The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
    3  *
    4  * This program is free software; you can redistribute it and/or modify
    5  * it under the terms of the GNU General Public License version 2 as
    6  * published by the Free Software Foundation.
    7  *
    8  * This program is distributed in the hope that it will be useful,
    9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
   10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   11  * GNU General Public License for more details.
   12  *
   13  * You should have received a copy of the GNU General Public Licens
   14  * along with this program; if not, write to the Free Software
   15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
   16  *
   17  */
   18 #include <linux/mm.h>
   19 #include <linux/swap.h>
   20 #include <linux/bio.h>
   21 #include <linux/blkdev.h>
   22 #include <linux/iocontext.h>
   23 #include <linux/slab.h>
   24 #include <linux/init.h>
   25 #include <linux/kernel.h>
   26 #include <linux/export.h>
   27 #include <linux/mempool.h>
   28 #include <linux/workqueue.h>
   29 #include <linux/cgroup.h>
   30 #include <scsi/sg.h>            /* for struct sg_iovec */
   31 
   32 #include <trace/events/block.h>
   33 
   34 /*
   35  * Test patch to inline a certain number of bi_io_vec's inside the bio
   36  * itself, to shrink a bio data allocation from two mempool calls to one
   37  */
   38 #define BIO_INLINE_VECS         4
   39 
   40 static mempool_t *bio_split_pool __read_mostly;
   41 
   42 /*
   43  * if you change this list, also change bvec_alloc or things will
   44  * break badly! cannot be bigger than what you can fit into an
   45  * unsigned short
   46  */
   47 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
   48 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
   49         BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
   50 };
   51 #undef BV
   52 
   53 /*
   54  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
   55  * IO code that does not need private memory pools.
   56  */
   57 struct bio_set *fs_bio_set;
   58 EXPORT_SYMBOL(fs_bio_set);
   59 
   60 /*
   61  * Our slab pool management
   62  */
   63 struct bio_slab {
   64         struct kmem_cache *slab;
   65         unsigned int slab_ref;
   66         unsigned int slab_size;
   67         char name[8];
   68 };
   69 static DEFINE_MUTEX(bio_slab_lock);
   70 static struct bio_slab *bio_slabs;
   71 static unsigned int bio_slab_nr, bio_slab_max;
   72 
   73 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
   74 {
   75         unsigned int sz = sizeof(struct bio) + extra_size;
   76         struct kmem_cache *slab = NULL;
   77         struct bio_slab *bslab, *new_bio_slabs;
   78         unsigned int new_bio_slab_max;
   79         unsigned int i, entry = -1;
   80 
   81         mutex_lock(&bio_slab_lock);
   82 
   83         i = 0;
   84         while (i < bio_slab_nr) {
   85                 bslab = &bio_slabs[i];
   86 
   87                 if (!bslab->slab && entry == -1)
   88                         entry = i;
   89                 else if (bslab->slab_size == sz) {
   90                         slab = bslab->slab;
   91                         bslab->slab_ref++;
   92                         break;
   93                 }
   94                 i++;
   95         }
   96 
   97         if (slab)
   98                 goto out_unlock;
   99 
  100         if (bio_slab_nr == bio_slab_max && entry == -1) {
  101                 new_bio_slab_max = bio_slab_max << 1;
  102                 new_bio_slabs = krealloc(bio_slabs,
  103                                          new_bio_slab_max * sizeof(struct bio_slab),
  104                                          GFP_KERNEL);
  105                 if (!new_bio_slabs)
  106                         goto out_unlock;
  107                 bio_slab_max = new_bio_slab_max;
  108                 bio_slabs = new_bio_slabs;
  109         }
  110         if (entry == -1)
  111                 entry = bio_slab_nr++;
  112 
  113         bslab = &bio_slabs[entry];
  114 
  115         snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  116         slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  117         if (!slab)
  118                 goto out_unlock;
  119 
  120         printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
  121         bslab->slab = slab;
  122         bslab->slab_ref = 1;
  123         bslab->slab_size = sz;
  124 out_unlock:
  125         mutex_unlock(&bio_slab_lock);
  126         return slab;
  127 }
  128 
  129 static void bio_put_slab(struct bio_set *bs)
  130 {
  131         struct bio_slab *bslab = NULL;
  132         unsigned int i;
  133 
  134         mutex_lock(&bio_slab_lock);
  135 
  136         for (i = 0; i < bio_slab_nr; i++) {
  137                 if (bs->bio_slab == bio_slabs[i].slab) {
  138                         bslab = &bio_slabs[i];
  139                         break;
  140                 }
  141         }
  142 
  143         if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  144                 goto out;
  145 
  146         WARN_ON(!bslab->slab_ref);
  147 
  148         if (--bslab->slab_ref)
  149                 goto out;
  150 
  151         kmem_cache_destroy(bslab->slab);
  152         bslab->slab = NULL;
  153 
  154 out:
  155         mutex_unlock(&bio_slab_lock);
  156 }
  157 
  158 unsigned int bvec_nr_vecs(unsigned short idx)
  159 {
  160         return bvec_slabs[idx].nr_vecs;
  161 }
  162 
  163 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  164 {
  165         BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  166 
  167         if (idx == BIOVEC_MAX_IDX)
  168                 mempool_free(bv, bs->bvec_pool);
  169         else {
  170                 struct biovec_slab *bvs = bvec_slabs + idx;
  171 
  172                 kmem_cache_free(bvs->slab, bv);
  173         }
  174 }
  175 
  176 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  177                               struct bio_set *bs)
  178 {
  179         struct bio_vec *bvl;
  180 
  181         /*
  182          * see comment near bvec_array define!
  183          */
  184         switch (nr) {
  185         case 1:
  186                 *idx = 0;
  187                 break;
  188         case 2 ... 4:
  189                 *idx = 1;
  190                 break;
  191         case 5 ... 16:
  192                 *idx = 2;
  193                 break;
  194         case 17 ... 64:
  195                 *idx = 3;
  196                 break;
  197         case 65 ... 128:
  198                 *idx = 4;
  199                 break;
  200         case 129 ... BIO_MAX_PAGES:
  201                 *idx = 5;
  202                 break;
  203         default:
  204                 return NULL;
  205         }
  206 
  207         /*
  208          * idx now points to the pool we want to allocate from. only the
  209          * 1-vec entry pool is mempool backed.
  210          */
  211         if (*idx == BIOVEC_MAX_IDX) {
  212 fallback:
  213                 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  214         } else {
  215                 struct biovec_slab *bvs = bvec_slabs + *idx;
  216                 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  217 
  218                 /*
  219                  * Make this allocation restricted and don't dump info on
  220                  * allocation failures, since we'll fallback to the mempool
  221                  * in case of failure.
  222                  */
  223                 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  224 
  225                 /*
  226                  * Try a slab allocation. If this fails and __GFP_WAIT
  227                  * is set, retry with the 1-entry mempool
  228                  */
  229                 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  230                 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  231                         *idx = BIOVEC_MAX_IDX;
  232                         goto fallback;
  233                 }
  234         }
  235 
  236         return bvl;
  237 }
  238 
  239 static void __bio_free(struct bio *bio)
  240 {
  241         bio_disassociate_task(bio);
  242 
  243         if (bio_integrity(bio))
  244                 bio_integrity_free(bio);
  245 }
  246 
  247 static void bio_free(struct bio *bio)
  248 {
  249         struct bio_set *bs = bio->bi_pool;
  250         void *p;
  251 
  252         __bio_free(bio);
  253 
  254         if (bs) {
  255                 if (bio_has_allocated_vec(bio))
  256                         bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  257 
  258                 /*
  259                  * If we have front padding, adjust the bio pointer before freeing
  260                  */
  261                 p = bio;
  262                 p -= bs->front_pad;
  263 
  264                 mempool_free(p, bs->bio_pool);
  265         } else {
  266                 /* Bio was allocated by bio_kmalloc() */
  267                 kfree(bio);
  268         }
  269 }
  270 
  271 void bio_init(struct bio *bio)
  272 {
  273         memset(bio, 0, sizeof(*bio));
  274         bio->bi_flags = 1 << BIO_UPTODATE;
  275         atomic_set(&bio->bi_cnt, 1);
  276 }
  277 EXPORT_SYMBOL(bio_init);
  278 
  279 /**
  280  * bio_reset - reinitialize a bio
  281  * @bio:        bio to reset
  282  *
  283  * Description:
  284  *   After calling bio_reset(), @bio will be in the same state as a freshly
  285  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
  286  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
  287  *   comment in struct bio.
  288  */
  289 void bio_reset(struct bio *bio)
  290 {
  291         unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
  292 
  293         __bio_free(bio);
  294 
  295         memset(bio, 0, BIO_RESET_BYTES);
  296         bio->bi_flags = flags|(1 << BIO_UPTODATE);
  297 }
  298 EXPORT_SYMBOL(bio_reset);
  299 
  300 /**
  301  * bio_alloc_bioset - allocate a bio for I/O
  302  * @gfp_mask:   the GFP_ mask given to the slab allocator
  303  * @nr_iovecs:  number of iovecs to pre-allocate
  304  * @bs:         the bio_set to allocate from.
  305  *
  306  * Description:
  307  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
  308  *   backed by the @bs's mempool.
  309  *
  310  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
  311  *   able to allocate a bio. This is due to the mempool guarantees. To make this
  312  *   work, callers must never allocate more than 1 bio at a time from this pool.
  313  *   Callers that need to allocate more than 1 bio must always submit the
  314  *   previously allocated bio for IO before attempting to allocate a new one.
  315  *   Failure to do so can cause deadlocks under memory pressure.
  316  *
  317  *   RETURNS:
  318  *   Pointer to new bio on success, NULL on failure.
  319  */
  320 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  321 {
  322         unsigned front_pad;
  323         unsigned inline_vecs;
  324         unsigned long idx = BIO_POOL_NONE;
  325         struct bio_vec *bvl = NULL;
  326         struct bio *bio;
  327         void *p;
  328 
  329         if (!bs) {
  330                 if (nr_iovecs > UIO_MAXIOV)
  331                         return NULL;
  332 
  333                 p = kmalloc(sizeof(struct bio) +
  334                             nr_iovecs * sizeof(struct bio_vec),
  335                             gfp_mask);
  336                 front_pad = 0;
  337                 inline_vecs = nr_iovecs;
  338         } else {
  339                 p = mempool_alloc(bs->bio_pool, gfp_mask);
  340                 front_pad = bs->front_pad;
  341                 inline_vecs = BIO_INLINE_VECS;
  342         }
  343 
  344         if (unlikely(!p))
  345                 return NULL;
  346 
  347         bio = p + front_pad;
  348         bio_init(bio);
  349 
  350         if (nr_iovecs > inline_vecs) {
  351                 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  352                 if (unlikely(!bvl))
  353                         goto err_free;
  354         } else if (nr_iovecs) {
  355                 bvl = bio->bi_inline_vecs;
  356         }
  357 
  358         bio->bi_pool = bs;
  359         bio->bi_flags |= idx << BIO_POOL_OFFSET;
  360         bio->bi_max_vecs = nr_iovecs;
  361         bio->bi_io_vec = bvl;
  362         return bio;
  363 
  364 err_free:
  365         mempool_free(p, bs->bio_pool);
  366         return NULL;
  367 }
  368 EXPORT_SYMBOL(bio_alloc_bioset);
  369 
  370 void zero_fill_bio(struct bio *bio)
  371 {
  372         unsigned long flags;
  373         struct bio_vec *bv;
  374         int i;
  375 
  376         bio_for_each_segment(bv, bio, i) {
  377                 char *data = bvec_kmap_irq(bv, &flags);
  378                 memset(data, 0, bv->bv_len);
  379                 flush_dcache_page(bv->bv_page);
  380                 bvec_kunmap_irq(data, &flags);
  381         }
  382 }
  383 EXPORT_SYMBOL(zero_fill_bio);
  384 
  385 /**
  386  * bio_put - release a reference to a bio
  387  * @bio:   bio to release reference to
  388  *
  389  * Description:
  390  *   Put a reference to a &struct bio, either one you have gotten with
  391  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
  392  **/
  393 void bio_put(struct bio *bio)
  394 {
  395         BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  396 
  397         /*
  398          * last put frees it
  399          */
  400         if (atomic_dec_and_test(&bio->bi_cnt))
  401                 bio_free(bio);
  402 }
  403 EXPORT_SYMBOL(bio_put);
  404 
  405 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  406 {
  407         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  408                 blk_recount_segments(q, bio);
  409 
  410         return bio->bi_phys_segments;
  411 }
  412 EXPORT_SYMBOL(bio_phys_segments);
  413 
  414 /**
  415  *      __bio_clone     -       clone a bio
  416  *      @bio: destination bio
  417  *      @bio_src: bio to clone
  418  *
  419  *      Clone a &bio. Caller will own the returned bio, but not
  420  *      the actual data it points to. Reference count of returned
  421  *      bio will be one.
  422  */
  423 void __bio_clone(struct bio *bio, struct bio *bio_src)
  424 {
  425         memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  426                 bio_src->bi_max_vecs * sizeof(struct bio_vec));
  427 
  428         /*
  429          * most users will be overriding ->bi_bdev with a new target,
  430          * so we don't set nor calculate new physical/hw segment counts here
  431          */
  432         bio->bi_sector = bio_src->bi_sector;
  433         bio->bi_bdev = bio_src->bi_bdev;
  434         bio->bi_flags |= 1 << BIO_CLONED;
  435         bio->bi_rw = bio_src->bi_rw;
  436         bio->bi_vcnt = bio_src->bi_vcnt;
  437         bio->bi_size = bio_src->bi_size;
  438         bio->bi_idx = bio_src->bi_idx;
  439 }
  440 EXPORT_SYMBOL(__bio_clone);
  441 
  442 /**
  443  *      bio_clone_bioset -      clone a bio
  444  *      @bio: bio to clone
  445  *      @gfp_mask: allocation priority
  446  *      @bs: bio_set to allocate from
  447  *
  448  *      Like __bio_clone, only also allocates the returned bio
  449  */
  450 struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
  451                              struct bio_set *bs)
  452 {
  453         struct bio *b;
  454 
  455         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
  456         if (!b)
  457                 return NULL;
  458 
  459         __bio_clone(b, bio);
  460 
  461         if (bio_integrity(bio)) {
  462                 int ret;
  463 
  464                 ret = bio_integrity_clone(b, bio, gfp_mask);
  465 
  466                 if (ret < 0) {
  467                         bio_put(b);
  468                         return NULL;
  469                 }
  470         }
  471 
  472         return b;
  473 }
  474 EXPORT_SYMBOL(bio_clone_bioset);
  475 
  476 /**
  477  *      bio_get_nr_vecs         - return approx number of vecs
  478  *      @bdev:  I/O target
  479  *
  480  *      Return the approximate number of pages we can send to this target.
  481  *      There's no guarantee that you will be able to fit this number of pages
  482  *      into a bio, it does not account for dynamic restrictions that vary
  483  *      on offset.
  484  */
  485 int bio_get_nr_vecs(struct block_device *bdev)
  486 {
  487         struct request_queue *q = bdev_get_queue(bdev);
  488         int nr_pages;
  489 
  490         nr_pages = min_t(unsigned,
  491                      queue_max_segments(q),
  492                      queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
  493 
  494         return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
  495 
  496 }
  497 EXPORT_SYMBOL(bio_get_nr_vecs);
  498 
  499 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  500                           *page, unsigned int len, unsigned int offset,
  501                           unsigned short max_sectors)
  502 {
  503         int retried_segments = 0;
  504         struct bio_vec *bvec;
  505 
  506         /*
  507          * cloned bio must not modify vec list
  508          */
  509         if (unlikely(bio_flagged(bio, BIO_CLONED)))
  510                 return 0;
  511 
  512         if (((bio->bi_size + len) >> 9) > max_sectors)
  513                 return 0;
  514 
  515         /*
  516          * For filesystems with a blocksize smaller than the pagesize
  517          * we will often be called with the same page as last time and
  518          * a consecutive offset.  Optimize this special case.
  519          */
  520         if (bio->bi_vcnt > 0) {
  521                 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  522 
  523                 if (page == prev->bv_page &&
  524                     offset == prev->bv_offset + prev->bv_len) {
  525                         unsigned int prev_bv_len = prev->bv_len;
  526                         prev->bv_len += len;
  527 
  528                         if (q->merge_bvec_fn) {
  529                                 struct bvec_merge_data bvm = {
  530                                         /* prev_bvec is already charged in
  531                                            bi_size, discharge it in order to
  532                                            simulate merging updated prev_bvec
  533                                            as new bvec. */
  534                                         .bi_bdev = bio->bi_bdev,
  535                                         .bi_sector = bio->bi_sector,
  536                                         .bi_size = bio->bi_size - prev_bv_len,
  537                                         .bi_rw = bio->bi_rw,
  538                                 };
  539 
  540                                 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
  541                                         prev->bv_len -= len;
  542                                         return 0;
  543                                 }
  544                         }
  545 
  546                         goto done;
  547                 }
  548         }
  549 
  550         if (bio->bi_vcnt >= bio->bi_max_vecs)
  551                 return 0;
  552 
  553         /*
  554          * we might lose a segment or two here, but rather that than
  555          * make this too complex.
  556          */
  557 
  558         while (bio->bi_phys_segments >= queue_max_segments(q)) {
  559 
  560                 if (retried_segments)
  561                         return 0;
  562 
  563                 retried_segments = 1;
  564                 blk_recount_segments(q, bio);
  565         }
  566 
  567         /*
  568          * setup the new entry, we might clear it again later if we
  569          * cannot add the page
  570          */
  571         bvec = &bio->bi_io_vec[bio->bi_vcnt];
  572         bvec->bv_page = page;
  573         bvec->bv_len = len;
  574         bvec->bv_offset = offset;
  575 
  576         /*
  577          * if queue has other restrictions (eg varying max sector size
  578          * depending on offset), it can specify a merge_bvec_fn in the
  579          * queue to get further control
  580          */
  581         if (q->merge_bvec_fn) {
  582                 struct bvec_merge_data bvm = {
  583                         .bi_bdev = bio->bi_bdev,
  584                         .bi_sector = bio->bi_sector,
  585                         .bi_size = bio->bi_size,
  586                         .bi_rw = bio->bi_rw,
  587                 };
  588 
  589                 /*
  590                  * merge_bvec_fn() returns number of bytes it can accept
  591                  * at this offset
  592                  */
  593                 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
  594                         bvec->bv_page = NULL;
  595                         bvec->bv_len = 0;
  596                         bvec->bv_offset = 0;
  597                         return 0;
  598                 }
  599         }
  600 
  601         /* If we may be able to merge these biovecs, force a recount */
  602         if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  603                 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  604 
  605         bio->bi_vcnt++;
  606         bio->bi_phys_segments++;
  607  done:
  608         bio->bi_size += len;
  609         return len;
  610 }
  611 
  612 /**
  613  *      bio_add_pc_page -       attempt to add page to bio
  614  *      @q: the target queue
  615  *      @bio: destination bio
  616  *      @page: page to add
  617  *      @len: vec entry length
  618  *      @offset: vec entry offset
  619  *
  620  *      Attempt to add a page to the bio_vec maplist. This can fail for a
  621  *      number of reasons, such as the bio being full or target block device
  622  *      limitations. The target block device must allow bio's up to PAGE_SIZE,
  623  *      so it is always possible to add a single page to an empty bio.
  624  *
  625  *      This should only be used by REQ_PC bios.
  626  */
  627 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  628                     unsigned int len, unsigned int offset)
  629 {
  630         return __bio_add_page(q, bio, page, len, offset,
  631                               queue_max_hw_sectors(q));
  632 }
  633 EXPORT_SYMBOL(bio_add_pc_page);
  634 
  635 /**
  636  *      bio_add_page    -       attempt to add page to bio
  637  *      @bio: destination bio
  638  *      @page: page to add
  639  *      @len: vec entry length
  640  *      @offset: vec entry offset
  641  *
  642  *      Attempt to add a page to the bio_vec maplist. This can fail for a
  643  *      number of reasons, such as the bio being full or target block device
  644  *      limitations. The target block device must allow bio's up to PAGE_SIZE,
  645  *      so it is always possible to add a single page to an empty bio.
  646  */
  647 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  648                  unsigned int offset)
  649 {
  650         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  651         return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
  652 }
  653 EXPORT_SYMBOL(bio_add_page);
  654 
  655 struct bio_map_data {
  656         struct bio_vec *iovecs;
  657         struct sg_iovec *sgvecs;
  658         int nr_sgvecs;
  659         int is_our_pages;
  660 };
  661 
  662 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  663                              struct sg_iovec *iov, int iov_count,
  664                              int is_our_pages)
  665 {
  666         memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  667         memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  668         bmd->nr_sgvecs = iov_count;
  669         bmd->is_our_pages = is_our_pages;
  670         bio->bi_private = bmd;
  671 }
  672 
  673 static void bio_free_map_data(struct bio_map_data *bmd)
  674 {
  675         kfree(bmd->iovecs);
  676         kfree(bmd->sgvecs);
  677         kfree(bmd);
  678 }
  679 
  680 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
  681                                                unsigned int iov_count,
  682                                                gfp_t gfp_mask)
  683 {
  684         struct bio_map_data *bmd;
  685 
  686         if (iov_count > UIO_MAXIOV)
  687                 return NULL;
  688 
  689         bmd = kmalloc(sizeof(*bmd), gfp_mask);
  690         if (!bmd)
  691                 return NULL;
  692 
  693         bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  694         if (!bmd->iovecs) {
  695                 kfree(bmd);
  696                 return NULL;
  697         }
  698 
  699         bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  700         if (bmd->sgvecs)
  701                 return bmd;
  702 
  703         kfree(bmd->iovecs);
  704         kfree(bmd);
  705         return NULL;
  706 }
  707 
  708 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  709                           struct sg_iovec *iov, int iov_count,
  710                           int to_user, int from_user, int do_free_page)
  711 {
  712         int ret = 0, i;
  713         struct bio_vec *bvec;
  714         int iov_idx = 0;
  715         unsigned int iov_off = 0;
  716 
  717         __bio_for_each_segment(bvec, bio, i, 0) {
  718                 char *bv_addr = page_address(bvec->bv_page);
  719                 unsigned int bv_len = iovecs[i].bv_len;
  720 
  721                 while (bv_len && iov_idx < iov_count) {
  722                         unsigned int bytes;
  723                         char __user *iov_addr;
  724 
  725                         bytes = min_t(unsigned int,
  726                                       iov[iov_idx].iov_len - iov_off, bv_len);
  727                         iov_addr = iov[iov_idx].iov_base + iov_off;
  728 
  729                         if (!ret) {
  730                                 if (to_user)
  731                                         ret = copy_to_user(iov_addr, bv_addr,
  732                                                            bytes);
  733 
  734                                 if (from_user)
  735                                         ret = copy_from_user(bv_addr, iov_addr,
  736                                                              bytes);
  737 
  738                                 if (ret)
  739                                         ret = -EFAULT;
  740                         }
  741 
  742                         bv_len -= bytes;
  743                         bv_addr += bytes;
  744                         iov_addr += bytes;
  745                         iov_off += bytes;
  746 
  747                         if (iov[iov_idx].iov_len == iov_off) {
  748                                 iov_idx++;
  749                                 iov_off = 0;
  750                         }
  751                 }
  752 
  753                 if (do_free_page)
  754                         __free_page(bvec->bv_page);
  755         }
  756 
  757         return ret;
  758 }
  759 
  760 /**
  761  *      bio_uncopy_user -       finish previously mapped bio
  762  *      @bio: bio being terminated
  763  *
  764  *      Free pages allocated from bio_copy_user() and write back data
  765  *      to user space in case of a read.
  766  */
  767 int bio_uncopy_user(struct bio *bio)
  768 {
  769         struct bio_map_data *bmd = bio->bi_private;
  770         int ret = 0;
  771 
  772         if (!bio_flagged(bio, BIO_NULL_MAPPED))
  773                 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  774                                      bmd->nr_sgvecs, bio_data_dir(bio) == READ,
  775                                      0, bmd->is_our_pages);
  776         bio_free_map_data(bmd);
  777         bio_put(bio);
  778         return ret;
  779 }
  780 EXPORT_SYMBOL(bio_uncopy_user);
  781 
  782 /**
  783  *      bio_copy_user_iov       -       copy user data to bio
  784  *      @q: destination block queue
  785  *      @map_data: pointer to the rq_map_data holding pages (if necessary)
  786  *      @iov:   the iovec.
  787  *      @iov_count: number of elements in the iovec
  788  *      @write_to_vm: bool indicating writing to pages or not
  789  *      @gfp_mask: memory allocation flags
  790  *
  791  *      Prepares and returns a bio for indirect user io, bouncing data
  792  *      to/from kernel pages as necessary. Must be paired with
  793  *      call bio_uncopy_user() on io completion.
  794  */
  795 struct bio *bio_copy_user_iov(struct request_queue *q,
  796                               struct rq_map_data *map_data,
  797                               struct sg_iovec *iov, int iov_count,
  798                               int write_to_vm, gfp_t gfp_mask)
  799 {
  800         struct bio_map_data *bmd;
  801         struct bio_vec *bvec;
  802         struct page *page;
  803         struct bio *bio;
  804         int i, ret;
  805         int nr_pages = 0;
  806         unsigned int len = 0;
  807         unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  808 
  809         for (i = 0; i < iov_count; i++) {
  810                 unsigned long uaddr;
  811                 unsigned long end;
  812                 unsigned long start;
  813 
  814                 uaddr = (unsigned long)iov[i].iov_base;
  815                 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  816                 start = uaddr >> PAGE_SHIFT;
  817 
  818                 /*
  819                  * Overflow, abort
  820                  */
  821                 if (end < start)
  822                         return ERR_PTR(-EINVAL);
  823 
  824                 nr_pages += end - start;
  825                 len += iov[i].iov_len;
  826         }
  827 
  828         if (offset)
  829                 nr_pages++;
  830 
  831         bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  832         if (!bmd)
  833                 return ERR_PTR(-ENOMEM);
  834 
  835         ret = -ENOMEM;
  836         bio = bio_kmalloc(gfp_mask, nr_pages);
  837         if (!bio)
  838                 goto out_bmd;
  839 
  840         if (!write_to_vm)
  841                 bio->bi_rw |= REQ_WRITE;
  842 
  843         ret = 0;
  844 
  845         if (map_data) {
  846                 nr_pages = 1 << map_data->page_order;
  847                 i = map_data->offset / PAGE_SIZE;
  848         }
  849         while (len) {
  850                 unsigned int bytes = PAGE_SIZE;
  851 
  852                 bytes -= offset;
  853 
  854                 if (bytes > len)
  855                         bytes = len;
  856 
  857                 if (map_data) {
  858                         if (i == map_data->nr_entries * nr_pages) {
  859                                 ret = -ENOMEM;
  860                                 break;
  861                         }
  862 
  863                         page = map_data->pages[i / nr_pages];
  864                         page += (i % nr_pages);
  865 
  866                         i++;
  867                 } else {
  868                         page = alloc_page(q->bounce_gfp | gfp_mask);
  869                         if (!page) {
  870                                 ret = -ENOMEM;
  871                                 break;
  872                         }
  873                 }
  874 
  875                 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  876                         break;
  877 
  878                 len -= bytes;
  879                 offset = 0;
  880         }
  881 
  882         if (ret)
  883                 goto cleanup;
  884 
  885         /*
  886          * success
  887          */
  888         if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
  889             (map_data && map_data->from_user)) {
  890                 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
  891                 if (ret)
  892                         goto cleanup;
  893         }
  894 
  895         bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  896         return bio;
  897 cleanup:
  898         if (!map_data)
  899                 bio_for_each_segment(bvec, bio, i)
  900                         __free_page(bvec->bv_page);
  901 
  902         bio_put(bio);
  903 out_bmd:
  904         bio_free_map_data(bmd);
  905         return ERR_PTR(ret);
  906 }
  907 
  908 /**
  909  *      bio_copy_user   -       copy user data to bio
  910  *      @q: destination block queue
  911  *      @map_data: pointer to the rq_map_data holding pages (if necessary)
  912  *      @uaddr: start of user address
  913  *      @len: length in bytes
  914  *      @write_to_vm: bool indicating writing to pages or not
  915  *      @gfp_mask: memory allocation flags
  916  *
  917  *      Prepares and returns a bio for indirect user io, bouncing data
  918  *      to/from kernel pages as necessary. Must be paired with
  919  *      call bio_uncopy_user() on io completion.
  920  */
  921 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  922                           unsigned long uaddr, unsigned int len,
  923                           int write_to_vm, gfp_t gfp_mask)
  924 {
  925         struct sg_iovec iov;
  926 
  927         iov.iov_base = (void __user *)uaddr;
  928         iov.iov_len = len;
  929 
  930         return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  931 }
  932 EXPORT_SYMBOL(bio_copy_user);
  933 
  934 static struct bio *__bio_map_user_iov(struct request_queue *q,
  935                                       struct block_device *bdev,
  936                                       struct sg_iovec *iov, int iov_count,
  937                                       int write_to_vm, gfp_t gfp_mask)
  938 {
  939         int i, j;
  940         int nr_pages = 0;
  941         struct page **pages;
  942         struct bio *bio;
  943         int cur_page = 0;
  944         int ret, offset;
  945 
  946         for (i = 0; i < iov_count; i++) {
  947                 unsigned long uaddr = (unsigned long)iov[i].iov_base;
  948                 unsigned long len = iov[i].iov_len;
  949                 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  950                 unsigned long start = uaddr >> PAGE_SHIFT;
  951 
  952                 /*
  953                  * Overflow, abort
  954                  */
  955                 if (end < start)
  956                         return ERR_PTR(-EINVAL);
  957 
  958                 nr_pages += end - start;
  959                 /*
  960                  * buffer must be aligned to at least hardsector size for now
  961                  */
  962                 if (uaddr & queue_dma_alignment(q))
  963                         return ERR_PTR(-EINVAL);
  964         }
  965 
  966         if (!nr_pages)
  967                 return ERR_PTR(-EINVAL);
  968 
  969         bio = bio_kmalloc(gfp_mask, nr_pages);
  970         if (!bio)
  971                 return ERR_PTR(-ENOMEM);
  972 
  973         ret = -ENOMEM;
  974         pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  975         if (!pages)
  976                 goto out;
  977 
  978         for (i = 0; i < iov_count; i++) {
  979                 unsigned long uaddr = (unsigned long)iov[i].iov_base;
  980                 unsigned long len = iov[i].iov_len;
  981                 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  982                 unsigned long start = uaddr >> PAGE_SHIFT;
  983                 const int local_nr_pages = end - start;
  984                 const int page_limit = cur_page + local_nr_pages;
  985 
  986                 ret = get_user_pages_fast(uaddr, local_nr_pages,
  987                                 write_to_vm, &pages[cur_page]);
  988                 if (ret < local_nr_pages) {
  989                         ret = -EFAULT;
  990                         goto out_unmap;
  991                 }
  992 
  993                 offset = uaddr & ~PAGE_MASK;
  994                 for (j = cur_page; j < page_limit; j++) {
  995                         unsigned int bytes = PAGE_SIZE - offset;
  996 
  997                         if (len <= 0)
  998                                 break;
  999                         
 1000                         if (bytes > len)
 1001                                 bytes = len;
 1002 
 1003                         /*
 1004                          * sorry...
 1005                          */
 1006                         if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
 1007                                             bytes)
 1008                                 break;
 1009 
 1010                         len -= bytes;
 1011                         offset = 0;
 1012                 }
 1013 
 1014                 cur_page = j;
 1015                 /*
 1016                  * release the pages we didn't map into the bio, if any
 1017                  */
 1018                 while (j < page_limit)
 1019                         page_cache_release(pages[j++]);
 1020         }
 1021 
 1022         kfree(pages);
 1023 
 1024         /*
 1025          * set data direction, and check if mapped pages need bouncing
 1026          */
 1027         if (!write_to_vm)
 1028                 bio->bi_rw |= REQ_WRITE;
 1029 
 1030         bio->bi_bdev = bdev;
 1031         bio->bi_flags |= (1 << BIO_USER_MAPPED);
 1032         return bio;
 1033 
 1034  out_unmap:
 1035         for (i = 0; i < nr_pages; i++) {
 1036                 if(!pages[i])
 1037                         break;
 1038                 page_cache_release(pages[i]);
 1039         }
 1040  out:
 1041         kfree(pages);
 1042         bio_put(bio);
 1043         return ERR_PTR(ret);
 1044 }
 1045 
 1046 /**
 1047  *      bio_map_user    -       map user address into bio
 1048  *      @q: the struct request_queue for the bio
 1049  *      @bdev: destination block device
 1050  *      @uaddr: start of user address
 1051  *      @len: length in bytes
 1052  *      @write_to_vm: bool indicating writing to pages or not
 1053  *      @gfp_mask: memory allocation flags
 1054  *
 1055  *      Map the user space address into a bio suitable for io to a block
 1056  *      device. Returns an error pointer in case of error.
 1057  */
 1058 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
 1059                          unsigned long uaddr, unsigned int len, int write_to_vm,
 1060                          gfp_t gfp_mask)
 1061 {
 1062         struct sg_iovec iov;
 1063 
 1064         iov.iov_base = (void __user *)uaddr;
 1065         iov.iov_len = len;
 1066 
 1067         return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
 1068 }
 1069 EXPORT_SYMBOL(bio_map_user);
 1070 
 1071 /**
 1072  *      bio_map_user_iov - map user sg_iovec table into bio
 1073  *      @q: the struct request_queue for the bio
 1074  *      @bdev: destination block device
 1075  *      @iov:   the iovec.
 1076  *      @iov_count: number of elements in the iovec
 1077  *      @write_to_vm: bool indicating writing to pages or not
 1078  *      @gfp_mask: memory allocation flags
 1079  *
 1080  *      Map the user space address into a bio suitable for io to a block
 1081  *      device. Returns an error pointer in case of error.
 1082  */
 1083 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
 1084                              struct sg_iovec *iov, int iov_count,
 1085                              int write_to_vm, gfp_t gfp_mask)
 1086 {
 1087         struct bio *bio;
 1088 
 1089         bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
 1090                                  gfp_mask);
 1091         if (IS_ERR(bio))
 1092                 return bio;
 1093 
 1094         /*
 1095          * subtle -- if __bio_map_user() ended up bouncing a bio,
 1096          * it would normally disappear when its bi_end_io is run.
 1097          * however, we need it for the unmap, so grab an extra
 1098          * reference to it
 1099          */
 1100         bio_get(bio);
 1101 
 1102         return bio;
 1103 }
 1104 
 1105 static void __bio_unmap_user(struct bio *bio)
 1106 {
 1107         struct bio_vec *bvec;
 1108         int i;
 1109 
 1110         /*
 1111          * make sure we dirty pages we wrote to
 1112          */
 1113         __bio_for_each_segment(bvec, bio, i, 0) {
 1114                 if (bio_data_dir(bio) == READ)
 1115                         set_page_dirty_lock(bvec->bv_page);
 1116 
 1117                 page_cache_release(bvec->bv_page);
 1118         }
 1119 
 1120         bio_put(bio);
 1121 }
 1122 
 1123 /**
 1124  *      bio_unmap_user  -       unmap a bio
 1125  *      @bio:           the bio being unmapped
 1126  *
 1127  *      Unmap a bio previously mapped by bio_map_user(). Must be called with
 1128  *      a process context.
 1129  *
 1130  *      bio_unmap_user() may sleep.
 1131  */
 1132 void bio_unmap_user(struct bio *bio)
 1133 {
 1134         __bio_unmap_user(bio);
 1135         bio_put(bio);
 1136 }
 1137 EXPORT_SYMBOL(bio_unmap_user);
 1138 
 1139 static void bio_map_kern_endio(struct bio *bio, int err)
 1140 {
 1141         bio_put(bio);
 1142 }
 1143 
 1144 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
 1145                                   unsigned int len, gfp_t gfp_mask)
 1146 {
 1147         unsigned long kaddr = (unsigned long)data;
 1148         unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 1149         unsigned long start = kaddr >> PAGE_SHIFT;
 1150         const int nr_pages = end - start;
 1151         int offset, i;
 1152         struct bio *bio;
 1153 
 1154         bio = bio_kmalloc(gfp_mask, nr_pages);
 1155         if (!bio)
 1156                 return ERR_PTR(-ENOMEM);
 1157 
 1158         offset = offset_in_page(kaddr);
 1159         for (i = 0; i < nr_pages; i++) {
 1160                 unsigned int bytes = PAGE_SIZE - offset;
 1161 
 1162                 if (len <= 0)
 1163                         break;
 1164 
 1165                 if (bytes > len)
 1166                         bytes = len;
 1167 
 1168                 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
 1169                                     offset) < bytes)
 1170                         break;
 1171 
 1172                 data += bytes;
 1173                 len -= bytes;
 1174                 offset = 0;
 1175         }
 1176 
 1177         bio->bi_end_io = bio_map_kern_endio;
 1178         return bio;
 1179 }
 1180 
 1181 /**
 1182  *      bio_map_kern    -       map kernel address into bio
 1183  *      @q: the struct request_queue for the bio
 1184  *      @data: pointer to buffer to map
 1185  *      @len: length in bytes
 1186  *      @gfp_mask: allocation flags for bio allocation
 1187  *
 1188  *      Map the kernel address into a bio suitable for io to a block
 1189  *      device. Returns an error pointer in case of error.
 1190  */
 1191 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
 1192                          gfp_t gfp_mask)
 1193 {
 1194         struct bio *bio;
 1195 
 1196         bio = __bio_map_kern(q, data, len, gfp_mask);
 1197         if (IS_ERR(bio))
 1198                 return bio;
 1199 
 1200         if (bio->bi_size == len)
 1201                 return bio;
 1202 
 1203         /*
 1204          * Don't support partial mappings.
 1205          */
 1206         bio_put(bio);
 1207         return ERR_PTR(-EINVAL);
 1208 }
 1209 EXPORT_SYMBOL(bio_map_kern);
 1210 
 1211 static void bio_copy_kern_endio(struct bio *bio, int err)
 1212 {
 1213         struct bio_vec *bvec;
 1214         const int read = bio_data_dir(bio) == READ;
 1215         struct bio_map_data *bmd = bio->bi_private;
 1216         int i;
 1217         char *p = bmd->sgvecs[0].iov_base;
 1218 
 1219         __bio_for_each_segment(bvec, bio, i, 0) {
 1220                 char *addr = page_address(bvec->bv_page);
 1221                 int len = bmd->iovecs[i].bv_len;
 1222 
 1223                 if (read)
 1224                         memcpy(p, addr, len);
 1225 
 1226                 __free_page(bvec->bv_page);
 1227                 p += len;
 1228         }
 1229 
 1230         bio_free_map_data(bmd);
 1231         bio_put(bio);
 1232 }
 1233 
 1234 /**
 1235  *      bio_copy_kern   -       copy kernel address into bio
 1236  *      @q: the struct request_queue for the bio
 1237  *      @data: pointer to buffer to copy
 1238  *      @len: length in bytes
 1239  *      @gfp_mask: allocation flags for bio and page allocation
 1240  *      @reading: data direction is READ
 1241  *
 1242  *      copy the kernel address into a bio suitable for io to a block
 1243  *      device. Returns an error pointer in case of error.
 1244  */
 1245 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
 1246                           gfp_t gfp_mask, int reading)
 1247 {
 1248         struct bio *bio;
 1249         struct bio_vec *bvec;
 1250         int i;
 1251 
 1252         bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
 1253         if (IS_ERR(bio))
 1254                 return bio;
 1255 
 1256         if (!reading) {
 1257                 void *p = data;
 1258 
 1259                 bio_for_each_segment(bvec, bio, i) {
 1260                         char *addr = page_address(bvec->bv_page);
 1261 
 1262                         memcpy(addr, p, bvec->bv_len);
 1263                         p += bvec->bv_len;
 1264                 }
 1265         }
 1266 
 1267         bio->bi_end_io = bio_copy_kern_endio;
 1268 
 1269         return bio;
 1270 }
 1271 EXPORT_SYMBOL(bio_copy_kern);
 1272 
 1273 /*
 1274  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 1275  * for performing direct-IO in BIOs.
 1276  *
 1277  * The problem is that we cannot run set_page_dirty() from interrupt context
 1278  * because the required locks are not interrupt-safe.  So what we can do is to
 1279  * mark the pages dirty _before_ performing IO.  And in interrupt context,
 1280  * check that the pages are still dirty.   If so, fine.  If not, redirty them
 1281  * in process context.
 1282  *
 1283  * We special-case compound pages here: normally this means reads into hugetlb
 1284  * pages.  The logic in here doesn't really work right for compound pages
 1285  * because the VM does not uniformly chase down the head page in all cases.
 1286  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 1287  * handle them at all.  So we skip compound pages here at an early stage.
 1288  *
 1289  * Note that this code is very hard to test under normal circumstances because
 1290  * direct-io pins the pages with get_user_pages().  This makes
 1291  * is_page_cache_freeable return false, and the VM will not clean the pages.
 1292  * But other code (eg, flusher threads) could clean the pages if they are mapped
 1293  * pagecache.
 1294  *
 1295  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 1296  * deferred bio dirtying paths.
 1297  */
 1298 
 1299 /*
 1300  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 1301  */
 1302 void bio_set_pages_dirty(struct bio *bio)
 1303 {
 1304         struct bio_vec *bvec = bio->bi_io_vec;
 1305         int i;
 1306 
 1307         for (i = 0; i < bio->bi_vcnt; i++) {
 1308                 struct page *page = bvec[i].bv_page;
 1309 
 1310                 if (page && !PageCompound(page))
 1311                         set_page_dirty_lock(page);
 1312         }
 1313 }
 1314 
 1315 static void bio_release_pages(struct bio *bio)
 1316 {
 1317         struct bio_vec *bvec = bio->bi_io_vec;
 1318         int i;
 1319 
 1320         for (i = 0; i < bio->bi_vcnt; i++) {
 1321                 struct page *page = bvec[i].bv_page;
 1322 
 1323                 if (page)
 1324                         put_page(page);
 1325         }
 1326 }
 1327 
 1328 /*
 1329  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 1330  * If they are, then fine.  If, however, some pages are clean then they must
 1331  * have been written out during the direct-IO read.  So we take another ref on
 1332  * the BIO and the offending pages and re-dirty the pages in process context.
 1333  *
 1334  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
 1335  * here on.  It will run one page_cache_release() against each page and will
 1336  * run one bio_put() against the BIO.
 1337  */
 1338 
 1339 static void bio_dirty_fn(struct work_struct *work);
 1340 
 1341 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
 1342 static DEFINE_SPINLOCK(bio_dirty_lock);
 1343 static struct bio *bio_dirty_list;
 1344 
 1345 /*
 1346  * This runs in process context
 1347  */
 1348 static void bio_dirty_fn(struct work_struct *work)
 1349 {
 1350         unsigned long flags;
 1351         struct bio *bio;
 1352 
 1353         spin_lock_irqsave(&bio_dirty_lock, flags);
 1354         bio = bio_dirty_list;
 1355         bio_dirty_list = NULL;
 1356         spin_unlock_irqrestore(&bio_dirty_lock, flags);
 1357 
 1358         while (bio) {
 1359                 struct bio *next = bio->bi_private;
 1360 
 1361                 bio_set_pages_dirty(bio);
 1362                 bio_release_pages(bio);
 1363                 bio_put(bio);
 1364                 bio = next;
 1365         }
 1366 }
 1367 
 1368 void bio_check_pages_dirty(struct bio *bio)
 1369 {
 1370         struct bio_vec *bvec = bio->bi_io_vec;
 1371         int nr_clean_pages = 0;
 1372         int i;
 1373 
 1374         for (i = 0; i < bio->bi_vcnt; i++) {
 1375                 struct page *page = bvec[i].bv_page;
 1376 
 1377                 if (PageDirty(page) || PageCompound(page)) {
 1378                         page_cache_release(page);
 1379                         bvec[i].bv_page = NULL;
 1380                 } else {
 1381                         nr_clean_pages++;
 1382                 }
 1383         }
 1384 
 1385         if (nr_clean_pages) {
 1386                 unsigned long flags;
 1387 
 1388                 spin_lock_irqsave(&bio_dirty_lock, flags);
 1389                 bio->bi_private = bio_dirty_list;
 1390                 bio_dirty_list = bio;
 1391                 spin_unlock_irqrestore(&bio_dirty_lock, flags);
 1392                 schedule_work(&bio_dirty_work);
 1393         } else {
 1394                 bio_put(bio);
 1395         }
 1396 }
 1397 
 1398 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
 1399 void bio_flush_dcache_pages(struct bio *bi)
 1400 {
 1401         int i;
 1402         struct bio_vec *bvec;
 1403 
 1404         bio_for_each_segment(bvec, bi, i)
 1405                 flush_dcache_page(bvec->bv_page);
 1406 }
 1407 EXPORT_SYMBOL(bio_flush_dcache_pages);
 1408 #endif
 1409 
 1410 /**
 1411  * bio_endio - end I/O on a bio
 1412  * @bio:        bio
 1413  * @error:      error, if any
 1414  *
 1415  * Description:
 1416  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
 1417  *   preferred way to end I/O on a bio, it takes care of clearing
 1418  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
 1419  *   established -Exxxx (-EIO, for instance) error values in case
 1420  *   something went wrong. No one should call bi_end_io() directly on a
 1421  *   bio unless they own it and thus know that it has an end_io
 1422  *   function.
 1423  **/
 1424 void bio_endio(struct bio *bio, int error)
 1425 {
 1426         if (error)
 1427                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
 1428         else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
 1429                 error = -EIO;
 1430 
 1431         if (bio->bi_end_io)
 1432                 bio->bi_end_io(bio, error);
 1433 }
 1434 EXPORT_SYMBOL(bio_endio);
 1435 
 1436 void bio_pair_release(struct bio_pair *bp)
 1437 {
 1438         if (atomic_dec_and_test(&bp->cnt)) {
 1439                 struct bio *master = bp->bio1.bi_private;
 1440 
 1441                 bio_endio(master, bp->error);
 1442                 mempool_free(bp, bp->bio2.bi_private);
 1443         }
 1444 }
 1445 EXPORT_SYMBOL(bio_pair_release);
 1446 
 1447 static void bio_pair_end_1(struct bio *bi, int err)
 1448 {
 1449         struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
 1450 
 1451         if (err)
 1452                 bp->error = err;
 1453 
 1454         bio_pair_release(bp);
 1455 }
 1456 
 1457 static void bio_pair_end_2(struct bio *bi, int err)
 1458 {
 1459         struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
 1460 
 1461         if (err)
 1462                 bp->error = err;
 1463 
 1464         bio_pair_release(bp);
 1465 }
 1466 
 1467 /*
 1468  * split a bio - only worry about a bio with a single page in its iovec
 1469  */
 1470 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
 1471 {
 1472         struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
 1473 
 1474         if (!bp)
 1475                 return bp;
 1476 
 1477         trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
 1478                                 bi->bi_sector + first_sectors);
 1479 
 1480         BUG_ON(bi->bi_vcnt != 1 && bi->bi_vcnt != 0);
 1481         BUG_ON(bi->bi_idx != 0);
 1482         atomic_set(&bp->cnt, 3);
 1483         bp->error = 0;
 1484         bp->bio1 = *bi;
 1485         bp->bio2 = *bi;
 1486         bp->bio2.bi_sector += first_sectors;
 1487         bp->bio2.bi_size -= first_sectors << 9;
 1488         bp->bio1.bi_size = first_sectors << 9;
 1489 
 1490         if (bi->bi_vcnt != 0) {
 1491                 bp->bv1 = bi->bi_io_vec[0];
 1492                 bp->bv2 = bi->bi_io_vec[0];
 1493 
 1494                 if (bio_is_rw(bi)) {
 1495                         bp->bv2.bv_offset += first_sectors << 9;
 1496                         bp->bv2.bv_len -= first_sectors << 9;
 1497                         bp->bv1.bv_len = first_sectors << 9;
 1498                 }
 1499 
 1500                 bp->bio1.bi_io_vec = &bp->bv1;
 1501                 bp->bio2.bi_io_vec = &bp->bv2;
 1502 
 1503                 bp->bio1.bi_max_vecs = 1;
 1504                 bp->bio2.bi_max_vecs = 1;
 1505         }
 1506 
 1507         bp->bio1.bi_end_io = bio_pair_end_1;
 1508         bp->bio2.bi_end_io = bio_pair_end_2;
 1509 
 1510         bp->bio1.bi_private = bi;
 1511         bp->bio2.bi_private = bio_split_pool;
 1512 
 1513         if (bio_integrity(bi))
 1514                 bio_integrity_split(bi, bp, first_sectors);
 1515 
 1516         return bp;
 1517 }
 1518 EXPORT_SYMBOL(bio_split);
 1519 
 1520 /**
 1521  *      bio_sector_offset - Find hardware sector offset in bio
 1522  *      @bio:           bio to inspect
 1523  *      @index:         bio_vec index
 1524  *      @offset:        offset in bv_page
 1525  *
 1526  *      Return the number of hardware sectors between beginning of bio
 1527  *      and an end point indicated by a bio_vec index and an offset
 1528  *      within that vector's page.
 1529  */
 1530 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
 1531                            unsigned int offset)
 1532 {
 1533         unsigned int sector_sz;
 1534         struct bio_vec *bv;
 1535         sector_t sectors;
 1536         int i;
 1537 
 1538         sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
 1539         sectors = 0;
 1540 
 1541         if (index >= bio->bi_idx)
 1542                 index = bio->bi_vcnt - 1;
 1543 
 1544         __bio_for_each_segment(bv, bio, i, 0) {
 1545                 if (i == index) {
 1546                         if (offset > bv->bv_offset)
 1547                                 sectors += (offset - bv->bv_offset) / sector_sz;
 1548                         break;
 1549                 }
 1550 
 1551                 sectors += bv->bv_len / sector_sz;
 1552         }
 1553 
 1554         return sectors;
 1555 }
 1556 EXPORT_SYMBOL(bio_sector_offset);
 1557 
 1558 /*
 1559  * create memory pools for biovec's in a bio_set.
 1560  * use the global biovec slabs created for general use.
 1561  */
 1562 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
 1563 {
 1564         struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
 1565 
 1566         bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
 1567         if (!bs->bvec_pool)
 1568                 return -ENOMEM;
 1569 
 1570         return 0;
 1571 }
 1572 
 1573 static void biovec_free_pools(struct bio_set *bs)
 1574 {
 1575         mempool_destroy(bs->bvec_pool);
 1576 }
 1577 
 1578 void bioset_free(struct bio_set *bs)
 1579 {
 1580         if (bs->bio_pool)
 1581                 mempool_destroy(bs->bio_pool);
 1582 
 1583         bioset_integrity_free(bs);
 1584         biovec_free_pools(bs);
 1585         bio_put_slab(bs);
 1586 
 1587         kfree(bs);
 1588 }
 1589 EXPORT_SYMBOL(bioset_free);
 1590 
 1591 /**
 1592  * bioset_create  - Create a bio_set
 1593  * @pool_size:  Number of bio and bio_vecs to cache in the mempool
 1594  * @front_pad:  Number of bytes to allocate in front of the returned bio
 1595  *
 1596  * Description:
 1597  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 1598  *    to ask for a number of bytes to be allocated in front of the bio.
 1599  *    Front pad allocation is useful for embedding the bio inside
 1600  *    another structure, to avoid allocating extra data to go with the bio.
 1601  *    Note that the bio must be embedded at the END of that structure always,
 1602  *    or things will break badly.
 1603  */
 1604 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
 1605 {
 1606         unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
 1607         struct bio_set *bs;
 1608 
 1609         bs = kzalloc(sizeof(*bs), GFP_KERNEL);
 1610         if (!bs)
 1611                 return NULL;
 1612 
 1613         bs->front_pad = front_pad;
 1614 
 1615         bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
 1616         if (!bs->bio_slab) {
 1617                 kfree(bs);
 1618                 return NULL;
 1619         }
 1620 
 1621         bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
 1622         if (!bs->bio_pool)
 1623                 goto bad;
 1624 
 1625         if (!biovec_create_pools(bs, pool_size))
 1626                 return bs;
 1627 
 1628 bad:
 1629         bioset_free(bs);
 1630         return NULL;
 1631 }
 1632 EXPORT_SYMBOL(bioset_create);
 1633 
 1634 #ifdef CONFIG_BLK_CGROUP
 1635 /**
 1636  * bio_associate_current - associate a bio with %current
 1637  * @bio: target bio
 1638  *
 1639  * Associate @bio with %current if it hasn't been associated yet.  Block
 1640  * layer will treat @bio as if it were issued by %current no matter which
 1641  * task actually issues it.
 1642  *
 1643  * This function takes an extra reference of @task's io_context and blkcg
 1644  * which will be put when @bio is released.  The caller must own @bio,
 1645  * ensure %current->io_context exists, and is responsible for synchronizing
 1646  * calls to this function.
 1647  */
 1648 int bio_associate_current(struct bio *bio)
 1649 {
 1650         struct io_context *ioc;
 1651         struct cgroup_subsys_state *css;
 1652 
 1653         if (bio->bi_ioc)
 1654                 return -EBUSY;
 1655 
 1656         ioc = current->io_context;
 1657         if (!ioc)
 1658                 return -ENOENT;
 1659 
 1660         /* acquire active ref on @ioc and associate */
 1661         get_io_context_active(ioc);
 1662         bio->bi_ioc = ioc;
 1663 
 1664         /* associate blkcg if exists */
 1665         rcu_read_lock();
 1666         css = task_subsys_state(current, blkio_subsys_id);
 1667         if (css && css_tryget(css))
 1668                 bio->bi_css = css;
 1669         rcu_read_unlock();
 1670 
 1671         return 0;
 1672 }
 1673 
 1674 /**
 1675  * bio_disassociate_task - undo bio_associate_current()
 1676  * @bio: target bio
 1677  */
 1678 void bio_disassociate_task(struct bio *bio)
 1679 {
 1680         if (bio->bi_ioc) {
 1681                 put_io_context(bio->bi_ioc);
 1682                 bio->bi_ioc = NULL;
 1683         }
 1684         if (bio->bi_css) {
 1685                 css_put(bio->bi_css);
 1686                 bio->bi_css = NULL;
 1687         }
 1688 }
 1689 
 1690 #endif /* CONFIG_BLK_CGROUP */
 1691 
 1692 static void __init biovec_init_slabs(void)
 1693 {
 1694         int i;
 1695 
 1696         for (i = 0; i < BIOVEC_NR_POOLS; i++) {
 1697                 int size;
 1698                 struct biovec_slab *bvs = bvec_slabs + i;
 1699 
 1700                 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
 1701                         bvs->slab = NULL;
 1702                         continue;
 1703                 }
 1704 
 1705                 size = bvs->nr_vecs * sizeof(struct bio_vec);
 1706                 bvs->slab = kmem_cache_create(bvs->name, size, 0,
 1707                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
 1708         }
 1709 }
 1710 
 1711 static int __init init_bio(void)
 1712 {
 1713         bio_slab_max = 2;
 1714         bio_slab_nr = 0;
 1715         bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
 1716         if (!bio_slabs)
 1717                 panic("bio: can't allocate bios\n");
 1718 
 1719         bio_integrity_init();
 1720         biovec_init_slabs();
 1721 
 1722         fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
 1723         if (!fs_bio_set)
 1724                 panic("bio: can't allocate bios\n");
 1725 
 1726         if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
 1727                 panic("bio: can't create integrity pool\n");
 1728 
 1729         bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
 1730                                                      sizeof(struct bio_pair));
 1731         if (!bio_split_pool)
 1732                 panic("bio: can't create split pool\n");
 1733 
 1734         return 0;
 1735 }
 1736 subsys_initcall(init_bio);

Cache object: 7a1400df8843afe94a7e2b2ce2219732


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.