The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nfsclient/nfs_clbio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * Rick Macklem at The University of Guelph.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)nfs_bio.c   8.9 (Berkeley) 3/30/95
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD$");
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bio.h>
   43 #include <sys/buf.h>
   44 #include <sys/kernel.h>
   45 #include <sys/mount.h>
   46 #include <sys/rwlock.h>
   47 #include <sys/vmmeter.h>
   48 #include <sys/vnode.h>
   49 
   50 #include <vm/vm.h>
   51 #include <vm/vm_param.h>
   52 #include <vm/vm_extern.h>
   53 #include <vm/vm_page.h>
   54 #include <vm/vm_object.h>
   55 #include <vm/vm_pager.h>
   56 #include <vm/vnode_pager.h>
   57 
   58 #include <fs/nfs/nfsport.h>
   59 #include <fs/nfsclient/nfsmount.h>
   60 #include <fs/nfsclient/nfs.h>
   61 #include <fs/nfsclient/nfsnode.h>
   62 #include <fs/nfsclient/nfs_kdtrace.h>
   63 
   64 extern int newnfs_directio_allow_mmap;
   65 extern struct nfsstatsv1 nfsstatsv1;
   66 extern struct mtx ncl_iod_mutex;
   67 extern int ncl_numasync;
   68 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
   69 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
   70 extern int newnfs_directio_enable;
   71 extern int nfs_keep_dirty_on_error;
   72 
   73 uma_zone_t ncl_pbuf_zone;
   74 
   75 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
   76     struct thread *td);
   77 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
   78     struct ucred *cred, int ioflag);
   79 
   80 /*
   81  * Vnode op for VM getpages.
   82  */
   83 SYSCTL_DECL(_vfs_nfs);
   84 static int use_buf_pager = 1;
   85 SYSCTL_INT(_vfs_nfs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN,
   86     &use_buf_pager, 0,
   87     "Use buffer pager instead of direct readrpc call");
   88 
   89 static daddr_t
   90 ncl_gbp_getblkno(struct vnode *vp, vm_ooffset_t off)
   91 {
   92 
   93         return (off / vp->v_bufobj.bo_bsize);
   94 }
   95 
   96 static int
   97 ncl_gbp_getblksz(struct vnode *vp, daddr_t lbn)
   98 {
   99         struct nfsnode *np;
  100         u_quad_t nsize;
  101         int biosize, bcount;
  102 
  103         np = VTONFS(vp);
  104         NFSLOCKNODE(np);
  105         nsize = np->n_size;
  106         NFSUNLOCKNODE(np);
  107 
  108         biosize = vp->v_bufobj.bo_bsize;
  109         bcount = biosize;
  110         if ((off_t)lbn * biosize >= nsize)
  111                 bcount = 0;
  112         else if ((off_t)(lbn + 1) * biosize > nsize)
  113                 bcount = nsize - (off_t)lbn * biosize;
  114         return (bcount);
  115 }
  116 
  117 int
  118 ncl_getpages(struct vop_getpages_args *ap)
  119 {
  120         int i, error, nextoff, size, toff, count, npages;
  121         struct uio uio;
  122         struct iovec iov;
  123         vm_offset_t kva;
  124         struct buf *bp;
  125         struct vnode *vp;
  126         struct thread *td;
  127         struct ucred *cred;
  128         struct nfsmount *nmp;
  129         vm_object_t object;
  130         vm_page_t *pages;
  131         struct nfsnode *np;
  132 
  133         vp = ap->a_vp;
  134         np = VTONFS(vp);
  135         td = curthread;
  136         cred = curthread->td_ucred;
  137         nmp = VFSTONFS(vp->v_mount);
  138         pages = ap->a_m;
  139         npages = ap->a_count;
  140 
  141         if ((object = vp->v_object) == NULL) {
  142                 printf("ncl_getpages: called with non-merged cache vnode\n");
  143                 return (VM_PAGER_ERROR);
  144         }
  145 
  146         if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
  147                 NFSLOCKNODE(np);
  148                 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
  149                         NFSUNLOCKNODE(np);
  150                         printf("ncl_getpages: called on non-cacheable vnode\n");
  151                         return (VM_PAGER_ERROR);
  152                 } else
  153                         NFSUNLOCKNODE(np);
  154         }
  155 
  156         mtx_lock(&nmp->nm_mtx);
  157         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  158             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  159                 mtx_unlock(&nmp->nm_mtx);
  160                 /* We'll never get here for v4, because we always have fsinfo */
  161                 (void)ncl_fsinfo(nmp, vp, cred, td);
  162         } else
  163                 mtx_unlock(&nmp->nm_mtx);
  164 
  165         if (use_buf_pager)
  166                 return (vfs_bio_getpages(vp, pages, npages, ap->a_rbehind,
  167                     ap->a_rahead, ncl_gbp_getblkno, ncl_gbp_getblksz));
  168 
  169         /*
  170          * If the requested page is partially valid, just return it and
  171          * allow the pager to zero-out the blanks.  Partially valid pages
  172          * can only occur at the file EOF.
  173          *
  174          * XXXGL: is that true for NFS, where short read can occur???
  175          */
  176         VM_OBJECT_WLOCK(object);
  177         if (!vm_page_none_valid(pages[npages - 1]) && --npages == 0)
  178                 goto out;
  179         VM_OBJECT_WUNLOCK(object);
  180 
  181         /*
  182          * We use only the kva address for the buffer, but this is extremely
  183          * convenient and fast.
  184          */
  185         bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK);
  186 
  187         kva = (vm_offset_t) bp->b_data;
  188         pmap_qenter(kva, pages, npages);
  189         VM_CNT_INC(v_vnodein);
  190         VM_CNT_ADD(v_vnodepgsin, npages);
  191 
  192         count = npages << PAGE_SHIFT;
  193         iov.iov_base = (caddr_t) kva;
  194         iov.iov_len = count;
  195         uio.uio_iov = &iov;
  196         uio.uio_iovcnt = 1;
  197         uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
  198         uio.uio_resid = count;
  199         uio.uio_segflg = UIO_SYSSPACE;
  200         uio.uio_rw = UIO_READ;
  201         uio.uio_td = td;
  202 
  203         error = ncl_readrpc(vp, &uio, cred);
  204         pmap_qremove(kva, npages);
  205 
  206         uma_zfree(ncl_pbuf_zone, bp);
  207 
  208         if (error && (uio.uio_resid == count)) {
  209                 printf("ncl_getpages: error %d\n", error);
  210                 return (VM_PAGER_ERROR);
  211         }
  212 
  213         /*
  214          * Calculate the number of bytes read and validate only that number
  215          * of bytes.  Note that due to pending writes, size may be 0.  This
  216          * does not mean that the remaining data is invalid!
  217          */
  218 
  219         size = count - uio.uio_resid;
  220         VM_OBJECT_WLOCK(object);
  221         for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
  222                 vm_page_t m;
  223                 nextoff = toff + PAGE_SIZE;
  224                 m = pages[i];
  225 
  226                 if (nextoff <= size) {
  227                         /*
  228                          * Read operation filled an entire page
  229                          */
  230                         vm_page_valid(m);
  231                         KASSERT(m->dirty == 0,
  232                             ("nfs_getpages: page %p is dirty", m));
  233                 } else if (size > toff) {
  234                         /*
  235                          * Read operation filled a partial page.
  236                          */
  237                         vm_page_invalid(m);
  238                         vm_page_set_valid_range(m, 0, size - toff);
  239                         KASSERT(m->dirty == 0,
  240                             ("nfs_getpages: page %p is dirty", m));
  241                 } else {
  242                         /*
  243                          * Read operation was short.  If no error
  244                          * occurred we may have hit a zero-fill
  245                          * section.  We leave valid set to 0, and page
  246                          * is freed by vm_page_readahead_finish() if
  247                          * its index is not equal to requested, or
  248                          * page is zeroed and set valid by
  249                          * vm_pager_get_pages() for requested page.
  250                          */
  251                         ;
  252                 }
  253         }
  254 out:
  255         VM_OBJECT_WUNLOCK(object);
  256         if (ap->a_rbehind)
  257                 *ap->a_rbehind = 0;
  258         if (ap->a_rahead)
  259                 *ap->a_rahead = 0;
  260         return (VM_PAGER_OK);
  261 }
  262 
  263 /*
  264  * Vnode op for VM putpages.
  265  */
  266 int
  267 ncl_putpages(struct vop_putpages_args *ap)
  268 {
  269         struct uio uio;
  270         struct iovec iov;
  271         int i, error, npages, count;
  272         off_t offset;
  273         int *rtvals;
  274         struct vnode *vp;
  275         struct thread *td;
  276         struct ucred *cred;
  277         struct nfsmount *nmp;
  278         struct nfsnode *np;
  279         vm_page_t *pages;
  280 
  281         vp = ap->a_vp;
  282         np = VTONFS(vp);
  283         td = curthread;                         /* XXX */
  284         /* Set the cred to n_writecred for the write rpcs. */
  285         if (np->n_writecred != NULL)
  286                 cred = crhold(np->n_writecred);
  287         else
  288                 cred = crhold(curthread->td_ucred);     /* XXX */
  289         nmp = VFSTONFS(vp->v_mount);
  290         pages = ap->a_m;
  291         count = ap->a_count;
  292         rtvals = ap->a_rtvals;
  293         npages = btoc(count);
  294         offset = IDX_TO_OFF(pages[0]->pindex);
  295 
  296         mtx_lock(&nmp->nm_mtx);
  297         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  298             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  299                 mtx_unlock(&nmp->nm_mtx);
  300                 (void)ncl_fsinfo(nmp, vp, cred, td);
  301         } else
  302                 mtx_unlock(&nmp->nm_mtx);
  303 
  304         NFSLOCKNODE(np);
  305         if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
  306             (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
  307                 NFSUNLOCKNODE(np);
  308                 printf("ncl_putpages: called on noncache-able vnode\n");
  309                 NFSLOCKNODE(np);
  310         }
  311         /*
  312          * When putting pages, do not extend file past EOF.
  313          */
  314         if (offset + count > np->n_size) {
  315                 count = np->n_size - offset;
  316                 if (count < 0)
  317                         count = 0;
  318         }
  319         NFSUNLOCKNODE(np);
  320 
  321         for (i = 0; i < npages; i++)
  322                 rtvals[i] = VM_PAGER_ERROR;
  323 
  324         VM_CNT_INC(v_vnodeout);
  325         VM_CNT_ADD(v_vnodepgsout, count);
  326 
  327         iov.iov_base = unmapped_buf;
  328         iov.iov_len = count;
  329         uio.uio_iov = &iov;
  330         uio.uio_iovcnt = 1;
  331         uio.uio_offset = offset;
  332         uio.uio_resid = count;
  333         uio.uio_segflg = UIO_NOCOPY;
  334         uio.uio_rw = UIO_WRITE;
  335         uio.uio_td = td;
  336 
  337         error = VOP_WRITE(vp, &uio, vnode_pager_putpages_ioflags(ap->a_sync),
  338             cred);
  339         crfree(cred);
  340 
  341         if (error == 0 || !nfs_keep_dirty_on_error) {
  342                 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid,
  343                     np->n_size - offset, npages * PAGE_SIZE);
  344         }
  345         return (rtvals[0]);
  346 }
  347 
  348 /*
  349  * For nfs, cache consistency can only be maintained approximately.
  350  * Although RFC1094 does not specify the criteria, the following is
  351  * believed to be compatible with the reference port.
  352  * For nfs:
  353  * If the file's modify time on the server has changed since the
  354  * last read rpc or you have written to the file,
  355  * you may have lost data cache consistency with the
  356  * server, so flush all of the file's data out of the cache.
  357  * Then force a getattr rpc to ensure that you have up to date
  358  * attributes.
  359  * NB: This implies that cache data can be read when up to
  360  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
  361  * attributes this could be forced by setting n_attrstamp to 0 before
  362  * the VOP_GETATTR() call.
  363  */
  364 static inline int
  365 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
  366 {
  367         int error = 0;
  368         struct vattr vattr;
  369         struct nfsnode *np = VTONFS(vp);
  370         bool old_lock;
  371 
  372         /*
  373          * Ensure the exclusove access to the node before checking
  374          * whether the cache is consistent.
  375          */
  376         old_lock = ncl_excl_start(vp);
  377         NFSLOCKNODE(np);
  378         if (np->n_flag & NMODIFIED) {
  379                 NFSUNLOCKNODE(np);
  380                 if (vp->v_type != VREG) {
  381                         if (vp->v_type != VDIR)
  382                                 panic("nfs: bioread, not dir");
  383                         ncl_invaldir(vp);
  384                         error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1);
  385                         if (error != 0)
  386                                 goto out;
  387                 }
  388                 np->n_attrstamp = 0;
  389                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  390                 error = VOP_GETATTR(vp, &vattr, cred);
  391                 if (error)
  392                         goto out;
  393                 NFSLOCKNODE(np);
  394                 np->n_mtime = vattr.va_mtime;
  395                 NFSUNLOCKNODE(np);
  396         } else {
  397                 NFSUNLOCKNODE(np);
  398                 error = VOP_GETATTR(vp, &vattr, cred);
  399                 if (error)
  400                         goto out;
  401                 NFSLOCKNODE(np);
  402                 if ((np->n_flag & NSIZECHANGED)
  403                     || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
  404                         NFSUNLOCKNODE(np);
  405                         if (vp->v_type == VDIR)
  406                                 ncl_invaldir(vp);
  407                         error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1);
  408                         if (error != 0)
  409                                 goto out;
  410                         NFSLOCKNODE(np);
  411                         np->n_mtime = vattr.va_mtime;
  412                         np->n_flag &= ~NSIZECHANGED;
  413                 }
  414                 NFSUNLOCKNODE(np);
  415         }
  416 out:
  417         ncl_excl_finish(vp, old_lock);
  418         return (error);
  419 }
  420 
  421 /*
  422  * Vnode op for read using bio
  423  */
  424 int
  425 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
  426 {
  427         struct nfsnode *np = VTONFS(vp);
  428         struct buf *bp, *rabp;
  429         struct thread *td;
  430         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  431         daddr_t lbn, rabn;
  432         int biosize, bcount, error, i, n, nra, on, save2, seqcount;
  433         off_t tmp_off;
  434 
  435         KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
  436         if (uio->uio_resid == 0)
  437                 return (0);
  438         if (uio->uio_offset < 0)        /* XXX VDIR cookies can be negative */
  439                 return (EINVAL);
  440         td = uio->uio_td;
  441 
  442         mtx_lock(&nmp->nm_mtx);
  443         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  444             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  445                 mtx_unlock(&nmp->nm_mtx);
  446                 (void)ncl_fsinfo(nmp, vp, cred, td);
  447                 mtx_lock(&nmp->nm_mtx);
  448         }
  449         if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
  450                 (void) newnfs_iosize(nmp);
  451 
  452         tmp_off = uio->uio_offset + uio->uio_resid;
  453         if (vp->v_type != VDIR &&
  454             (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
  455                 mtx_unlock(&nmp->nm_mtx);
  456                 return (EFBIG);
  457         }
  458         mtx_unlock(&nmp->nm_mtx);
  459 
  460         if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
  461                 /* No caching/ no readaheads. Just read data into the user buffer */
  462                 return ncl_readrpc(vp, uio, cred);
  463 
  464         n = 0;
  465         on = 0;
  466         biosize = vp->v_bufobj.bo_bsize;
  467         seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
  468 
  469         error = nfs_bioread_check_cons(vp, td, cred);
  470         if (error)
  471                 return error;
  472 
  473         save2 = curthread_pflags2_set(TDP2_SBPAGES);
  474         do {
  475             u_quad_t nsize;
  476 
  477             NFSLOCKNODE(np);
  478             nsize = np->n_size;
  479             NFSUNLOCKNODE(np);
  480 
  481             switch (vp->v_type) {
  482             case VREG:
  483                 NFSINCRGLOBAL(nfsstatsv1.biocache_reads);
  484                 lbn = uio->uio_offset / biosize;
  485                 on = uio->uio_offset - (lbn * biosize);
  486 
  487                 /*
  488                  * Start the read ahead(s), as required.
  489                  */
  490                 if (nmp->nm_readahead > 0) {
  491                     for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
  492                         (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
  493                         rabn = lbn + 1 + nra;
  494                         if (incore(&vp->v_bufobj, rabn) == NULL) {
  495                             rabp = nfs_getcacheblk(vp, rabn, biosize, td);
  496                             if (!rabp) {
  497                                 error = newnfs_sigintr(nmp, td);
  498                                 if (error == 0)
  499                                         error = EINTR;
  500                                 goto out;
  501                             }
  502                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  503                                 rabp->b_flags |= B_ASYNC;
  504                                 rabp->b_iocmd = BIO_READ;
  505                                 vfs_busy_pages(rabp, 0);
  506                                 if (ncl_asyncio(nmp, rabp, cred, td)) {
  507                                     rabp->b_flags |= B_INVAL;
  508                                     rabp->b_ioflags |= BIO_ERROR;
  509                                     vfs_unbusy_pages(rabp);
  510                                     brelse(rabp);
  511                                     break;
  512                                 }
  513                             } else {
  514                                 brelse(rabp);
  515                             }
  516                         }
  517                     }
  518                 }
  519 
  520                 /* Note that bcount is *not* DEV_BSIZE aligned. */
  521                 bcount = biosize;
  522                 if ((off_t)lbn * biosize >= nsize) {
  523                         bcount = 0;
  524                 } else if ((off_t)(lbn + 1) * biosize > nsize) {
  525                         bcount = nsize - (off_t)lbn * biosize;
  526                 }
  527                 bp = nfs_getcacheblk(vp, lbn, bcount, td);
  528 
  529                 if (!bp) {
  530                         error = newnfs_sigintr(nmp, td);
  531                         if (error == 0)
  532                                 error = EINTR;
  533                         goto out;
  534                 }
  535 
  536                 /*
  537                  * If B_CACHE is not set, we must issue the read.  If this
  538                  * fails, we return an error.
  539                  */
  540 
  541                 if ((bp->b_flags & B_CACHE) == 0) {
  542                     bp->b_iocmd = BIO_READ;
  543                     vfs_busy_pages(bp, 0);
  544                     error = ncl_doio(vp, bp, cred, td, 0);
  545                     if (error) {
  546                         brelse(bp);
  547                         goto out;
  548                     }
  549                 }
  550 
  551                 /*
  552                  * on is the offset into the current bp.  Figure out how many
  553                  * bytes we can copy out of the bp.  Note that bcount is
  554                  * NOT DEV_BSIZE aligned.
  555                  *
  556                  * Then figure out how many bytes we can copy into the uio.
  557                  */
  558 
  559                 n = 0;
  560                 if (on < bcount)
  561                         n = MIN((unsigned)(bcount - on), uio->uio_resid);
  562                 break;
  563             case VLNK:
  564                 NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks);
  565                 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
  566                 if (!bp) {
  567                         error = newnfs_sigintr(nmp, td);
  568                         if (error == 0)
  569                                 error = EINTR;
  570                         goto out;
  571                 }
  572                 if ((bp->b_flags & B_CACHE) == 0) {
  573                     bp->b_iocmd = BIO_READ;
  574                     vfs_busy_pages(bp, 0);
  575                     error = ncl_doio(vp, bp, cred, td, 0);
  576                     if (error) {
  577                         bp->b_ioflags |= BIO_ERROR;
  578                         brelse(bp);
  579                         goto out;
  580                     }
  581                 }
  582                 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
  583                 on = 0;
  584                 break;
  585             case VDIR:
  586                 NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs);
  587                 if (np->n_direofoffset
  588                     && uio->uio_offset >= np->n_direofoffset) {
  589                         error = 0;
  590                         goto out;
  591                 }
  592                 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
  593                 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
  594                 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
  595                 if (!bp) {
  596                         error = newnfs_sigintr(nmp, td);
  597                         if (error == 0)
  598                                 error = EINTR;
  599                         goto out;
  600                 }
  601                 if ((bp->b_flags & B_CACHE) == 0) {
  602                     bp->b_iocmd = BIO_READ;
  603                     vfs_busy_pages(bp, 0);
  604                     error = ncl_doio(vp, bp, cred, td, 0);
  605                     if (error) {
  606                             brelse(bp);
  607                     }
  608                     while (error == NFSERR_BAD_COOKIE) {
  609                         ncl_invaldir(vp);
  610                         error = ncl_vinvalbuf(vp, 0, td, 1);
  611 
  612                         /*
  613                          * Yuck! The directory has been modified on the
  614                          * server. The only way to get the block is by
  615                          * reading from the beginning to get all the
  616                          * offset cookies.
  617                          *
  618                          * Leave the last bp intact unless there is an error.
  619                          * Loop back up to the while if the error is another
  620                          * NFSERR_BAD_COOKIE (double yuch!).
  621                          */
  622                         for (i = 0; i <= lbn && !error; i++) {
  623                             if (np->n_direofoffset
  624                                 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) {
  625                                     error = 0;
  626                                     goto out;
  627                             }
  628                             bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
  629                             if (!bp) {
  630                                 error = newnfs_sigintr(nmp, td);
  631                                 if (error == 0)
  632                                         error = EINTR;
  633                                 goto out;
  634                             }
  635                             if ((bp->b_flags & B_CACHE) == 0) {
  636                                     bp->b_iocmd = BIO_READ;
  637                                     vfs_busy_pages(bp, 0);
  638                                     error = ncl_doio(vp, bp, cred, td, 0);
  639                                     /*
  640                                      * no error + B_INVAL == directory EOF,
  641                                      * use the block.
  642                                      */
  643                                     if (error == 0 && (bp->b_flags & B_INVAL))
  644                                             break;
  645                             }
  646                             /*
  647                              * An error will throw away the block and the
  648                              * for loop will break out.  If no error and this
  649                              * is not the block we want, we throw away the
  650                              * block and go for the next one via the for loop.
  651                              */
  652                             if (error || i < lbn)
  653                                     brelse(bp);
  654                         }
  655                     }
  656                     /*
  657                      * The above while is repeated if we hit another cookie
  658                      * error.  If we hit an error and it wasn't a cookie error,
  659                      * we give up.
  660                      */
  661                     if (error)
  662                             goto out;
  663                 }
  664 
  665                 /*
  666                  * If not eof and read aheads are enabled, start one.
  667                  * (You need the current block first, so that you have the
  668                  *  directory offset cookie of the next block.)
  669                  */
  670                 if (nmp->nm_readahead > 0 &&
  671                     (bp->b_flags & B_INVAL) == 0 &&
  672                     (np->n_direofoffset == 0 ||
  673                     (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
  674                     incore(&vp->v_bufobj, lbn + 1) == NULL) {
  675                         rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
  676                         if (rabp) {
  677                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  678                                 rabp->b_flags |= B_ASYNC;
  679                                 rabp->b_iocmd = BIO_READ;
  680                                 vfs_busy_pages(rabp, 0);
  681                                 if (ncl_asyncio(nmp, rabp, cred, td)) {
  682                                     rabp->b_flags |= B_INVAL;
  683                                     rabp->b_ioflags |= BIO_ERROR;
  684                                     vfs_unbusy_pages(rabp);
  685                                     brelse(rabp);
  686                                 }
  687                             } else {
  688                                 brelse(rabp);
  689                             }
  690                         }
  691                 }
  692                 /*
  693                  * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
  694                  * chopped for the EOF condition, we cannot tell how large
  695                  * NFS directories are going to be until we hit EOF.  So
  696                  * an NFS directory buffer is *not* chopped to its EOF.  Now,
  697                  * it just so happens that b_resid will effectively chop it
  698                  * to EOF.  *BUT* this information is lost if the buffer goes
  699                  * away and is reconstituted into a B_CACHE state ( due to
  700                  * being VMIO ) later.  So we keep track of the directory eof
  701                  * in np->n_direofoffset and chop it off as an extra step
  702                  * right here.
  703                  */
  704                 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
  705                 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
  706                         n = np->n_direofoffset - uio->uio_offset;
  707                 break;
  708             default:
  709                 printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
  710                 bp = NULL;
  711                 break;
  712             }
  713 
  714             if (n > 0) {
  715                     error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
  716             }
  717             if (vp->v_type == VLNK)
  718                 n = 0;
  719             if (bp != NULL)
  720                 brelse(bp);
  721         } while (error == 0 && uio->uio_resid > 0 && n > 0);
  722 out:
  723         curthread_pflags2_restore(save2);
  724         if ((curthread->td_pflags2 & TDP2_SBPAGES) == 0) {
  725                 NFSLOCKNODE(np);
  726                 ncl_pager_setsize(vp, NULL);
  727         }
  728         return (error);
  729 }
  730 
  731 /*
  732  * The NFS write path cannot handle iovecs with len > 1. So we need to
  733  * break up iovecs accordingly (restricting them to wsize).
  734  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
  735  * For the ASYNC case, 2 copies are needed. The first a copy from the
  736  * user buffer to a staging buffer and then a second copy from the staging
  737  * buffer to mbufs. This can be optimized by copying from the user buffer
  738  * directly into mbufs and passing the chain down, but that requires a
  739  * fair amount of re-working of the relevant codepaths (and can be done
  740  * later).
  741  */
  742 static int
  743 nfs_directio_write(vp, uiop, cred, ioflag)
  744         struct vnode *vp;
  745         struct uio *uiop;
  746         struct ucred *cred;
  747         int ioflag;
  748 {
  749         int error;
  750         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  751         struct thread *td = uiop->uio_td;
  752         int size;
  753         int wsize;
  754 
  755         mtx_lock(&nmp->nm_mtx);
  756         wsize = nmp->nm_wsize;
  757         mtx_unlock(&nmp->nm_mtx);
  758         if (ioflag & IO_SYNC) {
  759                 int iomode, must_commit;
  760                 struct uio uio;
  761                 struct iovec iov;
  762 do_sync:
  763                 while (uiop->uio_resid > 0) {
  764                         size = MIN(uiop->uio_resid, wsize);
  765                         size = MIN(uiop->uio_iov->iov_len, size);
  766                         iov.iov_base = uiop->uio_iov->iov_base;
  767                         iov.iov_len = size;
  768                         uio.uio_iov = &iov;
  769                         uio.uio_iovcnt = 1;
  770                         uio.uio_offset = uiop->uio_offset;
  771                         uio.uio_resid = size;
  772                         uio.uio_segflg = UIO_USERSPACE;
  773                         uio.uio_rw = UIO_WRITE;
  774                         uio.uio_td = td;
  775                         iomode = NFSWRITE_FILESYNC;
  776                         error = ncl_writerpc(vp, &uio, cred, &iomode,
  777                             &must_commit, 0);
  778                         KASSERT((must_commit == 0),
  779                                 ("ncl_directio_write: Did not commit write"));
  780                         if (error)
  781                                 return (error);
  782                         uiop->uio_offset += size;
  783                         uiop->uio_resid -= size;
  784                         if (uiop->uio_iov->iov_len <= size) {
  785                                 uiop->uio_iovcnt--;
  786                                 uiop->uio_iov++;
  787                         } else {
  788                                 uiop->uio_iov->iov_base =
  789                                         (char *)uiop->uio_iov->iov_base + size;
  790                                 uiop->uio_iov->iov_len -= size;
  791                         }
  792                 }
  793         } else {
  794                 struct uio *t_uio;
  795                 struct iovec *t_iov;
  796                 struct buf *bp;
  797 
  798                 /*
  799                  * Break up the write into blocksize chunks and hand these
  800                  * over to nfsiod's for write back.
  801                  * Unfortunately, this incurs a copy of the data. Since
  802                  * the user could modify the buffer before the write is
  803                  * initiated.
  804                  *
  805                  * The obvious optimization here is that one of the 2 copies
  806                  * in the async write path can be eliminated by copying the
  807                  * data here directly into mbufs and passing the mbuf chain
  808                  * down. But that will require a fair amount of re-working
  809                  * of the code and can be done if there's enough interest
  810                  * in NFS directio access.
  811                  */
  812                 while (uiop->uio_resid > 0) {
  813                         size = MIN(uiop->uio_resid, wsize);
  814                         size = MIN(uiop->uio_iov->iov_len, size);
  815                         bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK);
  816                         t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
  817                         t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
  818                         t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
  819                         t_iov->iov_len = size;
  820                         t_uio->uio_iov = t_iov;
  821                         t_uio->uio_iovcnt = 1;
  822                         t_uio->uio_offset = uiop->uio_offset;
  823                         t_uio->uio_resid = size;
  824                         t_uio->uio_segflg = UIO_SYSSPACE;
  825                         t_uio->uio_rw = UIO_WRITE;
  826                         t_uio->uio_td = td;
  827                         KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
  828                             uiop->uio_segflg == UIO_SYSSPACE,
  829                             ("nfs_directio_write: Bad uio_segflg"));
  830                         if (uiop->uio_segflg == UIO_USERSPACE) {
  831                                 error = copyin(uiop->uio_iov->iov_base,
  832                                     t_iov->iov_base, size);
  833                                 if (error != 0)
  834                                         goto err_free;
  835                         } else
  836                                 /*
  837                                  * UIO_SYSSPACE may never happen, but handle
  838                                  * it just in case it does.
  839                                  */
  840                                 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
  841                                     size);
  842                         bp->b_flags |= B_DIRECT;
  843                         bp->b_iocmd = BIO_WRITE;
  844                         if (cred != NOCRED) {
  845                                 crhold(cred);
  846                                 bp->b_wcred = cred;
  847                         } else
  848                                 bp->b_wcred = NOCRED;
  849                         bp->b_caller1 = (void *)t_uio;
  850                         bp->b_vp = vp;
  851                         error = ncl_asyncio(nmp, bp, NOCRED, td);
  852 err_free:
  853                         if (error) {
  854                                 free(t_iov->iov_base, M_NFSDIRECTIO);
  855                                 free(t_iov, M_NFSDIRECTIO);
  856                                 free(t_uio, M_NFSDIRECTIO);
  857                                 bp->b_vp = NULL;
  858                                 uma_zfree(ncl_pbuf_zone, bp);
  859                                 if (error == EINTR)
  860                                         return (error);
  861                                 goto do_sync;
  862                         }
  863                         uiop->uio_offset += size;
  864                         uiop->uio_resid -= size;
  865                         if (uiop->uio_iov->iov_len <= size) {
  866                                 uiop->uio_iovcnt--;
  867                                 uiop->uio_iov++;
  868                         } else {
  869                                 uiop->uio_iov->iov_base =
  870                                         (char *)uiop->uio_iov->iov_base + size;
  871                                 uiop->uio_iov->iov_len -= size;
  872                         }
  873                 }
  874         }
  875         return (0);
  876 }
  877 
  878 /*
  879  * Vnode op for write using bio
  880  */
  881 int
  882 ncl_write(struct vop_write_args *ap)
  883 {
  884         int biosize;
  885         struct uio *uio = ap->a_uio;
  886         struct thread *td = uio->uio_td;
  887         struct vnode *vp = ap->a_vp;
  888         struct nfsnode *np = VTONFS(vp);
  889         struct ucred *cred = ap->a_cred;
  890         int ioflag = ap->a_ioflag;
  891         struct buf *bp;
  892         struct vattr vattr;
  893         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  894         daddr_t lbn;
  895         int bcount, noncontig_write, obcount;
  896         int bp_cached, n, on, error = 0, error1, wouldcommit;
  897         size_t orig_resid, local_resid;
  898         off_t orig_size, tmp_off;
  899 
  900         KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
  901         KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
  902             ("ncl_write proc"));
  903         if (vp->v_type != VREG)
  904                 return (EIO);
  905         NFSLOCKNODE(np);
  906         if (np->n_flag & NWRITEERR) {
  907                 np->n_flag &= ~NWRITEERR;
  908                 NFSUNLOCKNODE(np);
  909                 return (np->n_error);
  910         } else
  911                 NFSUNLOCKNODE(np);
  912         mtx_lock(&nmp->nm_mtx);
  913         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  914             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  915                 mtx_unlock(&nmp->nm_mtx);
  916                 (void)ncl_fsinfo(nmp, vp, cred, td);
  917                 mtx_lock(&nmp->nm_mtx);
  918         }
  919         if (nmp->nm_wsize == 0)
  920                 (void) newnfs_iosize(nmp);
  921         mtx_unlock(&nmp->nm_mtx);
  922 
  923         /*
  924          * Synchronously flush pending buffers if we are in synchronous
  925          * mode or if we are appending.
  926          */
  927         if (ioflag & (IO_APPEND | IO_SYNC)) {
  928                 NFSLOCKNODE(np);
  929                 if (np->n_flag & NMODIFIED) {
  930                         NFSUNLOCKNODE(np);
  931 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
  932                         /*
  933                          * Require non-blocking, synchronous writes to
  934                          * dirty files to inform the program it needs
  935                          * to fsync(2) explicitly.
  936                          */
  937                         if (ioflag & IO_NDELAY)
  938                                 return (EAGAIN);
  939 #endif
  940                         np->n_attrstamp = 0;
  941                         KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  942                         error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag &
  943                             IO_VMIO) != 0 ? V_VMIO : 0), td, 1);
  944                         if (error != 0)
  945                                 return (error);
  946                 } else
  947                         NFSUNLOCKNODE(np);
  948         }
  949 
  950         orig_resid = uio->uio_resid;
  951         NFSLOCKNODE(np);
  952         orig_size = np->n_size;
  953         NFSUNLOCKNODE(np);
  954 
  955         /*
  956          * If IO_APPEND then load uio_offset.  We restart here if we cannot
  957          * get the append lock.
  958          */
  959         if (ioflag & IO_APPEND) {
  960                 np->n_attrstamp = 0;
  961                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  962                 error = VOP_GETATTR(vp, &vattr, cred);
  963                 if (error)
  964                         return (error);
  965                 NFSLOCKNODE(np);
  966                 uio->uio_offset = np->n_size;
  967                 NFSUNLOCKNODE(np);
  968         }
  969 
  970         if (uio->uio_offset < 0)
  971                 return (EINVAL);
  972         tmp_off = uio->uio_offset + uio->uio_resid;
  973         if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
  974                 return (EFBIG);
  975         if (uio->uio_resid == 0)
  976                 return (0);
  977 
  978         if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
  979                 return nfs_directio_write(vp, uio, cred, ioflag);
  980 
  981         /*
  982          * Maybe this should be above the vnode op call, but so long as
  983          * file servers have no limits, i don't think it matters
  984          */
  985         if (vn_rlimit_fsize(vp, uio, td))
  986                 return (EFBIG);
  987 
  988         biosize = vp->v_bufobj.bo_bsize;
  989         /*
  990          * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
  991          * would exceed the local maximum per-file write commit size when
  992          * combined with those, we must decide whether to flush,
  993          * go synchronous, or return error.  We don't bother checking
  994          * IO_UNIT -- we just make all writes atomic anyway, as there's
  995          * no point optimizing for something that really won't ever happen.
  996          */
  997         wouldcommit = 0;
  998         if (!(ioflag & IO_SYNC)) {
  999                 int nflag;
 1000 
 1001                 NFSLOCKNODE(np);
 1002                 nflag = np->n_flag;
 1003                 NFSUNLOCKNODE(np);
 1004                 if (nflag & NMODIFIED) {
 1005                         BO_LOCK(&vp->v_bufobj);
 1006                         if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
 1007                                 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
 1008                                     b_bobufs) {
 1009                                         if (bp->b_flags & B_NEEDCOMMIT)
 1010                                                 wouldcommit += bp->b_bcount;
 1011                                 }
 1012                         }
 1013                         BO_UNLOCK(&vp->v_bufobj);
 1014                 }
 1015         }
 1016 
 1017         do {
 1018                 if (!(ioflag & IO_SYNC)) {
 1019                         wouldcommit += biosize;
 1020                         if (wouldcommit > nmp->nm_wcommitsize) {
 1021                                 np->n_attrstamp = 0;
 1022                                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
 1023                                 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag &
 1024                                     IO_VMIO) != 0 ? V_VMIO : 0), td, 1);
 1025                                 if (error != 0)
 1026                                         return (error);
 1027                                 wouldcommit = biosize;
 1028                         }
 1029                 }
 1030 
 1031                 NFSINCRGLOBAL(nfsstatsv1.biocache_writes);
 1032                 lbn = uio->uio_offset / biosize;
 1033                 on = uio->uio_offset - (lbn * biosize);
 1034                 n = MIN((unsigned)(biosize - on), uio->uio_resid);
 1035 again:
 1036                 /*
 1037                  * Handle direct append and file extension cases, calculate
 1038                  * unaligned buffer size.
 1039                  */
 1040                 NFSLOCKNODE(np);
 1041                 if ((np->n_flag & NHASBEENLOCKED) == 0 &&
 1042                     (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
 1043                         noncontig_write = 1;
 1044                 else
 1045                         noncontig_write = 0;
 1046                 if ((uio->uio_offset == np->n_size ||
 1047                     (noncontig_write != 0 &&
 1048                     lbn == (np->n_size / biosize) &&
 1049                     uio->uio_offset + n > np->n_size)) && n) {
 1050                         NFSUNLOCKNODE(np);
 1051                         /*
 1052                          * Get the buffer (in its pre-append state to maintain
 1053                          * B_CACHE if it was previously set).  Resize the
 1054                          * nfsnode after we have locked the buffer to prevent
 1055                          * readers from reading garbage.
 1056                          */
 1057                         obcount = np->n_size - (lbn * biosize);
 1058                         bp = nfs_getcacheblk(vp, lbn, obcount, td);
 1059 
 1060                         if (bp != NULL) {
 1061                                 long save;
 1062 
 1063                                 NFSLOCKNODE(np);
 1064                                 np->n_size = uio->uio_offset + n;
 1065                                 np->n_flag |= NMODIFIED;
 1066                                 vnode_pager_setsize(vp, np->n_size);
 1067                                 NFSUNLOCKNODE(np);
 1068 
 1069                                 save = bp->b_flags & B_CACHE;
 1070                                 bcount = on + n;
 1071                                 allocbuf(bp, bcount);
 1072                                 bp->b_flags |= save;
 1073                                 if (noncontig_write != 0 && on > obcount)
 1074                                         vfs_bio_bzero_buf(bp, obcount, on -
 1075                                             obcount);
 1076                         }
 1077                 } else {
 1078                         /*
 1079                          * Obtain the locked cache block first, and then
 1080                          * adjust the file's size as appropriate.
 1081                          */
 1082                         bcount = on + n;
 1083                         if ((off_t)lbn * biosize + bcount < np->n_size) {
 1084                                 if ((off_t)(lbn + 1) * biosize < np->n_size)
 1085                                         bcount = biosize;
 1086                                 else
 1087                                         bcount = np->n_size - (off_t)lbn * biosize;
 1088                         }
 1089                         NFSUNLOCKNODE(np);
 1090                         bp = nfs_getcacheblk(vp, lbn, bcount, td);
 1091                         NFSLOCKNODE(np);
 1092                         if (uio->uio_offset + n > np->n_size) {
 1093                                 np->n_size = uio->uio_offset + n;
 1094                                 np->n_flag |= NMODIFIED;
 1095                                 vnode_pager_setsize(vp, np->n_size);
 1096                         }
 1097                         NFSUNLOCKNODE(np);
 1098                 }
 1099 
 1100                 if (!bp) {
 1101                         error = newnfs_sigintr(nmp, td);
 1102                         if (!error)
 1103                                 error = EINTR;
 1104                         break;
 1105                 }
 1106 
 1107                 /*
 1108                  * Issue a READ if B_CACHE is not set.  In special-append
 1109                  * mode, B_CACHE is based on the buffer prior to the write
 1110                  * op and is typically set, avoiding the read.  If a read
 1111                  * is required in special append mode, the server will
 1112                  * probably send us a short-read since we extended the file
 1113                  * on our end, resulting in b_resid == 0 and, thusly,
 1114                  * B_CACHE getting set.
 1115                  *
 1116                  * We can also avoid issuing the read if the write covers
 1117                  * the entire buffer.  We have to make sure the buffer state
 1118                  * is reasonable in this case since we will not be initiating
 1119                  * I/O.  See the comments in kern/vfs_bio.c's getblk() for
 1120                  * more information.
 1121                  *
 1122                  * B_CACHE may also be set due to the buffer being cached
 1123                  * normally.
 1124                  */
 1125 
 1126                 bp_cached = 1;
 1127                 if (on == 0 && n == bcount) {
 1128                         if ((bp->b_flags & B_CACHE) == 0)
 1129                                 bp_cached = 0;
 1130                         bp->b_flags |= B_CACHE;
 1131                         bp->b_flags &= ~B_INVAL;
 1132                         bp->b_ioflags &= ~BIO_ERROR;
 1133                 }
 1134 
 1135                 if ((bp->b_flags & B_CACHE) == 0) {
 1136                         bp->b_iocmd = BIO_READ;
 1137                         vfs_busy_pages(bp, 0);
 1138                         error = ncl_doio(vp, bp, cred, td, 0);
 1139                         if (error) {
 1140                                 brelse(bp);
 1141                                 break;
 1142                         }
 1143                 }
 1144                 if (bp->b_wcred == NOCRED)
 1145                         bp->b_wcred = crhold(cred);
 1146                 NFSLOCKNODE(np);
 1147                 np->n_flag |= NMODIFIED;
 1148                 NFSUNLOCKNODE(np);
 1149 
 1150                 /*
 1151                  * If dirtyend exceeds file size, chop it down.  This should
 1152                  * not normally occur but there is an append race where it
 1153                  * might occur XXX, so we log it.
 1154                  *
 1155                  * If the chopping creates a reverse-indexed or degenerate
 1156                  * situation with dirtyoff/end, we 0 both of them.
 1157                  */
 1158 
 1159                 if (bp->b_dirtyend > bcount) {
 1160                         printf("NFS append race @%lx:%d\n",
 1161                             (long)bp->b_blkno * DEV_BSIZE,
 1162                             bp->b_dirtyend - bcount);
 1163                         bp->b_dirtyend = bcount;
 1164                 }
 1165 
 1166                 if (bp->b_dirtyoff >= bp->b_dirtyend)
 1167                         bp->b_dirtyoff = bp->b_dirtyend = 0;
 1168 
 1169                 /*
 1170                  * If the new write will leave a contiguous dirty
 1171                  * area, just update the b_dirtyoff and b_dirtyend,
 1172                  * otherwise force a write rpc of the old dirty area.
 1173                  *
 1174                  * If there has been a file lock applied to this file
 1175                  * or vfs.nfs.old_noncontig_writing is set, do the following:
 1176                  * While it is possible to merge discontiguous writes due to
 1177                  * our having a B_CACHE buffer ( and thus valid read data
 1178                  * for the hole), we don't because it could lead to
 1179                  * significant cache coherency problems with multiple clients,
 1180                  * especially if locking is implemented later on.
 1181                  *
 1182                  * If vfs.nfs.old_noncontig_writing is not set and there has
 1183                  * not been file locking done on this file:
 1184                  * Relax coherency a bit for the sake of performance and
 1185                  * expand the current dirty region to contain the new
 1186                  * write even if it means we mark some non-dirty data as
 1187                  * dirty.
 1188                  */
 1189 
 1190                 if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
 1191                     (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
 1192                         if (bwrite(bp) == EINTR) {
 1193                                 error = EINTR;
 1194                                 break;
 1195                         }
 1196                         goto again;
 1197                 }
 1198 
 1199                 local_resid = uio->uio_resid;
 1200                 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
 1201 
 1202                 if (error != 0 && !bp_cached) {
 1203                         /*
 1204                          * This block has no other content then what
 1205                          * possibly was written by the faulty uiomove.
 1206                          * Release it, forgetting the data pages, to
 1207                          * prevent the leak of uninitialized data to
 1208                          * usermode.
 1209                          */
 1210                         bp->b_ioflags |= BIO_ERROR;
 1211                         brelse(bp);
 1212                         uio->uio_offset -= local_resid - uio->uio_resid;
 1213                         uio->uio_resid = local_resid;
 1214                         break;
 1215                 }
 1216 
 1217                 /*
 1218                  * Since this block is being modified, it must be written
 1219                  * again and not just committed.  Since write clustering does
 1220                  * not work for the stage 1 data write, only the stage 2
 1221                  * commit rpc, we have to clear B_CLUSTEROK as well.
 1222                  */
 1223                 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1224 
 1225                 /*
 1226                  * Get the partial update on the progress made from
 1227                  * uiomove, if an error occurred.
 1228                  */
 1229                 if (error != 0)
 1230                         n = local_resid - uio->uio_resid;
 1231 
 1232                 /*
 1233                  * Only update dirtyoff/dirtyend if not a degenerate
 1234                  * condition.
 1235                  */
 1236                 if (n > 0) {
 1237                         if (bp->b_dirtyend > 0) {
 1238                                 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
 1239                                 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
 1240                         } else {
 1241                                 bp->b_dirtyoff = on;
 1242                                 bp->b_dirtyend = on + n;
 1243                         }
 1244                         vfs_bio_set_valid(bp, on, n);
 1245                 }
 1246 
 1247                 /*
 1248                  * If IO_SYNC do bwrite().
 1249                  *
 1250                  * IO_INVAL appears to be unused.  The idea appears to be
 1251                  * to turn off caching in this case.  Very odd.  XXX
 1252                  */
 1253                 if ((ioflag & IO_SYNC)) {
 1254                         if (ioflag & IO_INVAL)
 1255                                 bp->b_flags |= B_NOCACHE;
 1256                         error1 = bwrite(bp);
 1257                         if (error1 != 0) {
 1258                                 if (error == 0)
 1259                                         error = error1;
 1260                                 break;
 1261                         }
 1262                 } else if ((n + on) == biosize || (ioflag & IO_ASYNC) != 0) {
 1263                         bp->b_flags |= B_ASYNC;
 1264                         (void) ncl_writebp(bp, 0, NULL);
 1265                 } else {
 1266                         bdwrite(bp);
 1267                 }
 1268 
 1269                 if (error != 0)
 1270                         break;
 1271         } while (uio->uio_resid > 0 && n > 0);
 1272 
 1273         if (error != 0) {
 1274                 if (ioflag & IO_UNIT) {
 1275                         VATTR_NULL(&vattr);
 1276                         vattr.va_size = orig_size;
 1277                         /* IO_SYNC is handled implicitely */
 1278                         (void)VOP_SETATTR(vp, &vattr, cred);
 1279                         uio->uio_offset -= orig_resid - uio->uio_resid;
 1280                         uio->uio_resid = orig_resid;
 1281                 }
 1282         }
 1283 
 1284         return (error);
 1285 }
 1286 
 1287 /*
 1288  * Get an nfs cache block.
 1289  *
 1290  * Allocate a new one if the block isn't currently in the cache
 1291  * and return the block marked busy. If the calling process is
 1292  * interrupted by a signal for an interruptible mount point, return
 1293  * NULL.
 1294  *
 1295  * The caller must carefully deal with the possible B_INVAL state of
 1296  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
 1297  * indirectly), so synchronous reads can be issued without worrying about
 1298  * the B_INVAL state.  We have to be a little more careful when dealing
 1299  * with writes (see comments in nfs_write()) when extending a file past
 1300  * its EOF.
 1301  */
 1302 static struct buf *
 1303 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
 1304 {
 1305         struct buf *bp;
 1306         struct mount *mp;
 1307         struct nfsmount *nmp;
 1308 
 1309         mp = vp->v_mount;
 1310         nmp = VFSTONFS(mp);
 1311 
 1312         if (nmp->nm_flag & NFSMNT_INT) {
 1313                 sigset_t oldset;
 1314 
 1315                 newnfs_set_sigmask(td, &oldset);
 1316                 bp = getblk(vp, bn, size, PCATCH, 0, 0);
 1317                 newnfs_restore_sigmask(td, &oldset);
 1318                 while (bp == NULL) {
 1319                         if (newnfs_sigintr(nmp, td))
 1320                                 return (NULL);
 1321                         bp = getblk(vp, bn, size, 0, 2 * hz, 0);
 1322                 }
 1323         } else {
 1324                 bp = getblk(vp, bn, size, 0, 0, 0);
 1325         }
 1326 
 1327         if (vp->v_type == VREG)
 1328                 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
 1329         return (bp);
 1330 }
 1331 
 1332 /*
 1333  * Flush and invalidate all dirty buffers. If another process is already
 1334  * doing the flush, just wait for completion.
 1335  */
 1336 int
 1337 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
 1338 {
 1339         struct nfsnode *np = VTONFS(vp);
 1340         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
 1341         int error = 0, slpflag, slptimeo;
 1342         bool old_lock;
 1343 
 1344         ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
 1345 
 1346         if ((nmp->nm_flag & NFSMNT_INT) == 0)
 1347                 intrflg = 0;
 1348         if (NFSCL_FORCEDISM(nmp->nm_mountp))
 1349                 intrflg = 1;
 1350         if (intrflg) {
 1351                 slpflag = PCATCH;
 1352                 slptimeo = 2 * hz;
 1353         } else {
 1354                 slpflag = 0;
 1355                 slptimeo = 0;
 1356         }
 1357 
 1358         old_lock = ncl_excl_start(vp);
 1359         if (old_lock)
 1360                 flags |= V_ALLOWCLEAN;
 1361 
 1362         /*
 1363          * Now, flush as required.
 1364          */
 1365         if ((flags & (V_SAVE | V_VMIO)) == V_SAVE &&
 1366              vp->v_bufobj.bo_object != NULL) {
 1367                 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
 1368                 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
 1369                 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
 1370                 /*
 1371                  * If the page clean was interrupted, fail the invalidation.
 1372                  * Not doing so, we run the risk of losing dirty pages in the
 1373                  * vinvalbuf() call below.
 1374                  */
 1375                 if (intrflg && (error = newnfs_sigintr(nmp, td)))
 1376                         goto out;
 1377         }
 1378 
 1379         error = vinvalbuf(vp, flags, slpflag, 0);
 1380         while (error) {
 1381                 if (intrflg && (error = newnfs_sigintr(nmp, td)))
 1382                         goto out;
 1383                 error = vinvalbuf(vp, flags, 0, slptimeo);
 1384         }
 1385         if (NFSHASPNFS(nmp)) {
 1386                 nfscl_layoutcommit(vp, td);
 1387                 /*
 1388                  * Invalidate the attribute cache, since writes to a DS
 1389                  * won't update the size attribute.
 1390                  */
 1391                 NFSLOCKNODE(np);
 1392                 np->n_attrstamp = 0;
 1393         } else
 1394                 NFSLOCKNODE(np);
 1395         if (np->n_directio_asyncwr == 0)
 1396                 np->n_flag &= ~NMODIFIED;
 1397         NFSUNLOCKNODE(np);
 1398 out:
 1399         ncl_excl_finish(vp, old_lock);
 1400         return error;
 1401 }
 1402 
 1403 /*
 1404  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
 1405  * This is mainly to avoid queueing async I/O requests when the nfsiods
 1406  * are all hung on a dead server.
 1407  *
 1408  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
 1409  * is eventually dequeued by the async daemon, ncl_doio() *will*.
 1410  */
 1411 int
 1412 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
 1413 {
 1414         int iod;
 1415         int gotiod;
 1416         int slpflag = 0;
 1417         int slptimeo = 0;
 1418         int error, error2;
 1419 
 1420         /*
 1421          * Commits are usually short and sweet so lets save some cpu and
 1422          * leave the async daemons for more important rpc's (such as reads
 1423          * and writes).
 1424          *
 1425          * Readdirplus RPCs do vget()s to acquire the vnodes for entries
 1426          * in the directory in order to update attributes. This can deadlock
 1427          * with another thread that is waiting for async I/O to be done by
 1428          * an nfsiod thread while holding a lock on one of these vnodes.
 1429          * To avoid this deadlock, don't allow the async nfsiod threads to
 1430          * perform Readdirplus RPCs.
 1431          */
 1432         NFSLOCKIOD();
 1433         if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
 1434              (nmp->nm_bufqiods > ncl_numasync / 2)) ||
 1435             (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
 1436                 NFSUNLOCKIOD();
 1437                 return(EIO);
 1438         }
 1439 again:
 1440         if (nmp->nm_flag & NFSMNT_INT)
 1441                 slpflag = PCATCH;
 1442         gotiod = FALSE;
 1443 
 1444         /*
 1445          * Find a free iod to process this request.
 1446          */
 1447         for (iod = 0; iod < ncl_numasync; iod++)
 1448                 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
 1449                         gotiod = TRUE;
 1450                         break;
 1451                 }
 1452 
 1453         /*
 1454          * Try to create one if none are free.
 1455          */
 1456         if (!gotiod)
 1457                 ncl_nfsiodnew();
 1458         else {
 1459                 /*
 1460                  * Found one, so wake it up and tell it which
 1461                  * mount to process.
 1462                  */
 1463                 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
 1464                     iod, nmp));
 1465                 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
 1466                 ncl_iodmount[iod] = nmp;
 1467                 nmp->nm_bufqiods++;
 1468                 wakeup(&ncl_iodwant[iod]);
 1469         }
 1470 
 1471         /*
 1472          * If none are free, we may already have an iod working on this mount
 1473          * point.  If so, it will process our request.
 1474          */
 1475         if (!gotiod) {
 1476                 if (nmp->nm_bufqiods > 0) {
 1477                         NFS_DPF(ASYNCIO,
 1478                                 ("ncl_asyncio: %d iods are already processing mount %p\n",
 1479                                  nmp->nm_bufqiods, nmp));
 1480                         gotiod = TRUE;
 1481                 }
 1482         }
 1483 
 1484         /*
 1485          * If we have an iod which can process the request, then queue
 1486          * the buffer.
 1487          */
 1488         if (gotiod) {
 1489                 /*
 1490                  * Ensure that the queue never grows too large.  We still want
 1491                  * to asynchronize so we block rather then return EIO.
 1492                  */
 1493                 while (nmp->nm_bufqlen >= 2*ncl_numasync) {
 1494                         NFS_DPF(ASYNCIO,
 1495                                 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
 1496                         nmp->nm_bufqwant = TRUE;
 1497                         error = newnfs_msleep(td, &nmp->nm_bufq,
 1498                             &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
 1499                            slptimeo);
 1500                         if (error) {
 1501                                 error2 = newnfs_sigintr(nmp, td);
 1502                                 if (error2) {
 1503                                         NFSUNLOCKIOD();
 1504                                         return (error2);
 1505                                 }
 1506                                 if (slpflag == PCATCH) {
 1507                                         slpflag = 0;
 1508                                         slptimeo = 2 * hz;
 1509                                 }
 1510                         }
 1511                         /*
 1512                          * We might have lost our iod while sleeping,
 1513                          * so check and loop if necessary.
 1514                          */
 1515                         goto again;
 1516                 }
 1517 
 1518                 /* We might have lost our nfsiod */
 1519                 if (nmp->nm_bufqiods == 0) {
 1520                         NFS_DPF(ASYNCIO,
 1521                                 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
 1522                         goto again;
 1523                 }
 1524 
 1525                 if (bp->b_iocmd == BIO_READ) {
 1526                         if (bp->b_rcred == NOCRED && cred != NOCRED)
 1527                                 bp->b_rcred = crhold(cred);
 1528                 } else {
 1529                         if (bp->b_wcred == NOCRED && cred != NOCRED)
 1530                                 bp->b_wcred = crhold(cred);
 1531                 }
 1532 
 1533                 if (bp->b_flags & B_REMFREE)
 1534                         bremfreef(bp);
 1535                 BUF_KERNPROC(bp);
 1536                 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
 1537                 nmp->nm_bufqlen++;
 1538                 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
 1539                         NFSLOCKNODE(VTONFS(bp->b_vp));
 1540                         VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
 1541                         VTONFS(bp->b_vp)->n_directio_asyncwr++;
 1542                         NFSUNLOCKNODE(VTONFS(bp->b_vp));
 1543                 }
 1544                 NFSUNLOCKIOD();
 1545                 return (0);
 1546         }
 1547 
 1548         NFSUNLOCKIOD();
 1549 
 1550         /*
 1551          * All the iods are busy on other mounts, so return EIO to
 1552          * force the caller to process the i/o synchronously.
 1553          */
 1554         NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
 1555         return (EIO);
 1556 }
 1557 
 1558 void
 1559 ncl_doio_directwrite(struct buf *bp)
 1560 {
 1561         int iomode, must_commit;
 1562         struct uio *uiop = (struct uio *)bp->b_caller1;
 1563         char *iov_base = uiop->uio_iov->iov_base;
 1564 
 1565         iomode = NFSWRITE_FILESYNC;
 1566         uiop->uio_td = NULL; /* NULL since we're in nfsiod */
 1567         ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
 1568         KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
 1569         free(iov_base, M_NFSDIRECTIO);
 1570         free(uiop->uio_iov, M_NFSDIRECTIO);
 1571         free(uiop, M_NFSDIRECTIO);
 1572         if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
 1573                 struct nfsnode *np = VTONFS(bp->b_vp);
 1574                 NFSLOCKNODE(np);
 1575                 if (NFSHASPNFS(VFSTONFS(bp->b_vp->v_mount))) {
 1576                         /*
 1577                          * Invalidate the attribute cache, since writes to a DS
 1578                          * won't update the size attribute.
 1579                          */
 1580                         np->n_attrstamp = 0;
 1581                 }
 1582                 np->n_directio_asyncwr--;
 1583                 if (np->n_directio_asyncwr == 0) {
 1584                         np->n_flag &= ~NMODIFIED;
 1585                         if ((np->n_flag & NFSYNCWAIT)) {
 1586                                 np->n_flag &= ~NFSYNCWAIT;
 1587                                 wakeup((caddr_t)&np->n_directio_asyncwr);
 1588                         }
 1589                 }
 1590                 NFSUNLOCKNODE(np);
 1591         }
 1592         bp->b_vp = NULL;
 1593         uma_zfree(ncl_pbuf_zone, bp);
 1594 }
 1595 
 1596 /*
 1597  * Do an I/O operation to/from a cache block. This may be called
 1598  * synchronously or from an nfsiod.
 1599  */
 1600 int
 1601 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
 1602     int called_from_strategy)
 1603 {
 1604         struct uio *uiop;
 1605         struct nfsnode *np;
 1606         struct nfsmount *nmp;
 1607         int error = 0, iomode, must_commit = 0;
 1608         struct uio uio;
 1609         struct iovec io;
 1610         struct proc *p = td ? td->td_proc : NULL;
 1611         uint8_t iocmd;
 1612 
 1613         np = VTONFS(vp);
 1614         nmp = VFSTONFS(vp->v_mount);
 1615         uiop = &uio;
 1616         uiop->uio_iov = &io;
 1617         uiop->uio_iovcnt = 1;
 1618         uiop->uio_segflg = UIO_SYSSPACE;
 1619         uiop->uio_td = td;
 1620 
 1621         /*
 1622          * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
 1623          * do this here so we do not have to do it in all the code that
 1624          * calls us.
 1625          */
 1626         bp->b_flags &= ~B_INVAL;
 1627         bp->b_ioflags &= ~BIO_ERROR;
 1628 
 1629         KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
 1630         iocmd = bp->b_iocmd;
 1631         if (iocmd == BIO_READ) {
 1632             io.iov_len = uiop->uio_resid = bp->b_bcount;
 1633             io.iov_base = bp->b_data;
 1634             uiop->uio_rw = UIO_READ;
 1635 
 1636             switch (vp->v_type) {
 1637             case VREG:
 1638                 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
 1639                 NFSINCRGLOBAL(nfsstatsv1.read_bios);
 1640                 error = ncl_readrpc(vp, uiop, cr);
 1641 
 1642                 if (!error) {
 1643                     if (uiop->uio_resid) {
 1644                         /*
 1645                          * If we had a short read with no error, we must have
 1646                          * hit a file hole.  We should zero-fill the remainder.
 1647                          * This can also occur if the server hits the file EOF.
 1648                          *
 1649                          * Holes used to be able to occur due to pending
 1650                          * writes, but that is not possible any longer.
 1651                          */
 1652                         int nread = bp->b_bcount - uiop->uio_resid;
 1653                         ssize_t left = uiop->uio_resid;
 1654 
 1655                         if (left > 0)
 1656                                 bzero((char *)bp->b_data + nread, left);
 1657                         uiop->uio_resid = 0;
 1658                     }
 1659                 }
 1660                 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
 1661                 if (p && vp->v_writecount <= -1) {
 1662                         NFSLOCKNODE(np);
 1663                         if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
 1664                                 NFSUNLOCKNODE(np);
 1665                                 PROC_LOCK(p);
 1666                                 killproc(p, "text file modification");
 1667                                 PROC_UNLOCK(p);
 1668                         } else
 1669                                 NFSUNLOCKNODE(np);
 1670                 }
 1671                 break;
 1672             case VLNK:
 1673                 uiop->uio_offset = (off_t)0;
 1674                 NFSINCRGLOBAL(nfsstatsv1.readlink_bios);
 1675                 error = ncl_readlinkrpc(vp, uiop, cr);
 1676                 break;
 1677             case VDIR:
 1678                 NFSINCRGLOBAL(nfsstatsv1.readdir_bios);
 1679                 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
 1680                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
 1681                         error = ncl_readdirplusrpc(vp, uiop, cr, td);
 1682                         if (error == NFSERR_NOTSUPP)
 1683                                 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
 1684                 }
 1685                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
 1686                         error = ncl_readdirrpc(vp, uiop, cr, td);
 1687                 /*
 1688                  * end-of-directory sets B_INVAL but does not generate an
 1689                  * error.
 1690                  */
 1691                 if (error == 0 && uiop->uio_resid == bp->b_bcount)
 1692                         bp->b_flags |= B_INVAL;
 1693                 break;
 1694             default:
 1695                 printf("ncl_doio:  type %x unexpected\n", vp->v_type);
 1696                 break;
 1697             }
 1698             if (error) {
 1699                 bp->b_ioflags |= BIO_ERROR;
 1700                 bp->b_error = error;
 1701             }
 1702         } else {
 1703             /*
 1704              * If we only need to commit, try to commit
 1705              */
 1706             if (bp->b_flags & B_NEEDCOMMIT) {
 1707                     int retv;
 1708                     off_t off;
 1709 
 1710                     off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
 1711                     retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
 1712                         bp->b_wcred, td);
 1713                     if (retv == 0) {
 1714                             bp->b_dirtyoff = bp->b_dirtyend = 0;
 1715                             bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1716                             bp->b_resid = 0;
 1717                             bufdone(bp);
 1718                             return (0);
 1719                     }
 1720                     if (retv == NFSERR_STALEWRITEVERF) {
 1721                             ncl_clearcommit(vp->v_mount);
 1722                     }
 1723             }
 1724 
 1725             /*
 1726              * Setup for actual write
 1727              */
 1728             NFSLOCKNODE(np);
 1729             if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
 1730                 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
 1731             NFSUNLOCKNODE(np);
 1732 
 1733             if (bp->b_dirtyend > bp->b_dirtyoff) {
 1734                 io.iov_len = uiop->uio_resid = bp->b_dirtyend
 1735                     - bp->b_dirtyoff;
 1736                 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
 1737                     + bp->b_dirtyoff;
 1738                 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
 1739                 uiop->uio_rw = UIO_WRITE;
 1740                 NFSINCRGLOBAL(nfsstatsv1.write_bios);
 1741 
 1742                 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
 1743                     iomode = NFSWRITE_UNSTABLE;
 1744                 else
 1745                     iomode = NFSWRITE_FILESYNC;
 1746 
 1747                 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
 1748                     called_from_strategy);
 1749 
 1750                 /*
 1751                  * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
 1752                  * to cluster the buffers needing commit.  This will allow
 1753                  * the system to submit a single commit rpc for the whole
 1754                  * cluster.  We can do this even if the buffer is not 100%
 1755                  * dirty (relative to the NFS blocksize), so we optimize the
 1756                  * append-to-file-case.
 1757                  *
 1758                  * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
 1759                  * cleared because write clustering only works for commit
 1760                  * rpc's, not for the data portion of the write).
 1761                  */
 1762 
 1763                 if (!error && iomode == NFSWRITE_UNSTABLE) {
 1764                     bp->b_flags |= B_NEEDCOMMIT;
 1765                     if (bp->b_dirtyoff == 0
 1766                         && bp->b_dirtyend == bp->b_bcount)
 1767                         bp->b_flags |= B_CLUSTEROK;
 1768                 } else {
 1769                     bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1770                 }
 1771 
 1772                 /*
 1773                  * For an interrupted write, the buffer is still valid
 1774                  * and the write hasn't been pushed to the server yet,
 1775                  * so we can't set BIO_ERROR and report the interruption
 1776                  * by setting B_EINTR. For the B_ASYNC case, B_EINTR
 1777                  * is not relevant, so the rpc attempt is essentially
 1778                  * a noop.  For the case of a V3 write rpc not being
 1779                  * committed to stable storage, the block is still
 1780                  * dirty and requires either a commit rpc or another
 1781                  * write rpc with iomode == NFSV3WRITE_FILESYNC before
 1782                  * the block is reused. This is indicated by setting
 1783                  * the B_DELWRI and B_NEEDCOMMIT flags.
 1784                  *
 1785                  * EIO is returned by ncl_writerpc() to indicate a recoverable
 1786                  * write error and is handled as above, except that
 1787                  * B_EINTR isn't set. One cause of this is a stale stateid
 1788                  * error for the RPC that indicates recovery is required,
 1789                  * when called with called_from_strategy != 0.
 1790                  *
 1791                  * If the buffer is marked B_PAGING, it does not reside on
 1792                  * the vp's paging queues so we cannot call bdirty().  The
 1793                  * bp in this case is not an NFS cache block so we should
 1794                  * be safe. XXX
 1795                  *
 1796                  * The logic below breaks up errors into recoverable and
 1797                  * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
 1798                  * and keep the buffer around for potential write retries.
 1799                  * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
 1800                  * and save the error in the nfsnode. This is less than ideal
 1801                  * but necessary. Keeping such buffers around could potentially
 1802                  * cause buffer exhaustion eventually (they can never be written
 1803                  * out, so will get constantly be re-dirtied). It also causes
 1804                  * all sorts of vfs panics. For non-recoverable write errors,
 1805                  * also invalidate the attrcache, so we'll be forced to go over
 1806                  * the wire for this object, returning an error to user on next
 1807                  * call (most of the time).
 1808                  */
 1809                 if (error == EINTR || error == EIO || error == ETIMEDOUT
 1810                     || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
 1811                         bp->b_flags &= ~(B_INVAL|B_NOCACHE);
 1812                         if ((bp->b_flags & B_PAGING) == 0) {
 1813                             bdirty(bp);
 1814                             bp->b_flags &= ~B_DONE;
 1815                         }
 1816                         if ((error == EINTR || error == ETIMEDOUT) &&
 1817                             (bp->b_flags & B_ASYNC) == 0)
 1818                             bp->b_flags |= B_EINTR;
 1819                 } else {
 1820                     if (error) {
 1821                         bp->b_ioflags |= BIO_ERROR;
 1822                         bp->b_flags |= B_INVAL;
 1823                         bp->b_error = np->n_error = error;
 1824                         NFSLOCKNODE(np);
 1825                         np->n_flag |= NWRITEERR;
 1826                         np->n_attrstamp = 0;
 1827                         KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
 1828                         NFSUNLOCKNODE(np);
 1829                     }
 1830                     bp->b_dirtyoff = bp->b_dirtyend = 0;
 1831                 }
 1832             } else {
 1833                 bp->b_resid = 0;
 1834                 bufdone(bp);
 1835                 return (0);
 1836             }
 1837         }
 1838         bp->b_resid = uiop->uio_resid;
 1839         if (must_commit)
 1840             ncl_clearcommit(vp->v_mount);
 1841         bufdone(bp);
 1842         return (error);
 1843 }
 1844 
 1845 /*
 1846  * Used to aid in handling ftruncate() operations on the NFS client side.
 1847  * Truncation creates a number of special problems for NFS.  We have to
 1848  * throw away VM pages and buffer cache buffers that are beyond EOF, and
 1849  * we have to properly handle VM pages or (potentially dirty) buffers
 1850  * that straddle the truncation point.
 1851  */
 1852 
 1853 int
 1854 ncl_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
 1855 {
 1856         struct nfsnode *np = VTONFS(vp);
 1857         u_quad_t tsize;
 1858         int biosize = vp->v_bufobj.bo_bsize;
 1859         int error = 0;
 1860 
 1861         NFSLOCKNODE(np);
 1862         tsize = np->n_size;
 1863         np->n_size = nsize;
 1864         NFSUNLOCKNODE(np);
 1865 
 1866         if (nsize < tsize) {
 1867                 struct buf *bp;
 1868                 daddr_t lbn;
 1869                 int bufsize;
 1870 
 1871                 /*
 1872                  * vtruncbuf() doesn't get the buffer overlapping the
 1873                  * truncation point.  We may have a B_DELWRI and/or B_CACHE
 1874                  * buffer that now needs to be truncated.
 1875                  */
 1876                 error = vtruncbuf(vp, nsize, biosize);
 1877                 lbn = nsize / biosize;
 1878                 bufsize = nsize - (lbn * biosize);
 1879                 bp = nfs_getcacheblk(vp, lbn, bufsize, td);
 1880                 if (!bp)
 1881                         return EINTR;
 1882                 if (bp->b_dirtyoff > bp->b_bcount)
 1883                         bp->b_dirtyoff = bp->b_bcount;
 1884                 if (bp->b_dirtyend > bp->b_bcount)
 1885                         bp->b_dirtyend = bp->b_bcount;
 1886                 bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
 1887                 brelse(bp);
 1888         } else {
 1889                 vnode_pager_setsize(vp, nsize);
 1890         }
 1891         return(error);
 1892 }

Cache object: dcac711c8786e81738a54c9d2a710ffb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.