FreeBSD/Linux Kernel Cross Reference
sys/fs/fuse/fuse_io.c
1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2007-2009 Google Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following disclaimer
15 * in the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Google Inc. nor the names of its
18 * contributors may be used to endorse or promote products derived from
19 * this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Copyright (C) 2005 Csaba Henk.
34 * All rights reserved.
35 *
36 * Copyright (c) 2019 The FreeBSD Foundation
37 *
38 * Portions of this software were developed by BFF Storage Systems, LLC under
39 * sponsorship from the FreeBSD Foundation.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 *
50 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 */
62
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65
66 #include <sys/types.h>
67 #include <sys/param.h>
68 #include <sys/module.h>
69 #include <sys/systm.h>
70 #include <sys/errno.h>
71 #include <sys/param.h>
72 #include <sys/kernel.h>
73 #include <sys/conf.h>
74 #include <sys/uio.h>
75 #include <sys/malloc.h>
76 #include <sys/queue.h>
77 #include <sys/lock.h>
78 #include <sys/sx.h>
79 #include <sys/mutex.h>
80 #include <sys/rwlock.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/mount.h>
84 #include <sys/vnode.h>
85 #include <sys/stat.h>
86 #include <sys/unistd.h>
87 #include <sys/filedesc.h>
88 #include <sys/file.h>
89 #include <sys/fcntl.h>
90 #include <sys/bio.h>
91 #include <sys/buf.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94
95 #include <vm/vm.h>
96 #include <vm/vm_extern.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_object.h>
101
102 #include "fuse.h"
103 #include "fuse_file.h"
104 #include "fuse_node.h"
105 #include "fuse_internal.h"
106 #include "fuse_ipc.h"
107 #include "fuse_io.h"
108
109 /*
110 * Set in a struct buf to indicate that the write came from the buffer cache
111 * and the originating cred and pid are no longer known.
112 */
113 #define B_FUSEFS_WRITE_CACHE B_FS_FLAG1
114
115 SDT_PROVIDER_DECLARE(fusefs);
116 /*
117 * Fuse trace probe:
118 * arg0: verbosity. Higher numbers give more verbose messages
119 * arg1: Textual message
120 */
121 SDT_PROBE_DEFINE2(fusefs, , io, trace, "int", "char*");
122
123 SDT_PROBE_DEFINE4(fusefs, , io, read_bio_backend_start, "int", "int", "int", "int");
124 SDT_PROBE_DEFINE2(fusefs, , io, read_bio_backend_feed, "int", "struct buf*");
125 SDT_PROBE_DEFINE4(fusefs, , io, read_bio_backend_end, "int", "ssize_t", "int",
126 "struct buf*");
127 int
128 fuse_read_biobackend(struct vnode *vp, struct uio *uio, int ioflag,
129 struct ucred *cred, struct fuse_filehandle *fufh, pid_t pid)
130 {
131 struct buf *bp;
132 struct mount *mp;
133 struct fuse_data *data;
134 daddr_t lbn, nextlbn;
135 int bcount, nextsize;
136 int err, n = 0, on = 0, seqcount;
137 off_t filesize;
138
139 const int biosize = fuse_iosize(vp);
140 mp = vnode_mount(vp);
141 data = fuse_get_mpdata(mp);
142
143 if (uio->uio_offset < 0)
144 return (EINVAL);
145
146 seqcount = ioflag >> IO_SEQSHIFT;
147
148 err = fuse_vnode_size(vp, &filesize, cred, curthread);
149 if (err)
150 return err;
151
152 for (err = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
153 if (fuse_isdeadfs(vp)) {
154 err = ENXIO;
155 break;
156 }
157 if (filesize - uio->uio_offset <= 0)
158 break;
159 lbn = uio->uio_offset / biosize;
160 on = uio->uio_offset & (biosize - 1);
161
162 if ((off_t)lbn * biosize >= filesize) {
163 bcount = 0;
164 } else if ((off_t)(lbn + 1) * biosize > filesize) {
165 bcount = filesize - (off_t)lbn *biosize;
166 } else {
167 bcount = biosize;
168 }
169 nextlbn = lbn + 1;
170 nextsize = MIN(biosize, filesize - nextlbn * biosize);
171
172 SDT_PROBE4(fusefs, , io, read_bio_backend_start,
173 biosize, (int)lbn, on, bcount);
174
175 if (bcount < biosize) {
176 /* If near EOF, don't do readahead */
177 err = bread(vp, lbn, bcount, NOCRED, &bp);
178 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
179 /* Try clustered read */
180 long totread = uio->uio_resid + on;
181 seqcount = MIN(seqcount,
182 data->max_readahead_blocks + 1);
183 err = cluster_read(vp, filesize, lbn, bcount, NOCRED,
184 totread, seqcount, 0, &bp);
185 } else if (seqcount > 1 && data->max_readahead_blocks >= 1) {
186 /* Try non-clustered readahead */
187 err = breadn(vp, lbn, bcount, &nextlbn, &nextsize, 1,
188 NOCRED, &bp);
189 } else {
190 /* Just read what was requested */
191 err = bread(vp, lbn, bcount, NOCRED, &bp);
192 }
193
194 if (err) {
195 brelse(bp);
196 bp = NULL;
197 break;
198 }
199
200 /*
201 * on is the offset into the current bp. Figure out how many
202 * bytes we can copy out of the bp. Note that bcount is
203 * NOT DEV_BSIZE aligned.
204 *
205 * Then figure out how many bytes we can copy into the uio.
206 */
207
208 n = 0;
209 if (on < bcount - bp->b_resid)
210 n = MIN((unsigned)(bcount - bp->b_resid - on),
211 uio->uio_resid);
212 if (n > 0) {
213 SDT_PROBE2(fusefs, , io, read_bio_backend_feed, n, bp);
214 err = uiomove(bp->b_data + on, n, uio);
215 }
216 vfs_bio_brelse(bp, ioflag);
217 SDT_PROBE4(fusefs, , io, read_bio_backend_end, err,
218 uio->uio_resid, n, bp);
219 if (bp->b_resid > 0) {
220 /* Short read indicates EOF */
221 break;
222 }
223 }
224
225 return (err);
226 }
227
228 SDT_PROBE_DEFINE1(fusefs, , io, read_directbackend_start,
229 "struct fuse_read_in*");
230 SDT_PROBE_DEFINE3(fusefs, , io, read_directbackend_complete,
231 "struct fuse_dispatcher*", "struct fuse_read_in*", "struct uio*");
232
233 int
234 fuse_read_directbackend(struct vnode *vp, struct uio *uio,
235 struct ucred *cred, struct fuse_filehandle *fufh)
236 {
237 struct fuse_data *data;
238 struct fuse_dispatcher fdi;
239 struct fuse_read_in *fri;
240 int err = 0;
241
242 data = fuse_get_mpdata(vp->v_mount);
243
244 if (uio->uio_resid == 0)
245 return (0);
246
247 fdisp_init(&fdi, 0);
248
249 /*
250 * XXX In "normal" case we use an intermediate kernel buffer for
251 * transmitting data from daemon's context to ours. Eventually, we should
252 * get rid of this. Anyway, if the target uio lives in sysspace (we are
253 * called from pageops), and the input data doesn't need kernel-side
254 * processing (we are not called from readdir) we can already invoke
255 * an optimized, "peer-to-peer" I/O routine.
256 */
257 while (uio->uio_resid > 0) {
258 fdi.iosize = sizeof(*fri);
259 fdisp_make_vp(&fdi, FUSE_READ, vp, uio->uio_td, cred);
260 fri = fdi.indata;
261 fri->fh = fufh->fh_id;
262 fri->offset = uio->uio_offset;
263 fri->size = MIN(uio->uio_resid,
264 fuse_get_mpdata(vp->v_mount)->max_read);
265 if (fuse_libabi_geq(data, 7, 9)) {
266 /* See comment regarding FUSE_WRITE_LOCKOWNER */
267 fri->read_flags = 0;
268 fri->flags = fufh_type_2_fflags(fufh->fufh_type);
269 }
270
271 SDT_PROBE1(fusefs, , io, read_directbackend_start, fri);
272
273 if ((err = fdisp_wait_answ(&fdi)))
274 goto out;
275
276 SDT_PROBE3(fusefs, , io, read_directbackend_complete,
277 &fdi, fri, uio);
278
279 if ((err = uiomove(fdi.answ, MIN(fri->size, fdi.iosize), uio)))
280 break;
281 if (fdi.iosize < fri->size) {
282 /*
283 * Short read. Should only happen at EOF or with
284 * direct io.
285 */
286 break;
287 }
288 }
289
290 out:
291 fdisp_destroy(&fdi);
292 return (err);
293 }
294
295 int
296 fuse_write_directbackend(struct vnode *vp, struct uio *uio,
297 struct ucred *cred, struct fuse_filehandle *fufh, off_t filesize,
298 int ioflag, bool pages)
299 {
300 struct fuse_vnode_data *fvdat = VTOFUD(vp);
301 struct fuse_data *data;
302 struct fuse_write_in *fwi;
303 struct fuse_write_out *fwo;
304 struct fuse_dispatcher fdi;
305 size_t chunksize;
306 ssize_t r;
307 void *fwi_data;
308 off_t as_written_offset;
309 int diff;
310 int err = 0;
311 bool direct_io = fufh->fuse_open_flags & FOPEN_DIRECT_IO;
312 bool wrote_anything = false;
313 uint32_t write_flags;
314
315 data = fuse_get_mpdata(vp->v_mount);
316
317 /*
318 * Don't set FUSE_WRITE_LOCKOWNER in write_flags. It can't be set
319 * accurately when using POSIX AIO, libfuse doesn't use it, and I'm not
320 * aware of any file systems that do. It was an attempt to add
321 * Linux-style mandatory locking to the FUSE protocol, but mandatory
322 * locking is deprecated even on Linux. See Linux commit
323 * f33321141b273d60cbb3a8f56a5489baad82ba5e .
324 */
325 /*
326 * Set FUSE_WRITE_CACHE whenever we don't know the uid, gid, and/or pid
327 * that originated a write. For example when writing from the
328 * writeback cache. I don't know of a single file system that cares,
329 * but the protocol says we're supposed to do this.
330 */
331 write_flags = !pages && (
332 (ioflag & IO_DIRECT) ||
333 !fsess_opt_datacache(vnode_mount(vp)) ||
334 !fsess_opt_writeback(vnode_mount(vp))) ? 0 : FUSE_WRITE_CACHE;
335
336 if (uio->uio_resid == 0)
337 return (0);
338
339 if (ioflag & IO_APPEND)
340 uio_setoffset(uio, filesize);
341
342 err = vn_rlimit_fsizex(vp, uio, 0, &r, uio->uio_td);
343 if (err != 0) {
344 vn_rlimit_fsizex_res(uio, r);
345 return (err);
346 }
347
348 fdisp_init(&fdi, 0);
349
350 while (uio->uio_resid > 0) {
351 size_t sizeof_fwi;
352
353 if (fuse_libabi_geq(data, 7, 9)) {
354 sizeof_fwi = sizeof(*fwi);
355 } else {
356 sizeof_fwi = FUSE_COMPAT_WRITE_IN_SIZE;
357 }
358
359 chunksize = MIN(uio->uio_resid, data->max_write);
360
361 fdi.iosize = sizeof_fwi + chunksize;
362 fdisp_make_vp(&fdi, FUSE_WRITE, vp, uio->uio_td, cred);
363
364 fwi = fdi.indata;
365 fwi->fh = fufh->fh_id;
366 fwi->offset = uio->uio_offset;
367 fwi->size = chunksize;
368 fwi->write_flags = write_flags;
369 if (fuse_libabi_geq(data, 7, 9)) {
370 fwi->flags = fufh_type_2_fflags(fufh->fufh_type);
371 }
372 fwi_data = (char *)fdi.indata + sizeof_fwi;
373
374 if ((err = uiomove(fwi_data, chunksize, uio)))
375 break;
376
377 retry:
378 err = fdisp_wait_answ(&fdi);
379 if (err == ERESTART || err == EINTR || err == EWOULDBLOCK) {
380 /*
381 * Rewind the uio so dofilewrite will know it's
382 * incomplete
383 */
384 uio->uio_resid += fwi->size;
385 uio->uio_offset -= fwi->size;
386 /*
387 * Change ERESTART into EINTR because we can't rewind
388 * uio->uio_iov. Basically, once uiomove(9) has been
389 * called, it's impossible to restart a syscall.
390 */
391 if (err == ERESTART)
392 err = EINTR;
393 break;
394 } else if (err) {
395 break;
396 } else {
397 wrote_anything = true;
398 }
399
400 fwo = ((struct fuse_write_out *)fdi.answ);
401
402 if (fwo->size > fwi->size) {
403 fuse_warn(data, FSESS_WARN_WROTE_LONG,
404 "wrote more data than we provided it.");
405 /* This is bonkers. Clear attr cache. */
406 fvdat->flag &= ~FN_SIZECHANGE;
407 fuse_vnode_clear_attr_cache(vp);
408 err = EINVAL;
409 break;
410 }
411
412 /* Adjust the uio in the case of short writes */
413 diff = fwi->size - fwo->size;
414
415 as_written_offset = uio->uio_offset - diff;
416
417 if (as_written_offset - diff > filesize) {
418 fuse_vnode_setsize(vp, as_written_offset, false);
419 getnanouptime(&fvdat->last_local_modify);
420 }
421 if (as_written_offset - diff >= filesize)
422 fvdat->flag &= ~FN_SIZECHANGE;
423
424 if (diff > 0) {
425 /* Short write */
426 if (!direct_io) {
427 fuse_warn(data, FSESS_WARN_SHORT_WRITE,
428 "short writes are only allowed with "
429 "direct_io.");
430 }
431 if (ioflag & IO_DIRECT) {
432 /* Return early */
433 uio->uio_resid += diff;
434 uio->uio_offset -= diff;
435 break;
436 } else {
437 /* Resend the unwritten portion of data */
438 fdi.iosize = sizeof_fwi + diff;
439 /* Refresh fdi without clearing data buffer */
440 fdisp_refresh_vp(&fdi, FUSE_WRITE, vp,
441 uio->uio_td, cred);
442 fwi = fdi.indata;
443 MPASS2(fwi == fdi.indata, "FUSE dispatcher "
444 "reallocated despite no increase in "
445 "size?");
446 void *src = (char*)fwi_data + fwo->size;
447 memmove(fwi_data, src, diff);
448 fwi->fh = fufh->fh_id;
449 fwi->offset = as_written_offset;
450 fwi->size = diff;
451 fwi->write_flags = write_flags;
452 goto retry;
453 }
454 }
455 }
456
457 fdisp_destroy(&fdi);
458
459 if (wrote_anything)
460 fuse_vnode_undirty_cached_timestamps(vp, false);
461
462 vn_rlimit_fsizex_res(uio, r);
463 return (err);
464 }
465
466 SDT_PROBE_DEFINE6(fusefs, , io, write_biobackend_start, "int64_t", "int", "int",
467 "struct uio*", "int", "bool");
468 SDT_PROBE_DEFINE2(fusefs, , io, write_biobackend_append_race, "long", "int");
469 SDT_PROBE_DEFINE2(fusefs, , io, write_biobackend_issue, "int", "struct buf*");
470
471 int
472 fuse_write_biobackend(struct vnode *vp, struct uio *uio,
473 struct ucred *cred, struct fuse_filehandle *fufh, int ioflag, pid_t pid)
474 {
475 struct fuse_vnode_data *fvdat = VTOFUD(vp);
476 struct buf *bp;
477 daddr_t lbn;
478 off_t filesize;
479 ssize_t r;
480 int bcount;
481 int n, on, seqcount, err = 0;
482
483 const int biosize = fuse_iosize(vp);
484
485 seqcount = ioflag >> IO_SEQSHIFT;
486
487 KASSERT(uio->uio_rw == UIO_WRITE, ("fuse_write_biobackend mode"));
488 if (vp->v_type != VREG)
489 return (EIO);
490 if (uio->uio_offset < 0)
491 return (EINVAL);
492 if (uio->uio_resid == 0)
493 return (0);
494
495 err = fuse_vnode_size(vp, &filesize, cred, curthread);
496 if (err)
497 return err;
498
499 if (ioflag & IO_APPEND)
500 uio_setoffset(uio, filesize);
501
502 err = vn_rlimit_fsizex(vp, uio, 0, &r, uio->uio_td);
503 if (err != 0) {
504 vn_rlimit_fsizex_res(uio, r);
505 return (err);
506 }
507
508 do {
509 bool direct_append, extending;
510
511 if (fuse_isdeadfs(vp)) {
512 err = ENXIO;
513 break;
514 }
515 lbn = uio->uio_offset / biosize;
516 on = uio->uio_offset & (biosize - 1);
517 n = MIN((unsigned)(biosize - on), uio->uio_resid);
518
519 again:
520 /* Get or create a buffer for the write */
521 direct_append = uio->uio_offset == filesize && n;
522 if (uio->uio_offset + n < filesize) {
523 extending = false;
524 if ((off_t)(lbn + 1) * biosize < filesize) {
525 /* Not the file's last block */
526 bcount = biosize;
527 } else {
528 /* The file's last block */
529 bcount = filesize - (off_t)lbn * biosize;
530 }
531 } else {
532 extending = true;
533 bcount = on + n;
534 }
535 if (direct_append) {
536 /*
537 * Take care to preserve the buffer's B_CACHE state so
538 * as not to cause an unnecessary read.
539 */
540 bp = getblk(vp, lbn, on, PCATCH, 0, 0);
541 if (bp != NULL) {
542 uint32_t save = bp->b_flags & B_CACHE;
543 allocbuf(bp, bcount);
544 bp->b_flags |= save;
545 }
546 } else {
547 bp = getblk(vp, lbn, bcount, PCATCH, 0, 0);
548 }
549 if (!bp) {
550 err = EINTR;
551 break;
552 }
553 if (extending) {
554 /*
555 * Extend file _after_ locking buffer so we won't race
556 * with other readers
557 */
558 err = fuse_vnode_setsize(vp, uio->uio_offset + n, false);
559 filesize = uio->uio_offset + n;
560 getnanouptime(&fvdat->last_local_modify);
561 fvdat->flag |= FN_SIZECHANGE;
562 if (err) {
563 brelse(bp);
564 break;
565 }
566 }
567
568 SDT_PROBE6(fusefs, , io, write_biobackend_start,
569 lbn, on, n, uio, bcount, direct_append);
570 /*
571 * Issue a READ if B_CACHE is not set. In special-append
572 * mode, B_CACHE is based on the buffer prior to the write
573 * op and is typically set, avoiding the read. If a read
574 * is required in special append mode, the server will
575 * probably send us a short-read since we extended the file
576 * on our end, resulting in b_resid == 0 and, thusly,
577 * B_CACHE getting set.
578 *
579 * We can also avoid issuing the read if the write covers
580 * the entire buffer. We have to make sure the buffer state
581 * is reasonable in this case since we will not be initiating
582 * I/O. See the comments in kern/vfs_bio.c's getblk() for
583 * more information.
584 *
585 * B_CACHE may also be set due to the buffer being cached
586 * normally.
587 */
588
589 if (on == 0 && n == bcount) {
590 bp->b_flags |= B_CACHE;
591 bp->b_flags &= ~B_INVAL;
592 bp->b_ioflags &= ~BIO_ERROR;
593 }
594 if ((bp->b_flags & B_CACHE) == 0) {
595 bp->b_iocmd = BIO_READ;
596 vfs_busy_pages(bp, 0);
597 fuse_io_strategy(vp, bp);
598 if ((err = bp->b_error)) {
599 brelse(bp);
600 break;
601 }
602 if (bp->b_resid > 0) {
603 /*
604 * Short read indicates EOF. Update file size
605 * from the server and try again.
606 */
607 SDT_PROBE2(fusefs, , io, trace, 1,
608 "Short read during a RMW");
609 brelse(bp);
610 err = fuse_vnode_size(vp, &filesize, cred,
611 curthread);
612 if (err)
613 break;
614 else
615 goto again;
616 }
617 }
618 if (bp->b_wcred == NOCRED)
619 bp->b_wcred = crhold(cred);
620
621 /*
622 * If dirtyend exceeds file size, chop it down. This should
623 * not normally occur but there is an append race where it
624 * might occur XXX, so we log it.
625 *
626 * If the chopping creates a reverse-indexed or degenerate
627 * situation with dirtyoff/end, we 0 both of them.
628 */
629 if (bp->b_dirtyend > bcount) {
630 SDT_PROBE2(fusefs, , io, write_biobackend_append_race,
631 (long)bp->b_blkno * biosize,
632 bp->b_dirtyend - bcount);
633 bp->b_dirtyend = bcount;
634 }
635 if (bp->b_dirtyoff >= bp->b_dirtyend)
636 bp->b_dirtyoff = bp->b_dirtyend = 0;
637
638 /*
639 * If the new write will leave a contiguous dirty
640 * area, just update the b_dirtyoff and b_dirtyend,
641 * otherwise force a write rpc of the old dirty area.
642 *
643 * While it is possible to merge discontiguous writes due to
644 * our having a B_CACHE buffer ( and thus valid read data
645 * for the hole), we don't because it could lead to
646 * significant cache coherency problems with multiple clients,
647 * especially if locking is implemented later on.
648 *
649 * as an optimization we could theoretically maintain
650 * a linked list of discontinuous areas, but we would still
651 * have to commit them separately so there isn't much
652 * advantage to it except perhaps a bit of asynchronization.
653 */
654
655 if (bp->b_dirtyend > 0 &&
656 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
657 /*
658 * Yes, we mean it. Write out everything to "storage"
659 * immediately, without hesitation. (Apart from other
660 * reasons: the only way to know if a write is valid
661 * if its actually written out.)
662 */
663 SDT_PROBE2(fusefs, , io, write_biobackend_issue, 0, bp);
664 bwrite(bp);
665 if (bp->b_error == EINTR) {
666 err = EINTR;
667 break;
668 }
669 goto again;
670 }
671 err = uiomove((char *)bp->b_data + on, n, uio);
672
673 if (err) {
674 bp->b_ioflags |= BIO_ERROR;
675 bp->b_error = err;
676 brelse(bp);
677 break;
678 /* TODO: vfs_bio_clrbuf like ffs_write does? */
679 }
680 /*
681 * Only update dirtyoff/dirtyend if not a degenerate
682 * condition.
683 */
684 if (n) {
685 if (bp->b_dirtyend > 0) {
686 bp->b_dirtyoff = MIN(on, bp->b_dirtyoff);
687 bp->b_dirtyend = MAX((on + n), bp->b_dirtyend);
688 } else {
689 bp->b_dirtyoff = on;
690 bp->b_dirtyend = on + n;
691 }
692 vfs_bio_set_valid(bp, on, n);
693 }
694
695 vfs_bio_set_flags(bp, ioflag);
696
697 bp->b_flags |= B_FUSEFS_WRITE_CACHE;
698 if (ioflag & IO_SYNC) {
699 SDT_PROBE2(fusefs, , io, write_biobackend_issue, 2, bp);
700 if (!(ioflag & IO_VMIO))
701 bp->b_flags &= ~B_FUSEFS_WRITE_CACHE;
702 err = bwrite(bp);
703 } else if (vm_page_count_severe() ||
704 buf_dirty_count_severe() ||
705 (ioflag & IO_ASYNC)) {
706 bp->b_flags |= B_CLUSTEROK;
707 SDT_PROBE2(fusefs, , io, write_biobackend_issue, 3, bp);
708 bawrite(bp);
709 } else if (on == 0 && n == bcount) {
710 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
711 bp->b_flags |= B_CLUSTEROK;
712 SDT_PROBE2(fusefs, , io, write_biobackend_issue,
713 4, bp);
714 cluster_write(vp, &fvdat->clusterw, bp,
715 filesize, seqcount, 0);
716 } else {
717 SDT_PROBE2(fusefs, , io, write_biobackend_issue,
718 5, bp);
719 bawrite(bp);
720 }
721 } else if (ioflag & IO_DIRECT) {
722 bp->b_flags |= B_CLUSTEROK;
723 SDT_PROBE2(fusefs, , io, write_biobackend_issue, 6, bp);
724 bawrite(bp);
725 } else {
726 bp->b_flags &= ~B_CLUSTEROK;
727 SDT_PROBE2(fusefs, , io, write_biobackend_issue, 7, bp);
728 bdwrite(bp);
729 }
730 if (err)
731 break;
732 } while (uio->uio_resid > 0 && n > 0);
733
734 vn_rlimit_fsizex_res(uio, r);
735 return (err);
736 }
737
738 int
739 fuse_io_strategy(struct vnode *vp, struct buf *bp)
740 {
741 struct fuse_vnode_data *fvdat = VTOFUD(vp);
742 struct fuse_filehandle *fufh;
743 struct ucred *cred;
744 struct uio *uiop;
745 struct uio uio;
746 struct iovec io;
747 off_t filesize;
748 int error = 0;
749 int fflag;
750 /* We don't know the true pid when we're dealing with the cache */
751 pid_t pid = 0;
752
753 const int biosize = fuse_iosize(vp);
754
755 MPASS(vp->v_type == VREG || vp->v_type == VDIR);
756 MPASS(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE);
757
758 fflag = bp->b_iocmd == BIO_READ ? FREAD : FWRITE;
759 cred = bp->b_iocmd == BIO_READ ? bp->b_rcred : bp->b_wcred;
760 error = fuse_filehandle_getrw(vp, fflag, &fufh, cred, pid);
761 if (bp->b_iocmd == BIO_READ && error == EBADF) {
762 /*
763 * This may be a read-modify-write operation on a cached file
764 * opened O_WRONLY. The FUSE protocol allows this.
765 */
766 error = fuse_filehandle_get(vp, FWRITE, &fufh, cred, pid);
767 }
768 if (error) {
769 printf("FUSE: strategy: filehandles are closed\n");
770 bp->b_ioflags |= BIO_ERROR;
771 bp->b_error = error;
772 bufdone(bp);
773 return (error);
774 }
775
776 uiop = &uio;
777 uiop->uio_iov = &io;
778 uiop->uio_iovcnt = 1;
779 uiop->uio_segflg = UIO_SYSSPACE;
780 uiop->uio_td = curthread;
781
782 /*
783 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We
784 * do this here so we do not have to do it in all the code that
785 * calls us.
786 */
787 bp->b_flags &= ~B_INVAL;
788 bp->b_ioflags &= ~BIO_ERROR;
789
790 KASSERT(!(bp->b_flags & B_DONE),
791 ("fuse_io_strategy: bp %p already marked done", bp));
792 if (bp->b_iocmd == BIO_READ) {
793 ssize_t left;
794
795 io.iov_len = uiop->uio_resid = bp->b_bcount;
796 io.iov_base = bp->b_data;
797 uiop->uio_rw = UIO_READ;
798
799 uiop->uio_offset = ((off_t)bp->b_lblkno) * biosize;
800 error = fuse_read_directbackend(vp, uiop, cred, fufh);
801 /*
802 * Store the amount we failed to read in the buffer's private
803 * field, so callers can truncate the file if necessary'
804 */
805
806 if (!error && uiop->uio_resid) {
807 int nread = bp->b_bcount - uiop->uio_resid;
808 left = uiop->uio_resid;
809 bzero((char *)bp->b_data + nread, left);
810
811 if ((fvdat->flag & FN_SIZECHANGE) == 0) {
812 /*
813 * A short read with no error, when not using
814 * direct io, and when no writes are cached,
815 * indicates EOF caused by a server-side
816 * truncation. Clear the attr cache so we'll
817 * pick up the new file size and timestamps.
818 *
819 * We must still bzero the remaining buffer so
820 * uninitialized data doesn't get exposed by a
821 * future truncate that extends the file.
822 *
823 * To prevent lock order problems, we must
824 * truncate the file upstack, not here.
825 */
826 SDT_PROBE2(fusefs, , io, trace, 1,
827 "Short read of a clean file");
828 fuse_vnode_clear_attr_cache(vp);
829 } else {
830 /*
831 * If dirty writes _are_ cached beyond EOF,
832 * that indicates a newly created hole that the
833 * server doesn't know about. Those don't pose
834 * any problem.
835 * XXX: we don't currently track whether dirty
836 * writes are cached beyond EOF, before EOF, or
837 * both.
838 */
839 SDT_PROBE2(fusefs, , io, trace, 1,
840 "Short read of a dirty file");
841 uiop->uio_resid = 0;
842 }
843 }
844 if (error) {
845 bp->b_ioflags |= BIO_ERROR;
846 bp->b_error = error;
847 }
848 } else {
849 /*
850 * Setup for actual write
851 */
852 /*
853 * If the file's size is cached, use that value, even if the
854 * cache is expired. At this point we're already committed to
855 * writing something. If the FUSE server has changed the
856 * file's size behind our back, it's too late for us to do
857 * anything about it. In particular, we can't invalidate any
858 * part of the file's buffers because VOP_STRATEGY is called
859 * with them already locked.
860 */
861 filesize = fvdat->cached_attrs.va_size;
862 /* filesize must've been cached by fuse_vnop_open. */
863 KASSERT(filesize != VNOVAL, ("filesize should've been cached"));
864
865 if ((off_t)bp->b_lblkno * biosize + bp->b_dirtyend > filesize)
866 bp->b_dirtyend = filesize -
867 (off_t)bp->b_lblkno * biosize;
868
869 if (bp->b_dirtyend > bp->b_dirtyoff) {
870 io.iov_len = uiop->uio_resid = bp->b_dirtyend
871 - bp->b_dirtyoff;
872 uiop->uio_offset = (off_t)bp->b_lblkno * biosize
873 + bp->b_dirtyoff;
874 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
875 uiop->uio_rw = UIO_WRITE;
876
877 bool pages = bp->b_flags & B_FUSEFS_WRITE_CACHE;
878 error = fuse_write_directbackend(vp, uiop, cred, fufh,
879 filesize, 0, pages);
880
881 if (error == EINTR || error == ETIMEDOUT) {
882 bp->b_flags &= ~(B_INVAL | B_NOCACHE);
883 if ((bp->b_flags & B_PAGING) == 0) {
884 bdirty(bp);
885 bp->b_flags &= ~B_DONE;
886 }
887 if ((error == EINTR || error == ETIMEDOUT) &&
888 (bp->b_flags & B_ASYNC) == 0)
889 bp->b_flags |= B_EINTR;
890 } else {
891 if (error) {
892 bp->b_ioflags |= BIO_ERROR;
893 bp->b_flags |= B_INVAL;
894 bp->b_error = error;
895 }
896 bp->b_dirtyoff = bp->b_dirtyend = 0;
897 }
898 } else {
899 bp->b_resid = 0;
900 bufdone(bp);
901 return (0);
902 }
903 }
904 bp->b_resid = uiop->uio_resid;
905 bufdone(bp);
906 return (error);
907 }
908
909 int
910 fuse_io_flushbuf(struct vnode *vp, int waitfor, struct thread *td)
911 {
912
913 return (vn_fsync_buf(vp, waitfor));
914 }
915
916 /*
917 * Flush and invalidate all dirty buffers. If another process is already
918 * doing the flush, just wait for completion.
919 */
920 int
921 fuse_io_invalbuf(struct vnode *vp, struct thread *td)
922 {
923 struct fuse_vnode_data *fvdat = VTOFUD(vp);
924 int error = 0;
925
926 if (VN_IS_DOOMED(vp))
927 return 0;
928
929 ASSERT_VOP_ELOCKED(vp, "fuse_io_invalbuf");
930
931 while (fvdat->flag & FN_FLUSHINPROG) {
932 struct proc *p = td->td_proc;
933
934 if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF)
935 return EIO;
936 fvdat->flag |= FN_FLUSHWANT;
937 tsleep(&fvdat->flag, PRIBIO + 2, "fusevinv", 2 * hz);
938 error = 0;
939 if (p != NULL) {
940 PROC_LOCK(p);
941 if (SIGNOTEMPTY(p->p_siglist) ||
942 SIGNOTEMPTY(td->td_siglist))
943 error = EINTR;
944 PROC_UNLOCK(p);
945 }
946 if (error == EINTR)
947 return EINTR;
948 }
949 fvdat->flag |= FN_FLUSHINPROG;
950
951 if (vp->v_bufobj.bo_object != NULL) {
952 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
953 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
954 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
955 }
956 error = vinvalbuf(vp, V_SAVE, PCATCH, 0);
957 while (error) {
958 if (error == ERESTART || error == EINTR) {
959 fvdat->flag &= ~FN_FLUSHINPROG;
960 if (fvdat->flag & FN_FLUSHWANT) {
961 fvdat->flag &= ~FN_FLUSHWANT;
962 wakeup(&fvdat->flag);
963 }
964 return EINTR;
965 }
966 error = vinvalbuf(vp, V_SAVE, PCATCH, 0);
967 }
968 fvdat->flag &= ~FN_FLUSHINPROG;
969 if (fvdat->flag & FN_FLUSHWANT) {
970 fvdat->flag &= ~FN_FLUSHWANT;
971 wakeup(&fvdat->flag);
972 }
973 return (error);
974 }
Cache object: 47dff853c143d06ad1616530672452ac
|