 dif = (adapter->gotcl > adapter->gorcl ?
 2551                             adapter->gotcl - adapter->gorcl :
 2552                             adapter->gorcl - adapter->gotcl) / 10000;
 2553                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
 2554 
 2555                 ew32(ITR, 1000000000 / (itr * 256));
 2556         }
 2557 
 2558         /* Cause software interrupt to ensure rx ring is cleaned */
 2559         ew32(ICS, E1000_ICS_RXDMT0);
 2560 
 2561         /* Force detection of hung controller every watchdog period */
 2562         adapter->detect_tx_hung = true;
 2563 
 2564         /* Reset the timer */
 2565         if (!test_bit(__E1000_DOWN, &adapter->flags))
 2566                 mod_timer(&adapter->watchdog_timer,
 2567                           round_jiffies(jiffies + 2 * HZ));
 2568 }
 2569 
 2570 enum latency_range {
 2571         lowest_latency = 0,
 2572         low_latency = 1,
 2573         bulk_latency = 2,
 2574         latency_invalid = 255
 2575 };
 2576 
 2577 /**
 2578  * e1000_update_itr - update the dynamic ITR value based on statistics
 2579  * @adapter: pointer to adapter
 2580  * @itr_setting: current adapter->itr
 2581  * @packets: the number of packets during this measurement interval
 2582  * @bytes: the number of bytes during this measurement interval
 2583  *
 2584  *      Stores a new ITR value based on packets and byte
 2585  *      counts during the last interrupt.  The advantage of per interrupt
 2586  *      computation is faster updates and more accurate ITR for the current
 2587  *      traffic pattern.  Constants in this function were computed
 2588  *      based on theoretical maximum wire speed and thresholds were set based
 2589  *      on testing data as well as attempting to minimize response time
 2590  *      while increasing bulk throughput.
 2591  *      this functionality is controlled by the InterruptThrottleRate module
 2592  *      parameter (see e1000_param.c)
 2593  **/
 2594 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
 2595                                      u16 itr_setting, int packets, int bytes)
 2596 {
 2597         unsigned int retval = itr_setting;
 2598         struct e1000_hw *hw = &adapter->hw;
 2599 
 2600         if (unlikely(hw->mac_type < e1000_82540))
 2601                 goto update_itr_done;
 2602 
 2603         if (packets == 0)
 2604                 goto update_itr_done;
 2605 
 2606         switch (itr_setting) {
 2607         case lowest_latency:
 2608                 /* jumbo frames get bulk treatment*/
 2609                 if (bytes/packets > 8000)
 2610                         retval = bulk_latency;
 2611                 else if ((packets < 5) && (bytes > 512))
 2612                         retval = low_latency;
 2613                 break;
 2614         case low_latency:  /* 50 usec aka 20000 ints/s */
 2615                 if (bytes > 10000) {
 2616                         /* jumbo frames need bulk latency setting */
 2617                         if (bytes/packets > 8000)
 2618                                 retval = bulk_latency;
 2619                         else if ((packets < 10) || ((bytes/packets) > 1200))
 2620                                 retval = bulk_latency;
 2621                         else if ((packets > 35))
 2622                                 retval = lowest_latency;
 2623                 } else if (bytes/packets > 2000)
 2624                         retval = bulk_latency;
 2625                 else if (packets <= 2 && bytes < 512)
 2626                         retval = lowest_latency;
 2627                 break;
 2628         case bulk_latency: /* 250 usec aka 4000 ints/s */
 2629                 if (bytes > 25000) {
 2630                         if (packets > 35)
 2631                                 retval = low_latency;
 2632                 } else if (bytes < 6000) {
 2633                         retval = low_latency;
 2634                 }
 2635                 break;
 2636         }
 2637 
 2638 update_itr_done:
 2639         return retval;
 2640 }
 2641 
 2642 static void e1000_set_itr(struct e1000_adapter *adapter)
 2643 {
 2644         struct e1000_hw *hw = &adapter->hw;
 2645         u16 current_itr;
 2646         u32 new_itr = adapter->itr;
 2647 
 2648         if (unlikely(hw->mac_type < e1000_82540))
 2649                 return;
 2650 
 2651         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
 2652         if (unlikely(adapter->link_speed != SPEED_1000)) {
 2653                 current_itr = 0;
 2654                 new_itr = 4000;
 2655                 goto set_itr_now;
 2656         }
 2657 
 2658         adapter->tx_itr = e1000_update_itr(adapter,
 2659                                     adapter->tx_itr,
 2660                                     adapter->total_tx_packets,
 2661                                     adapter->total_tx_bytes);
 2662         /* conservative mode (itr 3) eliminates the lowest_latency setting */
 2663         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
 2664                 adapter->tx_itr = low_latency;
 2665 
 2666         adapter->rx_itr = e1000_update_itr(adapter,
 2667                                     adapter->rx_itr,
 2668                                     adapter->total_rx_packets,
 2669                                     adapter->total_rx_bytes);
 2670         /* conservative mode (itr 3) eliminates the lowest_latency setting */
 2671         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
 2672                 adapter->rx_itr = low_latency;
 2673 
 2674         current_itr = max(adapter->rx_itr, adapter->tx_itr);
 2675 
 2676         switch (current_itr) {
 2677         /* counts and packets in update_itr are dependent on these numbers */
 2678         case lowest_latency:
 2679                 new_itr = 70000;
 2680                 break;
 2681         case low_latency:
 2682                 new_itr = 20000; /* aka hwitr = ~200 */
 2683                 break;
 2684         case bulk_latency:
 2685                 new_itr = 4000;
 2686                 break;
 2687         default:
 2688                 break;
 2689         }
 2690 
 2691 set_itr_now:
 2692         if (new_itr != adapter->itr) {
 2693                 /* this attempts to bias the interrupt rate towards Bulk
 2694                  * by adding intermediate steps when interrupt rate is
 2695                  * increasing */
 2696                 new_itr = new_itr > adapter->itr ?
 2697                              min(adapter->itr + (new_itr >> 2), new_itr) :
 2698                              new_itr;
 2699                 adapter->itr = new_itr;
 2700                 ew32(ITR, 1000000000 / (new_itr * 256));
 2701         }
 2702 }
 2703 
 2704 #define E1000_TX_FLAGS_CSUM             0x00000001
 2705 #define E1000_TX_FLAGS_VLAN             0x00000002
 2706 #define E1000_TX_FLAGS_TSO              0x00000004
 2707 #define E1000_TX_FLAGS_IPV4             0x00000008
 2708 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
 2709 #define E1000_TX_FLAGS_VLAN_SHIFT       16
 2710 
 2711 static int e1000_tso(struct e1000_adapter *adapter,
 2712                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
 2713 {
 2714         struct e1000_context_desc *context_desc;
 2715         struct e1000_buffer *buffer_info;
 2716         unsigned int i;
 2717         u32 cmd_length = 0;
 2718         u16 ipcse = 0, tucse, mss;
 2719         u8 ipcss, ipcso, tucss, tucso, hdr_len;
 2720         int err;
 2721 
 2722         if (skb_is_gso(skb)) {
 2723                 if (skb_header_cloned(skb)) {
 2724                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
 2725                         if (err)
 2726                                 return err;
 2727                 }
 2728 
 2729                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 2730                 mss = skb_shinfo(skb)->gso_size;
 2731                 if (skb->protocol == htons(ETH_P_IP)) {
 2732                         struct iphdr *iph = ip_hdr(skb);
 2733                         iph->tot_len = 0;
 2734                         iph->check = 0;
 2735                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
 2736                                                                  iph->daddr, 0,
 2737                                                                  IPPROTO_TCP,
 2738                                                                  0);
 2739                         cmd_length = E1000_TXD_CMD_IP;
 2740                         ipcse = skb_transport_offset(skb) - 1;
 2741                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
 2742                         ipv6_hdr(skb)->payload_len = 0;
 2743                         tcp_hdr(skb)->check =
 2744                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 2745                                                  &ipv6_hdr(skb)->daddr,
 2746                                                  0, IPPROTO_TCP, 0);
 2747                         ipcse = 0;
 2748                 }
 2749                 ipcss = skb_network_offset(skb);
 2750                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
 2751                 tucss = skb_transport_offset(skb);
 2752                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
 2753                 tucse = 0;
 2754 
 2755                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
 2756                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
 2757 
 2758                 i = tx_ring->next_to_use;
 2759                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
 2760                 buffer_info = &tx_ring->buffer_info[i];
 2761 
 2762                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
 2763                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
 2764                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
 2765                 context_desc->upper_setup.tcp_fields.tucss = tucss;
 2766                 context_desc->upper_setup.tcp_fields.tucso = tucso;
 2767                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
 2768                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
 2769                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
 2770                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
 2771 
 2772                 buffer_info->time_stamp = jiffies;
 2773                 buffer_info->next_to_watch = i;
 2774 
 2775                 if (++i == tx_ring->count) i = 0;
 2776                 tx_ring->next_to_use = i;
 2777 
 2778                 return true;
 2779         }
 2780         return false;
 2781 }
 2782 
 2783 static bool e1000_tx_csum(struct e1000_adapter *adapter,
 2784                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
 2785 {
 2786         struct e1000_context_desc *context_desc;
 2787         struct e1000_buffer *buffer_info;
 2788         unsigned int i;
 2789         u8 css;
 2790         u32 cmd_len = E1000_TXD_CMD_DEXT;
 2791 
 2792         if (skb->ip_summed != CHECKSUM_PARTIAL)
 2793                 return false;
 2794 
 2795         switch (skb->protocol) {
 2796         case cpu_to_be16(ETH_P_IP):
 2797                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 2798                         cmd_len |= E1000_TXD_CMD_TCP;
 2799                 break;
 2800         case cpu_to_be16(ETH_P_IPV6):
 2801                 /* XXX not handling all IPV6 headers */
 2802                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 2803                         cmd_len |= E1000_TXD_CMD_TCP;
 2804                 break;
 2805         default:
 2806                 if (unlikely(net_ratelimit()))
 2807                         e_warn(drv, "checksum_partial proto=%x!\n",
 2808                                skb->protocol);
 2809                 break;
 2810         }
 2811 
 2812         css = skb_checksum_start_offset(skb);
 2813 
 2814         i = tx_ring->next_to_use;
 2815         buffer_info = &tx_ring->buffer_info[i];
 2816         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
 2817 
 2818         context_desc->lower_setup.ip_config = 0;
 2819         context_desc->upper_setup.tcp_fields.tucss = css;
 2820         context_desc->upper_setup.tcp_fields.tucso =
 2821                 css + skb->csum_offset;
 2822         context_desc->upper_setup.tcp_fields.tucse = 0;
 2823         context_desc->tcp_seg_setup.data = 0;
 2824         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
 2825 
 2826         buffer_info->time_stamp = jiffies;
 2827         buffer_info->next_to_watch = i;
 2828 
 2829         if (unlikely(++i == tx_ring->count)) i = 0;
 2830         tx_ring->next_to_use = i;
 2831 
 2832         return true;
 2833 }
 2834 
 2835 #define E1000_MAX_TXD_PWR       12
 2836 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
 2837 
 2838 static int e1000_tx_map(struct e1000_adapter *adapter,
 2839                         struct e1000_tx_ring *tx_ring,
 2840                         struct sk_buff *skb, unsigned int first,
 2841                         unsigned int max_per_txd, unsigned int nr_frags,
 2842                         unsigned int mss)
 2843 {
 2844         struct e1000_hw *hw = &adapter->hw;
 2845         struct pci_dev *pdev = adapter->pdev;
 2846         struct e1000_buffer *buffer_info;
 2847         unsigned int len = skb_headlen(skb);
 2848         unsigned int offset = 0, size, count = 0, i;
 2849         unsigned int f;
 2850 
 2851         i = tx_ring->next_to_use;
 2852 
 2853         while (len) {
 2854                 buffer_info = &tx_ring->buffer_info[i];
 2855                 size = min(len, max_per_txd);
 2856                 /* Workaround for Controller erratum --
 2857                  * descriptor for non-tso packet in a linear SKB that follows a
 2858                  * tso gets written back prematurely before the data is fully
 2859                  * DMA'd to the controller */
 2860                 if (!skb->data_len && tx_ring->last_tx_tso &&
 2861                     !skb_is_gso(skb)) {
 2862                         tx_ring->last_tx_tso = 0;
 2863                         size -= 4;
 2864                 }
 2865 
 2866                 /* Workaround for premature desc write-backs
 2867                  * in TSO mode.  Append 4-byte sentinel desc */
 2868                 if (unlikely(mss && !nr_frags && size == len && size > 8))
 2869                         size -= 4;
 2870                 /* work-around for errata 10 and it applies
 2871                  * to all controllers in PCI-X mode
 2872                  * The fix is to make sure that the first descriptor of a
 2873                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
 2874                  */
 2875                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
 2876                                 (size > 2015) && count == 0))
 2877                         size = 2015;
 2878 
 2879                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
 2880                  * terminating buffers within evenly-aligned dwords. */
 2881                 if (unlikely(adapter->pcix_82544 &&
 2882                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
 2883                    size > 4))
 2884                         size -= 4;
 2885 
 2886                 buffer_info->length = size;
 2887                 /* set time_stamp *before* dma to help avoid a possible race */
 2888                 buffer_info->time_stamp = jiffies;
 2889                 buffer_info->mapped_as_page = false;
 2890                 buffer_info->dma = dma_map_single(&pdev->dev,
 2891                                                   skb->data + offset,
 2892                                                   size, DMA_TO_DEVICE);
 2893                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
 2894                         goto dma_error;
 2895                 buffer_info->next_to_watch = i;
 2896 
 2897                 len -= size;
 2898                 offset += size;
 2899                 count++;
 2900                 if (len) {
 2901                         i++;
 2902                         if (unlikely(i == tx_ring->count))
 2903                                 i = 0;
 2904                 }
 2905         }
 2906 
 2907         for (f = 0; f < nr_frags; f++) {
 2908                 struct skb_frag_struct *frag;
 2909 
 2910                 frag = &skb_shinfo(skb)->frags[f];
 2911                 len = frag->size;
 2912                 offset = frag->page_offset;
 2913 
 2914                 while (len) {
 2915                         i++;
 2916                         if (unlikely(i == tx_ring->count))
 2917                                 i = 0;
 2918 
 2919                         buffer_info = &tx_ring->buffer_info[i];
 2920                         size = min(len, max_per_txd);
 2921                         /* Workaround for premature desc write-backs
 2922                          * in TSO mode.  Append 4-byte sentinel desc */
 2923                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
 2924                                 size -= 4;
 2925                         /* Workaround for potential 82544 hang in PCI-X.
 2926                          * Avoid terminating buffers within evenly-aligned
 2927                          * dwords. */
 2928                         if (unlikely(adapter->pcix_82544 &&
 2929                             !((unsigned long)(page_to_phys(frag->page) + offset
 2930                                               + size - 1) & 4) &&
 2931                             size > 4))
 2932                                 size -= 4;
 2933 
 2934                         buffer_info->length = size;
 2935                         buffer_info->time_stamp = jiffies;
 2936                         buffer_info->mapped_as_page = true;
 2937                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
 2938                                                         offset, size,
 2939                                                         DMA_TO_DEVICE);
 2940                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
 2941                                 goto dma_error;
 2942                         buffer_info->next_to_watch = i;
 2943 
 2944                         len -= size;
 2945                         offset += size;
 2946                         count++;
 2947                 }
 2948         }
 2949 
 2950         tx_ring->buffer_info[i].skb = skb;
 2951         tx_ring->buffer_info[first].next_to_watch = i;
 2952 
 2953         return count;
 2954 
 2955 dma_error:
 2956         dev_err(&pdev->dev, "TX DMA map failed\n");
 2957         buffer_info->dma = 0;
 2958         if (count)
 2959                 count--;
 2960 
 2961         while (count--) {
 2962                 if (i==0)
 2963                         i += tx_ring->count;
 2964                 i--;
 2965                 buffer_info = &tx_ring->buffer_info[i];
 2966                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 2967         }
 2968 
 2969         return 0;
 2970 }
 2971 
 2972 static void e1000_tx_queue(struct e1000_adapter *adapter,
 2973                            struct e1000_tx_ring *tx_ring, int tx_flags,
 2974                            int count)
 2975 {
 2976         struct e1000_hw *hw = &adapter->hw;
 2977         struct e1000_tx_desc *tx_desc = NULL;
 2978         struct e1000_buffer *buffer_info;
 2979         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
 2980         unsigned int i;
 2981 
 2982         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
 2983                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
 2984                              E1000_TXD_CMD_TSE;
 2985                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
 2986 
 2987                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
 2988                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
 2989         }
 2990 
 2991         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
 2992                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
 2993                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
 2994         }
 2995 
 2996         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
 2997                 txd_lower |= E1000_TXD_CMD_VLE;
 2998                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
 2999         }
 3000 
 3001         i = tx_ring->next_to_use;
 3002 
 3003         while (count--) {
 3004                 buffer_info = &tx_ring->buffer_info[i];
 3005                 tx_desc = E1000_TX_DESC(*tx_ring, i);
 3006                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
 3007                 tx_desc->lower.data =
 3008                         cpu_to_le32(txd_lower | buffer_info->length);
 3009                 tx_desc->upper.data = cpu_to_le32(txd_upper);
 3010                 if (unlikely(++i == tx_ring->count)) i = 0;
 3011         }
 3012 
 3013         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
 3014 
 3015         /* Force memory writes to complete before letting h/w
 3016          * know there are new descriptors to fetch.  (Only
 3017          * applicable for weak-ordered memory model archs,
 3018          * such as IA-64). */
 3019         wmb();
 3020 
 3021         tx_ring->next_to_use = i;
 3022         writel(i, hw->hw_addr + tx_ring->tdt);
 3023         /* we need this if more than one processor can write to our tail
 3024          * at a time, it syncronizes IO on IA64/Altix systems */
 3025         mmiowb();
 3026 }
 3027 
 3028 /**
 3029  * 82547 workaround to avoid controller hang in half-duplex environment.
 3030  * The workaround is to avoid queuing a large packet that would span
 3031  * the internal Tx FIFO ring boundary by notifying the stack to resend
 3032  * the packet at a later time.  This gives the Tx FIFO an opportunity to
 3033  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
 3034  * to the beginning of the Tx FIFO.
 3035  **/
 3036 
 3037 #define E1000_FIFO_HDR                  0x10
 3038 #define E1000_82547_PAD_LEN             0x3E0
 3039 
 3040 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 3041                                        struct sk_buff *skb)
 3042 {
 3043         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
 3044         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
 3045 
 3046         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
 3047 
 3048         if (adapter->link_duplex != HALF_DUPLEX)
 3049                 goto no_fifo_stall_required;
 3050 
 3051         if (atomic_read(&adapter->tx_fifo_stall))
 3052                 return 1;
 3053 
 3054         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
 3055                 atomic_set(&adapter->tx_fifo_stall, 1);
 3056                 return 1;
 3057         }
 3058 
 3059 no_fifo_stall_required:
 3060         adapter->tx_fifo_head += skb_fifo_len;
 3061         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
 3062                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
 3063         return 0;
 3064 }
 3065 
 3066 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
 3067 {
 3068         struct e1000_adapter *adapter = netdev_priv(netdev);
 3069         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
 3070 
 3071         netif_stop_queue(netdev);
 3072         /* Herbert's original patch had:
 3073          *  smp_mb__after_netif_stop_queue();
 3074          * but since that doesn't exist yet, just open code it. */
 3075         smp_mb();
 3076 
 3077         /* We need to check again in a case another CPU has just
 3078          * made room available. */
 3079         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
 3080                 return -EBUSY;
 3081 
 3082         /* A reprieve! */
 3083         netif_start_queue(netdev);
 3084         ++adapter->restart_queue;
 3085         return 0;
 3086 }
 3087 
 3088 static int e1000_maybe_stop_tx(struct net_device *netdev,
 3089                                struct e1000_tx_ring *tx_ring, int size)
 3090 {
 3091         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
 3092                 return 0;
 3093         return __e1000_maybe_stop_tx(netdev, size);
 3094 }
 3095 
 3096 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
 3097 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 3098                                     struct net_device *netdev)
 3099 {
 3100         struct e1000_adapter *adapter = netdev_priv(netdev);
 3101         struct e1000_hw *hw = &adapter->hw;
 3102         struct e1000_tx_ring *tx_ring;
 3103         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
 3104         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
 3105         unsigned int tx_flags = 0;
 3106         unsigned int len = skb_headlen(skb);
 3107         unsigned int nr_frags;
 3108         unsigned int mss;
 3109         int count = 0;
 3110         int tso;
 3111         unsigned int f;
 3112 
 3113         /* This goes back to the question of how to logically map a tx queue
 3114          * to a flow.  Right now, performance is impacted slightly negatively
 3115          * if using multiple tx queues.  If the stack breaks away from a
 3116          * single qdisc implementation, we can look at this again. */
 3117         tx_ring = adapter->tx_ring;
 3118 
 3119         if (unlikely(skb->len <= 0)) {
 3120                 dev_kfree_skb_any(skb);
 3121                 return NETDEV_TX_OK;
 3122         }
 3123 
 3124         mss = skb_shinfo(skb)->gso_size;
 3125         /* The controller does a simple calculation to
 3126          * make sure there is enough room in the FIFO before
 3127          * initiating the DMA for each buffer.  The calc is:
 3128          * 4 = ceil(buffer len/mss).  To make sure we don't
 3129          * overrun the FIFO, adjust the max buffer len if mss
 3130          * drops. */
 3131         if (mss) {
 3132                 u8 hdr_len;
 3133                 max_per_txd = min(mss << 2, max_per_txd);
 3134                 max_txd_pwr = fls(max_per_txd) - 1;
 3135 
 3136                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 3137                 if (skb->data_len && hdr_len == len) {
 3138                         switch (hw->mac_type) {
 3139                                 unsigned int pull_size;
 3140                         case e1000_82544:
 3141                                 /* Make sure we have room to chop off 4 bytes,
 3142                                  * and that the end alignment will work out to
 3143                                  * this hardware's requirements
 3144                                  * NOTE: this is a TSO only workaround
 3145                                  * if end byte alignment not correct move us
 3146                                  * into the next dword */
 3147                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
 3148                                         break;
 3149                                 /* fall through */
 3150                                 pull_size = min((unsigned int)4, skb->data_len);
 3151                                 if (!__pskb_pull_tail(skb, pull_size)) {
 3152                                         e_err(drv, "__pskb_pull_tail "
 3153                                               "failed.\n");
 3154                                         dev_kfree_skb_any(skb);
 3155                                         return NETDEV_TX_OK;
 3156                                 }
 3157                                 len = skb_headlen(skb);
 3158                                 break;
 3159                         default:
 3160                                 /* do nothing */
 3161                                 break;
 3162                         }
 3163                 }
 3164         }
 3165 
 3166         /* reserve a descriptor for the offload context */
 3167         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
 3168                 count++;
 3169         count++;
 3170 
 3171         /* Controller Erratum workaround */
 3172         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
 3173                 count++;
 3174 
 3175         count += TXD_USE_COUNT(len, max_txd_pwr);
 3176 
 3177         if (adapter->pcix_82544)
 3178                 count++;
 3179 
 3180         /* work-around for errata 10 and it applies to all controllers
 3181          * in PCI-X mode, so add one more descriptor to the count
 3182          */
 3183         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
 3184                         (len > 2015)))
 3185                 count++;
 3186 
 3187         nr_frags = skb_shinfo(skb)->nr_frags;
 3188         for (f = 0; f < nr_frags; f++)
 3189                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
 3190                                        max_txd_pwr);
 3191         if (adapter->pcix_82544)
 3192                 count += nr_frags;
 3193 
 3194         /* need: count + 2 desc gap to keep tail from touching
 3195          * head, otherwise try next time */
 3196         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
 3197                 return NETDEV_TX_BUSY;
 3198 
 3199         if (unlikely(hw->mac_type == e1000_82547)) {
 3200                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
 3201                         netif_stop_queue(netdev);
 3202                         if (!test_bit(__E1000_DOWN, &adapter->flags))
 3203                                 mod_timer(&adapter->tx_fifo_stall_timer,
 3204                                           jiffies + 1);
 3205                         return NETDEV_TX_BUSY;
 3206                 }
 3207         }
 3208 
 3209         if (vlan_tx_tag_present(skb)) {
 3210                 tx_flags |= E1000_TX_FLAGS_VLAN;
 3211                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 3212         }
 3213 
 3214         first = tx_ring->next_to_use;
 3215 
 3216         tso = e1000_tso(adapter, tx_ring, skb);
 3217         if (tso < 0) {
 3218                 dev_kfree_skb_any(skb);
 3219                 return NETDEV_TX_OK;
 3220         }
 3221 
 3222         if (likely(tso)) {
 3223                 if (likely(hw->mac_type != e1000_82544))
 3224                         tx_ring->last_tx_tso = 1;
 3225                 tx_flags |= E1000_TX_FLAGS_TSO;
 3226         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
 3227                 tx_flags |= E1000_TX_FLAGS_CSUM;
 3228 
 3229         if (likely(skb->protocol == htons(ETH_P_IP)))
 3230                 tx_flags |= E1000_TX_FLAGS_IPV4;
 3231 
 3232         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
 3233                              nr_frags, mss);
 3234 
 3235         if (count) {
 3236                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
 3237                 /* Make sure there is space in the ring for the next send. */
 3238                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
 3239 
 3240         } else {
 3241                 dev_kfree_skb_any(skb);
 3242                 tx_ring->buffer_info[first].time_stamp = 0;
 3243                 tx_ring->next_to_use = first;
 3244         }
 3245 
 3246         return NETDEV_TX_OK;
 3247 }
 3248 
 3249 /**
 3250  * e1000_tx_timeout - Respond to a Tx Hang
 3251  * @netdev: network interface device structure
 3252  **/
 3253 
 3254 static void e1000_tx_timeout(struct net_device *netdev)
 3255 {
 3256         struct e1000_adapter *adapter = netdev_priv(netdev);
 3257 
 3258         /* Do the reset outside of interrupt context */
 3259         adapter->tx_timeout_count++;
 3260         schedule_work(&adapter->reset_task);
 3261 }
 3262 
 3263 static void e1000_reset_task(struct work_struct *work)
 3264 {
 3265         struct e1000_adapter *adapter =
 3266                 container_of(work, struct e1000_adapter, reset_task);
 3267 
 3268         e1000_reinit_safe(adapter);
 3269 }
 3270 
 3271 /**
 3272  * e1000_get_stats - Get System Network Statistics
 3273  * @netdev: network interface device structure
 3274  *
 3275  * Returns the address of the device statistics structure.
 3276  * The statistics are actually updated from the timer callback.
 3277  **/
 3278 
 3279 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
 3280 {
 3281         /* only return the current stats */
 3282         return &netdev->stats;
 3283 }
 3284 
 3285 /**
 3286  * e1000_change_mtu - Change the Maximum Transfer Unit
 3287  * @netdev: network interface device structure
 3288  * @new_mtu: new value for maximum frame size
 3289  *
 3290  * Returns 0 on success, negative on failure
 3291  **/
 3292 
 3293 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
 3294 {
 3295         struct e1000_adapter *adapter = netdev_priv(netdev);
 3296         struct e1000_hw *hw = &adapter->hw;
 3297         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 3298 
 3299         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
 3300             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
 3301                 e_err(probe, "Invalid MTU setting\n");
 3302                 return -EINVAL;
 3303         }
 3304 
 3305         /* Adapter-specific max frame size limits. */
 3306         switch (hw->mac_type) {
 3307         case e1000_undefined ... e1000_82542_rev2_1:
 3308                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
 3309                         e_err(probe, "Jumbo Frames not supported.\n");
 3310                         return -EINVAL;
 3311                 }
 3312                 break;
 3313         default:
 3314                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
 3315                 break;
 3316         }
 3317 
 3318         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 3319                 msleep(1);
 3320         /* e1000_down has a dependency on max_frame_size */
 3321         hw->max_frame_size = max_frame;
 3322         if (netif_running(netdev))
 3323                 e1000_down(adapter);
 3324 
 3325         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
 3326          * means we reserve 2 more, this pushes us to allocate from the next
 3327          * larger slab size.
 3328          * i.e. RXBUFFER_2048 --> size-4096 slab
 3329          *  however with the new *_jumbo_rx* routines, jumbo receives will use
 3330          *  fragmented skbs */
 3331 
 3332         if (max_frame <= E1000_RXBUFFER_2048)
 3333                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
 3334         else
 3335 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
 3336                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
 3337 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
 3338                 adapter->rx_buffer_len = PAGE_SIZE;
 3339 #endif
 3340 
 3341         /* adjust allocation if LPE protects us, and we aren't using SBP */
 3342         if (!hw->tbi_compatibility_on &&
 3343             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
 3344              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
 3345                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
 3346 
 3347         pr_info("%s changing MTU from %d to %d\n",
 3348                 netdev->name, netdev->mtu, new_mtu);
 3349         netdev->mtu = new_mtu;
 3350 
 3351         if (netif_running(netdev))
 3352                 e1000_up(adapter);
 3353         else
 3354                 e1000_reset(adapter);
 3355 
 3356         clear_bit(__E1000_RESETTING, &adapter->flags);
 3357 
 3358         return 0;
 3359 }
 3360 
 3361 /**
 3362  * e1000_update_stats - Update the board statistics counters
 3363  * @adapter: board private structure
 3364  **/
 3365 
 3366 void e1000_update_stats(struct e1000_adapter *adapter)
 3367 {
 3368         struct net_device *netdev = adapter->netdev;
 3369         struct e1000_hw *hw = &adapter->hw;
 3370         struct pci_dev *pdev = adapter->pdev;
 3371         unsigned long flags;
 3372         u16 phy_tmp;
 3373 
 3374 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
 3375 
 3376         /*
 3377          * Prevent stats update while adapter is being reset, or if the pci
 3378          * connection is down.
 3379          */
 3380         if (adapter->link_speed == 0)
 3381                 return;
 3382         if (pci_channel_offline(pdev))
 3383                 return;
 3384 
 3385         spin_lock_irqsave(&adapter->stats_lock, flags);
 3386 
 3387         /* these counters are modified from e1000_tbi_adjust_stats,
 3388          * called from the interrupt context, so they must only
 3389          * be written while holding adapter->stats_lock
 3390          */
 3391 
 3392         adapter->stats.crcerrs += er32(CRCERRS);
 3393         adapter->stats.gprc += er32(GPRC);
 3394         adapter->stats.gorcl += er32(GORCL);
 3395         adapter->stats.gorch += er32(GORCH);
 3396         adapter->stats.bprc += er32(BPRC);
 3397         adapter->stats.mprc += er32(MPRC);
 3398         adapter->stats.roc += er32(ROC);
 3399 
 3400         adapter->stats.prc64 += er32(PRC64);
 3401         adapter->stats.prc127 += er32(PRC127);
 3402         adapter->stats.prc255 += er32(PRC255);
 3403         adapter->stats.prc511 += er32(PRC511);
 3404         adapter->stats.prc1023 += er32(PRC1023);
 3405         adapter->stats.prc1522 += er32(PRC1522);
 3406 
 3407         adapter->stats.symerrs += er32(SYMERRS);
 3408         adapter->stats.mpc += er32(MPC);
 3409         adapter->stats.scc += er32(SCC);
 3410         adapter->stats.ecol += er32(ECOL);
 3411         adapter->stats.mcc += er32(MCC);
 3412         adapter->stats.latecol += er32(LATECOL);
 3413         adapter->stats.dc += er32(DC);
 3414         adapter->stats.sec += er32(SEC);
 3415         adapter->stats.rlec += er32(RLEC);
 3416         adapter->stats.xonrxc += er32(XONRXC);
 3417         adapter->stats.xontxc += er32(XONTXC);
 3418         adapter->stats.xoffrxc += er32(XOFFRXC);
 3419         adapter->stats.xofftxc += er32(XOFFTXC);
 3420         adapter->stats.fcruc += er32(FCRUC);
 3421         adapter->stats.gptc += er32(GPTC);
 3422         adapter->stats.gotcl += er32(GOTCL);
 3423         adapter->stats.gotch += er32(GOTCH);
 3424         adapter->stats.rnbc += er32(RNBC);
 3425         adapter->stats.ruc += er32(RUC);
 3426         adapter->stats.rfc += er32(RFC);
 3427         adapter->stats.rjc += er32(RJC);
 3428         adapter->stats.torl += er32(TORL);
 3429         adapter->stats.torh += er32(TORH);
 3430         adapter->stats.totl += er32(TOTL);
 3431         adapter->stats.toth += er32(TOTH);
 3432         adapter->stats.tpr += er32(TPR);
 3433 
 3434         adapter->stats.ptc64 += er32(PTC64);
 3435         adapter->stats.ptc127 += er32(PTC127);
 3436         adapter->stats.ptc255 += er32(PTC255);
 3437         adapter->stats.ptc511 += er32(PTC511);
 3438         adapter->stats.ptc1023 += er32(PTC1023);
 3439         adapter->stats.ptc1522 += er32(PTC1522);
 3440 
 3441         adapter->stats.mptc += er32(MPTC);
 3442         adapter->stats.bptc += er32(BPTC);
 3443 
 3444         /* used for adaptive IFS */
 3445 
 3446         hw->tx_packet_delta = er32(TPT);
 3447         adapter->stats.tpt += hw->tx_packet_delta;
 3448         hw->collision_delta = er32(COLC);
 3449         adapter->stats.colc += hw->collision_delta;
 3450 
 3451         if (hw->mac_type >= e1000_82543) {
 3452                 adapter->stats.algnerrc += er32(ALGNERRC);
 3453                 adapter->stats.rxerrc += er32(RXERRC);
 3454                 adapter->stats.tncrs += er32(TNCRS);
 3455                 adapter->stats.cexterr += er32(CEXTERR);
 3456                 adapter->stats.tsctc += er32(TSCTC);
 3457                 adapter->stats.tsctfc += er32(TSCTFC);
 3458         }
 3459 
 3460         /* Fill out the OS statistics structure */
 3461         netdev->stats.multicast = adapter->stats.mprc;
 3462         netdev->stats.collisions = adapter->stats.colc;
 3463 
 3464         /* Rx Errors */
 3465 
 3466         /* RLEC on some newer hardware can be incorrect so build
 3467         * our own version based on RUC and ROC */
 3468         netdev->stats.rx_errors = adapter->stats.rxerrc +
 3469                 adapter->stats.crcerrs + adapter->stats.algnerrc +
 3470                 adapter->stats.ruc + adapter->stats.roc +
 3471                 adapter->stats.cexterr;
 3472         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
 3473         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
 3474         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
 3475         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
 3476         netdev->stats.rx_missed_errors = adapter->stats.mpc;
 3477 
 3478         /* Tx Errors */
 3479         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
 3480         netdev->stats.tx_errors = adapter->stats.txerrc;
 3481         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
 3482         netdev->stats.tx_window_errors = adapter->stats.latecol;
 3483         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
 3484         if (hw->bad_tx_carr_stats_fd &&
 3485             adapter->link_duplex == FULL_DUPLEX) {
 3486                 netdev->stats.tx_carrier_errors = 0;
 3487                 adapter->stats.tncrs = 0;
 3488         }
 3489 
 3490         /* Tx Dropped needs to be maintained elsewhere */
 3491 
 3492         /* Phy Stats */
 3493         if (hw->media_type == e1000_media_type_copper) {
 3494                 if ((adapter->link_speed == SPEED_1000) &&
 3495                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
 3496                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
 3497                         adapter->phy_stats.idle_errors += phy_tmp;
 3498                 }
 3499 
 3500                 if ((hw->mac_type <= e1000_82546) &&
 3501                    (hw->phy_type == e1000_phy_m88) &&
 3502                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
 3503                         adapter->phy_stats.receive_errors += phy_tmp;
 3504         }
 3505 
 3506         /* Management Stats */
 3507         if (hw->has_smbus) {
 3508                 adapter->stats.mgptc += er32(MGTPTC);
 3509                 adapter->stats.mgprc += er32(MGTPRC);
 3510                 adapter->stats.mgpdc += er32(MGTPDC);
 3511         }
 3512 
 3513         spin_unlock_irqrestore(&adapter->stats_lock, flags);
 3514 }
 3515 
 3516 /**
 3517  * e1000_intr - Interrupt Handler
 3518  * @irq: interrupt number
 3519  * @data: pointer to a network interface device structure
 3520  **/
 3521 
 3522 static irqreturn_t e1000_intr(int irq, void *data)
 3523 {
 3524         struct net_device *netdev = data;
 3525         struct e1000_adapter *adapter = netdev_priv(netdev);
 3526         struct e1000_hw *hw = &adapter->hw;
 3527         u32 icr = er32(ICR);
 3528 
 3529         if (unlikely((!icr)))
 3530                 return IRQ_NONE;  /* Not our interrupt */
 3531 
 3532         /*
 3533          * we might have caused the interrupt, but the above
 3534          * read cleared it, and just in case the driver is
 3535          * down there is nothing to do so return handled
 3536          */
 3537         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
 3538                 return IRQ_HANDLED;
 3539 
 3540         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
 3541                 hw->get_link_status = 1;
 3542                 /* guard against interrupt when we're going down */
 3543                 if (!test_bit(__E1000_DOWN, &adapter->flags))
 3544                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
 3545         }
 3546 
 3547         /* disable interrupts, without the synchronize_irq bit */
 3548         ew32(IMC, ~0);
 3549         E1000_WRITE_FLUSH();
 3550 
 3551         if (likely(napi_schedule_prep(&adapter->napi))) {
 3552                 adapter->total_tx_bytes = 0;
 3553                 adapter->total_tx_packets = 0;
 3554                 adapter->total_rx_bytes = 0;
 3555                 adapter->total_rx_packets = 0;
 3556                 __napi_schedule(&adapter->napi);
 3557         } else {
 3558                 /* this really should not happen! if it does it is basically a
 3559                  * bug, but not a hard error, so enable ints and continue */
 3560                 if (!test_bit(__E1000_DOWN, &adapter->flags))
 3561                         e1000_irq_enable(adapter);
 3562         }
 3563 
 3564         return IRQ_HANDLED;
 3565 }
 3566 
 3567 /**
 3568  * e1000_clean - NAPI Rx polling callback
 3569  * @adapter: board private structure
 3570  **/
 3571 static int e1000_clean(struct napi_struct *napi, int budget)
 3572 {
 3573         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
 3574         int tx_clean_complete = 0, work_done = 0;
 3575 
 3576         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
 3577 
 3578         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
 3579 
 3580         if (!tx_clean_complete)
 3581                 work_done = budget;
 3582 
 3583         /* If budget not fully consumed, exit the polling mode */
 3584         if (work_done < budget) {
 3585                 if (likely(adapter->itr_setting & 3))
 3586                         e1000_set_itr(adapter);
 3587                 napi_complete(napi);
 3588                 if (!test_bit(__E1000_DOWN, &adapter->flags))
 3589                         e1000_irq_enable(adapter);
 3590         }
 3591 
 3592         return work_done;
 3593 }
 3594 
 3595 /**
 3596  * e1000_clean_tx_irq - Reclaim resources after transmit completes
 3597  * @adapter: board private structure
 3598  **/
 3599 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 3600                                struct e1000_tx_ring *tx_ring)
 3601 {
 3602         struct e1000_hw *hw = &adapter->hw;
 3603         struct net_device *netdev = adapter->netdev;
 3604         struct e1000_tx_desc *tx_desc, *eop_desc;
 3605         struct e1000_buffer *buffer_info;
 3606         unsigned int i, eop;
 3607         unsigned int count = 0;
 3608         unsigned int total_tx_bytes=0, total_tx_packets=0;
 3609 
 3610         i = tx_ring->next_to_clean;
 3611         eop = tx_ring->buffer_info[i].next_to_watch;
 3612         eop_desc = E1000_TX_DESC(*tx_ring, eop);
 3613 
 3614         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
 3615                (count < tx_ring->count)) {
 3616                 bool cleaned = false;
 3617                 rmb();  /* read buffer_info after eop_desc */
 3618                 for ( ; !cleaned; count++) {
 3619                         tx_desc = E1000_TX_DESC(*tx_ring, i);
 3620                         buffer_info = &tx_ring->buffer_info[i];
 3621                         cleaned = (i == eop);
 3622 
 3623                         if (cleaned) {
 3624                                 struct sk_buff *skb = buffer_info->skb;
 3625                                 unsigned int segs, bytecount;
 3626                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
 3627                                 /* multiply data chunks by size of headers */
 3628                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
 3629                                             skb->len;
 3630                                 total_tx_packets += segs;
 3631                                 total_tx_bytes += bytecount;
 3632                         }
 3633                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 3634                         tx_desc->upper.data = 0;
 3635 
 3636                         if (unlikely(++i == tx_ring->count)) i = 0;
 3637                 }
 3638 
 3639                 eop = tx_ring->buffer_info[i].next_to_watch;
 3640                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
 3641         }
 3642 
 3643         tx_ring->next_to_clean = i;
 3644 
 3645 #define TX_WAKE_THRESHOLD 32
 3646         if (unlikely(count && netif_carrier_ok(netdev) &&
 3647                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
 3648                 /* Make sure that anybody stopping the queue after this
 3649                  * sees the new next_to_clean.
 3650                  */
 3651                 smp_mb();
 3652 
 3653                 if (netif_queue_stopped(netdev) &&
 3654                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
 3655                         netif_wake_queue(netdev);
 3656                         ++adapter->restart_queue;
 3657                 }
 3658         }
 3659 
 3660         if (adapter->detect_tx_hung) {
 3661                 /* Detect a transmit hang in hardware, this serializes the
 3662                  * check with the clearing of time_stamp and movement of i */
 3663                 adapter->detect_tx_hung = false;
 3664                 if (tx_ring->buffer_info[eop].time_stamp &&
 3665                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
 3666                                (adapter->tx_timeout_factor * HZ)) &&
 3667                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
 3668 
 3669                         /* detected Tx unit hang */
 3670                         e_err(drv, "Detected Tx Unit Hang\n"
 3671                               "  Tx Queue             <%lu>\n"
 3672                               "  TDH                  <%x>\n"
 3673                               "  TDT                  <%x>\n"
 3674                               "  next_to_use          <%x>\n"
 3675                               "  next_to_clean        <%x>\n"
 3676                               "buffer_info[next_to_clean]\n"
 3677                               "  time_stamp           <%lx>\n"
 3678                               "  next_to_watch        <%x>\n"
 3679                               "  jiffies              <%lx>\n"
 3680                               "  next_to_watch.status <%x>\n",
 3681                                 (unsigned long)((tx_ring - adapter->tx_ring) /
 3682                                         sizeof(struct e1000_tx_ring)),
 3683                                 readl(hw->hw_addr + tx_ring->tdh),
 3684                                 readl(hw->hw_addr + tx_ring->tdt),
 3685                                 tx_ring->next_to_use,
 3686                                 tx_ring->next_to_clean,
 3687                                 tx_ring->buffer_info[eop].time_stamp,
 3688                                 eop,
 3689                                 jiffies,
 3690                                 eop_desc->upper.fields.status);
 3691                         netif_stop_queue(netdev);
 3692                 }
 3693         }
 3694         adapter->total_tx_bytes += total_tx_bytes;
 3695         adapter->total_tx_packets += total_tx_packets;
 3696         netdev->stats.tx_bytes += total_tx_bytes;
 3697         netdev->stats.tx_packets += total_tx_packets;
 3698         return count < tx_ring->count;
 3699 }
 3700 
 3701 /**
 3702  * e1000_rx_checksum - Receive Checksum Offload for 82543
 3703  * @adapter:     board private structure
 3704  * @status_err:  receive descriptor status and error fields
 3705  * @csum:        receive descriptor csum field
 3706  * @sk_buff:     socket buffer with received data
 3707  **/
 3708 
 3709 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 3710                               u32 csum, struct sk_buff *skb)
 3711 {
 3712         struct e1000_hw *hw = &adapter->hw;
 3713         u16 status = (u16)status_err;
 3714         u8 errors = (u8)(status_err >> 24);
 3715 
 3716         skb_checksum_none_assert(skb);
 3717 
 3718         /* 82543 or newer only */
 3719         if (unlikely(hw->mac_type < e1000_82543)) return;
 3720         /* Ignore Checksum bit is set */
 3721         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
 3722         /* TCP/UDP checksum error bit is set */
 3723         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
 3724                 /* let the stack verify checksum errors */
 3725                 adapter->hw_csum_err++;
 3726                 return;
 3727         }
 3728         /* TCP/UDP Checksum has not been calculated */
 3729         if (!(status & E1000_RXD_STAT_TCPCS))
 3730                 return;
 3731 
 3732         /* It must be a TCP or UDP packet with a valid checksum */
 3733         if (likely(status & E1000_RXD_STAT_TCPCS)) {
 3734                 /* TCP checksum is good */
 3735                 skb->ip_summed = CHECKSUM_UNNECESSARY;
 3736         }
 3737         adapter->hw_csum_good++;
 3738 }
 3739 
 3740 /**
 3741  * e1000_consume_page - helper function
 3742  **/
 3743 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
 3744                                u16 length)
 3745 {
 3746         bi->page = NULL;
 3747         skb->len += length;
 3748         skb->data_len += length;
 3749         skb->truesize += length;
 3750 }
 3751 
 3752 /**
 3753  * e1000_receive_skb - helper function to handle rx indications
 3754  * @adapter: board private structure
 3755  * @status: descriptor status field as written by hardware
 3756  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 3757  * @skb: pointer to sk_buff to be indicated to stack
 3758  */
 3759 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
 3760                               __le16 vlan, struct sk_buff *skb)
 3761 {
 3762         skb->protocol = eth_type_trans(skb, adapter->netdev);
 3763 
 3764         if (status & E1000_RXD_STAT_VP) {
 3765                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 3766 
 3767                 __vlan_hwaccel_put_tag(skb, vid);
 3768         }
 3769         napi_gro_receive(&adapter->napi, skb);
 3770 }
 3771 
 3772 /**
 3773  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 3774  * @adapter: board private structure
 3775  * @rx_ring: ring to clean
 3776  * @work_done: amount of napi work completed this call
 3777  * @work_to_do: max amount of work allowed for this call to do
 3778  *
 3779  * the return value indicates whether actual cleaning was done, there
 3780  * is no guarantee that everything was cleaned
 3781  */
 3782 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 3783                                      struct e1000_rx_ring *rx_ring,
 3784                                      int *work_done, int work_to_do)
 3785 {
 3786         struct e1000_hw *hw = &adapter->hw;
 3787         struct net_device *netdev = adapter->netdev;
 3788         struct pci_dev *pdev = adapter->pdev;
 3789         struct e1000_rx_desc *rx_desc, *next_rxd;
 3790         struct e1000_buffer *buffer_info, *next_buffer;
 3791         unsigned long irq_flags;
 3792         u32 length;
 3793         unsigned int i;
 3794         int cleaned_count = 0;
 3795         bool cleaned = false;
 3796         unsigned int total_rx_bytes=0, total_rx_packets=0;
 3797 
 3798         i = rx_ring->next_to_clean;
 3799         rx_desc = E1000_RX_DESC(*rx_ring, i);
 3800         buffer_info = &rx_ring->buffer_info[i];
 3801 
 3802         while (rx_desc->status & E1000_RXD_STAT_DD) {
 3803                 struct sk_buff *skb;
 3804                 u8 status;
 3805 
 3806                 if (*work_done >= work_to_do)
 3807                         break;
 3808                 (*work_done)++;
 3809                 rmb(); /* read descriptor and rx_buffer_info after status DD */
 3810 
 3811                 status = rx_desc->status;
 3812                 skb = buffer_info->skb;
 3813                 buffer_info->skb = NULL;
 3814 
 3815                 if (++i == rx_ring->count) i = 0;
 3816                 next_rxd = E1000_RX_DESC(*rx_ring, i);
 3817                 prefetch(next_rxd);
 3818 
 3819                 next_buffer = &rx_ring->buffer_info[i];
 3820 
 3821                 cleaned = true;
 3822                 cleaned_count++;
 3823                 dma_unmap_page(&pdev->dev, buffer_info->dma,
 3824                                buffer_info->length, DMA_FROM_DEVICE);
 3825                 buffer_info->dma = 0;
 3826 
 3827                 length = le16_to_cpu(rx_desc->length);
 3828 
 3829                 /* errors is only valid for DD + EOP descriptors */
 3830                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
 3831                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
 3832                         u8 last_byte = *(skb->data + length - 1);
 3833                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
 3834                                        last_byte)) {
 3835                                 spin_lock_irqsave(&adapter->stats_lock,
 3836                                                   irq_flags);
 3837                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
 3838                                                        length, skb->data);
 3839                                 spin_unlock_irqrestore(&adapter->stats_lock,
 3840                                                        irq_flags);
 3841                                 length--;
 3842                         } else {
 3843                                 /* recycle both page and skb */
 3844                                 buffer_info->skb = skb;
 3845                                 /* an error means any chain goes out the window
 3846                                  * too */
 3847                                 if (rx_ring->rx_skb_top)
 3848                                         dev_kfree_skb(rx_ring->rx_skb_top);
 3849                                 rx_ring->rx_skb_top = NULL;
 3850                                 goto next_desc;
 3851                         }
 3852                 }
 3853 
 3854 #define rxtop rx_ring->rx_skb_top
 3855                 if (!(status & E1000_RXD_STAT_EOP)) {
 3856                         /* this descriptor is only the beginning (or middle) */
 3857                         if (!rxtop) {
 3858                                 /* this is the beginning of a chain */
 3859                                 rxtop = skb;
 3860                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
 3861                                                    0, length);
 3862                         } else {
 3863                                 /* this is the middle of a chain */
 3864                                 skb_fill_page_desc(rxtop,
 3865                                     skb_shinfo(rxtop)->nr_frags,
 3866                                     buffer_info->page, 0, length);
 3867                                 /* re-use the skb, only consumed the page */
 3868                                 buffer_info->skb = skb;
 3869                         }
 3870                         e1000_consume_page(buffer_info, rxtop, length);
 3871                         goto next_desc;
 3872                 } else {
 3873                         if (rxtop) {
 3874                                 /* end of the chain */
 3875                                 skb_fill_page_desc(rxtop,
 3876                                     skb_shinfo(rxtop)->nr_frags,
 3877                                     buffer_info->page, 0, length);
 3878                                 /* re-use the current skb, we only consumed the
 3879                                  * page */
 3880                                 buffer_info->skb = skb;
 3881                                 skb = rxtop;
 3882                                 rxtop = NULL;
 3883                                 e1000_consume_page(buffer_info, skb, length);
 3884                         } else {
 3885                                 /* no chain, got EOP, this buf is the packet
 3886                                  * copybreak to save the put_page/alloc_page */
 3887                                 if (length <= copybreak &&
 3888                                     skb_tailroom(skb) >= length) {
 3889                                         u8 *vaddr;
 3890                                         vaddr = kmap_atomic(buffer_info->page,
 3891                                                             KM_SKB_DATA_SOFTIRQ);
 3892                                         memcpy(skb_tail_pointer(skb), vaddr, length);
 3893                                         kunmap_atomic(vaddr,
 3894                                                       KM_SKB_DATA_SOFTIRQ);
 3895                                         /* re-use the page, so don't erase
 3896                                          * buffer_info->page */
 3897                                         skb_put(skb, length);
 3898                                 } else {
 3899                                         skb_fill_page_desc(skb, 0,
 3900                                                            buffer_info->page, 0,
 3901                                                            length);
 3902                                         e1000_consume_page(buffer_info, skb,
 3903                                                            length);
 3904                                 }
 3905                         }
 3906                 }
 3907 
 3908                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
 3909                 e1000_rx_checksum(adapter,
 3910                                   (u32)(status) |
 3911                                   ((u32)(rx_desc->errors) << 24),
 3912                                   le16_to_cpu(rx_desc->csum), skb);
 3913 
 3914                 pskb_trim(skb, skb->len - 4);
 3915 
 3916                 /* probably a little skewed due to removing CRC */
 3917                 total_rx_bytes += skb->len;
 3918                 total_rx_packets++;
 3919 
 3920                 /* eth type trans needs skb->data to point to something */
 3921                 if (!pskb_may_pull(skb, ETH_HLEN)) {
 3922                         e_err(drv, "pskb_may_pull failed.\n");
 3923                         dev_kfree_skb(skb);
 3924                         goto next_desc;
 3925                 }
 3926 
 3927                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
 3928 
 3929 next_desc:
 3930                 rx_desc->status = 0;
 3931 
 3932                 /* return some buffers to hardware, one at a time is too slow */
 3933                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
 3934                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
 3935                         cleaned_count = 0;
 3936                 }
 3937 
 3938                 /* use prefetched values */
 3939                 rx_desc = next_rxd;
 3940                 buffer_info = next_buffer;
 3941         }
 3942         rx_ring->next_to_clean = i;
 3943 
 3944         cleaned_count = E1000_DESC_UNUSED(rx_ring);
 3945         if (cleaned_count)
 3946                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
 3947 
 3948         adapter->total_rx_packets += total_rx_packets;
 3949         adapter->total_rx_bytes += total_rx_bytes;
 3950         netdev->stats.rx_bytes += total_rx_bytes;
 3951         netdev->stats.rx_packets += total_rx_packets;
 3952         return cleaned;
 3953 }
 3954 
 3955 /*
 3956  * this should improve performance for small packets with large amounts
 3957  * of reassembly being done in the stack
 3958  */
 3959 static void e1000_check_copybreak(struct net_device *netdev,
 3960                                  struct e1000_buffer *buffer_info,
 3961                                  u32 length, struct sk_buff **skb)
 3962 {
 3963         struct sk_buff *new_skb;
 3964 
 3965         if (length > copybreak)
 3966                 return;
 3967 
 3968         new_skb = netdev_alloc_skb_ip_align(netdev, length);
 3969         if (!new_skb)
 3970                 return;
 3971 
 3972         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
 3973                                        (*skb)->data - NET_IP_ALIGN,
 3974                                        length + NET_IP_ALIGN);
 3975         /* save the skb in buffer_info as good */
 3976         buffer_info->skb = *skb;
 3977         *skb = new_skb;
 3978 }
 3979 
 3980 /**
 3981  * e1000_clean_rx_irq - Send received data up the network stack; legacy
 3982  * @adapter: board private structure
 3983  * @rx_ring: ring to clean
 3984  * @work_done: amount of napi work completed this call
 3985  * @work_to_do: max amount of work allowed for this call to do
 3986  */
 3987 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 3988                                struct e1000_rx_ring *rx_ring,
 3989                                int *work_done, int work_to_do)
 3990 {
 3991         struct e1000_hw *hw = &adapter->hw;
 3992         struct net_device *netdev = adapter->netdev;
 3993         struct pci_dev *pdev = adapter->pdev;
 3994         struct e1000_rx_desc *rx_desc, *next_rxd;
 3995         struct e1000_buffer *buffer_info, *next_buffer;
 3996         unsigned long flags;
 3997         u32 length;
 3998         unsigned int i;
 3999         int cleaned_count = 0;
 4000         bool cleaned = false;
 4001         unsigned int total_rx_bytes=0, total_rx_packets=0;
 4002 
 4003         i = rx_ring->next_to_clean;
 4004         rx_desc = E1000_RX_DESC(*rx_ring, i);
 4005         buffer_info = &rx_ring->buffer_info[i];
 4006 
 4007         while (rx_desc->status & E1000_RXD_STAT_DD) {
 4008                 struct sk_buff *skb;
 4009                 u8 status;
 4010 
 4011                 if (*work_done >= work_to_do)
 4012                         break;
 4013                 (*work_done)++;
 4014                 rmb(); /* read descriptor and rx_buffer_info after status DD */
 4015 
 4016                 status = rx_desc->status;
 4017                 skb = buffer_info->skb;
 4018                 buffer_info->skb = NULL;
 4019 
 4020                 prefetch(skb->data - NET_IP_ALIGN);
 4021 
 4022                 if (++i == rx_ring->count) i = 0;
 4023                 next_rxd = E1000_RX_DESC(*rx_ring, i);
 4024                 prefetch(next_rxd);
 4025 
 4026                 next_buffer = &rx_ring->buffer_info[i];
 4027 
 4028                 cleaned = true;
 4029                 cleaned_count++;
 4030                 dma_unmap_single(&pdev->dev, buffer_info->dma,
 4031                                  buffer_info->length, DMA_FROM_DEVICE);
 4032                 buffer_info->dma = 0;
 4033 
 4034                 length = le16_to_cpu(rx_desc->length);
 4035                 /* !EOP means multiple descriptors were used to store a single
 4036                  * packet, if thats the case we need to toss it.  In fact, we
 4037                  * to toss every packet with the EOP bit clear and the next
 4038                  * frame that _does_ have the EOP bit set, as it is by
 4039                  * definition only a frame fragment
 4040                  */
 4041                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
 4042                         adapter->discarding = true;
 4043 
 4044                 if (adapter->discarding) {
 4045                         /* All receives must fit into a single buffer */
 4046                         e_dbg("Receive packet consumed multiple buffers\n");
 4047                         /* recycle */
 4048                         buffer_info->skb = skb;
 4049                         if (status & E1000_RXD_STAT_EOP)
 4050                                 adapter->discarding = false;
 4051                         goto next_desc;
 4052                 }
 4053 
 4054                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
 4055                         u8 last_byte = *(skb->data + length - 1);
 4056                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
 4057                                        last_byte)) {
 4058                                 spin_lock_irqsave(&adapter->stats_lock, flags);
 4059                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
 4060                                                        length, skb->data);
 4061                                 spin_unlock_irqrestore(&adapter->stats_lock,
 4062                                                        flags);
 4063                                 length--;
 4064                         } else {
 4065                                 /* recycle */
 4066                                 buffer_info->skb = skb;
 4067                                 goto next_desc;
 4068                         }
 4069                 }
 4070 
 4071                 /* adjust length to remove Ethernet CRC, this must be
 4072                  * done after the TBI_ACCEPT workaround above */
 4073                 length -= 4;
 4074 
 4075                 /* probably a little skewed due to removing CRC */
 4076                 total_rx_bytes += length;
 4077                 total_rx_packets++;
 4078 
 4079                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
 4080 
 4081                 skb_put(skb, length);
 4082 
 4083                 /* Receive Checksum Offload */
 4084                 e1000_rx_checksum(adapter,
 4085                                   (u32)(status) |
 4086                                   ((u32)(rx_desc->errors) << 24),
 4087                                   le16_to_cpu(rx_desc->csum), skb);
 4088 
 4089                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
 4090 
 4091 next_desc:
 4092                 rx_desc->status = 0;
 4093 
 4094                 /* return some buffers to hardware, one at a time is too slow */
 4095                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
 4096                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
 4097                         cleaned_count = 0;
 4098                 }
 4099 
 4100                 /* use prefetched values */
 4101                 rx_desc = next_rxd;
 4102                 buffer_info = next_buffer;
 4103         }
 4104         rx_ring->next_to_clean = i;
 4105 
 4106         cleaned_count = E1000_DESC_UNUSED(rx_ring);
 4107         if (cleaned_count)
 4108                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
 4109 
 4110         adapter->total_rx_packets += total_rx_packets;
 4111         adapter->total_rx_bytes += total_rx_bytes;
 4112         netdev->stats.rx_bytes += total_rx_bytes;
 4113         netdev->stats.rx_packets += total_rx_packets;
 4114         return cleaned;
 4115 }
 4116 
 4117 /**
 4118  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 4119  * @adapter: address of board private structure
 4120  * @rx_ring: pointer to receive ring structure
 4121  * @cleaned_count: number of buffers to allocate this pass
 4122  **/
 4123 
 4124 static void
 4125 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 4126                              struct e1000_rx_ring *rx_ring, int cleaned_count)
 4127 {
 4128         struct net_device *netdev = adapter->netdev;
 4129         struct pci_dev *pdev = adapter->pdev;
 4130         struct e1000_rx_desc *rx_desc;
 4131         struct e1000_buffer *buffer_info;
 4132         struct sk_buff *skb;
 4133         unsigned int i;
 4134         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
 4135 
 4136         i = rx_ring->next_to_use;
 4137         buffer_info = &rx_ring->buffer_info[i];
 4138 
 4139         while (cleaned_count--) {
 4140                 skb = buffer_info->skb;
 4141                 if (skb) {
 4142                         skb_trim(skb, 0);
 4143                         goto check_page;
 4144                 }
 4145 
 4146                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 4147                 if (unlikely(!skb)) {
 4148                         /* Better luck next round */
 4149                         adapter->alloc_rx_buff_failed++;
 4150                         break;
 4151                 }
 4152 
 4153                 /* Fix for errata 23, can't cross 64kB boundary */
 4154                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
 4155                         struct sk_buff *oldskb = skb;
 4156                         e_err(rx_err, "skb align check failed: %u bytes at "
 4157                               "%p\n", bufsz, skb->data);
 4158                         /* Try again, without freeing the previous */
 4159                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 4160                         /* Failed allocation, critical failure */
 4161                         if (!skb) {
 4162                                 dev_kfree_skb(oldskb);
 4163                                 adapter->alloc_rx_buff_failed++;
 4164                                 break;
 4165                         }
 4166 
 4167                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
 4168                                 /* give up */
 4169                                 dev_kfree_skb(skb);
 4170                                 dev_kfree_skb(oldskb);
 4171                                 break; /* while (cleaned_count--) */
 4172                         }
 4173 
 4174                         /* Use new allocation */
 4175                         dev_kfree_skb(oldskb);
 4176                 }
 4177                 buffer_info->skb = skb;
 4178                 buffer_info->length = adapter->rx_buffer_len;
 4179 check_page:
 4180                 /* allocate a new page if necessary */
 4181                 if (!buffer_info->page) {
 4182                         buffer_info->page = alloc_page(GFP_ATOMIC);
 4183                         if (unlikely(!buffer_info->page)) {
 4184                                 adapter->alloc_rx_buff_failed++;
 4185                                 break;
 4186                         }
 4187                 }
 4188 
 4189                 if (!buffer_info->dma) {
 4190                         buffer_info->dma = dma_map_page(&pdev->dev,
 4191                                                         buffer_info->page, 0,
 4192                                                         buffer_info->length,
 4193                                                         DMA_FROM_DEVICE);
 4194                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 4195                                 put_page(buffer_info->page);
 4196                                 dev_kfree_skb(skb);
 4197                                 buffer_info->page = NULL;
 4198                                 buffer_info->skb = NULL;
 4199                                 buffer_info->dma = 0;
 4200                                 adapter->alloc_rx_buff_failed++;
 4201                                 break; /* while !buffer_info->skb */
 4202                         }
 4203                 }
 4204 
 4205                 rx_desc = E1000_RX_DESC(*rx_ring, i);
 4206                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
 4207 
 4208                 if (unlikely(++i == rx_ring->count))
 4209                         i = 0;
 4210                 buffer_info = &rx_ring->buffer_info[i];
 4211         }
 4212 
 4213         if (likely(rx_ring->next_to_use != i)) {
 4214                 rx_ring->next_to_use = i;
 4215                 if (unlikely(i-- == 0))
 4216                         i = (rx_ring->count - 1);
 4217 
 4218                 /* Force memory writes to complete before letting h/w
 4219                  * know there are new descriptors to fetch.  (Only
 4220                  * applicable for weak-ordered memory model archs,
 4221                  * such as IA-64). */
 4222                 wmb();
 4223                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
 4224         }
 4225 }
 4226 
 4227 /**
 4228  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
 4229  * @adapter: address of board private structure
 4230  **/
 4231 
 4232 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 4233                                    struct e1000_rx_ring *rx_ring,
 4234                                    int cleaned_count)
 4235 {
 4236         struct e1000_hw *hw = &adapter->hw;
 4237         struct net_device *netdev = adapter->netdev;
 4238         struct pci_dev *pdev = adapter->pdev;
 4239         struct e1000_rx_desc *rx_desc;
 4240         struct e1000_buffer *buffer_info;
 4241         struct sk_buff *skb;
 4242         unsigned int i;
 4243         unsigned int bufsz = adapter->rx_buffer_len;
 4244 
 4245         i = rx_ring->next_to_use;
 4246         buffer_info = &rx_ring->buffer_info[i];
 4247 
 4248         while (cleaned_count--) {
 4249                 skb = buffer_info->skb;
 4250                 if (skb) {
 4251                         skb_trim(skb, 0);
 4252                         goto map_skb;
 4253                 }
 4254 
 4255                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 4256                 if (unlikely(!skb)) {
 4257                         /* Better luck next round */
 4258                         adapter->alloc_rx_buff_failed++;
 4259                         break;
 4260                 }
 4261 
 4262                 /* Fix for errata 23, can't cross 64kB boundary */
 4263                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
 4264                         struct sk_buff *oldskb = skb;
 4265                         e_err(rx_err, "skb align check failed: %u bytes at "
 4266                               "%p\n", bufsz, skb->data);
 4267                         /* Try again, without freeing the previous */
 4268                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 4269                         /* Failed allocation, critical failure */
 4270                         if (!skb) {
 4271                                 dev_kfree_skb(oldskb);
 4272                                 adapter->alloc_rx_buff_failed++;
 4273                                 break;
 4274                         }
 4275 
 4276                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
 4277                                 /* give up */
 4278                                 dev_kfree_skb(skb);
 4279                                 dev_kfree_skb(oldskb);
 4280                                 adapter->alloc_rx_buff_failed++;
 4281                                 break; /* while !buffer_info->skb */
 4282                         }
 4283 
 4284                         /* Use new allocation */
 4285                         dev_kfree_skb(oldskb);
 4286                 }
 4287                 buffer_info->skb = skb;
 4288                 buffer_info->length = adapter->rx_buffer_len;
 4289 map_skb:
 4290                 buffer_info->dma = dma_map_single(&pdev->dev,
 4291                                                   skb->data,
 4292                                                   buffer_info->length,
 4293                                                   DMA_FROM_DEVICE);
 4294                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 4295                         dev_kfree_skb(skb);
 4296                         buffer_info->skb = NULL;
 4297                         buffer_info->dma = 0;
 4298                         adapter->alloc_rx_buff_failed++;
 4299                         break; /* while !buffer_info->skb */
 4300                 }
 4301 
 4302                 /*
 4303                  * XXX if it was allocated cleanly it will never map to a
 4304                  * boundary crossing
 4305                  */
 4306 
 4307                 /* Fix for errata 23, can't cross 64kB boundary */
 4308                 if (!e1000_check_64k_bound(adapter,
 4309                                         (void *)(unsigned long)buffer_info->dma,
 4310                                         adapter->rx_buffer_len)) {
 4311                         e_err(rx_err, "dma align check failed: %u bytes at "
 4312                               "%p\n", adapter->rx_buffer_len,
 4313                               (void *)(unsigned long)buffer_info->dma);
 4314                         dev_kfree_skb(skb);
 4315                         buffer_info->skb = NULL;
 4316 
 4317                         dma_unmap_single(&pdev->dev, buffer_info->dma,
 4318                                          adapter->rx_buffer_len,
 4319                                          DMA_FROM_DEVICE);
 4320                         buffer_info->dma = 0;
 4321 
 4322                         adapter->alloc_rx_buff_failed++;
 4323                         break; /* while !buffer_info->skb */
 4324                 }
 4325                 rx_desc = E1000_RX_DESC(*rx_ring, i);
 4326                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
 4327 
 4328                 if (unlikely(++i == rx_ring->count))
 4329                         i = 0;
 4330                 buffer_info = &rx_ring->buffer_info[i];
 4331         }
 4332 
 4333         if (likely(rx_ring->next_to_use != i)) {
 4334                 rx_ring->next_to_use = i;
 4335                 if (unlikely(i-- == 0))
 4336                         i = (rx_ring->count - 1);
 4337 
 4338                 /* Force memory writes to complete before letting h/w
 4339                  * know there are new descriptors to fetch.  (Only
 4340                  * applicable for weak-ordered memory model archs,
 4341                  * such as IA-64). */
 4342                 wmb();
 4343                 writel(i, hw->hw_addr + rx_ring->rdt);
 4344         }
 4345 }
 4346 
 4347 /**
 4348  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
 4349  * @adapter:
 4350  **/
 4351 
 4352 static void e1000_smartspeed(struct e1000_adapter *adapter)
 4353 {
 4354         struct e1000_hw *hw = &adapter->hw;
 4355         u16 phy_status;
 4356         u16 phy_ctrl;
 4357 
 4358         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
 4359            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
 4360                 return;
 4361 
 4362         if (adapter->smartspeed == 0) {
 4363                 /* If Master/Slave config fault is asserted twice,
 4364                  * we assume back-to-back */
 4365                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
 4366                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
 4367                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
 4368                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
 4369                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
 4370                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
 4371                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
 4372                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
 4373                                             phy_ctrl);
 4374                         adapter->smartspeed++;
 4375                         if (!e1000_phy_setup_autoneg(hw) &&
 4376                            !e1000_read_phy_reg(hw, PHY_CTRL,
 4377                                                &phy_ctrl)) {
 4378                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
 4379                                              MII_CR_RESTART_AUTO_NEG);
 4380                                 e1000_write_phy_reg(hw, PHY_CTRL,
 4381                                                     phy_ctrl);
 4382                         }
 4383                 }
 4384                 return;
 4385         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
 4386                 /* If still no link, perhaps using 2/3 pair cable */
 4387                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
 4388                 phy_ctrl |= CR_1000T_MS_ENABLE;
 4389                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
 4390                 if (!e1000_phy_setup_autoneg(hw) &&
 4391                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
 4392                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
 4393                                      MII_CR_RESTART_AUTO_NEG);
 4394                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
 4395                 }
 4396         }
 4397         /* Restart process after E1000_SMARTSPEED_MAX iterations */
 4398         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
 4399                 adapter->smartspeed = 0;
 4400 }
 4401 
 4402 /**
 4403  * e1000_ioctl -
 4404  * @netdev:
 4405  * @ifreq:
 4406  * @cmd:
 4407  **/
 4408 
 4409 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 4410 {
 4411         switch (cmd) {
 4412         case SIOCGMIIPHY:
 4413         case SIOCGMIIREG:
 4414         case SIOCSMIIREG:
 4415                 return e1000_mii_ioctl(netdev, ifr, cmd);
 4416         default:
 4417                 return -EOPNOTSUPP;
 4418         }
 4419 }
 4420 
 4421 /**
 4422  * e1000_mii_ioctl -
 4423  * @netdev:
 4424  * @ifreq:
 4425  * @cmd:
 4426  **/
 4427 
 4428 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 4429                            int cmd)
 4430 {
 4431         struct e1000_adapter *adapter = netdev_priv(netdev);
 4432         struct e1000_hw *hw = &adapter->hw;
 4433         struct mii_ioctl_data *data = if_mii(ifr);
 4434         int retval;
 4435         u16 mii_reg;
 4436         unsigned long flags;
 4437 
 4438         if (hw->media_type != e1000_media_type_copper)
 4439                 return -EOPNOTSUPP;
 4440 
 4441         switch (cmd) {
 4442         case SIOCGMIIPHY:
 4443                 data->phy_id = hw->phy_addr;
 4444                 break;
 4445         case SIOCGMIIREG:
 4446                 spin_lock_irqsave(&adapter->stats_lock, flags);
 4447                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
 4448                                    &data->val_out)) {
 4449                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
 4450                         return -EIO;
 4451                 }
 4452                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
 4453                 break;
 4454         case SIOCSMIIREG:
 4455                 if (data->reg_num & ~(0x1F))
 4456                         return -EFAULT;
 4457                 mii_reg = data->val_in;
 4458                 spin_lock_irqsave(&adapter->stats_lock, flags);
 4459                 if (e1000_write_phy_reg(hw, data->reg_num,
 4460                                         mii_reg)) {
 4461                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
 4462                         return -EIO;
 4463                 }
 4464                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
 4465                 if (hw->media_type == e1000_media_type_copper) {
 4466                         switch (data->reg_num) {
 4467                         case PHY_CTRL:
 4468                                 if (mii_reg & MII_CR_POWER_DOWN)
 4469                                         break;
 4470                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
 4471                                         hw->autoneg = 1;
 4472                                         hw->autoneg_advertised = 0x2F;
 4473                                 } else {
 4474                                         u32 speed;
 4475                                         if (mii_reg & 0x40)
 4476                                                 speed = SPEED_1000;
 4477                                         else if (mii_reg & 0x2000)
 4478                                                 speed = SPEED_100;
 4479                                         else
 4480                                                 speed = SPEED_10;
 4481                                         retval = e1000_set_spd_dplx(
 4482                                                 adapter, speed,
 4483                                                 ((mii_reg & 0x100)
 4484                                                  ? DUPLEX_FULL :
 4485                                                  DUPLEX_HALF));
 4486                                         if (retval)
 4487                                                 return retval;
 4488                                 }
 4489                                 if (netif_running(adapter->netdev))
 4490                                         e1000_reinit_locked(adapter);
 4491                                 else
 4492                                         e1000_reset(adapter);
 4493                                 break;
 4494                         case M88E1000_PHY_SPEC_CTRL:
 4495                         case M88E1000_EXT_PHY_SPEC_CTRL:
 4496                                 if (e1000_phy_reset(hw))
 4497                                         return -EIO;
 4498                                 break;
 4499                         }
 4500                 } else {
 4501                         switch (data->reg_num) {
 4502                         case PHY_CTRL:
 4503                                 if (mii_reg & MII_CR_POWER_DOWN)
 4504                                         break;
 4505                                 if (netif_running(adapter->netdev))
 4506                                         e1000_reinit_locked(adapter);
 4507                                 else
 4508                                         e1000_reset(adapter);
 4509                                 break;
 4510                         }
 4511                 }
 4512                 break;
 4513         default:
 4514                 return -EOPNOTSUPP;
 4515         }
 4516         return E1000_SUCCESS;
 4517 }
 4518 
 4519 void e1000_pci_set_mwi(struct e1000_hw *hw)
 4520 {
 4521         struct e1000_adapter *adapter = hw->back;
 4522         int ret_val = pci_set_mwi(adapter->pdev);
 4523 
 4524         if (ret_val)
 4525                 e_err(probe, "Error in setting MWI\n");
 4526 }
 4527 
 4528 void e1000_pci_clear_mwi(struct e1000_hw *hw)
 4529 {
 4530         struct e1000_adapter *adapter = hw->back;
 4531 
 4532         pci_clear_mwi(adapter->pdev);
 4533 }
 4534 
 4535 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
 4536 {
 4537         struct e1000_adapter *adapter = hw->back;
 4538         return pcix_get_mmrbc(adapter->pdev);
 4539 }
 4540 
 4541 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
 4542 {
 4543         struct e1000_adapter *adapter = hw->back;
 4544         pcix_set_mmrbc(adapter->pdev, mmrbc);
 4545 }
 4546 
 4547 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
 4548 {
 4549         outl(value, port);
 4550 }
 4551 
 4552 static bool e1000_vlan_used(struct e1000_adapter *adapter)
 4553 {
 4554         u16 vid;
 4555 
 4556         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
 4557                 return true;
 4558         return false;
 4559 }
 4560 
 4561 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 4562                                      bool filter_on)
 4563 {
 4564         struct e1000_hw *hw = &adapter->hw;
 4565         u32 rctl;
 4566 
 4567         if (!test_bit(__E1000_DOWN, &adapter->flags))
 4568                 e1000_irq_disable(adapter);
 4569 
 4570         if (filter_on) {
 4571                 /* enable VLAN receive filtering */
 4572                 rctl = er32(RCTL);
 4573                 rctl &= ~E1000_RCTL_CFIEN;
 4574                 if (!(adapter->netdev->flags & IFF_PROMISC))
 4575                         rctl |= E1000_RCTL_VFE;
 4576                 ew32(RCTL, rctl);
 4577                 e1000_update_mng_vlan(adapter);
 4578         } else {
 4579                 /* disable VLAN receive filtering */
 4580                 rctl = er32(RCTL);
 4581                 rctl &= ~E1000_RCTL_VFE;
 4582                 ew32(RCTL, rctl);
 4583         }
 4584 
 4585         if (!test_bit(__E1000_DOWN, &adapter->flags))
 4586                 e1000_irq_enable(adapter);
 4587 }
 4588 
 4589 static void e1000_vlan_mode(struct net_device *netdev, u32 features)
 4590 {
 4591         struct e1000_adapter *adapter = netdev_priv(netdev);
 4592         struct e1000_hw *hw = &adapter->hw;
 4593         u32 ctrl;
 4594 
 4595         if (!test_bit(__E1000_DOWN, &adapter->flags))
 4596                 e1000_irq_disable(adapter);
 4597 
 4598         ctrl = er32(CTRL);
 4599         if (features & NETIF_F_HW_VLAN_RX) {
 4600                 /* enable VLAN tag insert/strip */
 4601                 ctrl |= E1000_CTRL_VME;
 4602         } else {
 4603                 /* disable VLAN tag insert/strip */
 4604                 ctrl &= ~E1000_CTRL_VME;
 4605         }
 4606         ew32(CTRL, ctrl);
 4607 
 4608         if (!test_bit(__E1000_DOWN, &adapter->flags))
 4609                 e1000_irq_enable(adapter);
 4610 }
 4611 
 4612 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
 4613 {
 4614         struct e1000_adapter *adapter = netdev_priv(netdev);
 4615         struct e1000_hw *hw = &adapter->hw;
 4616         u32 vfta, index;
 4617 
 4618         if ((hw->mng_cookie.status &
 4619              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
 4620             (vid == adapter->mng_vlan_id))
 4621                 return;
 4622 
 4623         if (!e1000_vlan_used(adapter))
 4624                 e1000_vlan_filter_on_off(adapter, true);
 4625 
 4626         /* add VID to filter table */
 4627         index = (vid >> 5) & 0x7F;
 4628         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
 4629         vfta |= (1 << (vid & 0x1F));
 4630         e1000_write_vfta(hw, index, vfta);
 4631 
 4632         set_bit(vid, adapter->active_vlans);
 4633 }
 4634 
 4635 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
 4636 {
 4637         struct e1000_adapter *adapter = netdev_priv(netdev);
 4638         struct e1000_hw *hw = &adapter->hw;
 4639         u32 vfta, index;
 4640 
 4641         if (!test_bit(__E1000_DOWN, &adapter->flags))
 4642                 e1000_irq_disable(adapter);
 4643         if (!test_bit(__E1000_DOWN, &adapter->flags))
 4644                 e1000_irq_enable(adapter);
 4645 
 4646         /* remove VID from filter table */
 4647         index = (vid >> 5) & 0x7F;
 4648         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
 4649         vfta &= ~(1 << (vid & 0x1F));
 4650         e1000_write_vfta(hw, index, vfta);
 4651 
 4652         clear_bit(vid, adapter->active_vlans);
 4653 
 4654         if (!e1000_vlan_used(adapter))
 4655                 e1000_vlan_filter_on_off(adapter, false);
 4656 }
 4657 
 4658 static void e1000_restore_vlan(struct e1000_adapter *adapter)
 4659 {
 4660         u16 vid;
 4661 
 4662         if (!e1000_vlan_used(adapter))
 4663                 return;
 4664 
 4665         e1000_vlan_filter_on_off(adapter, true);
 4666         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
 4667                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
 4668 }
 4669 
 4670 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 4671 {
 4672         struct e1000_hw *hw = &adapter->hw;
 4673 
 4674         hw->autoneg = 0;
 4675 
 4676         /* Make sure dplx is at most 1 bit and lsb of speed is not set
 4677          * for the switch() below to work */
 4678         if ((spd & 1) || (dplx & ~1))
 4679                 goto err_inval;
 4680 
 4681         /* Fiber NICs only allow 1000 gbps Full duplex */
 4682         if ((hw->media_type == e1000_media_type_fiber) &&
 4683             spd != SPEED_1000 &&
 4684             dplx != DUPLEX_FULL)
 4685                 goto err_inval;
 4686 
 4687         switch (spd + dplx) {
 4688         case SPEED_10 + DUPLEX_HALF:
 4689                 hw->forced_speed_duplex = e1000_10_half;
 4690                 break;
 4691         case SPEED_10 + DUPLEX_FULL:
 4692                 hw->forced_speed_duplex = e1000_10_full;
 4693                 break;
 4694         case SPEED_100 + DUPLEX_HALF:
 4695                 hw->forced_speed_duplex = e1000_100_half;
 4696                 break;
 4697         case SPEED_100 + DUPLEX_FULL:
 4698                 hw->forced_speed_duplex = e1000_100_full;
 4699                 break;
 4700         case SPEED_1000 + DUPLEX_FULL:
 4701                 hw->autoneg = 1;
 4702                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
 4703                 break;
 4704         case SPEED_1000 + DUPLEX_HALF: /* not supported */
 4705         default:
 4706                 goto err_inval;
 4707         }
 4708         return 0;
 4709 
 4710 err_inval:
 4711         e_err(probe, "Unsupported Speed/Duplex configuration\n");
 4712         return -EINVAL;
 4713 }
 4714 
 4715 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
 4716 {
 4717         struct net_device *netdev = pci_get_drvdata(pdev);
 4718         struct e1000_adapter *adapter = netdev_priv(netdev);
 4719         struct e1000_hw *hw = &adapter->hw;
 4720         u32 ctrl, ctrl_ext, rctl, status;
 4721         u32 wufc = adapter->wol;
 4722 #ifdef CONFIG_PM
 4723         int retval = 0;
 4724 #endif
 4725 
 4726         netif_device_detach(netdev);
 4727 
 4728         if (netif_running(netdev)) {
 4729                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 4730                 e1000_down(adapter);
 4731         }
 4732 
 4733 #ifdef CONFIG_PM
 4734         retval = pci_save_state(pdev);
 4735         if (retval)
 4736                 return retval;
 4737 #endif
 4738 
 4739         status = er32(STATUS);
 4740         if (status & E1000_STATUS_LU)
 4741                 wufc &= ~E1000_WUFC_LNKC;
 4742 
 4743         if (wufc) {
 4744                 e1000_setup_rctl(adapter);
 4745                 e1000_set_rx_mode(netdev);
 4746 
 4747                 /* turn on all-multi mode if wake on multicast is enabled */
 4748                 if (wufc & E1000_WUFC_MC) {
 4749                         rctl = er32(RCTL);
 4750                         rctl |= E1000_RCTL_MPE;
 4751                         ew32(RCTL, rctl);
 4752                 }
 4753 
 4754                 if (hw->mac_type >= e1000_82540) {
 4755                         ctrl = er32(CTRL);
 4756                         /* advertise wake from D3Cold */
 4757                         #define E1000_CTRL_ADVD3WUC 0x00100000
 4758                         /* phy power management enable */
 4759                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
 4760                         ctrl |= E1000_CTRL_ADVD3WUC |
 4761                                 E1000_CTRL_EN_PHY_PWR_MGMT;
 4762                         ew32(CTRL, ctrl);
 4763                 }
 4764 
 4765                 if (hw->media_type == e1000_media_type_fiber ||
 4766                     hw->media_type == e1000_media_type_internal_serdes) {
 4767                         /* keep the laser running in D3 */
 4768                         ctrl_ext = er32(CTRL_EXT);
 4769                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
 4770                         ew32(CTRL_EXT, ctrl_ext);
 4771                 }
 4772 
 4773                 ew32(WUC, E1000_WUC_PME_EN);
 4774                 ew32(WUFC, wufc);
 4775         } else {
 4776                 ew32(WUC, 0);
 4777                 ew32(WUFC, 0);
 4778         }
 4779 
 4780         e1000_release_manageability(adapter);
 4781 
 4782         *enable_wake = !!wufc;
 4783 
 4784         /* make sure adapter isn't asleep if manageability is enabled */
 4785         if (adapter->en_mng_pt)
 4786                 *enable_wake = true;
 4787 
 4788         if (netif_running(netdev))
 4789                 e1000_free_irq(adapter);
 4790 
 4791         pci_disable_device(pdev);
 4792 
 4793         return 0;
 4794 }
 4795 
 4796 #ifdef CONFIG_PM
 4797 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
 4798 {
 4799         int retval;
 4800         bool wake;
 4801 
 4802         retval = __e1000_shutdown(pdev, &wake);
 4803         if (retval)
 4804                 return retval;
 4805 
 4806         if (wake) {
 4807                 pci_prepare_to_sleep(pdev);
 4808         } else {
 4809                 pci_wake_from_d3(pdev, false);
 4810                 pci_set_power_state(pdev, PCI_D3hot);
 4811         }
 4812 
 4813         return 0;
 4814 }
 4815 
 4816 static int e1000_resume(struct pci_dev *pdev)
 4817 {
 4818         struct net_device *netdev = pci_get_drvdata(pdev);
 4819         struct e1000_adapter *adapter = netdev_priv(netdev);
 4820         struct e1000_hw *hw = &adapter->hw;
 4821         u32 err;
 4822 
 4823         pci_set_power_state(pdev, PCI_D0);
 4824         pci_restore_state(pdev);
 4825         pci_save_state(pdev);
 4826 
 4827         if (adapter->need_ioport)
 4828                 err = pci_enable_device(pdev);
 4829         else
 4830                 err = pci_enable_device_mem(pdev);
 4831         if (err) {
 4832                 pr_err("Cannot enable PCI device from suspend\n");
 4833                 return err;
 4834         }
 4835         pci_set_master(pdev);
 4836 
 4837         pci_enable_wake(pdev, PCI_D3hot, 0);
 4838         pci_enable_wake(pdev, PCI_D3cold, 0);
 4839 
 4840         if (netif_running(netdev)) {
 4841                 err = e1000_request_irq(adapter);
 4842                 if (err)
 4843                         return err;
 4844         }
 4845 
 4846         e1000_power_up_phy(adapter);
 4847         e1000_reset(adapter);
 4848         ew32(WUS, ~0);
 4849 
 4850         e1000_init_manageability(adapter);
 4851 
 4852         if (netif_running(netdev))
 4853                 e1000_up(adapter);
 4854 
 4855         netif_device_attach(netdev);
 4856 
 4857         return 0;
 4858 }
 4859 #endif
 4860 
 4861 static void e1000_shutdown(struct pci_dev *pdev)
 4862 {
 4863         bool wake;
 4864 
 4865         __e1000_shutdown(pdev, &wake);
 4866 
 4867         if (system_state == SYSTEM_POWER_OFF) {
 4868                 pci_wake_from_d3(pdev, wake);
 4869                 pci_set_power_state(pdev, PCI_D3hot);
 4870         }
 4871 }
 4872 
 4873 #ifdef CONFIG_NET_POLL_CONTROLLER
 4874 /*
 4875  * Polling 'interrupt' - used by things like netconsole to send skbs
 4876  * without having to re-enable interrupts. It's not called while
 4877  * the interrupt routine is executing.
 4878  */
 4879 static void e1000_netpoll(struct net_device *netdev)
 4880 {
 4881         struct e1000_adapter *adapter = netdev_priv(netdev);
 4882 
 4883         disable_irq(adapter->pdev->irq);
 4884         e1000_intr(adapter->pdev->irq, netdev);
 4885         enable_irq(adapter->pdev->irq);
 4886 }
 4887 #endif
 4888 
 4889 /**
 4890  * e1000_io_error_detected - called when PCI error is detected
 4891  * @pdev: Pointer to PCI device
 4892  * @state: The current pci connection state
 4893  *
 4894  * This function is called after a PCI bus error affecting
 4895  * this device has been detected.
 4896  */
 4897 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 4898                                                 pci_channel_state_t state)
 4899 {
 4900         struct net_device *netdev = pci_get_drvdata(pdev);
 4901         struct e1000_adapter *adapter = netdev_priv(netdev);
 4902 
 4903         netif_device_detach(netdev);
 4904 
 4905         if (state == pci_channel_io_perm_failure)
 4906                 return PCI_ERS_RESULT_DISCONNECT;
 4907 
 4908         if (netif_running(netdev))
 4909                 e1000_down(adapter);
 4910         pci_disable_device(pdev);
 4911 
 4912         /* Request a slot slot reset. */
 4913         return PCI_ERS_RESULT_NEED_RESET;
 4914 }
 4915 
 4916 /**
 4917  * e1000_io_slot_reset - called after the pci bus has been reset.
 4918  * @pdev: Pointer to PCI device
 4919  *
 4920  * Restart the card from scratch, as if from a cold-boot. Implementation
 4921  * resembles the first-half of the e1000_resume routine.
 4922  */
 4923 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
 4924 {
 4925         struct net_device *netdev = pci_get_drvdata(pdev);
 4926         struct e1000_adapter *adapter = netdev_priv(netdev);
 4927         struct e1000_hw *hw = &adapter->hw;
 4928         int err;
 4929 
 4930         if (adapter->need_ioport)
 4931                 err = pci_enable_device(pdev);
 4932         else
 4933                 err = pci_enable_device_mem(pdev);
 4934         if (err) {
 4935                 pr_err("Cannot re-enable PCI device after reset.\n");
 4936                 return PCI_ERS_RESULT_DISCONNECT;
 4937         }
 4938         pci_set_master(pdev);
 4939 
 4940         pci_enable_wake(pdev, PCI_D3hot, 0);
 4941         pci_enable_wake(pdev, PCI_D3cold, 0);
 4942 
 4943         e1000_reset(adapter);
 4944         ew32(WUS, ~0);
 4945 
 4946         return PCI_ERS_RESULT_RECOVERED;
 4947 }
 4948 
 4949 /**
 4950  * e1000_io_resume - called when traffic can start flowing again.
 4951  * @pdev: Pointer to PCI device
 4952  *
 4953  * This callback is called when the error recovery driver tells us that
 4954  * its OK to resume normal operation. Implementation resembles the
 4955  * second-half of the e1000_resume routine.
 4956  */
 4957 static void e1000_io_resume(struct pci_dev *pdev)
 4958 {
 4959         struct net_device *netdev = pci_get_drvdata(pdev);
 4960         struct e1000_adapter *adapter = netdev_priv(netdev);
 4961 
 4962         e1000_init_manageability(adapter);
 4963 
 4964         if (netif_running(netdev)) {
 4965                 if (e1000_up(adapter)) {
 4966                         pr_info("can't bring device back up after reset\n");
 4967                         return;
 4968                 }
 4969         }
 4970 
 4971         netif_device_attach(netdev);
 4972 }
 4973 
 4974 /* e1000_main.c */

Cache object: 746343ff1ae32fc2129df6ec732c43c0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.