1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bio.h>
43 #include <sys/buf.h>
44 #include <sys/kernel.h>
45 #include <sys/mount.h>
46 #include <sys/rwlock.h>
47 #include <sys/vmmeter.h>
48 #include <sys/vnode.h>
49
50 #include <vm/vm.h>
51 #include <vm/vm_param.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_pager.h>
56 #include <vm/vnode_pager.h>
57
58 #include <fs/nfs/nfsport.h>
59 #include <fs/nfsclient/nfsmount.h>
60 #include <fs/nfsclient/nfs.h>
61 #include <fs/nfsclient/nfsnode.h>
62 #include <fs/nfsclient/nfs_kdtrace.h>
63
64 extern int newnfs_directio_allow_mmap;
65 extern struct nfsstatsv1 nfsstatsv1;
66 extern struct mtx ncl_iod_mutex;
67 extern int ncl_numasync;
68 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
69 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
70 extern int newnfs_directio_enable;
71 extern int nfs_keep_dirty_on_error;
72
73 int ncl_pbuf_freecnt = -1; /* start out unlimited */
74
75 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
76 struct thread *td);
77 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
78 struct ucred *cred, int ioflag);
79
80 /*
81 * Vnode op for VM getpages.
82 */
83 SYSCTL_DECL(_vfs_nfs);
84 static int use_buf_pager = 1;
85 SYSCTL_INT(_vfs_nfs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN,
86 &use_buf_pager, 0,
87 "Use buffer pager instead of direct readrpc call");
88
89 static daddr_t
90 ncl_gbp_getblkno(struct vnode *vp, vm_ooffset_t off)
91 {
92
93 return (off / vp->v_bufobj.bo_bsize);
94 }
95
96 static int
97 ncl_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz)
98 {
99 struct nfsnode *np;
100 u_quad_t nsize;
101 int biosize, bcount;
102
103 np = VTONFS(vp);
104 NFSLOCKNODE(np);
105 nsize = np->n_size;
106 NFSUNLOCKNODE(np);
107
108 biosize = vp->v_bufobj.bo_bsize;
109 bcount = biosize;
110 if ((off_t)lbn * biosize >= nsize)
111 bcount = 0;
112 else if ((off_t)(lbn + 1) * biosize > nsize)
113 bcount = nsize - (off_t)lbn * biosize;
114 *sz = bcount;
115 return (0);
116 }
117
118 int
119 ncl_getpages(struct vop_getpages_args *ap)
120 {
121 int i, error, nextoff, size, toff, count, npages;
122 struct uio uio;
123 struct iovec iov;
124 vm_offset_t kva;
125 struct buf *bp;
126 struct vnode *vp;
127 struct thread *td;
128 struct ucred *cred;
129 struct nfsmount *nmp;
130 vm_object_t object;
131 vm_page_t *pages;
132 struct nfsnode *np;
133
134 vp = ap->a_vp;
135 np = VTONFS(vp);
136 td = curthread;
137 cred = curthread->td_ucred;
138 nmp = VFSTONFS(vp->v_mount);
139 pages = ap->a_m;
140 npages = ap->a_count;
141
142 if ((object = vp->v_object) == NULL) {
143 printf("ncl_getpages: called with non-merged cache vnode\n");
144 return (VM_PAGER_ERROR);
145 }
146
147 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
148 NFSLOCKNODE(np);
149 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
150 NFSUNLOCKNODE(np);
151 printf("ncl_getpages: called on non-cacheable vnode\n");
152 return (VM_PAGER_ERROR);
153 } else
154 NFSUNLOCKNODE(np);
155 }
156
157 mtx_lock(&nmp->nm_mtx);
158 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
159 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
160 mtx_unlock(&nmp->nm_mtx);
161 /* We'll never get here for v4, because we always have fsinfo */
162 (void)ncl_fsinfo(nmp, vp, cred, td);
163 } else
164 mtx_unlock(&nmp->nm_mtx);
165
166 if (use_buf_pager)
167 return (vfs_bio_getpages(vp, pages, npages, ap->a_rbehind,
168 ap->a_rahead, ncl_gbp_getblkno, ncl_gbp_getblksz));
169
170 /*
171 * If the requested page is partially valid, just return it and
172 * allow the pager to zero-out the blanks. Partially valid pages
173 * can only occur at the file EOF.
174 *
175 * XXXGL: is that true for NFS, where short read can occur???
176 */
177 VM_OBJECT_WLOCK(object);
178 if (pages[npages - 1]->valid != 0 && --npages == 0)
179 goto out;
180 VM_OBJECT_WUNLOCK(object);
181
182 /*
183 * We use only the kva address for the buffer, but this is extremely
184 * convenient and fast.
185 */
186 bp = getpbuf(&ncl_pbuf_freecnt);
187
188 kva = (vm_offset_t) bp->b_data;
189 pmap_qenter(kva, pages, npages);
190 VM_CNT_INC(v_vnodein);
191 VM_CNT_ADD(v_vnodepgsin, npages);
192
193 count = npages << PAGE_SHIFT;
194 iov.iov_base = (caddr_t) kva;
195 iov.iov_len = count;
196 uio.uio_iov = &iov;
197 uio.uio_iovcnt = 1;
198 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
199 uio.uio_resid = count;
200 uio.uio_segflg = UIO_SYSSPACE;
201 uio.uio_rw = UIO_READ;
202 uio.uio_td = td;
203
204 error = ncl_readrpc(vp, &uio, cred);
205 pmap_qremove(kva, npages);
206
207 relpbuf(bp, &ncl_pbuf_freecnt);
208
209 if (error && (uio.uio_resid == count)) {
210 printf("ncl_getpages: error %d\n", error);
211 return (VM_PAGER_ERROR);
212 }
213
214 /*
215 * Calculate the number of bytes read and validate only that number
216 * of bytes. Note that due to pending writes, size may be 0. This
217 * does not mean that the remaining data is invalid!
218 */
219
220 size = count - uio.uio_resid;
221 VM_OBJECT_WLOCK(object);
222 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
223 vm_page_t m;
224 nextoff = toff + PAGE_SIZE;
225 m = pages[i];
226
227 if (nextoff <= size) {
228 /*
229 * Read operation filled an entire page
230 */
231 m->valid = VM_PAGE_BITS_ALL;
232 KASSERT(m->dirty == 0,
233 ("nfs_getpages: page %p is dirty", m));
234 } else if (size > toff) {
235 /*
236 * Read operation filled a partial page.
237 */
238 m->valid = 0;
239 vm_page_set_valid_range(m, 0, size - toff);
240 KASSERT(m->dirty == 0,
241 ("nfs_getpages: page %p is dirty", m));
242 } else {
243 /*
244 * Read operation was short. If no error
245 * occurred we may have hit a zero-fill
246 * section. We leave valid set to 0, and page
247 * is freed by vm_page_readahead_finish() if
248 * its index is not equal to requested, or
249 * page is zeroed and set valid by
250 * vm_pager_get_pages() for requested page.
251 */
252 ;
253 }
254 }
255 out:
256 VM_OBJECT_WUNLOCK(object);
257 if (ap->a_rbehind)
258 *ap->a_rbehind = 0;
259 if (ap->a_rahead)
260 *ap->a_rahead = 0;
261 return (VM_PAGER_OK);
262 }
263
264 /*
265 * Vnode op for VM putpages.
266 */
267 int
268 ncl_putpages(struct vop_putpages_args *ap)
269 {
270 struct uio uio;
271 struct iovec iov;
272 int i, error, npages, count;
273 off_t offset;
274 int *rtvals;
275 struct vnode *vp;
276 struct thread *td;
277 struct ucred *cred;
278 struct nfsmount *nmp;
279 struct nfsnode *np;
280 vm_page_t *pages;
281
282 vp = ap->a_vp;
283 np = VTONFS(vp);
284 td = curthread; /* XXX */
285 /* Set the cred to n_writecred for the write rpcs. */
286 if (np->n_writecred != NULL)
287 cred = crhold(np->n_writecred);
288 else
289 cred = crhold(curthread->td_ucred); /* XXX */
290 nmp = VFSTONFS(vp->v_mount);
291 pages = ap->a_m;
292 count = ap->a_count;
293 rtvals = ap->a_rtvals;
294 npages = btoc(count);
295 offset = IDX_TO_OFF(pages[0]->pindex);
296
297 mtx_lock(&nmp->nm_mtx);
298 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
299 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
300 mtx_unlock(&nmp->nm_mtx);
301 (void)ncl_fsinfo(nmp, vp, cred, td);
302 } else
303 mtx_unlock(&nmp->nm_mtx);
304
305 NFSLOCKNODE(np);
306 if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
307 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
308 NFSUNLOCKNODE(np);
309 printf("ncl_putpages: called on noncache-able vnode\n");
310 NFSLOCKNODE(np);
311 }
312 /*
313 * When putting pages, do not extend file past EOF.
314 */
315 if (offset + count > np->n_size) {
316 count = np->n_size - offset;
317 if (count < 0)
318 count = 0;
319 }
320 NFSUNLOCKNODE(np);
321
322 for (i = 0; i < npages; i++)
323 rtvals[i] = VM_PAGER_ERROR;
324
325 VM_CNT_INC(v_vnodeout);
326 VM_CNT_ADD(v_vnodepgsout, count);
327
328 iov.iov_base = unmapped_buf;
329 iov.iov_len = count;
330 uio.uio_iov = &iov;
331 uio.uio_iovcnt = 1;
332 uio.uio_offset = offset;
333 uio.uio_resid = count;
334 uio.uio_segflg = UIO_NOCOPY;
335 uio.uio_rw = UIO_WRITE;
336 uio.uio_td = td;
337
338 error = VOP_WRITE(vp, &uio, vnode_pager_putpages_ioflags(ap->a_sync),
339 cred);
340 crfree(cred);
341
342 if (error == 0 || !nfs_keep_dirty_on_error) {
343 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid,
344 np->n_size - offset, npages * PAGE_SIZE);
345 }
346 return (rtvals[0]);
347 }
348
349 /*
350 * For nfs, cache consistency can only be maintained approximately.
351 * Although RFC1094 does not specify the criteria, the following is
352 * believed to be compatible with the reference port.
353 * For nfs:
354 * If the file's modify time on the server has changed since the
355 * last read rpc or you have written to the file,
356 * you may have lost data cache consistency with the
357 * server, so flush all of the file's data out of the cache.
358 * Then force a getattr rpc to ensure that you have up to date
359 * attributes.
360 * NB: This implies that cache data can be read when up to
361 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
362 * attributes this could be forced by setting n_attrstamp to 0 before
363 * the VOP_GETATTR() call.
364 */
365 static inline int
366 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
367 {
368 int error = 0;
369 struct vattr vattr;
370 struct nfsnode *np = VTONFS(vp);
371 bool old_lock;
372
373 /*
374 * Ensure the exclusove access to the node before checking
375 * whether the cache is consistent.
376 */
377 old_lock = ncl_excl_start(vp);
378 NFSLOCKNODE(np);
379 if (np->n_flag & NMODIFIED) {
380 NFSUNLOCKNODE(np);
381 if (vp->v_type != VREG) {
382 if (vp->v_type != VDIR)
383 panic("nfs: bioread, not dir");
384 ncl_invaldir(vp);
385 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1);
386 if (error != 0)
387 goto out;
388 }
389 np->n_attrstamp = 0;
390 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
391 error = VOP_GETATTR(vp, &vattr, cred);
392 if (error)
393 goto out;
394 NFSLOCKNODE(np);
395 np->n_mtime = vattr.va_mtime;
396 NFSUNLOCKNODE(np);
397 } else {
398 NFSUNLOCKNODE(np);
399 error = VOP_GETATTR(vp, &vattr, cred);
400 if (error)
401 goto out;
402 NFSLOCKNODE(np);
403 if ((np->n_flag & NSIZECHANGED)
404 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
405 NFSUNLOCKNODE(np);
406 if (vp->v_type == VDIR)
407 ncl_invaldir(vp);
408 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1);
409 if (error != 0)
410 goto out;
411 NFSLOCKNODE(np);
412 np->n_mtime = vattr.va_mtime;
413 np->n_flag &= ~NSIZECHANGED;
414 }
415 NFSUNLOCKNODE(np);
416 }
417 out:
418 ncl_excl_finish(vp, old_lock);
419 return (error);
420 }
421
422 /*
423 * Vnode op for read using bio
424 */
425 int
426 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
427 {
428 struct nfsnode *np = VTONFS(vp);
429 struct buf *bp, *rabp;
430 struct thread *td;
431 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
432 daddr_t lbn, rabn;
433 int biosize, bcount, error, i, n, nra, on, save2, seqcount;
434 off_t tmp_off;
435
436 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
437 if (uio->uio_resid == 0)
438 return (0);
439 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */
440 return (EINVAL);
441 td = uio->uio_td;
442
443 mtx_lock(&nmp->nm_mtx);
444 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
445 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
446 mtx_unlock(&nmp->nm_mtx);
447 (void)ncl_fsinfo(nmp, vp, cred, td);
448 mtx_lock(&nmp->nm_mtx);
449 }
450 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
451 (void) newnfs_iosize(nmp);
452
453 tmp_off = uio->uio_offset + uio->uio_resid;
454 if (vp->v_type != VDIR &&
455 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
456 mtx_unlock(&nmp->nm_mtx);
457 return (EFBIG);
458 }
459 mtx_unlock(&nmp->nm_mtx);
460
461 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
462 /* No caching/ no readaheads. Just read data into the user buffer */
463 return ncl_readrpc(vp, uio, cred);
464
465 n = 0;
466 on = 0;
467 biosize = vp->v_bufobj.bo_bsize;
468 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
469
470 error = nfs_bioread_check_cons(vp, td, cred);
471 if (error)
472 return error;
473
474 save2 = curthread_pflags2_set(TDP2_SBPAGES);
475 do {
476 u_quad_t nsize;
477
478 NFSLOCKNODE(np);
479 nsize = np->n_size;
480 NFSUNLOCKNODE(np);
481
482 switch (vp->v_type) {
483 case VREG:
484 NFSINCRGLOBAL(nfsstatsv1.biocache_reads);
485 lbn = uio->uio_offset / biosize;
486 on = uio->uio_offset - (lbn * biosize);
487
488 /*
489 * Start the read ahead(s), as required.
490 */
491 if (nmp->nm_readahead > 0) {
492 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
493 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
494 rabn = lbn + 1 + nra;
495 if (incore(&vp->v_bufobj, rabn) == NULL) {
496 rabp = nfs_getcacheblk(vp, rabn, biosize, td);
497 if (!rabp) {
498 error = newnfs_sigintr(nmp, td);
499 if (error == 0)
500 error = EINTR;
501 goto out;
502 }
503 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
504 rabp->b_flags |= B_ASYNC;
505 rabp->b_iocmd = BIO_READ;
506 vfs_busy_pages(rabp, 0);
507 if (ncl_asyncio(nmp, rabp, cred, td)) {
508 rabp->b_flags |= B_INVAL;
509 rabp->b_ioflags |= BIO_ERROR;
510 vfs_unbusy_pages(rabp);
511 brelse(rabp);
512 break;
513 }
514 } else {
515 brelse(rabp);
516 }
517 }
518 }
519 }
520
521 /* Note that bcount is *not* DEV_BSIZE aligned. */
522 bcount = biosize;
523 if ((off_t)lbn * biosize >= nsize) {
524 bcount = 0;
525 } else if ((off_t)(lbn + 1) * biosize > nsize) {
526 bcount = nsize - (off_t)lbn * biosize;
527 }
528 bp = nfs_getcacheblk(vp, lbn, bcount, td);
529
530 if (!bp) {
531 error = newnfs_sigintr(nmp, td);
532 if (error == 0)
533 error = EINTR;
534 goto out;
535 }
536
537 /*
538 * If B_CACHE is not set, we must issue the read. If this
539 * fails, we return an error.
540 */
541
542 if ((bp->b_flags & B_CACHE) == 0) {
543 bp->b_iocmd = BIO_READ;
544 vfs_busy_pages(bp, 0);
545 error = ncl_doio(vp, bp, cred, td, 0);
546 if (error) {
547 brelse(bp);
548 goto out;
549 }
550 }
551
552 /*
553 * on is the offset into the current bp. Figure out how many
554 * bytes we can copy out of the bp. Note that bcount is
555 * NOT DEV_BSIZE aligned.
556 *
557 * Then figure out how many bytes we can copy into the uio.
558 */
559
560 n = 0;
561 if (on < bcount)
562 n = MIN((unsigned)(bcount - on), uio->uio_resid);
563 break;
564 case VLNK:
565 NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks);
566 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
567 if (!bp) {
568 error = newnfs_sigintr(nmp, td);
569 if (error == 0)
570 error = EINTR;
571 goto out;
572 }
573 if ((bp->b_flags & B_CACHE) == 0) {
574 bp->b_iocmd = BIO_READ;
575 vfs_busy_pages(bp, 0);
576 error = ncl_doio(vp, bp, cred, td, 0);
577 if (error) {
578 bp->b_ioflags |= BIO_ERROR;
579 brelse(bp);
580 goto out;
581 }
582 }
583 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
584 on = 0;
585 break;
586 case VDIR:
587 NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs);
588 NFSLOCKNODE(np);
589 if (np->n_direofoffset
590 && uio->uio_offset >= np->n_direofoffset) {
591 NFSUNLOCKNODE(np);
592 error = 0;
593 goto out;
594 }
595 NFSUNLOCKNODE(np);
596 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
597 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
598 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
599 if (!bp) {
600 error = newnfs_sigintr(nmp, td);
601 if (error == 0)
602 error = EINTR;
603 goto out;
604 }
605 if ((bp->b_flags & B_CACHE) == 0) {
606 bp->b_iocmd = BIO_READ;
607 vfs_busy_pages(bp, 0);
608 error = ncl_doio(vp, bp, cred, td, 0);
609 if (error) {
610 brelse(bp);
611 }
612 while (error == NFSERR_BAD_COOKIE) {
613 ncl_invaldir(vp);
614 error = ncl_vinvalbuf(vp, 0, td, 1);
615
616 /*
617 * Yuck! The directory has been modified on the
618 * server. The only way to get the block is by
619 * reading from the beginning to get all the
620 * offset cookies.
621 *
622 * Leave the last bp intact unless there is an error.
623 * Loop back up to the while if the error is another
624 * NFSERR_BAD_COOKIE (double yuch!).
625 */
626 for (i = 0; i <= lbn && !error; i++) {
627 NFSLOCKNODE(np);
628 if (np->n_direofoffset
629 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) {
630 NFSUNLOCKNODE(np);
631 error = 0;
632 goto out;
633 }
634 NFSUNLOCKNODE(np);
635 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
636 if (!bp) {
637 error = newnfs_sigintr(nmp, td);
638 if (error == 0)
639 error = EINTR;
640 goto out;
641 }
642 if ((bp->b_flags & B_CACHE) == 0) {
643 bp->b_iocmd = BIO_READ;
644 vfs_busy_pages(bp, 0);
645 error = ncl_doio(vp, bp, cred, td, 0);
646 /*
647 * no error + B_INVAL == directory EOF,
648 * use the block.
649 */
650 if (error == 0 && (bp->b_flags & B_INVAL))
651 break;
652 }
653 /*
654 * An error will throw away the block and the
655 * for loop will break out. If no error and this
656 * is not the block we want, we throw away the
657 * block and go for the next one via the for loop.
658 */
659 if (error || i < lbn)
660 brelse(bp);
661 }
662 }
663 /*
664 * The above while is repeated if we hit another cookie
665 * error. If we hit an error and it wasn't a cookie error,
666 * we give up.
667 */
668 if (error)
669 goto out;
670 }
671
672 /*
673 * If not eof and read aheads are enabled, start one.
674 * (You need the current block first, so that you have the
675 * directory offset cookie of the next block.)
676 */
677 NFSLOCKNODE(np);
678 if (nmp->nm_readahead > 0 &&
679 (bp->b_flags & B_INVAL) == 0 &&
680 (np->n_direofoffset == 0 ||
681 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
682 incore(&vp->v_bufobj, lbn + 1) == NULL) {
683 NFSUNLOCKNODE(np);
684 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
685 if (rabp) {
686 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
687 rabp->b_flags |= B_ASYNC;
688 rabp->b_iocmd = BIO_READ;
689 vfs_busy_pages(rabp, 0);
690 if (ncl_asyncio(nmp, rabp, cred, td)) {
691 rabp->b_flags |= B_INVAL;
692 rabp->b_ioflags |= BIO_ERROR;
693 vfs_unbusy_pages(rabp);
694 brelse(rabp);
695 }
696 } else {
697 brelse(rabp);
698 }
699 }
700 NFSLOCKNODE(np);
701 }
702 /*
703 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
704 * chopped for the EOF condition, we cannot tell how large
705 * NFS directories are going to be until we hit EOF. So
706 * an NFS directory buffer is *not* chopped to its EOF. Now,
707 * it just so happens that b_resid will effectively chop it
708 * to EOF. *BUT* this information is lost if the buffer goes
709 * away and is reconstituted into a B_CACHE state ( due to
710 * being VMIO ) later. So we keep track of the directory eof
711 * in np->n_direofoffset and chop it off as an extra step
712 * right here.
713 */
714 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
715 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
716 n = np->n_direofoffset - uio->uio_offset;
717 NFSUNLOCKNODE(np);
718 break;
719 default:
720 printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
721 bp = NULL;
722 break;
723 }
724
725 if (n > 0) {
726 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
727 }
728 if (vp->v_type == VLNK)
729 n = 0;
730 if (bp != NULL)
731 brelse(bp);
732 } while (error == 0 && uio->uio_resid > 0 && n > 0);
733 out:
734 curthread_pflags2_restore(save2);
735 if ((curthread->td_pflags2 & TDP2_SBPAGES) == 0) {
736 NFSLOCKNODE(np);
737 ncl_pager_setsize(vp, NULL);
738 }
739 return (error);
740 }
741
742 /*
743 * The NFS write path cannot handle iovecs with len > 1. So we need to
744 * break up iovecs accordingly (restricting them to wsize).
745 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
746 * For the ASYNC case, 2 copies are needed. The first a copy from the
747 * user buffer to a staging buffer and then a second copy from the staging
748 * buffer to mbufs. This can be optimized by copying from the user buffer
749 * directly into mbufs and passing the chain down, but that requires a
750 * fair amount of re-working of the relevant codepaths (and can be done
751 * later).
752 */
753 static int
754 nfs_directio_write(vp, uiop, cred, ioflag)
755 struct vnode *vp;
756 struct uio *uiop;
757 struct ucred *cred;
758 int ioflag;
759 {
760 int error;
761 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
762 struct thread *td = uiop->uio_td;
763 int size;
764 int wsize;
765
766 mtx_lock(&nmp->nm_mtx);
767 wsize = nmp->nm_wsize;
768 mtx_unlock(&nmp->nm_mtx);
769 if (ioflag & IO_SYNC) {
770 int iomode, must_commit;
771 struct uio uio;
772 struct iovec iov;
773 do_sync:
774 while (uiop->uio_resid > 0) {
775 size = MIN(uiop->uio_resid, wsize);
776 size = MIN(uiop->uio_iov->iov_len, size);
777 iov.iov_base = uiop->uio_iov->iov_base;
778 iov.iov_len = size;
779 uio.uio_iov = &iov;
780 uio.uio_iovcnt = 1;
781 uio.uio_offset = uiop->uio_offset;
782 uio.uio_resid = size;
783 uio.uio_segflg = UIO_USERSPACE;
784 uio.uio_rw = UIO_WRITE;
785 uio.uio_td = td;
786 iomode = NFSWRITE_FILESYNC;
787 /*
788 * When doing direct I/O we do not care if the
789 * server's write verifier has changed, but we
790 * do not want to update the verifier if it has
791 * changed, since that hides the change from
792 * writes being done through the buffer cache.
793 * By passing must_commit in set to two, the code
794 * in nfsrpc_writerpc() will not update the
795 * verifier on the mount point.
796 */
797 must_commit = 2;
798 error = ncl_writerpc(vp, &uio, cred, &iomode,
799 &must_commit, 0);
800 KASSERT((must_commit == 2),
801 ("ncl_directio_write: Updated write verifier"));
802 if (error)
803 return (error);
804 if (iomode != NFSWRITE_FILESYNC)
805 printf("nfs_directio_write: Broken server "
806 "did not reply FILE_SYNC\n");
807 uiop->uio_offset += size;
808 uiop->uio_resid -= size;
809 if (uiop->uio_iov->iov_len <= size) {
810 uiop->uio_iovcnt--;
811 uiop->uio_iov++;
812 } else {
813 uiop->uio_iov->iov_base =
814 (char *)uiop->uio_iov->iov_base + size;
815 uiop->uio_iov->iov_len -= size;
816 }
817 }
818 } else {
819 struct uio *t_uio;
820 struct iovec *t_iov;
821 struct buf *bp;
822
823 /*
824 * Break up the write into blocksize chunks and hand these
825 * over to nfsiod's for write back.
826 * Unfortunately, this incurs a copy of the data. Since
827 * the user could modify the buffer before the write is
828 * initiated.
829 *
830 * The obvious optimization here is that one of the 2 copies
831 * in the async write path can be eliminated by copying the
832 * data here directly into mbufs and passing the mbuf chain
833 * down. But that will require a fair amount of re-working
834 * of the code and can be done if there's enough interest
835 * in NFS directio access.
836 */
837 while (uiop->uio_resid > 0) {
838 size = MIN(uiop->uio_resid, wsize);
839 size = MIN(uiop->uio_iov->iov_len, size);
840 bp = getpbuf(&ncl_pbuf_freecnt);
841 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
842 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
843 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
844 t_iov->iov_len = size;
845 t_uio->uio_iov = t_iov;
846 t_uio->uio_iovcnt = 1;
847 t_uio->uio_offset = uiop->uio_offset;
848 t_uio->uio_resid = size;
849 t_uio->uio_segflg = UIO_SYSSPACE;
850 t_uio->uio_rw = UIO_WRITE;
851 t_uio->uio_td = td;
852 KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
853 uiop->uio_segflg == UIO_SYSSPACE,
854 ("nfs_directio_write: Bad uio_segflg"));
855 if (uiop->uio_segflg == UIO_USERSPACE) {
856 error = copyin(uiop->uio_iov->iov_base,
857 t_iov->iov_base, size);
858 if (error != 0)
859 goto err_free;
860 } else
861 /*
862 * UIO_SYSSPACE may never happen, but handle
863 * it just in case it does.
864 */
865 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
866 size);
867 bp->b_flags |= B_DIRECT;
868 bp->b_iocmd = BIO_WRITE;
869 if (cred != NOCRED) {
870 crhold(cred);
871 bp->b_wcred = cred;
872 } else
873 bp->b_wcred = NOCRED;
874 bp->b_caller1 = (void *)t_uio;
875 bp->b_vp = vp;
876 error = ncl_asyncio(nmp, bp, NOCRED, td);
877 err_free:
878 if (error) {
879 free(t_iov->iov_base, M_NFSDIRECTIO);
880 free(t_iov, M_NFSDIRECTIO);
881 free(t_uio, M_NFSDIRECTIO);
882 bp->b_vp = NULL;
883 relpbuf(bp, &ncl_pbuf_freecnt);
884 if (error == EINTR)
885 return (error);
886 goto do_sync;
887 }
888 uiop->uio_offset += size;
889 uiop->uio_resid -= size;
890 if (uiop->uio_iov->iov_len <= size) {
891 uiop->uio_iovcnt--;
892 uiop->uio_iov++;
893 } else {
894 uiop->uio_iov->iov_base =
895 (char *)uiop->uio_iov->iov_base + size;
896 uiop->uio_iov->iov_len -= size;
897 }
898 }
899 }
900 return (0);
901 }
902
903 /*
904 * Vnode op for write using bio
905 */
906 int
907 ncl_write(struct vop_write_args *ap)
908 {
909 int biosize;
910 struct uio *uio = ap->a_uio;
911 struct thread *td = uio->uio_td;
912 struct vnode *vp = ap->a_vp;
913 struct nfsnode *np = VTONFS(vp);
914 struct ucred *cred = ap->a_cred;
915 int ioflag = ap->a_ioflag;
916 struct buf *bp;
917 struct vattr vattr;
918 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
919 daddr_t lbn;
920 int bcount, noncontig_write, obcount;
921 int bp_cached, n, on, error = 0, error1, save2, wouldcommit;
922 size_t orig_resid, local_resid;
923 off_t orig_size, tmp_off;
924 struct timespec ts;
925
926 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
927 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
928 ("ncl_write proc"));
929 if (vp->v_type != VREG)
930 return (EIO);
931 NFSLOCKNODE(np);
932 if (np->n_flag & NWRITEERR) {
933 np->n_flag &= ~NWRITEERR;
934 NFSUNLOCKNODE(np);
935 return (np->n_error);
936 } else
937 NFSUNLOCKNODE(np);
938 mtx_lock(&nmp->nm_mtx);
939 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
940 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
941 mtx_unlock(&nmp->nm_mtx);
942 (void)ncl_fsinfo(nmp, vp, cred, td);
943 mtx_lock(&nmp->nm_mtx);
944 }
945 if (nmp->nm_wsize == 0)
946 (void) newnfs_iosize(nmp);
947 mtx_unlock(&nmp->nm_mtx);
948
949 /*
950 * Synchronously flush pending buffers if we are in synchronous
951 * mode or if we are appending.
952 */
953 if (ioflag & (IO_APPEND | IO_SYNC)) {
954 NFSLOCKNODE(np);
955 if (np->n_flag & NMODIFIED) {
956 NFSUNLOCKNODE(np);
957 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
958 /*
959 * Require non-blocking, synchronous writes to
960 * dirty files to inform the program it needs
961 * to fsync(2) explicitly.
962 */
963 if (ioflag & IO_NDELAY)
964 return (EAGAIN);
965 #endif
966 np->n_attrstamp = 0;
967 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
968 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag &
969 IO_VMIO) != 0 ? V_VMIO : 0), td, 1);
970 if (error != 0)
971 return (error);
972 } else
973 NFSUNLOCKNODE(np);
974 }
975
976 orig_resid = uio->uio_resid;
977 NFSLOCKNODE(np);
978 orig_size = np->n_size;
979 NFSUNLOCKNODE(np);
980
981 /*
982 * If IO_APPEND then load uio_offset. We restart here if we cannot
983 * get the append lock.
984 */
985 if (ioflag & IO_APPEND) {
986 np->n_attrstamp = 0;
987 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
988 error = VOP_GETATTR(vp, &vattr, cred);
989 if (error)
990 return (error);
991 NFSLOCKNODE(np);
992 uio->uio_offset = np->n_size;
993 NFSUNLOCKNODE(np);
994 }
995
996 if (uio->uio_offset < 0)
997 return (EINVAL);
998 tmp_off = uio->uio_offset + uio->uio_resid;
999 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
1000 return (EFBIG);
1001 if (uio->uio_resid == 0)
1002 return (0);
1003
1004 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
1005 return nfs_directio_write(vp, uio, cred, ioflag);
1006
1007 /*
1008 * Maybe this should be above the vnode op call, but so long as
1009 * file servers have no limits, i don't think it matters
1010 */
1011 if (vn_rlimit_fsize(vp, uio, td))
1012 return (EFBIG);
1013
1014 save2 = curthread_pflags2_set(TDP2_SBPAGES);
1015 biosize = vp->v_bufobj.bo_bsize;
1016 /*
1017 * Find all of this file's B_NEEDCOMMIT buffers. If our writes
1018 * would exceed the local maximum per-file write commit size when
1019 * combined with those, we must decide whether to flush,
1020 * go synchronous, or return error. We don't bother checking
1021 * IO_UNIT -- we just make all writes atomic anyway, as there's
1022 * no point optimizing for something that really won't ever happen.
1023 */
1024 wouldcommit = 0;
1025 if (!(ioflag & IO_SYNC)) {
1026 int nflag;
1027
1028 NFSLOCKNODE(np);
1029 nflag = np->n_flag;
1030 NFSUNLOCKNODE(np);
1031 if (nflag & NMODIFIED) {
1032 BO_LOCK(&vp->v_bufobj);
1033 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1034 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1035 b_bobufs) {
1036 if (bp->b_flags & B_NEEDCOMMIT)
1037 wouldcommit += bp->b_bcount;
1038 }
1039 }
1040 BO_UNLOCK(&vp->v_bufobj);
1041 }
1042 }
1043
1044 do {
1045 if (!(ioflag & IO_SYNC)) {
1046 wouldcommit += biosize;
1047 if (wouldcommit > nmp->nm_wcommitsize) {
1048 np->n_attrstamp = 0;
1049 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1050 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag &
1051 IO_VMIO) != 0 ? V_VMIO : 0), td, 1);
1052 if (error != 0)
1053 goto out;
1054 wouldcommit = biosize;
1055 }
1056 }
1057
1058 NFSINCRGLOBAL(nfsstatsv1.biocache_writes);
1059 lbn = uio->uio_offset / biosize;
1060 on = uio->uio_offset - (lbn * biosize);
1061 n = MIN((unsigned)(biosize - on), uio->uio_resid);
1062 again:
1063 /*
1064 * Handle direct append and file extension cases, calculate
1065 * unaligned buffer size.
1066 */
1067 NFSLOCKNODE(np);
1068 if ((np->n_flag & NHASBEENLOCKED) == 0 &&
1069 (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
1070 noncontig_write = 1;
1071 else
1072 noncontig_write = 0;
1073 if ((uio->uio_offset == np->n_size ||
1074 (noncontig_write != 0 &&
1075 lbn == (np->n_size / biosize) &&
1076 uio->uio_offset + n > np->n_size)) && n) {
1077 NFSUNLOCKNODE(np);
1078 /*
1079 * Get the buffer (in its pre-append state to maintain
1080 * B_CACHE if it was previously set). Resize the
1081 * nfsnode after we have locked the buffer to prevent
1082 * readers from reading garbage.
1083 */
1084 obcount = np->n_size - (lbn * biosize);
1085 bp = nfs_getcacheblk(vp, lbn, obcount, td);
1086
1087 if (bp != NULL) {
1088 long save;
1089
1090 NFSLOCKNODE(np);
1091 np->n_size = uio->uio_offset + n;
1092 np->n_flag |= NMODIFIED;
1093 np->n_flag &= ~NVNSETSZSKIP;
1094 vnode_pager_setsize(vp, np->n_size);
1095 NFSUNLOCKNODE(np);
1096
1097 save = bp->b_flags & B_CACHE;
1098 bcount = on + n;
1099 allocbuf(bp, bcount);
1100 bp->b_flags |= save;
1101 if (noncontig_write != 0 && on > obcount)
1102 vfs_bio_bzero_buf(bp, obcount, on -
1103 obcount);
1104 }
1105 } else {
1106 /*
1107 * Obtain the locked cache block first, and then
1108 * adjust the file's size as appropriate.
1109 */
1110 bcount = on + n;
1111 if ((off_t)lbn * biosize + bcount < np->n_size) {
1112 if ((off_t)(lbn + 1) * biosize < np->n_size)
1113 bcount = biosize;
1114 else
1115 bcount = np->n_size - (off_t)lbn * biosize;
1116 }
1117 NFSUNLOCKNODE(np);
1118 bp = nfs_getcacheblk(vp, lbn, bcount, td);
1119 NFSLOCKNODE(np);
1120 if (uio->uio_offset + n > np->n_size) {
1121 np->n_size = uio->uio_offset + n;
1122 np->n_flag |= NMODIFIED;
1123 np->n_flag &= ~NVNSETSZSKIP;
1124 vnode_pager_setsize(vp, np->n_size);
1125 }
1126 NFSUNLOCKNODE(np);
1127 }
1128
1129 if (!bp) {
1130 error = newnfs_sigintr(nmp, td);
1131 if (!error)
1132 error = EINTR;
1133 break;
1134 }
1135
1136 /*
1137 * Issue a READ if B_CACHE is not set. In special-append
1138 * mode, B_CACHE is based on the buffer prior to the write
1139 * op and is typically set, avoiding the read. If a read
1140 * is required in special append mode, the server will
1141 * probably send us a short-read since we extended the file
1142 * on our end, resulting in b_resid == 0 and, thusly,
1143 * B_CACHE getting set.
1144 *
1145 * We can also avoid issuing the read if the write covers
1146 * the entire buffer. We have to make sure the buffer state
1147 * is reasonable in this case since we will not be initiating
1148 * I/O. See the comments in kern/vfs_bio.c's getblk() for
1149 * more information.
1150 *
1151 * B_CACHE may also be set due to the buffer being cached
1152 * normally.
1153 */
1154
1155 bp_cached = 1;
1156 if (on == 0 && n == bcount) {
1157 if ((bp->b_flags & B_CACHE) == 0)
1158 bp_cached = 0;
1159 bp->b_flags |= B_CACHE;
1160 bp->b_flags &= ~B_INVAL;
1161 bp->b_ioflags &= ~BIO_ERROR;
1162 }
1163
1164 if ((bp->b_flags & B_CACHE) == 0) {
1165 bp->b_iocmd = BIO_READ;
1166 vfs_busy_pages(bp, 0);
1167 error = ncl_doio(vp, bp, cred, td, 0);
1168 if (error) {
1169 brelse(bp);
1170 break;
1171 }
1172 }
1173 if (bp->b_wcred == NOCRED)
1174 bp->b_wcred = crhold(cred);
1175 NFSLOCKNODE(np);
1176 np->n_flag |= NMODIFIED;
1177 NFSUNLOCKNODE(np);
1178
1179 /*
1180 * If dirtyend exceeds file size, chop it down. This should
1181 * not normally occur but there is an append race where it
1182 * might occur XXX, so we log it.
1183 *
1184 * If the chopping creates a reverse-indexed or degenerate
1185 * situation with dirtyoff/end, we 0 both of them.
1186 */
1187
1188 if (bp->b_dirtyend > bcount) {
1189 printf("NFS append race @%lx:%d\n",
1190 (long)bp->b_blkno * DEV_BSIZE,
1191 bp->b_dirtyend - bcount);
1192 bp->b_dirtyend = bcount;
1193 }
1194
1195 if (bp->b_dirtyoff >= bp->b_dirtyend)
1196 bp->b_dirtyoff = bp->b_dirtyend = 0;
1197
1198 /*
1199 * If the new write will leave a contiguous dirty
1200 * area, just update the b_dirtyoff and b_dirtyend,
1201 * otherwise force a write rpc of the old dirty area.
1202 *
1203 * If there has been a file lock applied to this file
1204 * or vfs.nfs.old_noncontig_writing is set, do the following:
1205 * While it is possible to merge discontiguous writes due to
1206 * our having a B_CACHE buffer ( and thus valid read data
1207 * for the hole), we don't because it could lead to
1208 * significant cache coherency problems with multiple clients,
1209 * especially if locking is implemented later on.
1210 *
1211 * If vfs.nfs.old_noncontig_writing is not set and there has
1212 * not been file locking done on this file:
1213 * Relax coherency a bit for the sake of performance and
1214 * expand the current dirty region to contain the new
1215 * write even if it means we mark some non-dirty data as
1216 * dirty.
1217 */
1218
1219 if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
1220 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1221 if (bwrite(bp) == EINTR) {
1222 error = EINTR;
1223 break;
1224 }
1225 goto again;
1226 }
1227
1228 local_resid = uio->uio_resid;
1229 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
1230
1231 if (error != 0 && !bp_cached) {
1232 /*
1233 * This block has no other content then what
1234 * possibly was written by the faulty uiomove.
1235 * Release it, forgetting the data pages, to
1236 * prevent the leak of uninitialized data to
1237 * usermode.
1238 */
1239 bp->b_ioflags |= BIO_ERROR;
1240 brelse(bp);
1241 uio->uio_offset -= local_resid - uio->uio_resid;
1242 uio->uio_resid = local_resid;
1243 break;
1244 }
1245
1246 /*
1247 * Since this block is being modified, it must be written
1248 * again and not just committed. Since write clustering does
1249 * not work for the stage 1 data write, only the stage 2
1250 * commit rpc, we have to clear B_CLUSTEROK as well.
1251 */
1252 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1253
1254 /*
1255 * Get the partial update on the progress made from
1256 * uiomove, if an error occurred.
1257 */
1258 if (error != 0)
1259 n = local_resid - uio->uio_resid;
1260
1261 /*
1262 * Only update dirtyoff/dirtyend if not a degenerate
1263 * condition.
1264 */
1265 if (n > 0) {
1266 if (bp->b_dirtyend > 0) {
1267 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1268 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1269 } else {
1270 bp->b_dirtyoff = on;
1271 bp->b_dirtyend = on + n;
1272 }
1273 vfs_bio_set_valid(bp, on, n);
1274 }
1275
1276 /*
1277 * If IO_SYNC do bwrite().
1278 *
1279 * IO_INVAL appears to be unused. The idea appears to be
1280 * to turn off caching in this case. Very odd. XXX
1281 */
1282 if ((ioflag & IO_SYNC)) {
1283 if (ioflag & IO_INVAL)
1284 bp->b_flags |= B_NOCACHE;
1285 error1 = bwrite(bp);
1286 if (error1 != 0) {
1287 if (error == 0)
1288 error = error1;
1289 break;
1290 }
1291 } else if ((n + on) == biosize || (ioflag & IO_ASYNC) != 0) {
1292 bp->b_flags |= B_ASYNC;
1293 (void) ncl_writebp(bp, 0, NULL);
1294 } else {
1295 bdwrite(bp);
1296 }
1297
1298 if (error != 0)
1299 break;
1300 } while (uio->uio_resid > 0 && n > 0);
1301
1302 if (error == 0) {
1303 nanouptime(&ts);
1304 NFSLOCKNODE(np);
1305 np->n_localmodtime = ts;
1306 NFSUNLOCKNODE(np);
1307 } else {
1308 if (ioflag & IO_UNIT) {
1309 VATTR_NULL(&vattr);
1310 vattr.va_size = orig_size;
1311 /* IO_SYNC is handled implicitely */
1312 (void)VOP_SETATTR(vp, &vattr, cred);
1313 uio->uio_offset -= orig_resid - uio->uio_resid;
1314 uio->uio_resid = orig_resid;
1315 }
1316 }
1317
1318 out:
1319 curthread_pflags2_restore(save2);
1320 return (error);
1321 }
1322
1323 /*
1324 * Get an nfs cache block.
1325 *
1326 * Allocate a new one if the block isn't currently in the cache
1327 * and return the block marked busy. If the calling process is
1328 * interrupted by a signal for an interruptible mount point, return
1329 * NULL.
1330 *
1331 * The caller must carefully deal with the possible B_INVAL state of
1332 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1333 * indirectly), so synchronous reads can be issued without worrying about
1334 * the B_INVAL state. We have to be a little more careful when dealing
1335 * with writes (see comments in nfs_write()) when extending a file past
1336 * its EOF.
1337 */
1338 static struct buf *
1339 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1340 {
1341 struct buf *bp;
1342 struct mount *mp;
1343 struct nfsmount *nmp;
1344
1345 mp = vp->v_mount;
1346 nmp = VFSTONFS(mp);
1347
1348 if (nmp->nm_flag & NFSMNT_INT) {
1349 sigset_t oldset;
1350
1351 newnfs_set_sigmask(td, &oldset);
1352 bp = getblk(vp, bn, size, PCATCH, 0, 0);
1353 newnfs_restore_sigmask(td, &oldset);
1354 while (bp == NULL) {
1355 if (newnfs_sigintr(nmp, td))
1356 return (NULL);
1357 bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1358 }
1359 } else {
1360 bp = getblk(vp, bn, size, 0, 0, 0);
1361 }
1362
1363 if (vp->v_type == VREG)
1364 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1365 return (bp);
1366 }
1367
1368 /*
1369 * Flush and invalidate all dirty buffers. If another process is already
1370 * doing the flush, just wait for completion.
1371 */
1372 int
1373 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1374 {
1375 struct nfsnode *np = VTONFS(vp);
1376 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1377 int error = 0, slpflag, slptimeo;
1378 bool old_lock;
1379 struct timespec ts;
1380
1381 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1382
1383 if ((nmp->nm_flag & NFSMNT_INT) == 0)
1384 intrflg = 0;
1385 if (NFSCL_FORCEDISM(nmp->nm_mountp))
1386 intrflg = 1;
1387 if (intrflg) {
1388 slpflag = PCATCH;
1389 slptimeo = 2 * hz;
1390 } else {
1391 slpflag = 0;
1392 slptimeo = 0;
1393 }
1394
1395 old_lock = ncl_excl_start(vp);
1396 if (old_lock)
1397 flags |= V_ALLOWCLEAN;
1398
1399 /*
1400 * Now, flush as required.
1401 */
1402 if ((flags & (V_SAVE | V_VMIO)) == V_SAVE &&
1403 vp->v_bufobj.bo_object != NULL) {
1404 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
1405 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1406 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
1407 /*
1408 * If the page clean was interrupted, fail the invalidation.
1409 * Not doing so, we run the risk of losing dirty pages in the
1410 * vinvalbuf() call below.
1411 */
1412 if (intrflg && (error = newnfs_sigintr(nmp, td)))
1413 goto out;
1414 }
1415
1416 error = vinvalbuf(vp, flags, slpflag, 0);
1417 while (error) {
1418 if (intrflg && (error = newnfs_sigintr(nmp, td)))
1419 goto out;
1420 error = vinvalbuf(vp, flags, 0, slptimeo);
1421 }
1422 if (NFSHASPNFS(nmp)) {
1423 nfscl_layoutcommit(vp, td);
1424 nanouptime(&ts);
1425 /*
1426 * Invalidate the attribute cache, since writes to a DS
1427 * won't update the size attribute.
1428 */
1429 NFSLOCKNODE(np);
1430 np->n_attrstamp = 0;
1431 } else {
1432 nanouptime(&ts);
1433 NFSLOCKNODE(np);
1434 }
1435 if (np->n_directio_asyncwr == 0 && (np->n_flag & NMODIFIED) != 0) {
1436 np->n_localmodtime = ts;
1437 np->n_flag &= ~NMODIFIED;
1438 }
1439 NFSUNLOCKNODE(np);
1440 out:
1441 ncl_excl_finish(vp, old_lock);
1442 return error;
1443 }
1444
1445 /*
1446 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1447 * This is mainly to avoid queueing async I/O requests when the nfsiods
1448 * are all hung on a dead server.
1449 *
1450 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1451 * is eventually dequeued by the async daemon, ncl_doio() *will*.
1452 */
1453 int
1454 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1455 {
1456 int iod;
1457 int gotiod;
1458 int slpflag = 0;
1459 int slptimeo = 0;
1460 int error, error2;
1461
1462 /*
1463 * Commits are usually short and sweet so lets save some cpu and
1464 * leave the async daemons for more important rpc's (such as reads
1465 * and writes).
1466 *
1467 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
1468 * in the directory in order to update attributes. This can deadlock
1469 * with another thread that is waiting for async I/O to be done by
1470 * an nfsiod thread while holding a lock on one of these vnodes.
1471 * To avoid this deadlock, don't allow the async nfsiod threads to
1472 * perform Readdirplus RPCs.
1473 */
1474 NFSLOCKIOD();
1475 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1476 (nmp->nm_bufqiods > ncl_numasync / 2)) ||
1477 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
1478 NFSUNLOCKIOD();
1479 return(EIO);
1480 }
1481 again:
1482 if (nmp->nm_flag & NFSMNT_INT)
1483 slpflag = PCATCH;
1484 gotiod = FALSE;
1485
1486 /*
1487 * Find a free iod to process this request.
1488 */
1489 for (iod = 0; iod < ncl_numasync; iod++)
1490 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1491 gotiod = TRUE;
1492 break;
1493 }
1494
1495 /*
1496 * Try to create one if none are free.
1497 */
1498 if (!gotiod)
1499 ncl_nfsiodnew();
1500 else {
1501 /*
1502 * Found one, so wake it up and tell it which
1503 * mount to process.
1504 */
1505 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1506 iod, nmp));
1507 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1508 ncl_iodmount[iod] = nmp;
1509 nmp->nm_bufqiods++;
1510 wakeup(&ncl_iodwant[iod]);
1511 }
1512
1513 /*
1514 * If none are free, we may already have an iod working on this mount
1515 * point. If so, it will process our request.
1516 */
1517 if (!gotiod) {
1518 if (nmp->nm_bufqiods > 0) {
1519 NFS_DPF(ASYNCIO,
1520 ("ncl_asyncio: %d iods are already processing mount %p\n",
1521 nmp->nm_bufqiods, nmp));
1522 gotiod = TRUE;
1523 }
1524 }
1525
1526 /*
1527 * If we have an iod which can process the request, then queue
1528 * the buffer.
1529 */
1530 if (gotiod) {
1531 /*
1532 * Ensure that the queue never grows too large. We still want
1533 * to asynchronize so we block rather then return EIO.
1534 */
1535 while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1536 NFS_DPF(ASYNCIO,
1537 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1538 nmp->nm_bufqwant = TRUE;
1539 error = newnfs_msleep(td, &nmp->nm_bufq,
1540 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1541 slptimeo);
1542 if (error) {
1543 error2 = newnfs_sigintr(nmp, td);
1544 if (error2) {
1545 NFSUNLOCKIOD();
1546 return (error2);
1547 }
1548 if (slpflag == PCATCH) {
1549 slpflag = 0;
1550 slptimeo = 2 * hz;
1551 }
1552 }
1553 /*
1554 * We might have lost our iod while sleeping,
1555 * so check and loop if necessary.
1556 */
1557 goto again;
1558 }
1559
1560 /* We might have lost our nfsiod */
1561 if (nmp->nm_bufqiods == 0) {
1562 NFS_DPF(ASYNCIO,
1563 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1564 goto again;
1565 }
1566
1567 if (bp->b_iocmd == BIO_READ) {
1568 if (bp->b_rcred == NOCRED && cred != NOCRED)
1569 bp->b_rcred = crhold(cred);
1570 } else {
1571 if (bp->b_wcred == NOCRED && cred != NOCRED)
1572 bp->b_wcred = crhold(cred);
1573 }
1574
1575 if (bp->b_flags & B_REMFREE)
1576 bremfreef(bp);
1577 BUF_KERNPROC(bp);
1578 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1579 nmp->nm_bufqlen++;
1580 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1581 NFSLOCKNODE(VTONFS(bp->b_vp));
1582 VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1583 VTONFS(bp->b_vp)->n_directio_asyncwr++;
1584 NFSUNLOCKNODE(VTONFS(bp->b_vp));
1585 }
1586 NFSUNLOCKIOD();
1587 return (0);
1588 }
1589
1590 NFSUNLOCKIOD();
1591
1592 /*
1593 * All the iods are busy on other mounts, so return EIO to
1594 * force the caller to process the i/o synchronously.
1595 */
1596 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1597 return (EIO);
1598 }
1599
1600 void
1601 ncl_doio_directwrite(struct buf *bp)
1602 {
1603 int iomode, must_commit;
1604 struct uio *uiop = (struct uio *)bp->b_caller1;
1605 char *iov_base = uiop->uio_iov->iov_base;
1606
1607 iomode = NFSWRITE_FILESYNC;
1608 uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1609 /*
1610 * When doing direct I/O we do not care if the
1611 * server's write verifier has changed, but we
1612 * do not want to update the verifier if it has
1613 * changed, since that hides the change from
1614 * writes being done through the buffer cache.
1615 * By passing must_commit in set to two, the code
1616 * in nfsrpc_writerpc() will not update the
1617 * verifier on the mount point.
1618 */
1619 must_commit = 2;
1620 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1621 KASSERT((must_commit == 2), ("ncl_doio_directwrite: Updated write"
1622 " verifier"));
1623 if (iomode != NFSWRITE_FILESYNC)
1624 printf("ncl_doio_directwrite: Broken server "
1625 "did not reply FILE_SYNC\n");
1626 free(iov_base, M_NFSDIRECTIO);
1627 free(uiop->uio_iov, M_NFSDIRECTIO);
1628 free(uiop, M_NFSDIRECTIO);
1629 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1630 struct nfsnode *np = VTONFS(bp->b_vp);
1631 NFSLOCKNODE(np);
1632 if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) {
1633 /*
1634 * Invalidate the attribute cache, since writes to a DS
1635 * won't update the size attribute.
1636 */
1637 np->n_attrstamp = 0;
1638 }
1639 np->n_directio_asyncwr--;
1640 if (np->n_directio_asyncwr == 0) {
1641 np->n_flag &= ~NMODIFIED;
1642 if ((np->n_flag & NFSYNCWAIT)) {
1643 np->n_flag &= ~NFSYNCWAIT;
1644 wakeup((caddr_t)&np->n_directio_asyncwr);
1645 }
1646 }
1647 NFSUNLOCKNODE(np);
1648 }
1649 bp->b_vp = NULL;
1650 relpbuf(bp, &ncl_pbuf_freecnt);
1651 }
1652
1653 /*
1654 * Do an I/O operation to/from a cache block. This may be called
1655 * synchronously or from an nfsiod.
1656 */
1657 int
1658 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1659 int called_from_strategy)
1660 {
1661 struct uio *uiop;
1662 struct nfsnode *np;
1663 struct nfsmount *nmp;
1664 int error = 0, iomode, must_commit = 0;
1665 struct uio uio;
1666 struct iovec io;
1667 struct proc *p = td ? td->td_proc : NULL;
1668 uint8_t iocmd;
1669
1670 np = VTONFS(vp);
1671 nmp = VFSTONFS(vp->v_mount);
1672 uiop = &uio;
1673 uiop->uio_iov = &io;
1674 uiop->uio_iovcnt = 1;
1675 uiop->uio_segflg = UIO_SYSSPACE;
1676 uiop->uio_td = td;
1677
1678 /*
1679 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We
1680 * do this here so we do not have to do it in all the code that
1681 * calls us.
1682 */
1683 bp->b_flags &= ~B_INVAL;
1684 bp->b_ioflags &= ~BIO_ERROR;
1685
1686 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1687 iocmd = bp->b_iocmd;
1688 if (iocmd == BIO_READ) {
1689 io.iov_len = uiop->uio_resid = bp->b_bcount;
1690 io.iov_base = bp->b_data;
1691 uiop->uio_rw = UIO_READ;
1692
1693 switch (vp->v_type) {
1694 case VREG:
1695 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1696 NFSINCRGLOBAL(nfsstatsv1.read_bios);
1697 error = ncl_readrpc(vp, uiop, cr);
1698
1699 if (!error) {
1700 if (uiop->uio_resid) {
1701 /*
1702 * If we had a short read with no error, we must have
1703 * hit a file hole. We should zero-fill the remainder.
1704 * This can also occur if the server hits the file EOF.
1705 *
1706 * Holes used to be able to occur due to pending
1707 * writes, but that is not possible any longer.
1708 */
1709 int nread = bp->b_bcount - uiop->uio_resid;
1710 ssize_t left = uiop->uio_resid;
1711
1712 if (left > 0)
1713 bzero((char *)bp->b_data + nread, left);
1714 uiop->uio_resid = 0;
1715 }
1716 }
1717 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1718 if (p && vp->v_writecount <= -1) {
1719 NFSLOCKNODE(np);
1720 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1721 NFSUNLOCKNODE(np);
1722 PROC_LOCK(p);
1723 killproc(p, "text file modification");
1724 PROC_UNLOCK(p);
1725 } else
1726 NFSUNLOCKNODE(np);
1727 }
1728 break;
1729 case VLNK:
1730 uiop->uio_offset = (off_t)0;
1731 NFSINCRGLOBAL(nfsstatsv1.readlink_bios);
1732 error = ncl_readlinkrpc(vp, uiop, cr);
1733 break;
1734 case VDIR:
1735 NFSINCRGLOBAL(nfsstatsv1.readdir_bios);
1736 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1737 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1738 error = ncl_readdirplusrpc(vp, uiop, cr, td);
1739 if (error == NFSERR_NOTSUPP)
1740 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1741 }
1742 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1743 error = ncl_readdirrpc(vp, uiop, cr, td);
1744 /*
1745 * end-of-directory sets B_INVAL but does not generate an
1746 * error.
1747 */
1748 if (error == 0 && uiop->uio_resid == bp->b_bcount)
1749 bp->b_flags |= B_INVAL;
1750 break;
1751 default:
1752 printf("ncl_doio: type %x unexpected\n", vp->v_type);
1753 break;
1754 }
1755 if (error) {
1756 bp->b_ioflags |= BIO_ERROR;
1757 bp->b_error = error;
1758 }
1759 } else {
1760 /*
1761 * If we only need to commit, try to commit
1762 */
1763 if (bp->b_flags & B_NEEDCOMMIT) {
1764 int retv;
1765 off_t off;
1766
1767 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1768 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1769 bp->b_wcred, td);
1770 if (NFSCL_FORCEDISM(vp->v_mount) || retv == 0) {
1771 bp->b_dirtyoff = bp->b_dirtyend = 0;
1772 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1773 bp->b_resid = 0;
1774 bufdone(bp);
1775 return (0);
1776 }
1777 if (retv == NFSERR_STALEWRITEVERF) {
1778 ncl_clearcommit(vp->v_mount);
1779 }
1780 }
1781
1782 /*
1783 * Setup for actual write
1784 */
1785 NFSLOCKNODE(np);
1786 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1787 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1788 NFSUNLOCKNODE(np);
1789
1790 if (bp->b_dirtyend > bp->b_dirtyoff) {
1791 io.iov_len = uiop->uio_resid = bp->b_dirtyend
1792 - bp->b_dirtyoff;
1793 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1794 + bp->b_dirtyoff;
1795 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1796 uiop->uio_rw = UIO_WRITE;
1797 NFSINCRGLOBAL(nfsstatsv1.write_bios);
1798
1799 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1800 iomode = NFSWRITE_UNSTABLE;
1801 else
1802 iomode = NFSWRITE_FILESYNC;
1803
1804 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1805 called_from_strategy);
1806
1807 /*
1808 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1809 * to cluster the buffers needing commit. This will allow
1810 * the system to submit a single commit rpc for the whole
1811 * cluster. We can do this even if the buffer is not 100%
1812 * dirty (relative to the NFS blocksize), so we optimize the
1813 * append-to-file-case.
1814 *
1815 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1816 * cleared because write clustering only works for commit
1817 * rpc's, not for the data portion of the write).
1818 */
1819
1820 if (!error && iomode == NFSWRITE_UNSTABLE) {
1821 bp->b_flags |= B_NEEDCOMMIT;
1822 if (bp->b_dirtyoff == 0
1823 && bp->b_dirtyend == bp->b_bcount)
1824 bp->b_flags |= B_CLUSTEROK;
1825 } else {
1826 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1827 }
1828
1829 /*
1830 * For an interrupted write, the buffer is still valid
1831 * and the write hasn't been pushed to the server yet,
1832 * so we can't set BIO_ERROR and report the interruption
1833 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1834 * is not relevant, so the rpc attempt is essentially
1835 * a noop. For the case of a V3 write rpc not being
1836 * committed to stable storage, the block is still
1837 * dirty and requires either a commit rpc or another
1838 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1839 * the block is reused. This is indicated by setting
1840 * the B_DELWRI and B_NEEDCOMMIT flags.
1841 *
1842 * EIO is returned by ncl_writerpc() to indicate a recoverable
1843 * write error and is handled as above, except that
1844 * B_EINTR isn't set. One cause of this is a stale stateid
1845 * error for the RPC that indicates recovery is required,
1846 * when called with called_from_strategy != 0.
1847 *
1848 * If the buffer is marked B_PAGING, it does not reside on
1849 * the vp's paging queues so we cannot call bdirty(). The
1850 * bp in this case is not an NFS cache block so we should
1851 * be safe. XXX
1852 *
1853 * The logic below breaks up errors into recoverable and
1854 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1855 * and keep the buffer around for potential write retries.
1856 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1857 * and save the error in the nfsnode. This is less than ideal
1858 * but necessary. Keeping such buffers around could potentially
1859 * cause buffer exhaustion eventually (they can never be written
1860 * out, so will get constantly be re-dirtied). It also causes
1861 * all sorts of vfs panics. For non-recoverable write errors,
1862 * also invalidate the attrcache, so we'll be forced to go over
1863 * the wire for this object, returning an error to user on next
1864 * call (most of the time).
1865 */
1866 if (error == EINTR || error == EIO || error == ETIMEDOUT
1867 || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1868 bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1869 if ((bp->b_flags & B_PAGING) == 0) {
1870 bdirty(bp);
1871 bp->b_flags &= ~B_DONE;
1872 }
1873 if ((error == EINTR || error == ETIMEDOUT) &&
1874 (bp->b_flags & B_ASYNC) == 0)
1875 bp->b_flags |= B_EINTR;
1876 } else {
1877 if (error) {
1878 bp->b_ioflags |= BIO_ERROR;
1879 bp->b_flags |= B_INVAL;
1880 bp->b_error = np->n_error = error;
1881 NFSLOCKNODE(np);
1882 np->n_flag |= NWRITEERR;
1883 np->n_attrstamp = 0;
1884 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1885 NFSUNLOCKNODE(np);
1886 }
1887 bp->b_dirtyoff = bp->b_dirtyend = 0;
1888 }
1889 } else {
1890 bp->b_resid = 0;
1891 bufdone(bp);
1892 return (0);
1893 }
1894 }
1895 bp->b_resid = uiop->uio_resid;
1896 if (must_commit == 1)
1897 ncl_clearcommit(vp->v_mount);
1898 bufdone(bp);
1899 return (error);
1900 }
1901
1902 /*
1903 * Used to aid in handling ftruncate() operations on the NFS client side.
1904 * Truncation creates a number of special problems for NFS. We have to
1905 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1906 * we have to properly handle VM pages or (potentially dirty) buffers
1907 * that straddle the truncation point.
1908 */
1909
1910 int
1911 ncl_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1912 {
1913 struct nfsnode *np = VTONFS(vp);
1914 u_quad_t tsize;
1915 int biosize = vp->v_bufobj.bo_bsize;
1916 int error = 0;
1917
1918 NFSLOCKNODE(np);
1919 tsize = np->n_size;
1920 np->n_size = nsize;
1921 NFSUNLOCKNODE(np);
1922
1923 if (nsize < tsize) {
1924 struct buf *bp;
1925 daddr_t lbn;
1926 int bufsize;
1927
1928 /*
1929 * vtruncbuf() doesn't get the buffer overlapping the
1930 * truncation point. We may have a B_DELWRI and/or B_CACHE
1931 * buffer that now needs to be truncated.
1932 */
1933 error = vtruncbuf(vp, nsize, biosize);
1934 lbn = nsize / biosize;
1935 bufsize = nsize - (lbn * biosize);
1936 bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1937 if (!bp)
1938 return EINTR;
1939 if (bp->b_dirtyoff > bp->b_bcount)
1940 bp->b_dirtyoff = bp->b_bcount;
1941 if (bp->b_dirtyend > bp->b_bcount)
1942 bp->b_dirtyend = bp->b_bcount;
1943 bp->b_flags |= B_RELBUF; /* don't leave garbage around */
1944 brelse(bp);
1945 } else {
1946 vnode_pager_setsize(vp, nsize);
1947 }
1948 return(error);
1949 }
1950
Cache object: ad240c38f06e45c469476c3615ae25e9
|