1 /*-
2 * modified for Lites 1.1
3 *
4 * Aug 1995, Godmar Back (gback@cs.utah.edu)
5 * University of Utah, Department of Computer Science
6 */
7 /*-
8 * Copyright (c) 1982, 1986, 1989, 1993
9 * The Regents of the University of California. All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94
36 * $FreeBSD$
37 */
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/conf.h>
42 #include <sys/vnode.h>
43 #include <sys/stat.h>
44 #include <sys/mount.h>
45 #include <sys/sysctl.h>
46 #include <sys/syslog.h>
47 #include <sys/buf.h>
48 #include <sys/endian.h>
49
50 #include <fs/ext2fs/fs.h>
51 #include <fs/ext2fs/inode.h>
52 #include <fs/ext2fs/ext2_mount.h>
53 #include <fs/ext2fs/ext2fs.h>
54 #include <fs/ext2fs/ext2_extern.h>
55
56 static daddr_t ext2_alloccg(struct inode *, int, daddr_t, int);
57 static daddr_t ext2_clusteralloc(struct inode *, int, daddr_t, int);
58 static u_long ext2_dirpref(struct inode *);
59 static u_long ext2_hashalloc(struct inode *, int, long, int,
60 daddr_t (*)(struct inode *, int, daddr_t,
61 int));
62 static daddr_t ext2_nodealloccg(struct inode *, int, daddr_t, int);
63 static daddr_t ext2_mapsearch(struct m_ext2fs *, char *, daddr_t);
64
65 /*
66 * Allocate a block in the filesystem.
67 *
68 * A preference may be optionally specified. If a preference is given
69 * the following hierarchy is used to allocate a block:
70 * 1) allocate the requested block.
71 * 2) allocate a rotationally optimal block in the same cylinder.
72 * 3) allocate a block in the same cylinder group.
73 * 4) quadradically rehash into other cylinder groups, until an
74 * available block is located.
75 * If no block preference is given the following hierarchy is used
76 * to allocate a block:
77 * 1) allocate a block in the cylinder group that contains the
78 * inode for the file.
79 * 2) quadradically rehash into other cylinder groups, until an
80 * available block is located.
81 */
82 int
83 ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size,
84 struct ucred *cred, e4fs_daddr_t *bnp)
85 {
86 struct m_ext2fs *fs;
87 struct ext2mount *ump;
88 int32_t bno;
89 int cg;
90
91 *bnp = 0;
92 fs = ip->i_e2fs;
93 ump = ip->i_ump;
94 mtx_assert(EXT2_MTX(ump), MA_OWNED);
95 #ifdef INVARIANTS
96 if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) {
97 vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n",
98 (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt);
99 panic("ext2_alloc: bad size");
100 }
101 if (cred == NOCRED)
102 panic("ext2_alloc: missing credential");
103 #endif /* INVARIANTS */
104 if (size == fs->e2fs_bsize && fs->e2fs->e2fs_fbcount == 0)
105 goto nospace;
106 if (cred->cr_uid != 0 &&
107 fs->e2fs->e2fs_fbcount < fs->e2fs->e2fs_rbcount)
108 goto nospace;
109 if (bpref >= fs->e2fs->e2fs_bcount)
110 bpref = 0;
111 if (bpref == 0)
112 cg = ino_to_cg(fs, ip->i_number);
113 else
114 cg = dtog(fs, bpref);
115 bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize,
116 ext2_alloccg);
117 if (bno > 0) {
118 /* set next_alloc fields as done in block_getblk */
119 ip->i_next_alloc_block = lbn;
120 ip->i_next_alloc_goal = bno;
121
122 ip->i_blocks += btodb(fs->e2fs_bsize);
123 ip->i_flag |= IN_CHANGE | IN_UPDATE;
124 *bnp = bno;
125 return (0);
126 }
127 nospace:
128 EXT2_UNLOCK(ump);
129 ext2_fserr(fs, cred->cr_uid, "filesystem full");
130 uprintf("\n%s: write failed, filesystem is full\n", fs->e2fs_fsmnt);
131 return (ENOSPC);
132 }
133
134 /*
135 * Allocate EA's block for inode.
136 */
137 daddr_t
138 ext2_allocfacl(struct inode *ip)
139 {
140 struct m_ext2fs *fs;
141 daddr_t facl;
142
143 fs = ip->i_e2fs;
144
145 EXT2_LOCK(ip->i_ump);
146 facl = ext2_alloccg(ip, ino_to_cg(fs, ip->i_number), 0, fs->e2fs_bsize);
147 if (0 == facl)
148 EXT2_UNLOCK(ip->i_ump);
149
150 return (facl);
151 }
152
153 /*
154 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
155 *
156 * The vnode and an array of buffer pointers for a range of sequential
157 * logical blocks to be made contiguous is given. The allocator attempts
158 * to find a range of sequential blocks starting as close as possible to
159 * an fs_rotdelay offset from the end of the allocation for the logical
160 * block immediately preceding the current range. If successful, the
161 * physical block numbers in the buffer pointers and in the inode are
162 * changed to reflect the new allocation. If unsuccessful, the allocation
163 * is left unchanged. The success in doing the reallocation is returned.
164 * Note that the error return is not reflected back to the user. Rather
165 * the previous block allocation will be used.
166 */
167
168 static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem");
169
170 static int doasyncfree = 1;
171
172 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
173 "Use asychronous writes to update block pointers when freeing blocks");
174
175 static int doreallocblks = 0;
176
177 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
178
179 int
180 ext2_reallocblks(struct vop_reallocblks_args *ap)
181 {
182 struct m_ext2fs *fs;
183 struct inode *ip;
184 struct vnode *vp;
185 struct buf *sbp, *ebp;
186 uint32_t *bap, *sbap, *ebap;
187 struct ext2mount *ump;
188 struct cluster_save *buflist;
189 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
190 e2fs_lbn_t start_lbn, end_lbn;
191 int soff;
192 e2fs_daddr_t newblk, blkno;
193 int i, len, start_lvl, end_lvl, pref, ssize;
194
195 if (doreallocblks == 0)
196 return (ENOSPC);
197
198 vp = ap->a_vp;
199 ip = VTOI(vp);
200 fs = ip->i_e2fs;
201 ump = ip->i_ump;
202
203 if (fs->e2fs_contigsumsize <= 0)
204 return (ENOSPC);
205
206 buflist = ap->a_buflist;
207 len = buflist->bs_nchildren;
208 start_lbn = buflist->bs_children[0]->b_lblkno;
209 end_lbn = start_lbn + len - 1;
210 #ifdef INVARIANTS
211 for (i = 1; i < len; i++)
212 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
213 panic("ext2_reallocblks: non-cluster");
214 #endif
215 /*
216 * If the cluster crosses the boundary for the first indirect
217 * block, leave space for the indirect block. Indirect blocks
218 * are initially laid out in a position after the last direct
219 * block. Block reallocation would usually destroy locality by
220 * moving the indirect block out of the way to make room for
221 * data blocks if we didn't compensate here. We should also do
222 * this for other indirect block boundaries, but it is only
223 * important for the first one.
224 */
225 if (start_lbn < NDADDR && end_lbn >= NDADDR)
226 return (ENOSPC);
227 /*
228 * If the latest allocation is in a new cylinder group, assume that
229 * the filesystem has decided to move and do not force it back to
230 * the previous cylinder group.
231 */
232 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
233 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
234 return (ENOSPC);
235 if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
236 ext2_getlbns(vp, end_lbn, end_ap, &end_lvl))
237 return (ENOSPC);
238 /*
239 * Get the starting offset and block map for the first block.
240 */
241 if (start_lvl == 0) {
242 sbap = &ip->i_db[0];
243 soff = start_lbn;
244 } else {
245 idp = &start_ap[start_lvl - 1];
246 if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) {
247 brelse(sbp);
248 return (ENOSPC);
249 }
250 sbap = (u_int *)sbp->b_data;
251 soff = idp->in_off;
252 }
253 /*
254 * If the block range spans two block maps, get the second map.
255 */
256 ebap = NULL;
257 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
258 ssize = len;
259 } else {
260 #ifdef INVARIANTS
261 if (start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
262 panic("ext2_reallocblks: start == end");
263 #endif
264 ssize = len - (idp->in_off + 1);
265 if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp))
266 goto fail;
267 ebap = (u_int *)ebp->b_data;
268 }
269 /*
270 * Find the preferred location for the cluster.
271 */
272 EXT2_LOCK(ump);
273 pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0);
274 /*
275 * Search the block map looking for an allocation of the desired size.
276 */
277 if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref,
278 len, ext2_clusteralloc)) == 0) {
279 EXT2_UNLOCK(ump);
280 goto fail;
281 }
282 /*
283 * We have found a new contiguous block.
284 *
285 * First we have to replace the old block pointers with the new
286 * block pointers in the inode and indirect blocks associated
287 * with the file.
288 */
289 #ifdef DEBUG
290 printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
291 (uintmax_t)ip->i_number, (intmax_t)start_lbn, (intmax_t)end_lbn);
292 #endif /* DEBUG */
293 blkno = newblk;
294 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
295 if (i == ssize) {
296 bap = ebap;
297 soff = -i;
298 }
299 #ifdef INVARIANTS
300 if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
301 panic("ext2_reallocblks: alloc mismatch");
302 #endif
303 #ifdef DEBUG
304 printf(" %d,", *bap);
305 #endif /* DEBUG */
306 *bap++ = blkno;
307 }
308 /*
309 * Next we must write out the modified inode and indirect blocks.
310 * For strict correctness, the writes should be synchronous since
311 * the old block values may have been written to disk. In practise
312 * they are almost never written, but if we are concerned about
313 * strict correctness, the `doasyncfree' flag should be set to zero.
314 *
315 * The test on `doasyncfree' should be changed to test a flag
316 * that shows whether the associated buffers and inodes have
317 * been written. The flag should be set when the cluster is
318 * started and cleared whenever the buffer or inode is flushed.
319 * We can then check below to see if it is set, and do the
320 * synchronous write only when it has been cleared.
321 */
322 if (sbap != &ip->i_db[0]) {
323 if (doasyncfree)
324 bdwrite(sbp);
325 else
326 bwrite(sbp);
327 } else {
328 ip->i_flag |= IN_CHANGE | IN_UPDATE;
329 if (!doasyncfree)
330 ext2_update(vp, 1);
331 }
332 if (ssize < len) {
333 if (doasyncfree)
334 bdwrite(ebp);
335 else
336 bwrite(ebp);
337 }
338 /*
339 * Last, free the old blocks and assign the new blocks to the buffers.
340 */
341 #ifdef DEBUG
342 printf("\n\tnew:");
343 #endif /* DEBUG */
344 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
345 ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
346 fs->e2fs_bsize);
347 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
348 #ifdef DEBUG
349 printf(" %d,", blkno);
350 #endif /* DEBUG */
351 }
352 #ifdef DEBUG
353 printf("\n");
354 #endif /* DEBUG */
355 return (0);
356
357 fail:
358 if (ssize < len)
359 brelse(ebp);
360 if (sbap != &ip->i_db[0])
361 brelse(sbp);
362 return (ENOSPC);
363 }
364
365 /*
366 * Allocate an inode in the filesystem.
367 *
368 */
369 int
370 ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
371 {
372 struct timespec ts;
373 struct inode *pip;
374 struct m_ext2fs *fs;
375 struct inode *ip;
376 struct ext2mount *ump;
377 ino_t ino, ipref;
378 int i, error, cg;
379
380 *vpp = NULL;
381 pip = VTOI(pvp);
382 fs = pip->i_e2fs;
383 ump = pip->i_ump;
384
385 EXT2_LOCK(ump);
386 if (fs->e2fs->e2fs_ficount == 0)
387 goto noinodes;
388 /*
389 * If it is a directory then obtain a cylinder group based on
390 * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is
391 * always the next inode.
392 */
393 if ((mode & IFMT) == IFDIR) {
394 cg = ext2_dirpref(pip);
395 if (fs->e2fs_contigdirs[cg] < 255)
396 fs->e2fs_contigdirs[cg]++;
397 } else {
398 cg = ino_to_cg(fs, pip->i_number);
399 if (fs->e2fs_contigdirs[cg] > 0)
400 fs->e2fs_contigdirs[cg]--;
401 }
402 ipref = cg * fs->e2fs->e2fs_ipg + 1;
403 ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg);
404
405 if (ino == 0)
406 goto noinodes;
407 error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
408 if (error) {
409 ext2_vfree(pvp, ino, mode);
410 return (error);
411 }
412 ip = VTOI(*vpp);
413
414 /*
415 * The question is whether using VGET was such good idea at all:
416 * Linux doesn't read the old inode in when it is allocating a
417 * new one. I will set at least i_size and i_blocks to zero.
418 */
419 ip->i_flag = 0;
420 ip->i_size = 0;
421 ip->i_blocks = 0;
422 ip->i_mode = 0;
423 ip->i_flags = 0;
424 /* now we want to make sure that the block pointers are zeroed out */
425 for (i = 0; i < NDADDR; i++)
426 ip->i_db[i] = 0;
427 for (i = 0; i < NIADDR; i++)
428 ip->i_ib[i] = 0;
429
430 /*
431 * Set up a new generation number for this inode.
432 * Avoid zero values.
433 */
434 do {
435 ip->i_gen = arc4random();
436 } while (ip->i_gen == 0);
437
438 vfs_timestamp(&ts);
439 ip->i_birthtime = ts.tv_sec;
440 ip->i_birthnsec = ts.tv_nsec;
441
442 /*
443 printf("ext2_valloc: allocated inode %d\n", ino);
444 */
445 return (0);
446 noinodes:
447 EXT2_UNLOCK(ump);
448 ext2_fserr(fs, cred->cr_uid, "out of inodes");
449 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt);
450 return (ENOSPC);
451 }
452
453 /*
454 * Find a cylinder to place a directory.
455 *
456 * The policy implemented by this algorithm is to allocate a
457 * directory inode in the same cylinder group as its parent
458 * directory, but also to reserve space for its files inodes
459 * and data. Restrict the number of directories which may be
460 * allocated one after another in the same cylinder group
461 * without intervening allocation of files.
462 *
463 * If we allocate a first level directory then force allocation
464 * in another cylinder group.
465 *
466 */
467 static u_long
468 ext2_dirpref(struct inode *pip)
469 {
470 struct m_ext2fs *fs;
471 int cg, prefcg, cgsize;
472 u_int avgifree, avgbfree, avgndir, curdirsize;
473 u_int minifree, minbfree, maxndir;
474 u_int mincg, minndir;
475 u_int dirsize, maxcontigdirs;
476
477 mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED);
478 fs = pip->i_e2fs;
479
480 avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount;
481 avgbfree = fs->e2fs->e2fs_fbcount / fs->e2fs_gcount;
482 avgndir = fs->e2fs_total_dir / fs->e2fs_gcount;
483
484 /*
485 * Force allocation in another cg if creating a first level dir.
486 */
487 ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref");
488 if (ITOV(pip)->v_vflag & VV_ROOT) {
489 prefcg = arc4random() % fs->e2fs_gcount;
490 mincg = prefcg;
491 minndir = fs->e2fs_ipg;
492 for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
493 if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
494 fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
495 fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
496 mincg = cg;
497 minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
498 }
499 for (cg = 0; cg < prefcg; cg++)
500 if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
501 fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
502 fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
503 mincg = cg;
504 minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
505 }
506 return (mincg);
507 }
508 /*
509 * Count various limits which used for
510 * optimal allocation of a directory inode.
511 */
512 maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg);
513 minifree = avgifree - avgifree / 4;
514 if (minifree < 1)
515 minifree = 1;
516 minbfree = avgbfree - avgbfree / 4;
517 if (minbfree < 1)
518 minbfree = 1;
519 cgsize = fs->e2fs_fsize * fs->e2fs_fpg;
520 dirsize = AVGDIRSIZE;
521 curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0;
522 if (dirsize < curdirsize)
523 dirsize = curdirsize;
524 maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255);
525 maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR);
526 if (maxcontigdirs == 0)
527 maxcontigdirs = 1;
528
529 /*
530 * Limit number of dirs in one cg and reserve space for
531 * regular files, but only if we have no deficit in
532 * inodes or space.
533 */
534 prefcg = ino_to_cg(fs, pip->i_number);
535 for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
536 if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
537 fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
538 fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
539 if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
540 return (cg);
541 }
542 for (cg = 0; cg < prefcg; cg++)
543 if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
544 fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
545 fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
546 if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
547 return (cg);
548 }
549 /*
550 * This is a backstop when we have deficit in space.
551 */
552 for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
553 if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
554 return (cg);
555 for (cg = 0; cg < prefcg; cg++)
556 if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
557 break;
558 return (cg);
559 }
560
561 /*
562 * Select the desired position for the next block in a file.
563 *
564 * we try to mimic what Remy does in inode_getblk/block_getblk
565 *
566 * we note: blocknr == 0 means that we're about to allocate either
567 * a direct block or a pointer block at the first level of indirection
568 * (In other words, stuff that will go in i_db[] or i_ib[])
569 *
570 * blocknr != 0 means that we're allocating a block that is none
571 * of the above. Then, blocknr tells us the number of the block
572 * that will hold the pointer
573 */
574 e4fs_daddr_t
575 ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap,
576 e2fs_daddr_t blocknr)
577 {
578 int tmp;
579
580 mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
581
582 /*
583 * If the next block is actually what we thought it is, then set the
584 * goal to what we thought it should be.
585 */
586 if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0)
587 return ip->i_next_alloc_goal;
588
589 /*
590 * Now check whether we were provided with an array that basically
591 * tells us previous blocks to which we want to stay close.
592 */
593 if (bap)
594 for (tmp = indx - 1; tmp >= 0; tmp--)
595 if (bap[tmp])
596 return bap[tmp];
597
598 /*
599 * Else lets fall back to the blocknr or, if there is none, follow
600 * the rule that a block should be allocated near its inode.
601 */
602 return blocknr ? blocknr :
603 (e2fs_daddr_t)(ip->i_block_group *
604 EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) +
605 ip->i_e2fs->e2fs->e2fs_first_dblock;
606 }
607
608 /*
609 * Implement the cylinder overflow algorithm.
610 *
611 * The policy implemented by this algorithm is:
612 * 1) allocate the block in its requested cylinder group.
613 * 2) quadradically rehash on the cylinder group number.
614 * 3) brute force search for a free block.
615 */
616 static u_long
617 ext2_hashalloc(struct inode *ip, int cg, long pref, int size,
618 daddr_t (*allocator) (struct inode *, int, daddr_t, int))
619 {
620 struct m_ext2fs *fs;
621 ino_t result;
622 int i, icg = cg;
623
624 mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
625 fs = ip->i_e2fs;
626 /*
627 * 1: preferred cylinder group
628 */
629 result = (*allocator)(ip, cg, pref, size);
630 if (result)
631 return (result);
632 /*
633 * 2: quadratic rehash
634 */
635 for (i = 1; i < fs->e2fs_gcount; i *= 2) {
636 cg += i;
637 if (cg >= fs->e2fs_gcount)
638 cg -= fs->e2fs_gcount;
639 result = (*allocator)(ip, cg, 0, size);
640 if (result)
641 return (result);
642 }
643 /*
644 * 3: brute force search
645 * Note that we start at i == 2, since 0 was checked initially,
646 * and 1 is always checked in the quadratic rehash.
647 */
648 cg = (icg + 2) % fs->e2fs_gcount;
649 for (i = 2; i < fs->e2fs_gcount; i++) {
650 result = (*allocator)(ip, cg, 0, size);
651 if (result)
652 return (result);
653 cg++;
654 if (cg == fs->e2fs_gcount)
655 cg = 0;
656 }
657 return (0);
658 }
659
660 static unsigned long
661 ext2_cg_num_gdb(struct m_ext2fs *fs, int cg)
662 {
663 int gd_per_block, metagroup, first, last;
664
665 gd_per_block = fs->e2fs_bsize / sizeof(struct ext2_gd);
666 metagroup = cg / gd_per_block;
667 first = metagroup * gd_per_block;
668 last = first + gd_per_block - 1;
669
670 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) ||
671 metagroup < fs->e2fs->e3fs_first_meta_bg) {
672 if (!ext2_cg_has_sb(fs, cg))
673 return (0);
674 if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG))
675 return (fs->e2fs->e3fs_first_meta_bg);
676 return (fs->e2fs_gdbcount);
677 }
678
679 if (cg == first || cg == first + 1 || cg == last)
680 return (1);
681 return (0);
682
683 }
684
685 static int
686 ext2_num_base_meta_blocks(struct m_ext2fs *fs, int cg)
687 {
688 int num, gd_per_block;
689
690 gd_per_block = fs->e2fs_bsize / sizeof(struct ext2_gd);
691 num = ext2_cg_has_sb(fs, cg);
692
693 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) ||
694 cg < fs->e2fs->e3fs_first_meta_bg * gd_per_block) {
695 if (num) {
696 num += ext2_cg_num_gdb(fs, cg);
697 num += fs->e2fs->e2fs_reserved_ngdb;
698 }
699 } else {
700 num += ext2_cg_num_gdb(fs, cg);
701 }
702
703 return (num);
704 }
705
706 static int
707 ext2_get_cg_number(struct m_ext2fs *fs, daddr_t blk)
708 {
709 int cg;
710
711 if (fs->e2fs->e2fs_bpg == fs->e2fs_bsize * 8)
712 cg = (blk - fs->e2fs->e2fs_first_dblock) / (fs->e2fs_bsize * 8);
713 else
714 cg = blk - fs->e2fs->e2fs_first_dblock;
715
716 return (cg);
717 }
718
719 static void
720 ext2_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
721 {
722 int i;
723
724 if (start_bit >= end_bit)
725 return;
726
727 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
728 setbit(bitmap, i);
729 if (i < end_bit)
730 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
731 }
732
733 static int
734 ext2_cg_block_bitmap_init(struct m_ext2fs *fs, int cg, struct buf *bp)
735 {
736 int bit, bit_max, inodes_per_block;
737 uint32_t start, tmp;
738
739 if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) ||
740 !(fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_BLOCK_UNINIT))
741 return (0);
742
743 memset(bp->b_data, 0, fs->e2fs_bsize);
744
745 bit_max = ext2_num_base_meta_blocks(fs, cg);
746 if ((bit_max >> 3) >= fs->e2fs_bsize)
747 return (EINVAL);
748
749 for (bit = 0; bit < bit_max; bit++)
750 setbit(bp->b_data, bit);
751
752 start = cg * fs->e2fs->e2fs_bpg + fs->e2fs->e2fs_first_dblock;
753
754 /* Set bits for block and inode bitmaps, and inode table */
755 tmp = fs->e2fs_gd[cg].ext2bgd_b_bitmap;
756 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) ||
757 tmp == ext2_get_cg_number(fs, cg))
758 setbit(bp->b_data, tmp - start);
759
760 tmp = fs->e2fs_gd[cg].ext2bgd_i_bitmap;
761 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) ||
762 tmp == ext2_get_cg_number(fs, cg))
763 setbit(bp->b_data, tmp - start);
764
765 tmp = fs->e2fs_gd[cg].ext2bgd_i_tables;
766 inodes_per_block = fs->e2fs_bsize/EXT2_INODE_SIZE(fs);
767 while( tmp < fs->e2fs_gd[cg].ext2bgd_i_tables +
768 fs->e2fs->e2fs_ipg / inodes_per_block ) {
769 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) ||
770 tmp == ext2_get_cg_number(fs, cg))
771 setbit(bp->b_data, tmp - start);
772 tmp++;
773 }
774
775 /*
776 * Also if the number of blocks within the group is less than
777 * the blocksize * 8 ( which is the size of bitmap ), set rest
778 * of the block bitmap to 1
779 */
780 ext2_mark_bitmap_end(fs->e2fs->e2fs_bpg, fs->e2fs_bsize * 8,
781 bp->b_data);
782
783 /* Clean the flag */
784 fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_BLOCK_UNINIT;
785
786 return (0);
787 }
788
789 /*
790 * Determine whether a block can be allocated.
791 *
792 * Check to see if a block of the appropriate size is available,
793 * and if it is, allocate it.
794 */
795 static daddr_t
796 ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
797 {
798 struct m_ext2fs *fs;
799 struct buf *bp;
800 struct ext2mount *ump;
801 daddr_t bno, runstart, runlen;
802 int bit, loc, end, error, start;
803 char *bbp;
804 /* XXX ondisk32 */
805 fs = ip->i_e2fs;
806 ump = ip->i_ump;
807 if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0)
808 return (0);
809 EXT2_UNLOCK(ump);
810 error = bread(ip->i_devvp, fsbtodb(fs,
811 fs->e2fs_gd[cg].ext2bgd_b_bitmap),
812 (int)fs->e2fs_bsize, NOCRED, &bp);
813 if (error) {
814 brelse(bp);
815 EXT2_LOCK(ump);
816 return (0);
817 }
818 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM)) {
819 error = ext2_cg_block_bitmap_init(fs, cg, bp);
820 if (error) {
821 brelse(bp);
822 EXT2_LOCK(ump);
823 return (0);
824 }
825 }
826 if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) {
827 /*
828 * Another thread allocated the last block in this
829 * group while we were waiting for the buffer.
830 */
831 brelse(bp);
832 EXT2_LOCK(ump);
833 return (0);
834 }
835 bbp = (char *)bp->b_data;
836
837 if (dtog(fs, bpref) != cg)
838 bpref = 0;
839 if (bpref != 0) {
840 bpref = dtogd(fs, bpref);
841 /*
842 * if the requested block is available, use it
843 */
844 if (isclr(bbp, bpref)) {
845 bno = bpref;
846 goto gotit;
847 }
848 }
849 /*
850 * no blocks in the requested cylinder, so take next
851 * available one in this cylinder group.
852 * first try to get 8 contigous blocks, then fall back to a single
853 * block.
854 */
855 if (bpref)
856 start = dtogd(fs, bpref) / NBBY;
857 else
858 start = 0;
859 end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
860 retry:
861 runlen = 0;
862 runstart = 0;
863 for (loc = start; loc < end; loc++) {
864 if (bbp[loc] == (char)0xff) {
865 runlen = 0;
866 continue;
867 }
868
869 /* Start of a run, find the number of high clear bits. */
870 if (runlen == 0) {
871 bit = fls(bbp[loc]);
872 runlen = NBBY - bit;
873 runstart = loc * NBBY + bit;
874 } else if (bbp[loc] == 0) {
875 /* Continue a run. */
876 runlen += NBBY;
877 } else {
878 /*
879 * Finish the current run. If it isn't long
880 * enough, start a new one.
881 */
882 bit = ffs(bbp[loc]) - 1;
883 runlen += bit;
884 if (runlen >= 8) {
885 bno = runstart;
886 goto gotit;
887 }
888
889 /* Run was too short, start a new one. */
890 bit = fls(bbp[loc]);
891 runlen = NBBY - bit;
892 runstart = loc * NBBY + bit;
893 }
894
895 /* If the current run is long enough, use it. */
896 if (runlen >= 8) {
897 bno = runstart;
898 goto gotit;
899 }
900 }
901 if (start != 0) {
902 end = start;
903 start = 0;
904 goto retry;
905 }
906 bno = ext2_mapsearch(fs, bbp, bpref);
907 if (bno < 0) {
908 brelse(bp);
909 EXT2_LOCK(ump);
910 return (0);
911 }
912 gotit:
913 #ifdef INVARIANTS
914 if (isset(bbp, bno)) {
915 printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n",
916 cg, (intmax_t)bno, fs->e2fs_fsmnt);
917 panic("ext2fs_alloccg: dup alloc");
918 }
919 #endif
920 setbit(bbp, bno);
921 EXT2_LOCK(ump);
922 ext2_clusteracct(fs, bbp, cg, bno, -1);
923 fs->e2fs->e2fs_fbcount--;
924 fs->e2fs_gd[cg].ext2bgd_nbfree--;
925 fs->e2fs_fmod = 1;
926 EXT2_UNLOCK(ump);
927 bdwrite(bp);
928 return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
929 }
930
931 /*
932 * Determine whether a cluster can be allocated.
933 */
934 static daddr_t
935 ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
936 {
937 struct m_ext2fs *fs;
938 struct ext2mount *ump;
939 struct buf *bp;
940 char *bbp;
941 int bit, error, got, i, loc, run;
942 int32_t *lp;
943 daddr_t bno;
944
945 fs = ip->i_e2fs;
946 ump = ip->i_ump;
947
948 if (fs->e2fs_maxcluster[cg] < len)
949 return (0);
950
951 EXT2_UNLOCK(ump);
952 error = bread(ip->i_devvp,
953 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
954 (int)fs->e2fs_bsize, NOCRED, &bp);
955 if (error)
956 goto fail_lock;
957
958 bbp = (char *)bp->b_data;
959 EXT2_LOCK(ump);
960 /*
961 * Check to see if a cluster of the needed size (or bigger) is
962 * available in this cylinder group.
963 */
964 lp = &fs->e2fs_clustersum[cg].cs_sum[len];
965 for (i = len; i <= fs->e2fs_contigsumsize; i++)
966 if (*lp++ > 0)
967 break;
968 if (i > fs->e2fs_contigsumsize) {
969 /*
970 * Update the cluster summary information to reflect
971 * the true maximum-sized cluster so that future cluster
972 * allocation requests can avoid reading the bitmap only
973 * to find no cluster.
974 */
975 lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1];
976 for (i = len - 1; i > 0; i--)
977 if (*lp-- > 0)
978 break;
979 fs->e2fs_maxcluster[cg] = i;
980 goto fail;
981 }
982 EXT2_UNLOCK(ump);
983
984 /* Search the bitmap to find a big enough cluster like in FFS. */
985 if (dtog(fs, bpref) != cg)
986 bpref = 0;
987 if (bpref != 0)
988 bpref = dtogd(fs, bpref);
989 loc = bpref / NBBY;
990 bit = 1 << (bpref % NBBY);
991 for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) {
992 if ((bbp[loc] & bit) != 0)
993 run = 0;
994 else {
995 run++;
996 if (run == len)
997 break;
998 }
999 if ((got & (NBBY - 1)) != (NBBY - 1))
1000 bit <<= 1;
1001 else {
1002 loc++;
1003 bit = 1;
1004 }
1005 }
1006
1007 if (got >= fs->e2fs->e2fs_fpg)
1008 goto fail_lock;
1009
1010 /* Allocate the cluster that we found. */
1011 for (i = 1; i < len; i++)
1012 if (!isclr(bbp, got - run + i))
1013 panic("ext2_clusteralloc: map mismatch");
1014
1015 bno = got - run + 1;
1016 if (bno >= fs->e2fs->e2fs_fpg)
1017 panic("ext2_clusteralloc: allocated out of group");
1018
1019 EXT2_LOCK(ump);
1020 for (i = 0; i < len; i += fs->e2fs_fpb) {
1021 setbit(bbp, bno + i);
1022 ext2_clusteracct(fs, bbp, cg, bno + i, -1);
1023 fs->e2fs->e2fs_fbcount--;
1024 fs->e2fs_gd[cg].ext2bgd_nbfree--;
1025 }
1026 fs->e2fs_fmod = 1;
1027 EXT2_UNLOCK(ump);
1028
1029 bdwrite(bp);
1030 return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
1031
1032 fail_lock:
1033 EXT2_LOCK(ump);
1034 fail:
1035 brelse(bp);
1036 return (0);
1037 }
1038
1039 static int
1040 ext2_zero_inode_table(struct inode *ip, int cg)
1041 {
1042 struct m_ext2fs *fs;
1043 struct buf *bp;
1044 int i, all_blks, used_blks;
1045
1046 fs = ip->i_e2fs;
1047
1048 if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_ZEROED)
1049 return (0);
1050
1051 all_blks = fs->e2fs->e2fs_inode_size * fs->e2fs->e2fs_ipg /
1052 fs->e2fs_bsize;
1053
1054 used_blks = howmany(fs->e2fs->e2fs_ipg -
1055 fs->e2fs_gd[cg].ext4bgd_i_unused,
1056 fs->e2fs_bsize / EXT2_INODE_SIZE(fs));
1057
1058 for (i = 0; i < all_blks - used_blks; i++) {
1059 bp = getblk(ip->i_devvp, fsbtodb(fs,
1060 fs->e2fs_gd[cg].ext2bgd_i_tables + used_blks + i),
1061 fs->e2fs_bsize, 0, 0, 0);
1062 if (!bp)
1063 return (EIO);
1064
1065 vfs_bio_bzero_buf(bp, 0, fs->e2fs_bsize);
1066 bawrite(bp);
1067 }
1068
1069 fs->e2fs_gd[cg].ext4bgd_flags |= EXT2_BG_INODE_ZEROED;
1070
1071 return (0);
1072 }
1073
1074 /*
1075 * Determine whether an inode can be allocated.
1076 *
1077 * Check to see if an inode is available, and if it is,
1078 * allocate it using tode in the specified cylinder group.
1079 */
1080 static daddr_t
1081 ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
1082 {
1083 struct m_ext2fs *fs;
1084 struct buf *bp;
1085 struct ext2mount *ump;
1086 int error, start, len;
1087 char *ibp, *loc;
1088
1089 ipref--; /* to avoid a lot of (ipref -1) */
1090 if (ipref == -1)
1091 ipref = 0;
1092 fs = ip->i_e2fs;
1093 ump = ip->i_ump;
1094 if (fs->e2fs_gd[cg].ext2bgd_nifree == 0)
1095 return (0);
1096 EXT2_UNLOCK(ump);
1097 error = bread(ip->i_devvp, fsbtodb(fs,
1098 fs->e2fs_gd[cg].ext2bgd_i_bitmap),
1099 (int)fs->e2fs_bsize, NOCRED, &bp);
1100 if (error) {
1101 brelse(bp);
1102 EXT2_LOCK(ump);
1103 return (0);
1104 }
1105 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM)) {
1106 if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_UNINIT) {
1107 memset(bp->b_data, 0, fs->e2fs_bsize);
1108 fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_INODE_UNINIT;
1109 }
1110 error = ext2_zero_inode_table(ip, cg);
1111 if (error) {
1112 brelse(bp);
1113 EXT2_LOCK(ump);
1114 return (0);
1115 }
1116 }
1117 if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) {
1118 /*
1119 * Another thread allocated the last i-node in this
1120 * group while we were waiting for the buffer.
1121 */
1122 brelse(bp);
1123 EXT2_LOCK(ump);
1124 return (0);
1125 }
1126 ibp = (char *)bp->b_data;
1127 if (ipref) {
1128 ipref %= fs->e2fs->e2fs_ipg;
1129 if (isclr(ibp, ipref))
1130 goto gotit;
1131 }
1132 start = ipref / NBBY;
1133 len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY);
1134 loc = memcchr(&ibp[start], 0xff, len);
1135 if (loc == NULL) {
1136 len = start + 1;
1137 start = 0;
1138 loc = memcchr(&ibp[start], 0xff, len);
1139 if (loc == NULL) {
1140 printf("cg = %d, ipref = %lld, fs = %s\n",
1141 cg, (long long)ipref, fs->e2fs_fsmnt);
1142 panic("ext2fs_nodealloccg: map corrupted");
1143 /* NOTREACHED */
1144 }
1145 }
1146 ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1;
1147 gotit:
1148 setbit(ibp, ipref);
1149 EXT2_LOCK(ump);
1150 fs->e2fs_gd[cg].ext2bgd_nifree--;
1151 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM))
1152 fs->e2fs_gd[cg].ext4bgd_i_unused--;
1153 fs->e2fs->e2fs_ficount--;
1154 fs->e2fs_fmod = 1;
1155 if ((mode & IFMT) == IFDIR) {
1156 fs->e2fs_gd[cg].ext2bgd_ndirs++;
1157 fs->e2fs_total_dir++;
1158 }
1159 EXT2_UNLOCK(ump);
1160 bdwrite(bp);
1161 return (cg * fs->e2fs->e2fs_ipg + ipref + 1);
1162 }
1163
1164 /*
1165 * Free a block or fragment.
1166 *
1167 */
1168 void
1169 ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size)
1170 {
1171 struct m_ext2fs *fs;
1172 struct buf *bp;
1173 struct ext2mount *ump;
1174 int cg, error;
1175 char *bbp;
1176
1177 fs = ip->i_e2fs;
1178 ump = ip->i_ump;
1179 cg = dtog(fs, bno);
1180 if ((u_int)bno >= fs->e2fs->e2fs_bcount) {
1181 printf("bad block %lld, ino %ju\n", (long long)bno,
1182 (uintmax_t)ip->i_number);
1183 ext2_fserr(fs, ip->i_uid, "bad block");
1184 return;
1185 }
1186 error = bread(ip->i_devvp,
1187 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
1188 (int)fs->e2fs_bsize, NOCRED, &bp);
1189 if (error) {
1190 brelse(bp);
1191 return;
1192 }
1193 bbp = (char *)bp->b_data;
1194 bno = dtogd(fs, bno);
1195 if (isclr(bbp, bno)) {
1196 printf("block = %lld, fs = %s\n",
1197 (long long)bno, fs->e2fs_fsmnt);
1198 panic("ext2_blkfree: freeing free block");
1199 }
1200 clrbit(bbp, bno);
1201 EXT2_LOCK(ump);
1202 ext2_clusteracct(fs, bbp, cg, bno, 1);
1203 fs->e2fs->e2fs_fbcount++;
1204 fs->e2fs_gd[cg].ext2bgd_nbfree++;
1205 fs->e2fs_fmod = 1;
1206 EXT2_UNLOCK(ump);
1207 bdwrite(bp);
1208 }
1209
1210 /*
1211 * Free an inode.
1212 *
1213 */
1214 int
1215 ext2_vfree(struct vnode *pvp, ino_t ino, int mode)
1216 {
1217 struct m_ext2fs *fs;
1218 struct inode *pip;
1219 struct buf *bp;
1220 struct ext2mount *ump;
1221 int error, cg;
1222 char *ibp;
1223
1224 pip = VTOI(pvp);
1225 fs = pip->i_e2fs;
1226 ump = pip->i_ump;
1227 if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount)
1228 panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s",
1229 pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt);
1230
1231 cg = ino_to_cg(fs, ino);
1232 error = bread(pip->i_devvp,
1233 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_i_bitmap),
1234 (int)fs->e2fs_bsize, NOCRED, &bp);
1235 if (error) {
1236 brelse(bp);
1237 return (0);
1238 }
1239 ibp = (char *)bp->b_data;
1240 ino = (ino - 1) % fs->e2fs->e2fs_ipg;
1241 if (isclr(ibp, ino)) {
1242 printf("ino = %llu, fs = %s\n",
1243 (unsigned long long)ino, fs->e2fs_fsmnt);
1244 if (fs->e2fs_ronly == 0)
1245 panic("ext2_vfree: freeing free inode");
1246 }
1247 clrbit(ibp, ino);
1248 EXT2_LOCK(ump);
1249 fs->e2fs->e2fs_ficount++;
1250 fs->e2fs_gd[cg].ext2bgd_nifree++;
1251 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM))
1252 fs->e2fs_gd[cg].ext4bgd_i_unused++;
1253 if ((mode & IFMT) == IFDIR) {
1254 fs->e2fs_gd[cg].ext2bgd_ndirs--;
1255 fs->e2fs_total_dir--;
1256 }
1257 fs->e2fs_fmod = 1;
1258 EXT2_UNLOCK(ump);
1259 bdwrite(bp);
1260 return (0);
1261 }
1262
1263 /*
1264 * Find a block in the specified cylinder group.
1265 *
1266 * It is a panic if a request is made to find a block if none are
1267 * available.
1268 */
1269 static daddr_t
1270 ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref)
1271 {
1272 char *loc;
1273 int start, len;
1274
1275 /*
1276 * find the fragment by searching through the free block
1277 * map for an appropriate bit pattern
1278 */
1279 if (bpref)
1280 start = dtogd(fs, bpref) / NBBY;
1281 else
1282 start = 0;
1283 len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
1284 loc = memcchr(&bbp[start], 0xff, len);
1285 if (loc == NULL) {
1286 len = start + 1;
1287 start = 0;
1288 loc = memcchr(&bbp[start], 0xff, len);
1289 if (loc == NULL) {
1290 printf("start = %d, len = %d, fs = %s\n",
1291 start, len, fs->e2fs_fsmnt);
1292 panic("ext2_mapsearch: map corrupted");
1293 /* NOTREACHED */
1294 }
1295 }
1296 return ((loc - bbp) * NBBY + ffs(~*loc) - 1);
1297 }
1298
1299 /*
1300 * Fserr prints the name of a filesystem with an error diagnostic.
1301 *
1302 * The form of the error message is:
1303 * fs: error message
1304 */
1305 void
1306 ext2_fserr(struct m_ext2fs *fs, uid_t uid, char *cp)
1307 {
1308
1309 log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp);
1310 }
1311
1312 int
1313 ext2_cg_has_sb(struct m_ext2fs *fs, int cg)
1314 {
1315 int a3, a5, a7;
1316
1317 if (cg == 0)
1318 return (1);
1319
1320 if (EXT2_HAS_COMPAT_FEATURE(fs, EXT2F_COMPAT_SPARSESUPER2)) {
1321 if (cg == fs->e2fs->e4fs_backup_bgs[0] ||
1322 cg == fs->e2fs->e4fs_backup_bgs[1])
1323 return (1);
1324 return (0);
1325 }
1326
1327 if ((cg <= 1) ||
1328 !EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_SPARSESUPER))
1329 return (1);
1330
1331 if (!(cg & 1))
1332 return (0);
1333
1334 for (a3 = 3, a5 = 5, a7 = 7;
1335 a3 <= cg || a5 <= cg || a7 <= cg;
1336 a3 *= 3, a5 *= 5, a7 *= 7)
1337 if (cg == a3 || cg == a5 || cg == a7)
1338 return (1);
1339 return (0);
1340 }
Cache object: 7bc934f94eaf4b3a00400c8616776684
|