The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/namespace.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  linux/fs/namespace.c
    3  *
    4  * (C) Copyright Al Viro 2000, 2001
    5  *      Released under GPL v2.
    6  *
    7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
    8  * Heavily rewritten.
    9  */
   10 
   11 #include <linux/syscalls.h>
   12 #include <linux/export.h>
   13 #include <linux/capability.h>
   14 #include <linux/mnt_namespace.h>
   15 #include <linux/user_namespace.h>
   16 #include <linux/namei.h>
   17 #include <linux/security.h>
   18 #include <linux/idr.h>
   19 #include <linux/acct.h>         /* acct_auto_close_mnt */
   20 #include <linux/ramfs.h>        /* init_rootfs */
   21 #include <linux/fs_struct.h>    /* get_fs_root et.al. */
   22 #include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
   23 #include <linux/uaccess.h>
   24 #include <linux/proc_fs.h>
   25 #include "pnode.h"
   26 #include "internal.h"
   27 
   28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
   29 #define HASH_SIZE (1UL << HASH_SHIFT)
   30 
   31 static int event;
   32 static DEFINE_IDA(mnt_id_ida);
   33 static DEFINE_IDA(mnt_group_ida);
   34 static DEFINE_SPINLOCK(mnt_id_lock);
   35 static int mnt_id_start = 0;
   36 static int mnt_group_start = 1;
   37 
   38 static struct list_head *mount_hashtable __read_mostly;
   39 static struct kmem_cache *mnt_cache __read_mostly;
   40 static struct rw_semaphore namespace_sem;
   41 
   42 /* /sys/fs */
   43 struct kobject *fs_kobj;
   44 EXPORT_SYMBOL_GPL(fs_kobj);
   45 
   46 /*
   47  * vfsmount lock may be taken for read to prevent changes to the
   48  * vfsmount hash, ie. during mountpoint lookups or walking back
   49  * up the tree.
   50  *
   51  * It should be taken for write in all cases where the vfsmount
   52  * tree or hash is modified or when a vfsmount structure is modified.
   53  */
   54 DEFINE_BRLOCK(vfsmount_lock);
   55 
   56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
   57 {
   58         unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
   59         tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
   60         tmp = tmp + (tmp >> HASH_SHIFT);
   61         return tmp & (HASH_SIZE - 1);
   62 }
   63 
   64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
   65 
   66 /*
   67  * allocation is serialized by namespace_sem, but we need the spinlock to
   68  * serialize with freeing.
   69  */
   70 static int mnt_alloc_id(struct mount *mnt)
   71 {
   72         int res;
   73 
   74 retry:
   75         ida_pre_get(&mnt_id_ida, GFP_KERNEL);
   76         spin_lock(&mnt_id_lock);
   77         res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
   78         if (!res)
   79                 mnt_id_start = mnt->mnt_id + 1;
   80         spin_unlock(&mnt_id_lock);
   81         if (res == -EAGAIN)
   82                 goto retry;
   83 
   84         return res;
   85 }
   86 
   87 static void mnt_free_id(struct mount *mnt)
   88 {
   89         int id = mnt->mnt_id;
   90         spin_lock(&mnt_id_lock);
   91         ida_remove(&mnt_id_ida, id);
   92         if (mnt_id_start > id)
   93                 mnt_id_start = id;
   94         spin_unlock(&mnt_id_lock);
   95 }
   96 
   97 /*
   98  * Allocate a new peer group ID
   99  *
  100  * mnt_group_ida is protected by namespace_sem
  101  */
  102 static int mnt_alloc_group_id(struct mount *mnt)
  103 {
  104         int res;
  105 
  106         if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  107                 return -ENOMEM;
  108 
  109         res = ida_get_new_above(&mnt_group_ida,
  110                                 mnt_group_start,
  111                                 &mnt->mnt_group_id);
  112         if (!res)
  113                 mnt_group_start = mnt->mnt_group_id + 1;
  114 
  115         return res;
  116 }
  117 
  118 /*
  119  * Release a peer group ID
  120  */
  121 void mnt_release_group_id(struct mount *mnt)
  122 {
  123         int id = mnt->mnt_group_id;
  124         ida_remove(&mnt_group_ida, id);
  125         if (mnt_group_start > id)
  126                 mnt_group_start = id;
  127         mnt->mnt_group_id = 0;
  128 }
  129 
  130 /*
  131  * vfsmount lock must be held for read
  132  */
  133 static inline void mnt_add_count(struct mount *mnt, int n)
  134 {
  135 #ifdef CONFIG_SMP
  136         this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  137 #else
  138         preempt_disable();
  139         mnt->mnt_count += n;
  140         preempt_enable();
  141 #endif
  142 }
  143 
  144 /*
  145  * vfsmount lock must be held for write
  146  */
  147 unsigned int mnt_get_count(struct mount *mnt)
  148 {
  149 #ifdef CONFIG_SMP
  150         unsigned int count = 0;
  151         int cpu;
  152 
  153         for_each_possible_cpu(cpu) {
  154                 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  155         }
  156 
  157         return count;
  158 #else
  159         return mnt->mnt_count;
  160 #endif
  161 }
  162 
  163 static struct mount *alloc_vfsmnt(const char *name)
  164 {
  165         struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  166         if (mnt) {
  167                 int err;
  168 
  169                 err = mnt_alloc_id(mnt);
  170                 if (err)
  171                         goto out_free_cache;
  172 
  173                 if (name) {
  174                         mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  175                         if (!mnt->mnt_devname)
  176                                 goto out_free_id;
  177                 }
  178 
  179 #ifdef CONFIG_SMP
  180                 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  181                 if (!mnt->mnt_pcp)
  182                         goto out_free_devname;
  183 
  184                 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  185 #else
  186                 mnt->mnt_count = 1;
  187                 mnt->mnt_writers = 0;
  188 #endif
  189 
  190                 INIT_LIST_HEAD(&mnt->mnt_hash);
  191                 INIT_LIST_HEAD(&mnt->mnt_child);
  192                 INIT_LIST_HEAD(&mnt->mnt_mounts);
  193                 INIT_LIST_HEAD(&mnt->mnt_list);
  194                 INIT_LIST_HEAD(&mnt->mnt_expire);
  195                 INIT_LIST_HEAD(&mnt->mnt_share);
  196                 INIT_LIST_HEAD(&mnt->mnt_slave_list);
  197                 INIT_LIST_HEAD(&mnt->mnt_slave);
  198 #ifdef CONFIG_FSNOTIFY
  199                 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  200 #endif
  201         }
  202         return mnt;
  203 
  204 #ifdef CONFIG_SMP
  205 out_free_devname:
  206         kfree(mnt->mnt_devname);
  207 #endif
  208 out_free_id:
  209         mnt_free_id(mnt);
  210 out_free_cache:
  211         kmem_cache_free(mnt_cache, mnt);
  212         return NULL;
  213 }
  214 
  215 /*
  216  * Most r/o checks on a fs are for operations that take
  217  * discrete amounts of time, like a write() or unlink().
  218  * We must keep track of when those operations start
  219  * (for permission checks) and when they end, so that
  220  * we can determine when writes are able to occur to
  221  * a filesystem.
  222  */
  223 /*
  224  * __mnt_is_readonly: check whether a mount is read-only
  225  * @mnt: the mount to check for its write status
  226  *
  227  * This shouldn't be used directly ouside of the VFS.
  228  * It does not guarantee that the filesystem will stay
  229  * r/w, just that it is right *now*.  This can not and
  230  * should not be used in place of IS_RDONLY(inode).
  231  * mnt_want/drop_write() will _keep_ the filesystem
  232  * r/w.
  233  */
  234 int __mnt_is_readonly(struct vfsmount *mnt)
  235 {
  236         if (mnt->mnt_flags & MNT_READONLY)
  237                 return 1;
  238         if (mnt->mnt_sb->s_flags & MS_RDONLY)
  239                 return 1;
  240         return 0;
  241 }
  242 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  243 
  244 static inline void mnt_inc_writers(struct mount *mnt)
  245 {
  246 #ifdef CONFIG_SMP
  247         this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  248 #else
  249         mnt->mnt_writers++;
  250 #endif
  251 }
  252 
  253 static inline void mnt_dec_writers(struct mount *mnt)
  254 {
  255 #ifdef CONFIG_SMP
  256         this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  257 #else
  258         mnt->mnt_writers--;
  259 #endif
  260 }
  261 
  262 static unsigned int mnt_get_writers(struct mount *mnt)
  263 {
  264 #ifdef CONFIG_SMP
  265         unsigned int count = 0;
  266         int cpu;
  267 
  268         for_each_possible_cpu(cpu) {
  269                 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  270         }
  271 
  272         return count;
  273 #else
  274         return mnt->mnt_writers;
  275 #endif
  276 }
  277 
  278 static int mnt_is_readonly(struct vfsmount *mnt)
  279 {
  280         if (mnt->mnt_sb->s_readonly_remount)
  281                 return 1;
  282         /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  283         smp_rmb();
  284         return __mnt_is_readonly(mnt);
  285 }
  286 
  287 /*
  288  * Most r/o & frozen checks on a fs are for operations that take discrete
  289  * amounts of time, like a write() or unlink().  We must keep track of when
  290  * those operations start (for permission checks) and when they end, so that we
  291  * can determine when writes are able to occur to a filesystem.
  292  */
  293 /**
  294  * __mnt_want_write - get write access to a mount without freeze protection
  295  * @m: the mount on which to take a write
  296  *
  297  * This tells the low-level filesystem that a write is about to be performed to
  298  * it, and makes sure that writes are allowed (mnt it read-write) before
  299  * returning success. This operation does not protect against filesystem being
  300  * frozen. When the write operation is finished, __mnt_drop_write() must be
  301  * called. This is effectively a refcount.
  302  */
  303 int __mnt_want_write(struct vfsmount *m)
  304 {
  305         struct mount *mnt = real_mount(m);
  306         int ret = 0;
  307 
  308         preempt_disable();
  309         mnt_inc_writers(mnt);
  310         /*
  311          * The store to mnt_inc_writers must be visible before we pass
  312          * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  313          * incremented count after it has set MNT_WRITE_HOLD.
  314          */
  315         smp_mb();
  316         while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  317                 cpu_relax();
  318         /*
  319          * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  320          * be set to match its requirements. So we must not load that until
  321          * MNT_WRITE_HOLD is cleared.
  322          */
  323         smp_rmb();
  324         if (mnt_is_readonly(m)) {
  325                 mnt_dec_writers(mnt);
  326                 ret = -EROFS;
  327         }
  328         preempt_enable();
  329 
  330         return ret;
  331 }
  332 
  333 /**
  334  * mnt_want_write - get write access to a mount
  335  * @m: the mount on which to take a write
  336  *
  337  * This tells the low-level filesystem that a write is about to be performed to
  338  * it, and makes sure that writes are allowed (mount is read-write, filesystem
  339  * is not frozen) before returning success.  When the write operation is
  340  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
  341  */
  342 int mnt_want_write(struct vfsmount *m)
  343 {
  344         int ret;
  345 
  346         sb_start_write(m->mnt_sb);
  347         ret = __mnt_want_write(m);
  348         if (ret)
  349                 sb_end_write(m->mnt_sb);
  350         return ret;
  351 }
  352 EXPORT_SYMBOL_GPL(mnt_want_write);
  353 
  354 /**
  355  * mnt_clone_write - get write access to a mount
  356  * @mnt: the mount on which to take a write
  357  *
  358  * This is effectively like mnt_want_write, except
  359  * it must only be used to take an extra write reference
  360  * on a mountpoint that we already know has a write reference
  361  * on it. This allows some optimisation.
  362  *
  363  * After finished, mnt_drop_write must be called as usual to
  364  * drop the reference.
  365  */
  366 int mnt_clone_write(struct vfsmount *mnt)
  367 {
  368         /* superblock may be r/o */
  369         if (__mnt_is_readonly(mnt))
  370                 return -EROFS;
  371         preempt_disable();
  372         mnt_inc_writers(real_mount(mnt));
  373         preempt_enable();
  374         return 0;
  375 }
  376 EXPORT_SYMBOL_GPL(mnt_clone_write);
  377 
  378 /**
  379  * __mnt_want_write_file - get write access to a file's mount
  380  * @file: the file who's mount on which to take a write
  381  *
  382  * This is like __mnt_want_write, but it takes a file and can
  383  * do some optimisations if the file is open for write already
  384  */
  385 int __mnt_want_write_file(struct file *file)
  386 {
  387         struct inode *inode = file->f_dentry->d_inode;
  388 
  389         if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  390                 return __mnt_want_write(file->f_path.mnt);
  391         else
  392                 return mnt_clone_write(file->f_path.mnt);
  393 }
  394 
  395 /**
  396  * mnt_want_write_file - get write access to a file's mount
  397  * @file: the file who's mount on which to take a write
  398  *
  399  * This is like mnt_want_write, but it takes a file and can
  400  * do some optimisations if the file is open for write already
  401  */
  402 int mnt_want_write_file(struct file *file)
  403 {
  404         int ret;
  405 
  406         sb_start_write(file->f_path.mnt->mnt_sb);
  407         ret = __mnt_want_write_file(file);
  408         if (ret)
  409                 sb_end_write(file->f_path.mnt->mnt_sb);
  410         return ret;
  411 }
  412 EXPORT_SYMBOL_GPL(mnt_want_write_file);
  413 
  414 /**
  415  * __mnt_drop_write - give up write access to a mount
  416  * @mnt: the mount on which to give up write access
  417  *
  418  * Tells the low-level filesystem that we are done
  419  * performing writes to it.  Must be matched with
  420  * __mnt_want_write() call above.
  421  */
  422 void __mnt_drop_write(struct vfsmount *mnt)
  423 {
  424         preempt_disable();
  425         mnt_dec_writers(real_mount(mnt));
  426         preempt_enable();
  427 }
  428 
  429 /**
  430  * mnt_drop_write - give up write access to a mount
  431  * @mnt: the mount on which to give up write access
  432  *
  433  * Tells the low-level filesystem that we are done performing writes to it and
  434  * also allows filesystem to be frozen again.  Must be matched with
  435  * mnt_want_write() call above.
  436  */
  437 void mnt_drop_write(struct vfsmount *mnt)
  438 {
  439         __mnt_drop_write(mnt);
  440         sb_end_write(mnt->mnt_sb);
  441 }
  442 EXPORT_SYMBOL_GPL(mnt_drop_write);
  443 
  444 void __mnt_drop_write_file(struct file *file)
  445 {
  446         __mnt_drop_write(file->f_path.mnt);
  447 }
  448 
  449 void mnt_drop_write_file(struct file *file)
  450 {
  451         mnt_drop_write(file->f_path.mnt);
  452 }
  453 EXPORT_SYMBOL(mnt_drop_write_file);
  454 
  455 static int mnt_make_readonly(struct mount *mnt)
  456 {
  457         int ret = 0;
  458 
  459         br_write_lock(&vfsmount_lock);
  460         mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  461         /*
  462          * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  463          * should be visible before we do.
  464          */
  465         smp_mb();
  466 
  467         /*
  468          * With writers on hold, if this value is zero, then there are
  469          * definitely no active writers (although held writers may subsequently
  470          * increment the count, they'll have to wait, and decrement it after
  471          * seeing MNT_READONLY).
  472          *
  473          * It is OK to have counter incremented on one CPU and decremented on
  474          * another: the sum will add up correctly. The danger would be when we
  475          * sum up each counter, if we read a counter before it is incremented,
  476          * but then read another CPU's count which it has been subsequently
  477          * decremented from -- we would see more decrements than we should.
  478          * MNT_WRITE_HOLD protects against this scenario, because
  479          * mnt_want_write first increments count, then smp_mb, then spins on
  480          * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  481          * we're counting up here.
  482          */
  483         if (mnt_get_writers(mnt) > 0)
  484                 ret = -EBUSY;
  485         else
  486                 mnt->mnt.mnt_flags |= MNT_READONLY;
  487         /*
  488          * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  489          * that become unheld will see MNT_READONLY.
  490          */
  491         smp_wmb();
  492         mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  493         br_write_unlock(&vfsmount_lock);
  494         return ret;
  495 }
  496 
  497 static void __mnt_unmake_readonly(struct mount *mnt)
  498 {
  499         br_write_lock(&vfsmount_lock);
  500         mnt->mnt.mnt_flags &= ~MNT_READONLY;
  501         br_write_unlock(&vfsmount_lock);
  502 }
  503 
  504 int sb_prepare_remount_readonly(struct super_block *sb)
  505 {
  506         struct mount *mnt;
  507         int err = 0;
  508 
  509         /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
  510         if (atomic_long_read(&sb->s_remove_count))
  511                 return -EBUSY;
  512 
  513         br_write_lock(&vfsmount_lock);
  514         list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  515                 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  516                         mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  517                         smp_mb();
  518                         if (mnt_get_writers(mnt) > 0) {
  519                                 err = -EBUSY;
  520                                 break;
  521                         }
  522                 }
  523         }
  524         if (!err && atomic_long_read(&sb->s_remove_count))
  525                 err = -EBUSY;
  526 
  527         if (!err) {
  528                 sb->s_readonly_remount = 1;
  529                 smp_wmb();
  530         }
  531         list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  532                 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  533                         mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  534         }
  535         br_write_unlock(&vfsmount_lock);
  536 
  537         return err;
  538 }
  539 
  540 static void free_vfsmnt(struct mount *mnt)
  541 {
  542         kfree(mnt->mnt_devname);
  543         mnt_free_id(mnt);
  544 #ifdef CONFIG_SMP
  545         free_percpu(mnt->mnt_pcp);
  546 #endif
  547         kmem_cache_free(mnt_cache, mnt);
  548 }
  549 
  550 /*
  551  * find the first or last mount at @dentry on vfsmount @mnt depending on
  552  * @dir. If @dir is set return the first mount else return the last mount.
  553  * vfsmount_lock must be held for read or write.
  554  */
  555 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  556                               int dir)
  557 {
  558         struct list_head *head = mount_hashtable + hash(mnt, dentry);
  559         struct list_head *tmp = head;
  560         struct mount *p, *found = NULL;
  561 
  562         for (;;) {
  563                 tmp = dir ? tmp->next : tmp->prev;
  564                 p = NULL;
  565                 if (tmp == head)
  566                         break;
  567                 p = list_entry(tmp, struct mount, mnt_hash);
  568                 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  569                         found = p;
  570                         break;
  571                 }
  572         }
  573         return found;
  574 }
  575 
  576 /*
  577  * lookup_mnt - Return the first child mount mounted at path
  578  *
  579  * "First" means first mounted chronologically.  If you create the
  580  * following mounts:
  581  *
  582  * mount /dev/sda1 /mnt
  583  * mount /dev/sda2 /mnt
  584  * mount /dev/sda3 /mnt
  585  *
  586  * Then lookup_mnt() on the base /mnt dentry in the root mount will
  587  * return successively the root dentry and vfsmount of /dev/sda1, then
  588  * /dev/sda2, then /dev/sda3, then NULL.
  589  *
  590  * lookup_mnt takes a reference to the found vfsmount.
  591  */
  592 struct vfsmount *lookup_mnt(struct path *path)
  593 {
  594         struct mount *child_mnt;
  595 
  596         br_read_lock(&vfsmount_lock);
  597         child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  598         if (child_mnt) {
  599                 mnt_add_count(child_mnt, 1);
  600                 br_read_unlock(&vfsmount_lock);
  601                 return &child_mnt->mnt;
  602         } else {
  603                 br_read_unlock(&vfsmount_lock);
  604                 return NULL;
  605         }
  606 }
  607 
  608 static inline int check_mnt(struct mount *mnt)
  609 {
  610         return mnt->mnt_ns == current->nsproxy->mnt_ns;
  611 }
  612 
  613 /*
  614  * vfsmount lock must be held for write
  615  */
  616 static void touch_mnt_namespace(struct mnt_namespace *ns)
  617 {
  618         if (ns) {
  619                 ns->event = ++event;
  620                 wake_up_interruptible(&ns->poll);
  621         }
  622 }
  623 
  624 /*
  625  * vfsmount lock must be held for write
  626  */
  627 static void __touch_mnt_namespace(struct mnt_namespace *ns)
  628 {
  629         if (ns && ns->event != event) {
  630                 ns->event = event;
  631                 wake_up_interruptible(&ns->poll);
  632         }
  633 }
  634 
  635 /*
  636  * Clear dentry's mounted state if it has no remaining mounts.
  637  * vfsmount_lock must be held for write.
  638  */
  639 static void dentry_reset_mounted(struct dentry *dentry)
  640 {
  641         unsigned u;
  642 
  643         for (u = 0; u < HASH_SIZE; u++) {
  644                 struct mount *p;
  645 
  646                 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  647                         if (p->mnt_mountpoint == dentry)
  648                                 return;
  649                 }
  650         }
  651         spin_lock(&dentry->d_lock);
  652         dentry->d_flags &= ~DCACHE_MOUNTED;
  653         spin_unlock(&dentry->d_lock);
  654 }
  655 
  656 /*
  657  * vfsmount lock must be held for write
  658  */
  659 static void detach_mnt(struct mount *mnt, struct path *old_path)
  660 {
  661         old_path->dentry = mnt->mnt_mountpoint;
  662         old_path->mnt = &mnt->mnt_parent->mnt;
  663         mnt->mnt_parent = mnt;
  664         mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  665         list_del_init(&mnt->mnt_child);
  666         list_del_init(&mnt->mnt_hash);
  667         dentry_reset_mounted(old_path->dentry);
  668 }
  669 
  670 /*
  671  * vfsmount lock must be held for write
  672  */
  673 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  674                         struct mount *child_mnt)
  675 {
  676         mnt_add_count(mnt, 1);  /* essentially, that's mntget */
  677         child_mnt->mnt_mountpoint = dget(dentry);
  678         child_mnt->mnt_parent = mnt;
  679         spin_lock(&dentry->d_lock);
  680         dentry->d_flags |= DCACHE_MOUNTED;
  681         spin_unlock(&dentry->d_lock);
  682 }
  683 
  684 /*
  685  * vfsmount lock must be held for write
  686  */
  687 static void attach_mnt(struct mount *mnt, struct path *path)
  688 {
  689         mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  690         list_add_tail(&mnt->mnt_hash, mount_hashtable +
  691                         hash(path->mnt, path->dentry));
  692         list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  693 }
  694 
  695 /*
  696  * vfsmount lock must be held for write
  697  */
  698 static void commit_tree(struct mount *mnt)
  699 {
  700         struct mount *parent = mnt->mnt_parent;
  701         struct mount *m;
  702         LIST_HEAD(head);
  703         struct mnt_namespace *n = parent->mnt_ns;
  704 
  705         BUG_ON(parent == mnt);
  706 
  707         list_add_tail(&head, &mnt->mnt_list);
  708         list_for_each_entry(m, &head, mnt_list)
  709                 m->mnt_ns = n;
  710 
  711         list_splice(&head, n->list.prev);
  712 
  713         list_add_tail(&mnt->mnt_hash, mount_hashtable +
  714                                 hash(&parent->mnt, mnt->mnt_mountpoint));
  715         list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  716         touch_mnt_namespace(n);
  717 }
  718 
  719 static struct mount *next_mnt(struct mount *p, struct mount *root)
  720 {
  721         struct list_head *next = p->mnt_mounts.next;
  722         if (next == &p->mnt_mounts) {
  723                 while (1) {
  724                         if (p == root)
  725                                 return NULL;
  726                         next = p->mnt_child.next;
  727                         if (next != &p->mnt_parent->mnt_mounts)
  728                                 break;
  729                         p = p->mnt_parent;
  730                 }
  731         }
  732         return list_entry(next, struct mount, mnt_child);
  733 }
  734 
  735 static struct mount *skip_mnt_tree(struct mount *p)
  736 {
  737         struct list_head *prev = p->mnt_mounts.prev;
  738         while (prev != &p->mnt_mounts) {
  739                 p = list_entry(prev, struct mount, mnt_child);
  740                 prev = p->mnt_mounts.prev;
  741         }
  742         return p;
  743 }
  744 
  745 struct vfsmount *
  746 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  747 {
  748         struct mount *mnt;
  749         struct dentry *root;
  750 
  751         if (!type)
  752                 return ERR_PTR(-ENODEV);
  753 
  754         mnt = alloc_vfsmnt(name);
  755         if (!mnt)
  756                 return ERR_PTR(-ENOMEM);
  757 
  758         if (flags & MS_KERNMOUNT)
  759                 mnt->mnt.mnt_flags = MNT_INTERNAL;
  760 
  761         root = mount_fs(type, flags, name, data);
  762         if (IS_ERR(root)) {
  763                 free_vfsmnt(mnt);
  764                 return ERR_CAST(root);
  765         }
  766 
  767         mnt->mnt.mnt_root = root;
  768         mnt->mnt.mnt_sb = root->d_sb;
  769         mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  770         mnt->mnt_parent = mnt;
  771         br_write_lock(&vfsmount_lock);
  772         list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  773         br_write_unlock(&vfsmount_lock);
  774         return &mnt->mnt;
  775 }
  776 EXPORT_SYMBOL_GPL(vfs_kern_mount);
  777 
  778 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  779                                         int flag)
  780 {
  781         struct super_block *sb = old->mnt.mnt_sb;
  782         struct mount *mnt;
  783         int err;
  784 
  785         mnt = alloc_vfsmnt(old->mnt_devname);
  786         if (!mnt)
  787                 return ERR_PTR(-ENOMEM);
  788 
  789         if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  790                 mnt->mnt_group_id = 0; /* not a peer of original */
  791         else
  792                 mnt->mnt_group_id = old->mnt_group_id;
  793 
  794         if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  795                 err = mnt_alloc_group_id(mnt);
  796                 if (err)
  797                         goto out_free;
  798         }
  799 
  800         mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  801         atomic_inc(&sb->s_active);
  802         mnt->mnt.mnt_sb = sb;
  803         mnt->mnt.mnt_root = dget(root);
  804         mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  805         mnt->mnt_parent = mnt;
  806         br_write_lock(&vfsmount_lock);
  807         list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  808         br_write_unlock(&vfsmount_lock);
  809 
  810         if ((flag & CL_SLAVE) ||
  811             ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  812                 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  813                 mnt->mnt_master = old;
  814                 CLEAR_MNT_SHARED(mnt);
  815         } else if (!(flag & CL_PRIVATE)) {
  816                 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  817                         list_add(&mnt->mnt_share, &old->mnt_share);
  818                 if (IS_MNT_SLAVE(old))
  819                         list_add(&mnt->mnt_slave, &old->mnt_slave);
  820                 mnt->mnt_master = old->mnt_master;
  821         }
  822         if (flag & CL_MAKE_SHARED)
  823                 set_mnt_shared(mnt);
  824 
  825         /* stick the duplicate mount on the same expiry list
  826          * as the original if that was on one */
  827         if (flag & CL_EXPIRE) {
  828                 if (!list_empty(&old->mnt_expire))
  829                         list_add(&mnt->mnt_expire, &old->mnt_expire);
  830         }
  831 
  832         return mnt;
  833 
  834  out_free:
  835         free_vfsmnt(mnt);
  836         return ERR_PTR(err);
  837 }
  838 
  839 static inline void mntfree(struct mount *mnt)
  840 {
  841         struct vfsmount *m = &mnt->mnt;
  842         struct super_block *sb = m->mnt_sb;
  843 
  844         /*
  845          * This probably indicates that somebody messed
  846          * up a mnt_want/drop_write() pair.  If this
  847          * happens, the filesystem was probably unable
  848          * to make r/w->r/o transitions.
  849          */
  850         /*
  851          * The locking used to deal with mnt_count decrement provides barriers,
  852          * so mnt_get_writers() below is safe.
  853          */
  854         WARN_ON(mnt_get_writers(mnt));
  855         fsnotify_vfsmount_delete(m);
  856         dput(m->mnt_root);
  857         free_vfsmnt(mnt);
  858         deactivate_super(sb);
  859 }
  860 
  861 static void mntput_no_expire(struct mount *mnt)
  862 {
  863 put_again:
  864 #ifdef CONFIG_SMP
  865         br_read_lock(&vfsmount_lock);
  866         if (likely(mnt->mnt_ns)) {
  867                 /* shouldn't be the last one */
  868                 mnt_add_count(mnt, -1);
  869                 br_read_unlock(&vfsmount_lock);
  870                 return;
  871         }
  872         br_read_unlock(&vfsmount_lock);
  873 
  874         br_write_lock(&vfsmount_lock);
  875         mnt_add_count(mnt, -1);
  876         if (mnt_get_count(mnt)) {
  877                 br_write_unlock(&vfsmount_lock);
  878                 return;
  879         }
  880 #else
  881         mnt_add_count(mnt, -1);
  882         if (likely(mnt_get_count(mnt)))
  883                 return;
  884         br_write_lock(&vfsmount_lock);
  885 #endif
  886         if (unlikely(mnt->mnt_pinned)) {
  887                 mnt_add_count(mnt, mnt->mnt_pinned + 1);
  888                 mnt->mnt_pinned = 0;
  889                 br_write_unlock(&vfsmount_lock);
  890                 acct_auto_close_mnt(&mnt->mnt);
  891                 goto put_again;
  892         }
  893 
  894         list_del(&mnt->mnt_instance);
  895         br_write_unlock(&vfsmount_lock);
  896         mntfree(mnt);
  897 }
  898 
  899 void mntput(struct vfsmount *mnt)
  900 {
  901         if (mnt) {
  902                 struct mount *m = real_mount(mnt);
  903                 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  904                 if (unlikely(m->mnt_expiry_mark))
  905                         m->mnt_expiry_mark = 0;
  906                 mntput_no_expire(m);
  907         }
  908 }
  909 EXPORT_SYMBOL(mntput);
  910 
  911 struct vfsmount *mntget(struct vfsmount *mnt)
  912 {
  913         if (mnt)
  914                 mnt_add_count(real_mount(mnt), 1);
  915         return mnt;
  916 }
  917 EXPORT_SYMBOL(mntget);
  918 
  919 void mnt_pin(struct vfsmount *mnt)
  920 {
  921         br_write_lock(&vfsmount_lock);
  922         real_mount(mnt)->mnt_pinned++;
  923         br_write_unlock(&vfsmount_lock);
  924 }
  925 EXPORT_SYMBOL(mnt_pin);
  926 
  927 void mnt_unpin(struct vfsmount *m)
  928 {
  929         struct mount *mnt = real_mount(m);
  930         br_write_lock(&vfsmount_lock);
  931         if (mnt->mnt_pinned) {
  932                 mnt_add_count(mnt, 1);
  933                 mnt->mnt_pinned--;
  934         }
  935         br_write_unlock(&vfsmount_lock);
  936 }
  937 EXPORT_SYMBOL(mnt_unpin);
  938 
  939 static inline void mangle(struct seq_file *m, const char *s)
  940 {
  941         seq_escape(m, s, " \t\n\\");
  942 }
  943 
  944 /*
  945  * Simple .show_options callback for filesystems which don't want to
  946  * implement more complex mount option showing.
  947  *
  948  * See also save_mount_options().
  949  */
  950 int generic_show_options(struct seq_file *m, struct dentry *root)
  951 {
  952         const char *options;
  953 
  954         rcu_read_lock();
  955         options = rcu_dereference(root->d_sb->s_options);
  956 
  957         if (options != NULL && options[0]) {
  958                 seq_putc(m, ',');
  959                 mangle(m, options);
  960         }
  961         rcu_read_unlock();
  962 
  963         return 0;
  964 }
  965 EXPORT_SYMBOL(generic_show_options);
  966 
  967 /*
  968  * If filesystem uses generic_show_options(), this function should be
  969  * called from the fill_super() callback.
  970  *
  971  * The .remount_fs callback usually needs to be handled in a special
  972  * way, to make sure, that previous options are not overwritten if the
  973  * remount fails.
  974  *
  975  * Also note, that if the filesystem's .remount_fs function doesn't
  976  * reset all options to their default value, but changes only newly
  977  * given options, then the displayed options will not reflect reality
  978  * any more.
  979  */
  980 void save_mount_options(struct super_block *sb, char *options)
  981 {
  982         BUG_ON(sb->s_options);
  983         rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  984 }
  985 EXPORT_SYMBOL(save_mount_options);
  986 
  987 void replace_mount_options(struct super_block *sb, char *options)
  988 {
  989         char *old = sb->s_options;
  990         rcu_assign_pointer(sb->s_options, options);
  991         if (old) {
  992                 synchronize_rcu();
  993                 kfree(old);
  994         }
  995 }
  996 EXPORT_SYMBOL(replace_mount_options);
  997 
  998 #ifdef CONFIG_PROC_FS
  999 /* iterator; we want it to have access to namespace_sem, thus here... */
 1000 static void *m_start(struct seq_file *m, loff_t *pos)
 1001 {
 1002         struct proc_mounts *p = proc_mounts(m);
 1003 
 1004         down_read(&namespace_sem);
 1005         return seq_list_start(&p->ns->list, *pos);
 1006 }
 1007 
 1008 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 1009 {
 1010         struct proc_mounts *p = proc_mounts(m);
 1011 
 1012         return seq_list_next(v, &p->ns->list, pos);
 1013 }
 1014 
 1015 static void m_stop(struct seq_file *m, void *v)
 1016 {
 1017         up_read(&namespace_sem);
 1018 }
 1019 
 1020 static int m_show(struct seq_file *m, void *v)
 1021 {
 1022         struct proc_mounts *p = proc_mounts(m);
 1023         struct mount *r = list_entry(v, struct mount, mnt_list);
 1024         return p->show(m, &r->mnt);
 1025 }
 1026 
 1027 const struct seq_operations mounts_op = {
 1028         .start  = m_start,
 1029         .next   = m_next,
 1030         .stop   = m_stop,
 1031         .show   = m_show,
 1032 };
 1033 #endif  /* CONFIG_PROC_FS */
 1034 
 1035 /**
 1036  * may_umount_tree - check if a mount tree is busy
 1037  * @mnt: root of mount tree
 1038  *
 1039  * This is called to check if a tree of mounts has any
 1040  * open files, pwds, chroots or sub mounts that are
 1041  * busy.
 1042  */
 1043 int may_umount_tree(struct vfsmount *m)
 1044 {
 1045         struct mount *mnt = real_mount(m);
 1046         int actual_refs = 0;
 1047         int minimum_refs = 0;
 1048         struct mount *p;
 1049         BUG_ON(!m);
 1050 
 1051         /* write lock needed for mnt_get_count */
 1052         br_write_lock(&vfsmount_lock);
 1053         for (p = mnt; p; p = next_mnt(p, mnt)) {
 1054                 actual_refs += mnt_get_count(p);
 1055                 minimum_refs += 2;
 1056         }
 1057         br_write_unlock(&vfsmount_lock);
 1058 
 1059         if (actual_refs > minimum_refs)
 1060                 return 0;
 1061 
 1062         return 1;
 1063 }
 1064 
 1065 EXPORT_SYMBOL(may_umount_tree);
 1066 
 1067 /**
 1068  * may_umount - check if a mount point is busy
 1069  * @mnt: root of mount
 1070  *
 1071  * This is called to check if a mount point has any
 1072  * open files, pwds, chroots or sub mounts. If the
 1073  * mount has sub mounts this will return busy
 1074  * regardless of whether the sub mounts are busy.
 1075  *
 1076  * Doesn't take quota and stuff into account. IOW, in some cases it will
 1077  * give false negatives. The main reason why it's here is that we need
 1078  * a non-destructive way to look for easily umountable filesystems.
 1079  */
 1080 int may_umount(struct vfsmount *mnt)
 1081 {
 1082         int ret = 1;
 1083         down_read(&namespace_sem);
 1084         br_write_lock(&vfsmount_lock);
 1085         if (propagate_mount_busy(real_mount(mnt), 2))
 1086                 ret = 0;
 1087         br_write_unlock(&vfsmount_lock);
 1088         up_read(&namespace_sem);
 1089         return ret;
 1090 }
 1091 
 1092 EXPORT_SYMBOL(may_umount);
 1093 
 1094 void release_mounts(struct list_head *head)
 1095 {
 1096         struct mount *mnt;
 1097         while (!list_empty(head)) {
 1098                 mnt = list_first_entry(head, struct mount, mnt_hash);
 1099                 list_del_init(&mnt->mnt_hash);
 1100                 if (mnt_has_parent(mnt)) {
 1101                         struct dentry *dentry;
 1102                         struct mount *m;
 1103 
 1104                         br_write_lock(&vfsmount_lock);
 1105                         dentry = mnt->mnt_mountpoint;
 1106                         m = mnt->mnt_parent;
 1107                         mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 1108                         mnt->mnt_parent = mnt;
 1109                         m->mnt_ghosts--;
 1110                         br_write_unlock(&vfsmount_lock);
 1111                         dput(dentry);
 1112                         mntput(&m->mnt);
 1113                 }
 1114                 mntput(&mnt->mnt);
 1115         }
 1116 }
 1117 
 1118 /*
 1119  * vfsmount lock must be held for write
 1120  * namespace_sem must be held for write
 1121  */
 1122 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
 1123 {
 1124         LIST_HEAD(tmp_list);
 1125         struct mount *p;
 1126 
 1127         for (p = mnt; p; p = next_mnt(p, mnt))
 1128                 list_move(&p->mnt_hash, &tmp_list);
 1129 
 1130         if (propagate)
 1131                 propagate_umount(&tmp_list);
 1132 
 1133         list_for_each_entry(p, &tmp_list, mnt_hash) {
 1134                 list_del_init(&p->mnt_expire);
 1135                 list_del_init(&p->mnt_list);
 1136                 __touch_mnt_namespace(p->mnt_ns);
 1137                 p->mnt_ns = NULL;
 1138                 list_del_init(&p->mnt_child);
 1139                 if (mnt_has_parent(p)) {
 1140                         p->mnt_parent->mnt_ghosts++;
 1141                         dentry_reset_mounted(p->mnt_mountpoint);
 1142                 }
 1143                 change_mnt_propagation(p, MS_PRIVATE);
 1144         }
 1145         list_splice(&tmp_list, kill);
 1146 }
 1147 
 1148 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
 1149 
 1150 static int do_umount(struct mount *mnt, int flags)
 1151 {
 1152         struct super_block *sb = mnt->mnt.mnt_sb;
 1153         int retval;
 1154         LIST_HEAD(umount_list);
 1155 
 1156         retval = security_sb_umount(&mnt->mnt, flags);
 1157         if (retval)
 1158                 return retval;
 1159 
 1160         /*
 1161          * Allow userspace to request a mountpoint be expired rather than
 1162          * unmounting unconditionally. Unmount only happens if:
 1163          *  (1) the mark is already set (the mark is cleared by mntput())
 1164          *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
 1165          */
 1166         if (flags & MNT_EXPIRE) {
 1167                 if (&mnt->mnt == current->fs->root.mnt ||
 1168                     flags & (MNT_FORCE | MNT_DETACH))
 1169                         return -EINVAL;
 1170 
 1171                 /*
 1172                  * probably don't strictly need the lock here if we examined
 1173                  * all race cases, but it's a slowpath.
 1174                  */
 1175                 br_write_lock(&vfsmount_lock);
 1176                 if (mnt_get_count(mnt) != 2) {
 1177                         br_write_unlock(&vfsmount_lock);
 1178                         return -EBUSY;
 1179                 }
 1180                 br_write_unlock(&vfsmount_lock);
 1181 
 1182                 if (!xchg(&mnt->mnt_expiry_mark, 1))
 1183                         return -EAGAIN;
 1184         }
 1185 
 1186         /*
 1187          * If we may have to abort operations to get out of this
 1188          * mount, and they will themselves hold resources we must
 1189          * allow the fs to do things. In the Unix tradition of
 1190          * 'Gee thats tricky lets do it in userspace' the umount_begin
 1191          * might fail to complete on the first run through as other tasks
 1192          * must return, and the like. Thats for the mount program to worry
 1193          * about for the moment.
 1194          */
 1195 
 1196         if (flags & MNT_FORCE && sb->s_op->umount_begin) {
 1197                 sb->s_op->umount_begin(sb);
 1198         }
 1199 
 1200         /*
 1201          * No sense to grab the lock for this test, but test itself looks
 1202          * somewhat bogus. Suggestions for better replacement?
 1203          * Ho-hum... In principle, we might treat that as umount + switch
 1204          * to rootfs. GC would eventually take care of the old vfsmount.
 1205          * Actually it makes sense, especially if rootfs would contain a
 1206          * /reboot - static binary that would close all descriptors and
 1207          * call reboot(9). Then init(8) could umount root and exec /reboot.
 1208          */
 1209         if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
 1210                 /*
 1211                  * Special case for "unmounting" root ...
 1212                  * we just try to remount it readonly.
 1213                  */
 1214                 down_write(&sb->s_umount);
 1215                 if (!(sb->s_flags & MS_RDONLY))
 1216                         retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
 1217                 up_write(&sb->s_umount);
 1218                 return retval;
 1219         }
 1220 
 1221         down_write(&namespace_sem);
 1222         br_write_lock(&vfsmount_lock);
 1223         event++;
 1224 
 1225         if (!(flags & MNT_DETACH))
 1226                 shrink_submounts(mnt, &umount_list);
 1227 
 1228         retval = -EBUSY;
 1229         if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
 1230                 if (!list_empty(&mnt->mnt_list))
 1231                         umount_tree(mnt, 1, &umount_list);
 1232                 retval = 0;
 1233         }
 1234         br_write_unlock(&vfsmount_lock);
 1235         up_write(&namespace_sem);
 1236         release_mounts(&umount_list);
 1237         return retval;
 1238 }
 1239 
 1240 /*
 1241  * Now umount can handle mount points as well as block devices.
 1242  * This is important for filesystems which use unnamed block devices.
 1243  *
 1244  * We now support a flag for forced unmount like the other 'big iron'
 1245  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
 1246  */
 1247 
 1248 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
 1249 {
 1250         struct path path;
 1251         struct mount *mnt;
 1252         int retval;
 1253         int lookup_flags = 0;
 1254 
 1255         if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
 1256                 return -EINVAL;
 1257 
 1258         if (!(flags & UMOUNT_NOFOLLOW))
 1259                 lookup_flags |= LOOKUP_FOLLOW;
 1260 
 1261         retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
 1262         if (retval)
 1263                 goto out;
 1264         mnt = real_mount(path.mnt);
 1265         retval = -EINVAL;
 1266         if (path.dentry != path.mnt->mnt_root)
 1267                 goto dput_and_out;
 1268         if (!check_mnt(mnt))
 1269                 goto dput_and_out;
 1270 
 1271         retval = -EPERM;
 1272         if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
 1273                 goto dput_and_out;
 1274 
 1275         retval = do_umount(mnt, flags);
 1276 dput_and_out:
 1277         /* we mustn't call path_put() as that would clear mnt_expiry_mark */
 1278         dput(path.dentry);
 1279         mntput_no_expire(mnt);
 1280 out:
 1281         return retval;
 1282 }
 1283 
 1284 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
 1285 
 1286 /*
 1287  *      The 2.0 compatible umount. No flags.
 1288  */
 1289 SYSCALL_DEFINE1(oldumount, char __user *, name)
 1290 {
 1291         return sys_umount(name, 0);
 1292 }
 1293 
 1294 #endif
 1295 
 1296 static int mount_is_safe(struct path *path)
 1297 {
 1298         if (ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
 1299                 return 0;
 1300         return -EPERM;
 1301 #ifdef notyet
 1302         if (S_ISLNK(path->dentry->d_inode->i_mode))
 1303                 return -EPERM;
 1304         if (path->dentry->d_inode->i_mode & S_ISVTX) {
 1305                 if (current_uid() != path->dentry->d_inode->i_uid)
 1306                         return -EPERM;
 1307         }
 1308         if (inode_permission(path->dentry->d_inode, MAY_WRITE))
 1309                 return -EPERM;
 1310         return 0;
 1311 #endif
 1312 }
 1313 
 1314 static bool mnt_ns_loop(struct path *path)
 1315 {
 1316         /* Could bind mounting the mount namespace inode cause a
 1317          * mount namespace loop?
 1318          */
 1319         struct inode *inode = path->dentry->d_inode;
 1320         struct proc_inode *ei;
 1321         struct mnt_namespace *mnt_ns;
 1322 
 1323         if (!proc_ns_inode(inode))
 1324                 return false;
 1325 
 1326         ei = PROC_I(inode);
 1327         if (ei->ns_ops != &mntns_operations)
 1328                 return false;
 1329 
 1330         mnt_ns = ei->ns;
 1331         return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
 1332 }
 1333 
 1334 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
 1335                                         int flag)
 1336 {
 1337         struct mount *res, *p, *q, *r;
 1338         struct path path;
 1339 
 1340         if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
 1341                 return ERR_PTR(-EINVAL);
 1342 
 1343         res = q = clone_mnt(mnt, dentry, flag);
 1344         if (IS_ERR(q))
 1345                 return q;
 1346 
 1347         q->mnt_mountpoint = mnt->mnt_mountpoint;
 1348 
 1349         p = mnt;
 1350         list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
 1351                 struct mount *s;
 1352                 if (!is_subdir(r->mnt_mountpoint, dentry))
 1353                         continue;
 1354 
 1355                 for (s = r; s; s = next_mnt(s, r)) {
 1356                         if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
 1357                                 s = skip_mnt_tree(s);
 1358                                 continue;
 1359                         }
 1360                         while (p != s->mnt_parent) {
 1361                                 p = p->mnt_parent;
 1362                                 q = q->mnt_parent;
 1363                         }
 1364                         p = s;
 1365                         path.mnt = &q->mnt;
 1366                         path.dentry = p->mnt_mountpoint;
 1367                         q = clone_mnt(p, p->mnt.mnt_root, flag);
 1368                         if (IS_ERR(q))
 1369                                 goto out;
 1370                         br_write_lock(&vfsmount_lock);
 1371                         list_add_tail(&q->mnt_list, &res->mnt_list);
 1372                         attach_mnt(q, &path);
 1373                         br_write_unlock(&vfsmount_lock);
 1374                 }
 1375         }
 1376         return res;
 1377 out:
 1378         if (res) {
 1379                 LIST_HEAD(umount_list);
 1380                 br_write_lock(&vfsmount_lock);
 1381                 umount_tree(res, 0, &umount_list);
 1382                 br_write_unlock(&vfsmount_lock);
 1383                 release_mounts(&umount_list);
 1384         }
 1385         return q;
 1386 }
 1387 
 1388 /* Caller should check returned pointer for errors */
 1389 
 1390 struct vfsmount *collect_mounts(struct path *path)
 1391 {
 1392         struct mount *tree;
 1393         down_write(&namespace_sem);
 1394         tree = copy_tree(real_mount(path->mnt), path->dentry,
 1395                          CL_COPY_ALL | CL_PRIVATE);
 1396         up_write(&namespace_sem);
 1397         if (IS_ERR(tree))
 1398                 return NULL;
 1399         return &tree->mnt;
 1400 }
 1401 
 1402 void drop_collected_mounts(struct vfsmount *mnt)
 1403 {
 1404         LIST_HEAD(umount_list);
 1405         down_write(&namespace_sem);
 1406         br_write_lock(&vfsmount_lock);
 1407         umount_tree(real_mount(mnt), 0, &umount_list);
 1408         br_write_unlock(&vfsmount_lock);
 1409         up_write(&namespace_sem);
 1410         release_mounts(&umount_list);
 1411 }
 1412 
 1413 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
 1414                    struct vfsmount *root)
 1415 {
 1416         struct mount *mnt;
 1417         int res = f(root, arg);
 1418         if (res)
 1419                 return res;
 1420         list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
 1421                 res = f(&mnt->mnt, arg);
 1422                 if (res)
 1423                         return res;
 1424         }
 1425         return 0;
 1426 }
 1427 
 1428 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
 1429 {
 1430         struct mount *p;
 1431 
 1432         for (p = mnt; p != end; p = next_mnt(p, mnt)) {
 1433                 if (p->mnt_group_id && !IS_MNT_SHARED(p))
 1434                         mnt_release_group_id(p);
 1435         }
 1436 }
 1437 
 1438 static int invent_group_ids(struct mount *mnt, bool recurse)
 1439 {
 1440         struct mount *p;
 1441 
 1442         for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
 1443                 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
 1444                         int err = mnt_alloc_group_id(p);
 1445                         if (err) {
 1446                                 cleanup_group_ids(mnt, p);
 1447                                 return err;
 1448                         }
 1449                 }
 1450         }
 1451 
 1452         return 0;
 1453 }
 1454 
 1455 /*
 1456  *  @source_mnt : mount tree to be attached
 1457  *  @nd         : place the mount tree @source_mnt is attached
 1458  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
 1459  *                 store the parent mount and mountpoint dentry.
 1460  *                 (done when source_mnt is moved)
 1461  *
 1462  *  NOTE: in the table below explains the semantics when a source mount
 1463  *  of a given type is attached to a destination mount of a given type.
 1464  * ---------------------------------------------------------------------------
 1465  * |         BIND MOUNT OPERATION                                            |
 1466  * |**************************************************************************
 1467  * | source-->| shared        |       private  |       slave    | unbindable |
 1468  * | dest     |               |                |                |            |
 1469  * |   |      |               |                |                |            |
 1470  * |   v      |               |                |                |            |
 1471  * |**************************************************************************
 1472  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
 1473  * |          |               |                |                |            |
 1474  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
 1475  * ***************************************************************************
 1476  * A bind operation clones the source mount and mounts the clone on the
 1477  * destination mount.
 1478  *
 1479  * (++)  the cloned mount is propagated to all the mounts in the propagation
 1480  *       tree of the destination mount and the cloned mount is added to
 1481  *       the peer group of the source mount.
 1482  * (+)   the cloned mount is created under the destination mount and is marked
 1483  *       as shared. The cloned mount is added to the peer group of the source
 1484  *       mount.
 1485  * (+++) the mount is propagated to all the mounts in the propagation tree
 1486  *       of the destination mount and the cloned mount is made slave
 1487  *       of the same master as that of the source mount. The cloned mount
 1488  *       is marked as 'shared and slave'.
 1489  * (*)   the cloned mount is made a slave of the same master as that of the
 1490  *       source mount.
 1491  *
 1492  * ---------------------------------------------------------------------------
 1493  * |                    MOVE MOUNT OPERATION                                 |
 1494  * |**************************************************************************
 1495  * | source-->| shared        |       private  |       slave    | unbindable |
 1496  * | dest     |               |                |                |            |
 1497  * |   |      |               |                |                |            |
 1498  * |   v      |               |                |                |            |
 1499  * |**************************************************************************
 1500  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
 1501  * |          |               |                |                |            |
 1502  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
 1503  * ***************************************************************************
 1504  *
 1505  * (+)  the mount is moved to the destination. And is then propagated to
 1506  *      all the mounts in the propagation tree of the destination mount.
 1507  * (+*)  the mount is moved to the destination.
 1508  * (+++)  the mount is moved to the destination and is then propagated to
 1509  *      all the mounts belonging to the destination mount's propagation tree.
 1510  *      the mount is marked as 'shared and slave'.
 1511  * (*)  the mount continues to be a slave at the new location.
 1512  *
 1513  * if the source mount is a tree, the operations explained above is
 1514  * applied to each mount in the tree.
 1515  * Must be called without spinlocks held, since this function can sleep
 1516  * in allocations.
 1517  */
 1518 static int attach_recursive_mnt(struct mount *source_mnt,
 1519                         struct path *path, struct path *parent_path)
 1520 {
 1521         LIST_HEAD(tree_list);
 1522         struct mount *dest_mnt = real_mount(path->mnt);
 1523         struct dentry *dest_dentry = path->dentry;
 1524         struct mount *child, *p;
 1525         int err;
 1526 
 1527         if (IS_MNT_SHARED(dest_mnt)) {
 1528                 err = invent_group_ids(source_mnt, true);
 1529                 if (err)
 1530                         goto out;
 1531         }
 1532         err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
 1533         if (err)
 1534                 goto out_cleanup_ids;
 1535 
 1536         br_write_lock(&vfsmount_lock);
 1537 
 1538         if (IS_MNT_SHARED(dest_mnt)) {
 1539                 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
 1540                         set_mnt_shared(p);
 1541         }
 1542         if (parent_path) {
 1543                 detach_mnt(source_mnt, parent_path);
 1544                 attach_mnt(source_mnt, path);
 1545                 touch_mnt_namespace(source_mnt->mnt_ns);
 1546         } else {
 1547                 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
 1548                 commit_tree(source_mnt);
 1549         }
 1550 
 1551         list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
 1552                 list_del_init(&child->mnt_hash);
 1553                 commit_tree(child);
 1554         }
 1555         br_write_unlock(&vfsmount_lock);
 1556 
 1557         return 0;
 1558 
 1559  out_cleanup_ids:
 1560         if (IS_MNT_SHARED(dest_mnt))
 1561                 cleanup_group_ids(source_mnt, NULL);
 1562  out:
 1563         return err;
 1564 }
 1565 
 1566 static int lock_mount(struct path *path)
 1567 {
 1568         struct vfsmount *mnt;
 1569 retry:
 1570         mutex_lock(&path->dentry->d_inode->i_mutex);
 1571         if (unlikely(cant_mount(path->dentry))) {
 1572                 mutex_unlock(&path->dentry->d_inode->i_mutex);
 1573                 return -ENOENT;
 1574         }
 1575         down_write(&namespace_sem);
 1576         mnt = lookup_mnt(path);
 1577         if (likely(!mnt))
 1578                 return 0;
 1579         up_write(&namespace_sem);
 1580         mutex_unlock(&path->dentry->d_inode->i_mutex);
 1581         path_put(path);
 1582         path->mnt = mnt;
 1583         path->dentry = dget(mnt->mnt_root);
 1584         goto retry;
 1585 }
 1586 
 1587 static void unlock_mount(struct path *path)
 1588 {
 1589         up_write(&namespace_sem);
 1590         mutex_unlock(&path->dentry->d_inode->i_mutex);
 1591 }
 1592 
 1593 static int graft_tree(struct mount *mnt, struct path *path)
 1594 {
 1595         if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
 1596                 return -EINVAL;
 1597 
 1598         if (S_ISDIR(path->dentry->d_inode->i_mode) !=
 1599               S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
 1600                 return -ENOTDIR;
 1601 
 1602         if (d_unlinked(path->dentry))
 1603                 return -ENOENT;
 1604 
 1605         return attach_recursive_mnt(mnt, path, NULL);
 1606 }
 1607 
 1608 /*
 1609  * Sanity check the flags to change_mnt_propagation.
 1610  */
 1611 
 1612 static int flags_to_propagation_type(int flags)
 1613 {
 1614         int type = flags & ~(MS_REC | MS_SILENT);
 1615 
 1616         /* Fail if any non-propagation flags are set */
 1617         if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
 1618                 return 0;
 1619         /* Only one propagation flag should be set */
 1620         if (!is_power_of_2(type))
 1621                 return 0;
 1622         return type;
 1623 }
 1624 
 1625 /*
 1626  * recursively change the type of the mountpoint.
 1627  */
 1628 static int do_change_type(struct path *path, int flag)
 1629 {
 1630         struct mount *m;
 1631         struct mount *mnt = real_mount(path->mnt);
 1632         int recurse = flag & MS_REC;
 1633         int type;
 1634         int err = 0;
 1635 
 1636         if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
 1637                 return -EPERM;
 1638 
 1639         if (path->dentry != path->mnt->mnt_root)
 1640                 return -EINVAL;
 1641 
 1642         type = flags_to_propagation_type(flag);
 1643         if (!type)
 1644                 return -EINVAL;
 1645 
 1646         down_write(&namespace_sem);
 1647         if (type == MS_SHARED) {
 1648                 err = invent_group_ids(mnt, recurse);
 1649                 if (err)
 1650                         goto out_unlock;
 1651         }
 1652 
 1653         br_write_lock(&vfsmount_lock);
 1654         for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
 1655                 change_mnt_propagation(m, type);
 1656         br_write_unlock(&vfsmount_lock);
 1657 
 1658  out_unlock:
 1659         up_write(&namespace_sem);
 1660         return err;
 1661 }
 1662 
 1663 /*
 1664  * do loopback mount.
 1665  */
 1666 static int do_loopback(struct path *path, const char *old_name,
 1667                                 int recurse)
 1668 {
 1669         LIST_HEAD(umount_list);
 1670         struct path old_path;
 1671         struct mount *mnt = NULL, *old;
 1672         int err = mount_is_safe(path);
 1673         if (err)
 1674                 return err;
 1675         if (!old_name || !*old_name)
 1676                 return -EINVAL;
 1677         err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
 1678         if (err)
 1679                 return err;
 1680 
 1681         err = -EINVAL;
 1682         if (mnt_ns_loop(&old_path))
 1683                 goto out; 
 1684 
 1685         err = lock_mount(path);
 1686         if (err)
 1687                 goto out;
 1688 
 1689         old = real_mount(old_path.mnt);
 1690 
 1691         err = -EINVAL;
 1692         if (IS_MNT_UNBINDABLE(old))
 1693                 goto out2;
 1694 
 1695         if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
 1696                 goto out2;
 1697 
 1698         if (recurse)
 1699                 mnt = copy_tree(old, old_path.dentry, 0);
 1700         else
 1701                 mnt = clone_mnt(old, old_path.dentry, 0);
 1702 
 1703         if (IS_ERR(mnt)) {
 1704                 err = PTR_ERR(mnt);
 1705                 goto out;
 1706         }
 1707 
 1708         err = graft_tree(mnt, path);
 1709         if (err) {
 1710                 br_write_lock(&vfsmount_lock);
 1711                 umount_tree(mnt, 0, &umount_list);
 1712                 br_write_unlock(&vfsmount_lock);
 1713         }
 1714 out2:
 1715         unlock_mount(path);
 1716         release_mounts(&umount_list);
 1717 out:
 1718         path_put(&old_path);
 1719         return err;
 1720 }
 1721 
 1722 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
 1723 {
 1724         int error = 0;
 1725         int readonly_request = 0;
 1726 
 1727         if (ms_flags & MS_RDONLY)
 1728                 readonly_request = 1;
 1729         if (readonly_request == __mnt_is_readonly(mnt))
 1730                 return 0;
 1731 
 1732         if (readonly_request)
 1733                 error = mnt_make_readonly(real_mount(mnt));
 1734         else
 1735                 __mnt_unmake_readonly(real_mount(mnt));
 1736         return error;
 1737 }
 1738 
 1739 /*
 1740  * change filesystem flags. dir should be a physical root of filesystem.
 1741  * If you've mounted a non-root directory somewhere and want to do remount
 1742  * on it - tough luck.
 1743  */
 1744 static int do_remount(struct path *path, int flags, int mnt_flags,
 1745                       void *data)
 1746 {
 1747         int err;
 1748         struct super_block *sb = path->mnt->mnt_sb;
 1749         struct mount *mnt = real_mount(path->mnt);
 1750 
 1751         if (!capable(CAP_SYS_ADMIN))
 1752                 return -EPERM;
 1753 
 1754         if (!check_mnt(mnt))
 1755                 return -EINVAL;
 1756 
 1757         if (path->dentry != path->mnt->mnt_root)
 1758                 return -EINVAL;
 1759 
 1760         err = security_sb_remount(sb, data);
 1761         if (err)
 1762                 return err;
 1763 
 1764         down_write(&sb->s_umount);
 1765         if (flags & MS_BIND)
 1766                 err = change_mount_flags(path->mnt, flags);
 1767         else
 1768                 err = do_remount_sb(sb, flags, data, 0);
 1769         if (!err) {
 1770                 br_write_lock(&vfsmount_lock);
 1771                 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
 1772                 mnt->mnt.mnt_flags = mnt_flags;
 1773                 br_write_unlock(&vfsmount_lock);
 1774         }
 1775         up_write(&sb->s_umount);
 1776         if (!err) {
 1777                 br_write_lock(&vfsmount_lock);
 1778                 touch_mnt_namespace(mnt->mnt_ns);
 1779                 br_write_unlock(&vfsmount_lock);
 1780         }
 1781         return err;
 1782 }
 1783 
 1784 static inline int tree_contains_unbindable(struct mount *mnt)
 1785 {
 1786         struct mount *p;
 1787         for (p = mnt; p; p = next_mnt(p, mnt)) {
 1788                 if (IS_MNT_UNBINDABLE(p))
 1789                         return 1;
 1790         }
 1791         return 0;
 1792 }
 1793 
 1794 static int do_move_mount(struct path *path, const char *old_name)
 1795 {
 1796         struct path old_path, parent_path;
 1797         struct mount *p;
 1798         struct mount *old;
 1799         int err = 0;
 1800         if (!ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
 1801                 return -EPERM;
 1802         if (!old_name || !*old_name)
 1803                 return -EINVAL;
 1804         err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
 1805         if (err)
 1806                 return err;
 1807 
 1808         err = lock_mount(path);
 1809         if (err < 0)
 1810                 goto out;
 1811 
 1812         old = real_mount(old_path.mnt);
 1813         p = real_mount(path->mnt);
 1814 
 1815         err = -EINVAL;
 1816         if (!check_mnt(p) || !check_mnt(old))
 1817                 goto out1;
 1818 
 1819         if (d_unlinked(path->dentry))
 1820                 goto out1;
 1821 
 1822         err = -EINVAL;
 1823         if (old_path.dentry != old_path.mnt->mnt_root)
 1824                 goto out1;
 1825 
 1826         if (!mnt_has_parent(old))
 1827                 goto out1;
 1828 
 1829         if (S_ISDIR(path->dentry->d_inode->i_mode) !=
 1830               S_ISDIR(old_path.dentry->d_inode->i_mode))
 1831                 goto out1;
 1832         /*
 1833          * Don't move a mount residing in a shared parent.
 1834          */
 1835         if (IS_MNT_SHARED(old->mnt_parent))
 1836                 goto out1;
 1837         /*
 1838          * Don't move a mount tree containing unbindable mounts to a destination
 1839          * mount which is shared.
 1840          */
 1841         if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
 1842                 goto out1;
 1843         err = -ELOOP;
 1844         for (; mnt_has_parent(p); p = p->mnt_parent)
 1845                 if (p == old)
 1846                         goto out1;
 1847 
 1848         err = attach_recursive_mnt(old, path, &parent_path);
 1849         if (err)
 1850                 goto out1;
 1851 
 1852         /* if the mount is moved, it should no longer be expire
 1853          * automatically */
 1854         list_del_init(&old->mnt_expire);
 1855 out1:
 1856         unlock_mount(path);
 1857 out:
 1858         if (!err)
 1859                 path_put(&parent_path);
 1860         path_put(&old_path);
 1861         return err;
 1862 }
 1863 
 1864 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
 1865 {
 1866         int err;
 1867         const char *subtype = strchr(fstype, '.');
 1868         if (subtype) {
 1869                 subtype++;
 1870                 err = -EINVAL;
 1871                 if (!subtype[0])
 1872                         goto err;
 1873         } else
 1874                 subtype = "";
 1875 
 1876         mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
 1877         err = -ENOMEM;
 1878         if (!mnt->mnt_sb->s_subtype)
 1879                 goto err;
 1880         return mnt;
 1881 
 1882  err:
 1883         mntput(mnt);
 1884         return ERR_PTR(err);
 1885 }
 1886 
 1887 /*
 1888  * add a mount into a namespace's mount tree
 1889  */
 1890 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
 1891 {
 1892         int err;
 1893 
 1894         mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
 1895 
 1896         err = lock_mount(path);
 1897         if (err)
 1898                 return err;
 1899 
 1900         err = -EINVAL;
 1901         if (unlikely(!check_mnt(real_mount(path->mnt)))) {
 1902                 /* that's acceptable only for automounts done in private ns */
 1903                 if (!(mnt_flags & MNT_SHRINKABLE))
 1904                         goto unlock;
 1905                 /* ... and for those we'd better have mountpoint still alive */
 1906                 if (!real_mount(path->mnt)->mnt_ns)
 1907                         goto unlock;
 1908         }
 1909 
 1910         /* Refuse the same filesystem on the same mount point */
 1911         err = -EBUSY;
 1912         if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
 1913             path->mnt->mnt_root == path->dentry)
 1914                 goto unlock;
 1915 
 1916         err = -EINVAL;
 1917         if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
 1918                 goto unlock;
 1919 
 1920         newmnt->mnt.mnt_flags = mnt_flags;
 1921         err = graft_tree(newmnt, path);
 1922 
 1923 unlock:
 1924         unlock_mount(path);
 1925         return err;
 1926 }
 1927 
 1928 /*
 1929  * create a new mount for userspace and request it to be added into the
 1930  * namespace's tree
 1931  */
 1932 static int do_new_mount(struct path *path, const char *fstype, int flags,
 1933                         int mnt_flags, const char *name, void *data)
 1934 {
 1935         struct file_system_type *type;
 1936         struct user_namespace *user_ns;
 1937         struct vfsmount *mnt;
 1938         int err;
 1939 
 1940         if (!fstype)
 1941                 return -EINVAL;
 1942 
 1943         /* we need capabilities... */
 1944         user_ns = real_mount(path->mnt)->mnt_ns->user_ns;
 1945         if (!ns_capable(user_ns, CAP_SYS_ADMIN))
 1946                 return -EPERM;
 1947 
 1948         type = get_fs_type(fstype);
 1949         if (!type)
 1950                 return -ENODEV;
 1951 
 1952         if (user_ns != &init_user_ns) {
 1953                 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
 1954                         put_filesystem(type);
 1955                         return -EPERM;
 1956                 }
 1957                 /* Only in special cases allow devices from mounts
 1958                  * created outside the initial user namespace.
 1959                  */
 1960                 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
 1961                         flags |= MS_NODEV;
 1962                         mnt_flags |= MNT_NODEV;
 1963                 }
 1964         }
 1965 
 1966         mnt = vfs_kern_mount(type, flags, name, data);
 1967         if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
 1968             !mnt->mnt_sb->s_subtype)
 1969                 mnt = fs_set_subtype(mnt, fstype);
 1970 
 1971         put_filesystem(type);
 1972         if (IS_ERR(mnt))
 1973                 return PTR_ERR(mnt);
 1974 
 1975         err = do_add_mount(real_mount(mnt), path, mnt_flags);
 1976         if (err)
 1977                 mntput(mnt);
 1978         return err;
 1979 }
 1980 
 1981 int finish_automount(struct vfsmount *m, struct path *path)
 1982 {
 1983         struct mount *mnt = real_mount(m);
 1984         int err;
 1985         /* The new mount record should have at least 2 refs to prevent it being
 1986          * expired before we get a chance to add it
 1987          */
 1988         BUG_ON(mnt_get_count(mnt) < 2);
 1989 
 1990         if (m->mnt_sb == path->mnt->mnt_sb &&
 1991             m->mnt_root == path->dentry) {
 1992                 err = -ELOOP;
 1993                 goto fail;
 1994         }
 1995 
 1996         err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
 1997         if (!err)
 1998                 return 0;
 1999 fail:
 2000         /* remove m from any expiration list it may be on */
 2001         if (!list_empty(&mnt->mnt_expire)) {
 2002                 down_write(&namespace_sem);
 2003                 br_write_lock(&vfsmount_lock);
 2004                 list_del_init(&mnt->mnt_expire);
 2005                 br_write_unlock(&vfsmount_lock);
 2006                 up_write(&namespace_sem);
 2007         }
 2008         mntput(m);
 2009         mntput(m);
 2010         return err;
 2011 }
 2012 
 2013 /**
 2014  * mnt_set_expiry - Put a mount on an expiration list
 2015  * @mnt: The mount to list.
 2016  * @expiry_list: The list to add the mount to.
 2017  */
 2018 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
 2019 {
 2020         down_write(&namespace_sem);
 2021         br_write_lock(&vfsmount_lock);
 2022 
 2023         list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
 2024 
 2025         br_write_unlock(&vfsmount_lock);
 2026         up_write(&namespace_sem);
 2027 }
 2028 EXPORT_SYMBOL(mnt_set_expiry);
 2029 
 2030 /*
 2031  * process a list of expirable mountpoints with the intent of discarding any
 2032  * mountpoints that aren't in use and haven't been touched since last we came
 2033  * here
 2034  */
 2035 void mark_mounts_for_expiry(struct list_head *mounts)
 2036 {
 2037         struct mount *mnt, *next;
 2038         LIST_HEAD(graveyard);
 2039         LIST_HEAD(umounts);
 2040 
 2041         if (list_empty(mounts))
 2042                 return;
 2043 
 2044         down_write(&namespace_sem);
 2045         br_write_lock(&vfsmount_lock);
 2046 
 2047         /* extract from the expiration list every vfsmount that matches the
 2048          * following criteria:
 2049          * - only referenced by its parent vfsmount
 2050          * - still marked for expiry (marked on the last call here; marks are
 2051          *   cleared by mntput())
 2052          */
 2053         list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
 2054                 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
 2055                         propagate_mount_busy(mnt, 1))
 2056                         continue;
 2057                 list_move(&mnt->mnt_expire, &graveyard);
 2058         }
 2059         while (!list_empty(&graveyard)) {
 2060                 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
 2061                 touch_mnt_namespace(mnt->mnt_ns);
 2062                 umount_tree(mnt, 1, &umounts);
 2063         }
 2064         br_write_unlock(&vfsmount_lock);
 2065         up_write(&namespace_sem);
 2066 
 2067         release_mounts(&umounts);
 2068 }
 2069 
 2070 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
 2071 
 2072 /*
 2073  * Ripoff of 'select_parent()'
 2074  *
 2075  * search the list of submounts for a given mountpoint, and move any
 2076  * shrinkable submounts to the 'graveyard' list.
 2077  */
 2078 static int select_submounts(struct mount *parent, struct list_head *graveyard)
 2079 {
 2080         struct mount *this_parent = parent;
 2081         struct list_head *next;
 2082         int found = 0;
 2083 
 2084 repeat:
 2085         next = this_parent->mnt_mounts.next;
 2086 resume:
 2087         while (next != &this_parent->mnt_mounts) {
 2088                 struct list_head *tmp = next;
 2089                 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
 2090 
 2091                 next = tmp->next;
 2092                 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
 2093                         continue;
 2094                 /*
 2095                  * Descend a level if the d_mounts list is non-empty.
 2096                  */
 2097                 if (!list_empty(&mnt->mnt_mounts)) {
 2098                         this_parent = mnt;
 2099                         goto repeat;
 2100                 }
 2101 
 2102                 if (!propagate_mount_busy(mnt, 1)) {
 2103                         list_move_tail(&mnt->mnt_expire, graveyard);
 2104                         found++;
 2105                 }
 2106         }
 2107         /*
 2108          * All done at this level ... ascend and resume the search
 2109          */
 2110         if (this_parent != parent) {
 2111                 next = this_parent->mnt_child.next;
 2112                 this_parent = this_parent->mnt_parent;
 2113                 goto resume;
 2114         }
 2115         return found;
 2116 }
 2117 
 2118 /*
 2119  * process a list of expirable mountpoints with the intent of discarding any
 2120  * submounts of a specific parent mountpoint
 2121  *
 2122  * vfsmount_lock must be held for write
 2123  */
 2124 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
 2125 {
 2126         LIST_HEAD(graveyard);
 2127         struct mount *m;
 2128 
 2129         /* extract submounts of 'mountpoint' from the expiration list */
 2130         while (select_submounts(mnt, &graveyard)) {
 2131                 while (!list_empty(&graveyard)) {
 2132                         m = list_first_entry(&graveyard, struct mount,
 2133                                                 mnt_expire);
 2134                         touch_mnt_namespace(m->mnt_ns);
 2135                         umount_tree(m, 1, umounts);
 2136                 }
 2137         }
 2138 }
 2139 
 2140 /*
 2141  * Some copy_from_user() implementations do not return the exact number of
 2142  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
 2143  * Note that this function differs from copy_from_user() in that it will oops
 2144  * on bad values of `to', rather than returning a short copy.
 2145  */
 2146 static long exact_copy_from_user(void *to, const void __user * from,
 2147                                  unsigned long n)
 2148 {
 2149         char *t = to;
 2150         const char __user *f = from;
 2151         char c;
 2152 
 2153         if (!access_ok(VERIFY_READ, from, n))
 2154                 return n;
 2155 
 2156         while (n) {
 2157                 if (__get_user(c, f)) {
 2158                         memset(t, 0, n);
 2159                         break;
 2160                 }
 2161                 *t++ = c;
 2162                 f++;
 2163                 n--;
 2164         }
 2165         return n;
 2166 }
 2167 
 2168 int copy_mount_options(const void __user * data, unsigned long *where)
 2169 {
 2170         int i;
 2171         unsigned long page;
 2172         unsigned long size;
 2173 
 2174         *where = 0;
 2175         if (!data)
 2176                 return 0;
 2177 
 2178         if (!(page = __get_free_page(GFP_KERNEL)))
 2179                 return -ENOMEM;
 2180 
 2181         /* We only care that *some* data at the address the user
 2182          * gave us is valid.  Just in case, we'll zero
 2183          * the remainder of the page.
 2184          */
 2185         /* copy_from_user cannot cross TASK_SIZE ! */
 2186         size = TASK_SIZE - (unsigned long)data;
 2187         if (size > PAGE_SIZE)
 2188                 size = PAGE_SIZE;
 2189 
 2190         i = size - exact_copy_from_user((void *)page, data, size);
 2191         if (!i) {
 2192                 free_page(page);
 2193                 return -EFAULT;
 2194         }
 2195         if (i != PAGE_SIZE)
 2196                 memset((char *)page + i, 0, PAGE_SIZE - i);
 2197         *where = page;
 2198         return 0;
 2199 }
 2200 
 2201 int copy_mount_string(const void __user *data, char **where)
 2202 {
 2203         char *tmp;
 2204 
 2205         if (!data) {
 2206                 *where = NULL;
 2207                 return 0;
 2208         }
 2209 
 2210         tmp = strndup_user(data, PAGE_SIZE);
 2211         if (IS_ERR(tmp))
 2212                 return PTR_ERR(tmp);
 2213 
 2214         *where = tmp;
 2215         return 0;
 2216 }
 2217 
 2218 /*
 2219  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
 2220  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
 2221  *
 2222  * data is a (void *) that can point to any structure up to
 2223  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
 2224  * information (or be NULL).
 2225  *
 2226  * Pre-0.97 versions of mount() didn't have a flags word.
 2227  * When the flags word was introduced its top half was required
 2228  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
 2229  * Therefore, if this magic number is present, it carries no information
 2230  * and must be discarded.
 2231  */
 2232 long do_mount(const char *dev_name, const char *dir_name,
 2233                 const char *type_page, unsigned long flags, void *data_page)
 2234 {
 2235         struct path path;
 2236         int retval = 0;
 2237         int mnt_flags = 0;
 2238 
 2239         /* Discard magic */
 2240         if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
 2241                 flags &= ~MS_MGC_MSK;
 2242 
 2243         /* Basic sanity checks */
 2244 
 2245         if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
 2246                 return -EINVAL;
 2247 
 2248         if (data_page)
 2249                 ((char *)data_page)[PAGE_SIZE - 1] = 0;
 2250 
 2251         /* ... and get the mountpoint */
 2252         retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
 2253         if (retval)
 2254                 return retval;
 2255 
 2256         retval = security_sb_mount(dev_name, &path,
 2257                                    type_page, flags, data_page);
 2258         if (retval)
 2259                 goto dput_out;
 2260 
 2261         /* Default to relatime unless overriden */
 2262         if (!(flags & MS_NOATIME))
 2263                 mnt_flags |= MNT_RELATIME;
 2264 
 2265         /* Separate the per-mountpoint flags */
 2266         if (flags & MS_NOSUID)
 2267                 mnt_flags |= MNT_NOSUID;
 2268         if (flags & MS_NODEV)
 2269                 mnt_flags |= MNT_NODEV;
 2270         if (flags & MS_NOEXEC)
 2271                 mnt_flags |= MNT_NOEXEC;
 2272         if (flags & MS_NOATIME)
 2273                 mnt_flags |= MNT_NOATIME;
 2274         if (flags & MS_NODIRATIME)
 2275                 mnt_flags |= MNT_NODIRATIME;
 2276         if (flags & MS_STRICTATIME)
 2277                 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
 2278         if (flags & MS_RDONLY)
 2279                 mnt_flags |= MNT_READONLY;
 2280 
 2281         flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
 2282                    MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
 2283                    MS_STRICTATIME);
 2284 
 2285         if (flags & MS_REMOUNT)
 2286                 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
 2287                                     data_page);
 2288         else if (flags & MS_BIND)
 2289                 retval = do_loopback(&path, dev_name, flags & MS_REC);
 2290         else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
 2291                 retval = do_change_type(&path, flags);
 2292         else if (flags & MS_MOVE)
 2293                 retval = do_move_mount(&path, dev_name);
 2294         else
 2295                 retval = do_new_mount(&path, type_page, flags, mnt_flags,
 2296                                       dev_name, data_page);
 2297 dput_out:
 2298         path_put(&path);
 2299         return retval;
 2300 }
 2301 
 2302 static void free_mnt_ns(struct mnt_namespace *ns)
 2303 {
 2304         proc_free_inum(ns->proc_inum);
 2305         put_user_ns(ns->user_ns);
 2306         kfree(ns);
 2307 }
 2308 
 2309 /*
 2310  * Assign a sequence number so we can detect when we attempt to bind
 2311  * mount a reference to an older mount namespace into the current
 2312  * mount namespace, preventing reference counting loops.  A 64bit
 2313  * number incrementing at 10Ghz will take 12,427 years to wrap which
 2314  * is effectively never, so we can ignore the possibility.
 2315  */
 2316 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
 2317 
 2318 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
 2319 {
 2320         struct mnt_namespace *new_ns;
 2321         int ret;
 2322 
 2323         new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
 2324         if (!new_ns)
 2325                 return ERR_PTR(-ENOMEM);
 2326         ret = proc_alloc_inum(&new_ns->proc_inum);
 2327         if (ret) {
 2328                 kfree(new_ns);
 2329                 return ERR_PTR(ret);
 2330         }
 2331         new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
 2332         atomic_set(&new_ns->count, 1);
 2333         new_ns->root = NULL;
 2334         INIT_LIST_HEAD(&new_ns->list);
 2335         init_waitqueue_head(&new_ns->poll);
 2336         new_ns->event = 0;
 2337         new_ns->user_ns = get_user_ns(user_ns);
 2338         return new_ns;
 2339 }
 2340 
 2341 /*
 2342  * Allocate a new namespace structure and populate it with contents
 2343  * copied from the namespace of the passed in task structure.
 2344  */
 2345 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
 2346                 struct user_namespace *user_ns, struct fs_struct *fs)
 2347 {
 2348         struct mnt_namespace *new_ns;
 2349         struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
 2350         struct mount *p, *q;
 2351         struct mount *old = mnt_ns->root;
 2352         struct mount *new;
 2353         int copy_flags;
 2354 
 2355         new_ns = alloc_mnt_ns(user_ns);
 2356         if (IS_ERR(new_ns))
 2357                 return new_ns;
 2358 
 2359         down_write(&namespace_sem);
 2360         /* First pass: copy the tree topology */
 2361         copy_flags = CL_COPY_ALL | CL_EXPIRE;
 2362         if (user_ns != mnt_ns->user_ns)
 2363                 copy_flags |= CL_SHARED_TO_SLAVE;
 2364         new = copy_tree(old, old->mnt.mnt_root, copy_flags);
 2365         if (IS_ERR(new)) {
 2366                 up_write(&namespace_sem);
 2367                 free_mnt_ns(new_ns);
 2368                 return ERR_CAST(new);
 2369         }
 2370         new_ns->root = new;
 2371         br_write_lock(&vfsmount_lock);
 2372         list_add_tail(&new_ns->list, &new->mnt_list);
 2373         br_write_unlock(&vfsmount_lock);
 2374 
 2375         /*
 2376          * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
 2377          * as belonging to new namespace.  We have already acquired a private
 2378          * fs_struct, so tsk->fs->lock is not needed.
 2379          */
 2380         p = old;
 2381         q = new;
 2382         while (p) {
 2383                 q->mnt_ns = new_ns;
 2384                 if (fs) {
 2385                         if (&p->mnt == fs->root.mnt) {
 2386                                 fs->root.mnt = mntget(&q->mnt);
 2387                                 rootmnt = &p->mnt;
 2388                         }
 2389                         if (&p->mnt == fs->pwd.mnt) {
 2390                                 fs->pwd.mnt = mntget(&q->mnt);
 2391                                 pwdmnt = &p->mnt;
 2392                         }
 2393                 }
 2394                 p = next_mnt(p, old);
 2395                 q = next_mnt(q, new);
 2396         }
 2397         up_write(&namespace_sem);
 2398 
 2399         if (rootmnt)
 2400                 mntput(rootmnt);
 2401         if (pwdmnt)
 2402                 mntput(pwdmnt);
 2403 
 2404         return new_ns;
 2405 }
 2406 
 2407 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
 2408                 struct user_namespace *user_ns, struct fs_struct *new_fs)
 2409 {
 2410         struct mnt_namespace *new_ns;
 2411 
 2412         BUG_ON(!ns);
 2413         get_mnt_ns(ns);
 2414 
 2415         if (!(flags & CLONE_NEWNS))
 2416                 return ns;
 2417 
 2418         new_ns = dup_mnt_ns(ns, user_ns, new_fs);
 2419 
 2420         put_mnt_ns(ns);
 2421         return new_ns;
 2422 }
 2423 
 2424 /**
 2425  * create_mnt_ns - creates a private namespace and adds a root filesystem
 2426  * @mnt: pointer to the new root filesystem mountpoint
 2427  */
 2428 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
 2429 {
 2430         struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
 2431         if (!IS_ERR(new_ns)) {
 2432                 struct mount *mnt = real_mount(m);
 2433                 mnt->mnt_ns = new_ns;
 2434                 new_ns->root = mnt;
 2435                 list_add(&new_ns->list, &mnt->mnt_list);
 2436         } else {
 2437                 mntput(m);
 2438         }
 2439         return new_ns;
 2440 }
 2441 
 2442 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
 2443 {
 2444         struct mnt_namespace *ns;
 2445         struct super_block *s;
 2446         struct path path;
 2447         int err;
 2448 
 2449         ns = create_mnt_ns(mnt);
 2450         if (IS_ERR(ns))
 2451                 return ERR_CAST(ns);
 2452 
 2453         err = vfs_path_lookup(mnt->mnt_root, mnt,
 2454                         name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
 2455 
 2456         put_mnt_ns(ns);
 2457 
 2458         if (err)
 2459                 return ERR_PTR(err);
 2460 
 2461         /* trade a vfsmount reference for active sb one */
 2462         s = path.mnt->mnt_sb;
 2463         atomic_inc(&s->s_active);
 2464         mntput(path.mnt);
 2465         /* lock the sucker */
 2466         down_write(&s->s_umount);
 2467         /* ... and return the root of (sub)tree on it */
 2468         return path.dentry;
 2469 }
 2470 EXPORT_SYMBOL(mount_subtree);
 2471 
 2472 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
 2473                 char __user *, type, unsigned long, flags, void __user *, data)
 2474 {
 2475         int ret;
 2476         char *kernel_type;
 2477         struct filename *kernel_dir;
 2478         char *kernel_dev;
 2479         unsigned long data_page;
 2480 
 2481         ret = copy_mount_string(type, &kernel_type);
 2482         if (ret < 0)
 2483                 goto out_type;
 2484 
 2485         kernel_dir = getname(dir_name);
 2486         if (IS_ERR(kernel_dir)) {
 2487                 ret = PTR_ERR(kernel_dir);
 2488                 goto out_dir;
 2489         }
 2490 
 2491         ret = copy_mount_string(dev_name, &kernel_dev);
 2492         if (ret < 0)
 2493                 goto out_dev;
 2494 
 2495         ret = copy_mount_options(data, &data_page);
 2496         if (ret < 0)
 2497                 goto out_data;
 2498 
 2499         ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
 2500                 (void *) data_page);
 2501 
 2502         free_page(data_page);
 2503 out_data:
 2504         kfree(kernel_dev);
 2505 out_dev:
 2506         putname(kernel_dir);
 2507 out_dir:
 2508         kfree(kernel_type);
 2509 out_type:
 2510         return ret;
 2511 }
 2512 
 2513 /*
 2514  * Return true if path is reachable from root
 2515  *
 2516  * namespace_sem or vfsmount_lock is held
 2517  */
 2518 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
 2519                          const struct path *root)
 2520 {
 2521         while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
 2522                 dentry = mnt->mnt_mountpoint;
 2523                 mnt = mnt->mnt_parent;
 2524         }
 2525         return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
 2526 }
 2527 
 2528 int path_is_under(struct path *path1, struct path *path2)
 2529 {
 2530         int res;
 2531         br_read_lock(&vfsmount_lock);
 2532         res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
 2533         br_read_unlock(&vfsmount_lock);
 2534         return res;
 2535 }
 2536 EXPORT_SYMBOL(path_is_under);
 2537 
 2538 /*
 2539  * pivot_root Semantics:
 2540  * Moves the root file system of the current process to the directory put_old,
 2541  * makes new_root as the new root file system of the current process, and sets
 2542  * root/cwd of all processes which had them on the current root to new_root.
 2543  *
 2544  * Restrictions:
 2545  * The new_root and put_old must be directories, and  must not be on the
 2546  * same file  system as the current process root. The put_old  must  be
 2547  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
 2548  * pointed to by put_old must yield the same directory as new_root. No other
 2549  * file system may be mounted on put_old. After all, new_root is a mountpoint.
 2550  *
 2551  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
 2552  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
 2553  * in this situation.
 2554  *
 2555  * Notes:
 2556  *  - we don't move root/cwd if they are not at the root (reason: if something
 2557  *    cared enough to change them, it's probably wrong to force them elsewhere)
 2558  *  - it's okay to pick a root that isn't the root of a file system, e.g.
 2559  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
 2560  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
 2561  *    first.
 2562  */
 2563 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
 2564                 const char __user *, put_old)
 2565 {
 2566         struct path new, old, parent_path, root_parent, root;
 2567         struct mount *new_mnt, *root_mnt;
 2568         int error;
 2569 
 2570         if (!ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN))
 2571                 return -EPERM;
 2572 
 2573         error = user_path_dir(new_root, &new);
 2574         if (error)
 2575                 goto out0;
 2576 
 2577         error = user_path_dir(put_old, &old);
 2578         if (error)
 2579                 goto out1;
 2580 
 2581         error = security_sb_pivotroot(&old, &new);
 2582         if (error)
 2583                 goto out2;
 2584 
 2585         get_fs_root(current->fs, &root);
 2586         error = lock_mount(&old);
 2587         if (error)
 2588                 goto out3;
 2589 
 2590         error = -EINVAL;
 2591         new_mnt = real_mount(new.mnt);
 2592         root_mnt = real_mount(root.mnt);
 2593         if (IS_MNT_SHARED(real_mount(old.mnt)) ||
 2594                 IS_MNT_SHARED(new_mnt->mnt_parent) ||
 2595                 IS_MNT_SHARED(root_mnt->mnt_parent))
 2596                 goto out4;
 2597         if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
 2598                 goto out4;
 2599         error = -ENOENT;
 2600         if (d_unlinked(new.dentry))
 2601                 goto out4;
 2602         if (d_unlinked(old.dentry))
 2603                 goto out4;
 2604         error = -EBUSY;
 2605         if (new.mnt == root.mnt ||
 2606             old.mnt == root.mnt)
 2607                 goto out4; /* loop, on the same file system  */
 2608         error = -EINVAL;
 2609         if (root.mnt->mnt_root != root.dentry)
 2610                 goto out4; /* not a mountpoint */
 2611         if (!mnt_has_parent(root_mnt))
 2612                 goto out4; /* not attached */
 2613         if (new.mnt->mnt_root != new.dentry)
 2614                 goto out4; /* not a mountpoint */
 2615         if (!mnt_has_parent(new_mnt))
 2616                 goto out4; /* not attached */
 2617         /* make sure we can reach put_old from new_root */
 2618         if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
 2619                 goto out4;
 2620         br_write_lock(&vfsmount_lock);
 2621         detach_mnt(new_mnt, &parent_path);
 2622         detach_mnt(root_mnt, &root_parent);
 2623         /* mount old root on put_old */
 2624         attach_mnt(root_mnt, &old);
 2625         /* mount new_root on / */
 2626         attach_mnt(new_mnt, &root_parent);
 2627         touch_mnt_namespace(current->nsproxy->mnt_ns);
 2628         br_write_unlock(&vfsmount_lock);
 2629         chroot_fs_refs(&root, &new);
 2630         error = 0;
 2631 out4:
 2632         unlock_mount(&old);
 2633         if (!error) {
 2634                 path_put(&root_parent);
 2635                 path_put(&parent_path);
 2636         }
 2637 out3:
 2638         path_put(&root);
 2639 out2:
 2640         path_put(&old);
 2641 out1:
 2642         path_put(&new);
 2643 out0:
 2644         return error;
 2645 }
 2646 
 2647 static void __init init_mount_tree(void)
 2648 {
 2649         struct vfsmount *mnt;
 2650         struct mnt_namespace *ns;
 2651         struct path root;
 2652         struct file_system_type *type;
 2653 
 2654         type = get_fs_type("rootfs");
 2655         if (!type)
 2656                 panic("Can't find rootfs type");
 2657         mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
 2658         put_filesystem(type);
 2659         if (IS_ERR(mnt))
 2660                 panic("Can't create rootfs");
 2661 
 2662         ns = create_mnt_ns(mnt);
 2663         if (IS_ERR(ns))
 2664                 panic("Can't allocate initial namespace");
 2665 
 2666         init_task.nsproxy->mnt_ns = ns;
 2667         get_mnt_ns(ns);
 2668 
 2669         root.mnt = mnt;
 2670         root.dentry = mnt->mnt_root;
 2671 
 2672         set_fs_pwd(current->fs, &root);
 2673         set_fs_root(current->fs, &root);
 2674 }
 2675 
 2676 void __init mnt_init(void)
 2677 {
 2678         unsigned u;
 2679         int err;
 2680 
 2681         init_rwsem(&namespace_sem);
 2682 
 2683         mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
 2684                         0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
 2685 
 2686         mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
 2687 
 2688         if (!mount_hashtable)
 2689                 panic("Failed to allocate mount hash table\n");
 2690 
 2691         printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
 2692 
 2693         for (u = 0; u < HASH_SIZE; u++)
 2694                 INIT_LIST_HEAD(&mount_hashtable[u]);
 2695 
 2696         br_lock_init(&vfsmount_lock);
 2697 
 2698         err = sysfs_init();
 2699         if (err)
 2700                 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
 2701                         __func__, err);
 2702         fs_kobj = kobject_create_and_add("fs", NULL);
 2703         if (!fs_kobj)
 2704                 printk(KERN_WARNING "%s: kobj create error\n", __func__);
 2705         init_rootfs();
 2706         init_mount_tree();
 2707 }
 2708 
 2709 void put_mnt_ns(struct mnt_namespace *ns)
 2710 {
 2711         LIST_HEAD(umount_list);
 2712 
 2713         if (!atomic_dec_and_test(&ns->count))
 2714                 return;
 2715         down_write(&namespace_sem);
 2716         br_write_lock(&vfsmount_lock);
 2717         umount_tree(ns->root, 0, &umount_list);
 2718         br_write_unlock(&vfsmount_lock);
 2719         up_write(&namespace_sem);
 2720         release_mounts(&umount_list);
 2721         free_mnt_ns(ns);
 2722 }
 2723 
 2724 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
 2725 {
 2726         struct vfsmount *mnt;
 2727         mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
 2728         if (!IS_ERR(mnt)) {
 2729                 /*
 2730                  * it is a longterm mount, don't release mnt until
 2731                  * we unmount before file sys is unregistered
 2732                 */
 2733                 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
 2734         }
 2735         return mnt;
 2736 }
 2737 EXPORT_SYMBOL_GPL(kern_mount_data);
 2738 
 2739 void kern_unmount(struct vfsmount *mnt)
 2740 {
 2741         /* release long term mount so mount point can be released */
 2742         if (!IS_ERR_OR_NULL(mnt)) {
 2743                 br_write_lock(&vfsmount_lock);
 2744                 real_mount(mnt)->mnt_ns = NULL;
 2745                 br_write_unlock(&vfsmount_lock);
 2746                 mntput(mnt);
 2747         }
 2748 }
 2749 EXPORT_SYMBOL(kern_unmount);
 2750 
 2751 bool our_mnt(struct vfsmount *mnt)
 2752 {
 2753         return check_mnt(real_mount(mnt));
 2754 }
 2755 
 2756 static void *mntns_get(struct task_struct *task)
 2757 {
 2758         struct mnt_namespace *ns = NULL;
 2759         struct nsproxy *nsproxy;
 2760 
 2761         rcu_read_lock();
 2762         nsproxy = task_nsproxy(task);
 2763         if (nsproxy) {
 2764                 ns = nsproxy->mnt_ns;
 2765                 get_mnt_ns(ns);
 2766         }
 2767         rcu_read_unlock();
 2768 
 2769         return ns;
 2770 }
 2771 
 2772 static void mntns_put(void *ns)
 2773 {
 2774         put_mnt_ns(ns);
 2775 }
 2776 
 2777 static int mntns_install(struct nsproxy *nsproxy, void *ns)
 2778 {
 2779         struct fs_struct *fs = current->fs;
 2780         struct mnt_namespace *mnt_ns = ns;
 2781         struct path root;
 2782 
 2783         if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
 2784             !nsown_capable(CAP_SYS_CHROOT) ||
 2785             !nsown_capable(CAP_SYS_ADMIN))
 2786                 return -EPERM;
 2787 
 2788         if (fs->users != 1)
 2789                 return -EINVAL;
 2790 
 2791         get_mnt_ns(mnt_ns);
 2792         put_mnt_ns(nsproxy->mnt_ns);
 2793         nsproxy->mnt_ns = mnt_ns;
 2794 
 2795         /* Find the root */
 2796         root.mnt    = &mnt_ns->root->mnt;
 2797         root.dentry = mnt_ns->root->mnt.mnt_root;
 2798         path_get(&root);
 2799         while(d_mountpoint(root.dentry) && follow_down_one(&root))
 2800                 ;
 2801 
 2802         /* Update the pwd and root */
 2803         set_fs_pwd(fs, &root);
 2804         set_fs_root(fs, &root);
 2805 
 2806         path_put(&root);
 2807         return 0;
 2808 }
 2809 
 2810 static unsigned int mntns_inum(void *ns)
 2811 {
 2812         struct mnt_namespace *mnt_ns = ns;
 2813         return mnt_ns->proc_inum;
 2814 }
 2815 
 2816 const struct proc_ns_operations mntns_operations = {
 2817         .name           = "mnt",
 2818         .type           = CLONE_NEWNS,
 2819         .get            = mntns_get,
 2820         .put            = mntns_put,
 2821         .install        = mntns_install,
 2822         .inum           = mntns_inum,
 2823 };

Cache object: 68308fbb56f3d6442a3d55c126eea86b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.