The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nfsclient/nfs_clbio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * Rick Macklem at The University of Guelph.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)nfs_bio.c   8.9 (Berkeley) 3/30/95
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/8.2/sys/fs/nfsclient/nfs_clbio.c 212836 2010-09-19 02:07:30Z rmacklem $");
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/bio.h>
   41 #include <sys/buf.h>
   42 #include <sys/kernel.h>
   43 #include <sys/mount.h>
   44 #include <sys/proc.h>
   45 #include <sys/resourcevar.h>
   46 #include <sys/signalvar.h>
   47 #include <sys/vmmeter.h>
   48 #include <sys/vnode.h>
   49 
   50 #include <vm/vm.h>
   51 #include <vm/vm_extern.h>
   52 #include <vm/vm_page.h>
   53 #include <vm/vm_object.h>
   54 #include <vm/vm_pager.h>
   55 #include <vm/vnode_pager.h>
   56 
   57 #include <fs/nfs/nfsport.h>
   58 #include <fs/nfsclient/nfsmount.h>
   59 #include <fs/nfsclient/nfs.h>
   60 #include <fs/nfsclient/nfsnode.h>
   61 
   62 extern int newnfs_directio_allow_mmap;
   63 extern struct nfsstats newnfsstats;
   64 extern struct mtx ncl_iod_mutex;
   65 extern int ncl_numasync;
   66 extern enum nfsiod_state ncl_iodwant[NFS_MAXRAHEAD];
   67 extern struct nfsmount *ncl_iodmount[NFS_MAXRAHEAD];
   68 extern int newnfs_directio_enable;
   69 
   70 int ncl_pbuf_freecnt = -1;      /* start out unlimited */
   71 
   72 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
   73     struct thread *td);
   74 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 
   75     struct ucred *cred, int ioflag);
   76 
   77 /*
   78  * Vnode op for VM getpages.
   79  */
   80 int
   81 ncl_getpages(struct vop_getpages_args *ap)
   82 {
   83         int i, error, nextoff, size, toff, count, npages;
   84         struct uio uio;
   85         struct iovec iov;
   86         vm_offset_t kva;
   87         struct buf *bp;
   88         struct vnode *vp;
   89         struct thread *td;
   90         struct ucred *cred;
   91         struct nfsmount *nmp;
   92         vm_object_t object;
   93         vm_page_t *pages;
   94         struct nfsnode *np;
   95 
   96         vp = ap->a_vp;
   97         np = VTONFS(vp);
   98         td = curthread;                         /* XXX */
   99         cred = curthread->td_ucred;             /* XXX */
  100         nmp = VFSTONFS(vp->v_mount);
  101         pages = ap->a_m;
  102         count = ap->a_count;
  103 
  104         if ((object = vp->v_object) == NULL) {
  105                 ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
  106                 return (VM_PAGER_ERROR);
  107         }
  108 
  109         if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
  110                 mtx_lock(&np->n_mtx);
  111                 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
  112                         mtx_unlock(&np->n_mtx);
  113                         ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
  114                         return (VM_PAGER_ERROR);
  115                 } else
  116                         mtx_unlock(&np->n_mtx);
  117         }
  118 
  119         mtx_lock(&nmp->nm_mtx);
  120         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  121             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {  
  122                 mtx_unlock(&nmp->nm_mtx);
  123                 /* We'll never get here for v4, because we always have fsinfo */
  124                 (void)ncl_fsinfo(nmp, vp, cred, td);
  125         } else
  126                 mtx_unlock(&nmp->nm_mtx);
  127 
  128         npages = btoc(count);
  129 
  130         /*
  131          * If the requested page is partially valid, just return it and
  132          * allow the pager to zero-out the blanks.  Partially valid pages
  133          * can only occur at the file EOF.
  134          */
  135         VM_OBJECT_LOCK(object);
  136         if (pages[ap->a_reqpage]->valid != 0) {
  137                 vm_page_lock_queues();
  138                 for (i = 0; i < npages; ++i) {
  139                         if (i != ap->a_reqpage)
  140                                 vm_page_free(pages[i]);
  141                 }
  142                 vm_page_unlock_queues();
  143                 VM_OBJECT_UNLOCK(object);
  144                 return (0);
  145         }
  146         VM_OBJECT_UNLOCK(object);
  147 
  148         /*
  149          * We use only the kva address for the buffer, but this is extremely
  150          * convienient and fast.
  151          */
  152         bp = getpbuf(&ncl_pbuf_freecnt);
  153 
  154         kva = (vm_offset_t) bp->b_data;
  155         pmap_qenter(kva, pages, npages);
  156         PCPU_INC(cnt.v_vnodein);
  157         PCPU_ADD(cnt.v_vnodepgsin, npages);
  158 
  159         iov.iov_base = (caddr_t) kva;
  160         iov.iov_len = count;
  161         uio.uio_iov = &iov;
  162         uio.uio_iovcnt = 1;
  163         uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
  164         uio.uio_resid = count;
  165         uio.uio_segflg = UIO_SYSSPACE;
  166         uio.uio_rw = UIO_READ;
  167         uio.uio_td = td;
  168 
  169         error = ncl_readrpc(vp, &uio, cred);
  170         pmap_qremove(kva, npages);
  171 
  172         relpbuf(bp, &ncl_pbuf_freecnt);
  173 
  174         if (error && (uio.uio_resid == count)) {
  175                 ncl_printf("nfs_getpages: error %d\n", error);
  176                 VM_OBJECT_LOCK(object);
  177                 vm_page_lock_queues();
  178                 for (i = 0; i < npages; ++i) {
  179                         if (i != ap->a_reqpage)
  180                                 vm_page_free(pages[i]);
  181                 }
  182                 vm_page_unlock_queues();
  183                 VM_OBJECT_UNLOCK(object);
  184                 return (VM_PAGER_ERROR);
  185         }
  186 
  187         /*
  188          * Calculate the number of bytes read and validate only that number
  189          * of bytes.  Note that due to pending writes, size may be 0.  This
  190          * does not mean that the remaining data is invalid!
  191          */
  192 
  193         size = count - uio.uio_resid;
  194         VM_OBJECT_LOCK(object);
  195         vm_page_lock_queues();
  196         for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
  197                 vm_page_t m;
  198                 nextoff = toff + PAGE_SIZE;
  199                 m = pages[i];
  200 
  201                 if (nextoff <= size) {
  202                         /*
  203                          * Read operation filled an entire page
  204                          */
  205                         m->valid = VM_PAGE_BITS_ALL;
  206                         KASSERT(m->dirty == 0,
  207                             ("nfs_getpages: page %p is dirty", m));
  208                 } else if (size > toff) {
  209                         /*
  210                          * Read operation filled a partial page.
  211                          */
  212                         m->valid = 0;
  213                         vm_page_set_valid(m, 0, size - toff);
  214                         KASSERT(m->dirty == 0,
  215                             ("nfs_getpages: page %p is dirty", m));
  216                 } else {
  217                         /*
  218                          * Read operation was short.  If no error occured
  219                          * we may have hit a zero-fill section.   We simply
  220                          * leave valid set to 0.
  221                          */
  222                         ;
  223                 }
  224                 if (i != ap->a_reqpage) {
  225                         /*
  226                          * Whether or not to leave the page activated is up in
  227                          * the air, but we should put the page on a page queue
  228                          * somewhere (it already is in the object).  Result:
  229                          * It appears that emperical results show that
  230                          * deactivating pages is best.
  231                          */
  232 
  233                         /*
  234                          * Just in case someone was asking for this page we
  235                          * now tell them that it is ok to use.
  236                          */
  237                         if (!error) {
  238                                 if (m->oflags & VPO_WANTED)
  239                                         vm_page_activate(m);
  240                                 else
  241                                         vm_page_deactivate(m);
  242                                 vm_page_wakeup(m);
  243                         } else {
  244                                 vm_page_free(m);
  245                         }
  246                 }
  247         }
  248         vm_page_unlock_queues();
  249         VM_OBJECT_UNLOCK(object);
  250         return (0);
  251 }
  252 
  253 /*
  254  * Vnode op for VM putpages.
  255  */
  256 int
  257 ncl_putpages(struct vop_putpages_args *ap)
  258 {
  259         struct uio uio;
  260         struct iovec iov;
  261         vm_offset_t kva;
  262         struct buf *bp;
  263         int iomode, must_commit, i, error, npages, count;
  264         off_t offset;
  265         int *rtvals;
  266         struct vnode *vp;
  267         struct thread *td;
  268         struct ucred *cred;
  269         struct nfsmount *nmp;
  270         struct nfsnode *np;
  271         vm_page_t *pages;
  272 
  273         vp = ap->a_vp;
  274         np = VTONFS(vp);
  275         td = curthread;                         /* XXX */
  276         cred = curthread->td_ucred;             /* XXX */
  277         nmp = VFSTONFS(vp->v_mount);
  278         pages = ap->a_m;
  279         count = ap->a_count;
  280         rtvals = ap->a_rtvals;
  281         npages = btoc(count);
  282         offset = IDX_TO_OFF(pages[0]->pindex);
  283         
  284         mtx_lock(&nmp->nm_mtx);
  285         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  286             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  287                 mtx_unlock(&nmp->nm_mtx);
  288                 (void)ncl_fsinfo(nmp, vp, cred, td);
  289         } else
  290                 mtx_unlock(&nmp->nm_mtx);
  291 
  292         mtx_lock(&np->n_mtx);
  293         if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 
  294             (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
  295                 mtx_unlock(&np->n_mtx);         
  296                 ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
  297                 mtx_lock(&np->n_mtx);
  298         }
  299 
  300         for (i = 0; i < npages; i++)
  301                 rtvals[i] = VM_PAGER_AGAIN;
  302 
  303         /*
  304          * When putting pages, do not extend file past EOF.
  305          */
  306         if (offset + count > np->n_size) {
  307                 count = np->n_size - offset;
  308                 if (count < 0)
  309                         count = 0;
  310         }
  311         mtx_unlock(&np->n_mtx);
  312 
  313         /*
  314          * We use only the kva address for the buffer, but this is extremely
  315          * convienient and fast.
  316          */
  317         bp = getpbuf(&ncl_pbuf_freecnt);
  318 
  319         kva = (vm_offset_t) bp->b_data;
  320         pmap_qenter(kva, pages, npages);
  321         PCPU_INC(cnt.v_vnodeout);
  322         PCPU_ADD(cnt.v_vnodepgsout, count);
  323 
  324         iov.iov_base = (caddr_t) kva;
  325         iov.iov_len = count;
  326         uio.uio_iov = &iov;
  327         uio.uio_iovcnt = 1;
  328         uio.uio_offset = offset;
  329         uio.uio_resid = count;
  330         uio.uio_segflg = UIO_SYSSPACE;
  331         uio.uio_rw = UIO_WRITE;
  332         uio.uio_td = td;
  333 
  334         if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
  335             iomode = NFSWRITE_UNSTABLE;
  336         else
  337             iomode = NFSWRITE_FILESYNC;
  338 
  339         error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
  340 
  341         pmap_qremove(kva, npages);
  342         relpbuf(bp, &ncl_pbuf_freecnt);
  343 
  344         if (!error) {
  345                 int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
  346                 for (i = 0; i < nwritten; i++) {
  347                         rtvals[i] = VM_PAGER_OK;
  348                         vm_page_undirty(pages[i]);
  349                 }
  350                 if (must_commit) {
  351                         ncl_clearcommit(vp->v_mount);
  352                 }
  353         }
  354         return rtvals[0];
  355 }
  356 
  357 /*
  358  * For nfs, cache consistency can only be maintained approximately.
  359  * Although RFC1094 does not specify the criteria, the following is
  360  * believed to be compatible with the reference port.
  361  * For nfs:
  362  * If the file's modify time on the server has changed since the
  363  * last read rpc or you have written to the file,
  364  * you may have lost data cache consistency with the
  365  * server, so flush all of the file's data out of the cache.
  366  * Then force a getattr rpc to ensure that you have up to date
  367  * attributes.
  368  * NB: This implies that cache data can be read when up to
  369  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
  370  * attributes this could be forced by setting n_attrstamp to 0 before
  371  * the VOP_GETATTR() call.
  372  */
  373 static inline int
  374 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
  375 {
  376         int error = 0;
  377         struct vattr vattr;
  378         struct nfsnode *np = VTONFS(vp);
  379         int old_lock;
  380         
  381         /*
  382          * Grab the exclusive lock before checking whether the cache is
  383          * consistent.
  384          * XXX - We can make this cheaper later (by acquiring cheaper locks).
  385          * But for now, this suffices.
  386          */
  387         old_lock = ncl_upgrade_vnlock(vp);
  388         if (vp->v_iflag & VI_DOOMED) {
  389                 ncl_downgrade_vnlock(vp, old_lock);
  390                 return (EBADF);
  391         }
  392 
  393         mtx_lock(&np->n_mtx);
  394         if (np->n_flag & NMODIFIED) {
  395                 mtx_unlock(&np->n_mtx);
  396                 if (vp->v_type != VREG) {
  397                         if (vp->v_type != VDIR)
  398                                 panic("nfs: bioread, not dir");
  399                         ncl_invaldir(vp);
  400                         error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
  401                         if (error)
  402                                 goto out;
  403                 }
  404                 np->n_attrstamp = 0;
  405                 error = VOP_GETATTR(vp, &vattr, cred);
  406                 if (error)
  407                         goto out;
  408                 mtx_lock(&np->n_mtx);
  409                 np->n_mtime = vattr.va_mtime;
  410                 mtx_unlock(&np->n_mtx);
  411         } else {
  412                 mtx_unlock(&np->n_mtx);
  413                 error = VOP_GETATTR(vp, &vattr, cred);
  414                 if (error)
  415                         return (error);
  416                 mtx_lock(&np->n_mtx);
  417                 if ((np->n_flag & NSIZECHANGED)
  418                     || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
  419                         mtx_unlock(&np->n_mtx);
  420                         if (vp->v_type == VDIR)
  421                                 ncl_invaldir(vp);
  422                         error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
  423                         if (error)
  424                                 goto out;
  425                         mtx_lock(&np->n_mtx);
  426                         np->n_mtime = vattr.va_mtime;
  427                         np->n_flag &= ~NSIZECHANGED;
  428                 }
  429                 mtx_unlock(&np->n_mtx);
  430         }
  431 out:    
  432         ncl_downgrade_vnlock(vp, old_lock);
  433         return error;
  434 }
  435 
  436 /*
  437  * Vnode op for read using bio
  438  */
  439 int
  440 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
  441 {
  442         struct nfsnode *np = VTONFS(vp);
  443         int biosize, i;
  444         struct buf *bp, *rabp;
  445         struct thread *td;
  446         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  447         daddr_t lbn, rabn;
  448         int bcount;
  449         int seqcount;
  450         int nra, error = 0, n = 0, on = 0;
  451 
  452         KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
  453         if (uio->uio_resid == 0)
  454                 return (0);
  455         if (uio->uio_offset < 0)        /* XXX VDIR cookies can be negative */
  456                 return (EINVAL);
  457         td = uio->uio_td;
  458 
  459         mtx_lock(&nmp->nm_mtx);
  460         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  461             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  462                 mtx_unlock(&nmp->nm_mtx);
  463                 (void)ncl_fsinfo(nmp, vp, cred, td);
  464                 mtx_lock(&nmp->nm_mtx);
  465         }
  466         if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
  467                 (void) newnfs_iosize(nmp);
  468         mtx_unlock(&nmp->nm_mtx);               
  469 
  470         if (vp->v_type != VDIR &&
  471             (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
  472                 return (EFBIG);
  473 
  474         if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
  475                 /* No caching/ no readaheads. Just read data into the user buffer */
  476                 return ncl_readrpc(vp, uio, cred);
  477 
  478         biosize = vp->v_mount->mnt_stat.f_iosize;
  479         seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
  480         
  481         error = nfs_bioread_check_cons(vp, td, cred);
  482         if (error)
  483                 return error;
  484 
  485         do {
  486             u_quad_t nsize;
  487                         
  488             mtx_lock(&np->n_mtx);
  489             nsize = np->n_size;
  490             mtx_unlock(&np->n_mtx);                 
  491 
  492             switch (vp->v_type) {
  493             case VREG:
  494                 NFSINCRGLOBAL(newnfsstats.biocache_reads);
  495                 lbn = uio->uio_offset / biosize;
  496                 on = uio->uio_offset & (biosize - 1);
  497 
  498                 /*
  499                  * Start the read ahead(s), as required.
  500                  */
  501                 if (nmp->nm_readahead > 0) {
  502                     for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
  503                         (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
  504                         rabn = lbn + 1 + nra;
  505                         if (incore(&vp->v_bufobj, rabn) == NULL) {
  506                             rabp = nfs_getcacheblk(vp, rabn, biosize, td);
  507                             if (!rabp) {
  508                                 error = newnfs_sigintr(nmp, td);
  509                                 return (error ? error : EINTR);
  510                             }
  511                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  512                                 rabp->b_flags |= B_ASYNC;
  513                                 rabp->b_iocmd = BIO_READ;
  514                                 vfs_busy_pages(rabp, 0);
  515                                 if (ncl_asyncio(nmp, rabp, cred, td)) {
  516                                     rabp->b_flags |= B_INVAL;
  517                                     rabp->b_ioflags |= BIO_ERROR;
  518                                     vfs_unbusy_pages(rabp);
  519                                     brelse(rabp);
  520                                     break;
  521                                 }
  522                             } else {
  523                                 brelse(rabp);
  524                             }
  525                         }
  526                     }
  527                 }
  528 
  529                 /* Note that bcount is *not* DEV_BSIZE aligned. */
  530                 bcount = biosize;
  531                 if ((off_t)lbn * biosize >= nsize) {
  532                         bcount = 0;
  533                 } else if ((off_t)(lbn + 1) * biosize > nsize) {
  534                         bcount = nsize - (off_t)lbn * biosize;
  535                 }
  536                 bp = nfs_getcacheblk(vp, lbn, bcount, td);
  537 
  538                 if (!bp) {
  539                         error = newnfs_sigintr(nmp, td);
  540                         return (error ? error : EINTR);
  541                 }
  542 
  543                 /*
  544                  * If B_CACHE is not set, we must issue the read.  If this
  545                  * fails, we return an error.
  546                  */
  547 
  548                 if ((bp->b_flags & B_CACHE) == 0) {
  549                     bp->b_iocmd = BIO_READ;
  550                     vfs_busy_pages(bp, 0);
  551                     error = ncl_doio(vp, bp, cred, td, 0);
  552                     if (error) {
  553                         brelse(bp);
  554                         return (error);
  555                     }
  556                 }
  557 
  558                 /*
  559                  * on is the offset into the current bp.  Figure out how many
  560                  * bytes we can copy out of the bp.  Note that bcount is
  561                  * NOT DEV_BSIZE aligned.
  562                  *
  563                  * Then figure out how many bytes we can copy into the uio.
  564                  */
  565 
  566                 n = 0;
  567                 if (on < bcount)
  568                         n = min((unsigned)(bcount - on), uio->uio_resid);
  569                 break;
  570             case VLNK:
  571                 NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
  572                 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
  573                 if (!bp) {
  574                         error = newnfs_sigintr(nmp, td);
  575                         return (error ? error : EINTR);
  576                 }
  577                 if ((bp->b_flags & B_CACHE) == 0) {
  578                     bp->b_iocmd = BIO_READ;
  579                     vfs_busy_pages(bp, 0);
  580                     error = ncl_doio(vp, bp, cred, td, 0);
  581                     if (error) {
  582                         bp->b_ioflags |= BIO_ERROR;
  583                         brelse(bp);
  584                         return (error);
  585                     }
  586                 }
  587                 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
  588                 on = 0;
  589                 break;
  590             case VDIR:
  591                 NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
  592                 if (np->n_direofoffset
  593                     && uio->uio_offset >= np->n_direofoffset) {
  594                     return (0);
  595                 }
  596                 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
  597                 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
  598                 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
  599                 if (!bp) {
  600                     error = newnfs_sigintr(nmp, td);
  601                     return (error ? error : EINTR);
  602                 }
  603                 if ((bp->b_flags & B_CACHE) == 0) {
  604                     bp->b_iocmd = BIO_READ;
  605                     vfs_busy_pages(bp, 0);
  606                     error = ncl_doio(vp, bp, cred, td, 0);
  607                     if (error) {
  608                             brelse(bp);
  609                     }
  610                     while (error == NFSERR_BAD_COOKIE) {
  611                         ncl_invaldir(vp);
  612                         error = ncl_vinvalbuf(vp, 0, td, 1);
  613                         /*
  614                          * Yuck! The directory has been modified on the
  615                          * server. The only way to get the block is by
  616                          * reading from the beginning to get all the
  617                          * offset cookies.
  618                          *
  619                          * Leave the last bp intact unless there is an error.
  620                          * Loop back up to the while if the error is another
  621                          * NFSERR_BAD_COOKIE (double yuch!).
  622                          */
  623                         for (i = 0; i <= lbn && !error; i++) {
  624                             if (np->n_direofoffset
  625                                 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
  626                                     return (0);
  627                             bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
  628                             if (!bp) {
  629                                 error = newnfs_sigintr(nmp, td);
  630                                 return (error ? error : EINTR);
  631                             }
  632                             if ((bp->b_flags & B_CACHE) == 0) {
  633                                     bp->b_iocmd = BIO_READ;
  634                                     vfs_busy_pages(bp, 0);
  635                                     error = ncl_doio(vp, bp, cred, td, 0);
  636                                     /*
  637                                      * no error + B_INVAL == directory EOF,
  638                                      * use the block.
  639                                      */
  640                                     if (error == 0 && (bp->b_flags & B_INVAL))
  641                                             break;
  642                             }
  643                             /*
  644                              * An error will throw away the block and the
  645                              * for loop will break out.  If no error and this
  646                              * is not the block we want, we throw away the
  647                              * block and go for the next one via the for loop.
  648                              */
  649                             if (error || i < lbn)
  650                                     brelse(bp);
  651                         }
  652                     }
  653                     /*
  654                      * The above while is repeated if we hit another cookie
  655                      * error.  If we hit an error and it wasn't a cookie error,
  656                      * we give up.
  657                      */
  658                     if (error)
  659                             return (error);
  660                 }
  661 
  662                 /*
  663                  * If not eof and read aheads are enabled, start one.
  664                  * (You need the current block first, so that you have the
  665                  *  directory offset cookie of the next block.)
  666                  */
  667                 if (nmp->nm_readahead > 0 &&
  668                     (bp->b_flags & B_INVAL) == 0 &&
  669                     (np->n_direofoffset == 0 ||
  670                     (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
  671                     incore(&vp->v_bufobj, lbn + 1) == NULL) {
  672                         rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
  673                         if (rabp) {
  674                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  675                                 rabp->b_flags |= B_ASYNC;
  676                                 rabp->b_iocmd = BIO_READ;
  677                                 vfs_busy_pages(rabp, 0);
  678                                 if (ncl_asyncio(nmp, rabp, cred, td)) {
  679                                     rabp->b_flags |= B_INVAL;
  680                                     rabp->b_ioflags |= BIO_ERROR;
  681                                     vfs_unbusy_pages(rabp);
  682                                     brelse(rabp);
  683                                 }
  684                             } else {
  685                                 brelse(rabp);
  686                             }
  687                         }
  688                 }
  689                 /*
  690                  * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
  691                  * chopped for the EOF condition, we cannot tell how large
  692                  * NFS directories are going to be until we hit EOF.  So
  693                  * an NFS directory buffer is *not* chopped to its EOF.  Now,
  694                  * it just so happens that b_resid will effectively chop it
  695                  * to EOF.  *BUT* this information is lost if the buffer goes
  696                  * away and is reconstituted into a B_CACHE state ( due to
  697                  * being VMIO ) later.  So we keep track of the directory eof
  698                  * in np->n_direofoffset and chop it off as an extra step
  699                  * right here.
  700                  */
  701                 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
  702                 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
  703                         n = np->n_direofoffset - uio->uio_offset;
  704                 break;
  705             default:
  706                 ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
  707                 bp = NULL;
  708                 break;
  709             };
  710 
  711             if (n > 0) {
  712                     error = uiomove(bp->b_data + on, (int)n, uio);
  713             }
  714             if (vp->v_type == VLNK)
  715                 n = 0;
  716             if (bp != NULL)
  717                 brelse(bp);
  718         } while (error == 0 && uio->uio_resid > 0 && n > 0);
  719         return (error);
  720 }
  721 
  722 /*
  723  * The NFS write path cannot handle iovecs with len > 1. So we need to 
  724  * break up iovecs accordingly (restricting them to wsize).
  725  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 
  726  * For the ASYNC case, 2 copies are needed. The first a copy from the 
  727  * user buffer to a staging buffer and then a second copy from the staging
  728  * buffer to mbufs. This can be optimized by copying from the user buffer
  729  * directly into mbufs and passing the chain down, but that requires a 
  730  * fair amount of re-working of the relevant codepaths (and can be done
  731  * later).
  732  */
  733 static int
  734 nfs_directio_write(vp, uiop, cred, ioflag)
  735         struct vnode *vp;
  736         struct uio *uiop;
  737         struct ucred *cred;
  738         int ioflag;
  739 {
  740         int error;
  741         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  742         struct thread *td = uiop->uio_td;
  743         int size;
  744         int wsize;
  745         
  746         mtx_lock(&nmp->nm_mtx);
  747         wsize = nmp->nm_wsize;
  748         mtx_unlock(&nmp->nm_mtx);
  749         if (ioflag & IO_SYNC) {
  750                 int iomode, must_commit;
  751                 struct uio uio;
  752                 struct iovec iov;
  753 do_sync:
  754                 while (uiop->uio_resid > 0) {
  755                         size = min(uiop->uio_resid, wsize);
  756                         size = min(uiop->uio_iov->iov_len, size);
  757                         iov.iov_base = uiop->uio_iov->iov_base;
  758                         iov.iov_len = size;
  759                         uio.uio_iov = &iov;
  760                         uio.uio_iovcnt = 1;
  761                         uio.uio_offset = uiop->uio_offset;
  762                         uio.uio_resid = size;
  763                         uio.uio_segflg = UIO_USERSPACE;
  764                         uio.uio_rw = UIO_WRITE;
  765                         uio.uio_td = td;
  766                         iomode = NFSWRITE_FILESYNC;
  767                         error = ncl_writerpc(vp, &uio, cred, &iomode,
  768                             &must_commit, 0);
  769                         KASSERT((must_commit == 0), 
  770                                 ("ncl_directio_write: Did not commit write"));
  771                         if (error)
  772                                 return (error);
  773                         uiop->uio_offset += size;
  774                         uiop->uio_resid -= size;
  775                         if (uiop->uio_iov->iov_len <= size) {
  776                                 uiop->uio_iovcnt--;
  777                                 uiop->uio_iov++;
  778                         } else {
  779                                 uiop->uio_iov->iov_base = 
  780                                         (char *)uiop->uio_iov->iov_base + size;
  781                                 uiop->uio_iov->iov_len -= size;
  782                         }
  783                 }
  784         } else {
  785                 struct uio *t_uio;
  786                 struct iovec *t_iov;
  787                 struct buf *bp;
  788                 
  789                 /*
  790                  * Break up the write into blocksize chunks and hand these
  791                  * over to nfsiod's for write back.
  792                  * Unfortunately, this incurs a copy of the data. Since 
  793                  * the user could modify the buffer before the write is 
  794                  * initiated.
  795                  * 
  796                  * The obvious optimization here is that one of the 2 copies
  797                  * in the async write path can be eliminated by copying the
  798                  * data here directly into mbufs and passing the mbuf chain
  799                  * down. But that will require a fair amount of re-working
  800                  * of the code and can be done if there's enough interest
  801                  * in NFS directio access.
  802                  */
  803                 while (uiop->uio_resid > 0) {
  804                         size = min(uiop->uio_resid, wsize);
  805                         size = min(uiop->uio_iov->iov_len, size);
  806                         bp = getpbuf(&ncl_pbuf_freecnt);
  807                         t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
  808                         t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
  809                         t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
  810                         t_iov->iov_len = size;
  811                         t_uio->uio_iov = t_iov;
  812                         t_uio->uio_iovcnt = 1;
  813                         t_uio->uio_offset = uiop->uio_offset;
  814                         t_uio->uio_resid = size;
  815                         t_uio->uio_segflg = UIO_SYSSPACE;
  816                         t_uio->uio_rw = UIO_WRITE;
  817                         t_uio->uio_td = td;
  818                         bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
  819                         bp->b_flags |= B_DIRECT;
  820                         bp->b_iocmd = BIO_WRITE;
  821                         if (cred != NOCRED) {
  822                                 crhold(cred);
  823                                 bp->b_wcred = cred;
  824                         } else 
  825                                 bp->b_wcred = NOCRED;                   
  826                         bp->b_caller1 = (void *)t_uio;
  827                         bp->b_vp = vp;
  828                         error = ncl_asyncio(nmp, bp, NOCRED, td);
  829                         if (error) {
  830                                 free(t_iov->iov_base, M_NFSDIRECTIO);
  831                                 free(t_iov, M_NFSDIRECTIO);
  832                                 free(t_uio, M_NFSDIRECTIO);
  833                                 bp->b_vp = NULL;
  834                                 relpbuf(bp, &ncl_pbuf_freecnt);
  835                                 if (error == EINTR)
  836                                         return (error);
  837                                 goto do_sync;
  838                         }
  839                         uiop->uio_offset += size;
  840                         uiop->uio_resid -= size;
  841                         if (uiop->uio_iov->iov_len <= size) {
  842                                 uiop->uio_iovcnt--;
  843                                 uiop->uio_iov++;
  844                         } else {
  845                                 uiop->uio_iov->iov_base = 
  846                                         (char *)uiop->uio_iov->iov_base + size;
  847                                 uiop->uio_iov->iov_len -= size;
  848                         }
  849                 }
  850         }
  851         return (0);
  852 }
  853 
  854 /*
  855  * Vnode op for write using bio
  856  */
  857 int
  858 ncl_write(struct vop_write_args *ap)
  859 {
  860         int biosize;
  861         struct uio *uio = ap->a_uio;
  862         struct thread *td = uio->uio_td;
  863         struct vnode *vp = ap->a_vp;
  864         struct nfsnode *np = VTONFS(vp);
  865         struct ucred *cred = ap->a_cred;
  866         int ioflag = ap->a_ioflag;
  867         struct buf *bp;
  868         struct vattr vattr;
  869         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  870         daddr_t lbn;
  871         int bcount;
  872         int n, on, error = 0;
  873         struct proc *p = td?td->td_proc:NULL;
  874 
  875         KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
  876         KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
  877             ("ncl_write proc"));
  878         if (vp->v_type != VREG)
  879                 return (EIO);
  880         mtx_lock(&np->n_mtx);
  881         if (np->n_flag & NWRITEERR) {
  882                 np->n_flag &= ~NWRITEERR;
  883                 mtx_unlock(&np->n_mtx);
  884                 return (np->n_error);
  885         } else
  886                 mtx_unlock(&np->n_mtx);
  887         mtx_lock(&nmp->nm_mtx);
  888         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  889             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  890                 mtx_unlock(&nmp->nm_mtx);
  891                 (void)ncl_fsinfo(nmp, vp, cred, td);
  892                 mtx_lock(&nmp->nm_mtx);
  893         }
  894         if (nmp->nm_wsize == 0)
  895                 (void) newnfs_iosize(nmp);
  896         mtx_unlock(&nmp->nm_mtx);
  897 
  898         /*
  899          * Synchronously flush pending buffers if we are in synchronous
  900          * mode or if we are appending.
  901          */
  902         if (ioflag & (IO_APPEND | IO_SYNC)) {
  903                 mtx_lock(&np->n_mtx);
  904                 if (np->n_flag & NMODIFIED) {
  905                         mtx_unlock(&np->n_mtx);
  906 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
  907                         /*
  908                          * Require non-blocking, synchronous writes to
  909                          * dirty files to inform the program it needs
  910                          * to fsync(2) explicitly.
  911                          */
  912                         if (ioflag & IO_NDELAY)
  913                                 return (EAGAIN);
  914 #endif
  915 flush_and_restart:
  916                         np->n_attrstamp = 0;
  917                         error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
  918                         if (error)
  919                                 return (error);
  920                 } else
  921                         mtx_unlock(&np->n_mtx);
  922         }
  923 
  924         /*
  925          * If IO_APPEND then load uio_offset.  We restart here if we cannot
  926          * get the append lock.
  927          */
  928         if (ioflag & IO_APPEND) {
  929                 np->n_attrstamp = 0;
  930                 error = VOP_GETATTR(vp, &vattr, cred);
  931                 if (error)
  932                         return (error);
  933                 mtx_lock(&np->n_mtx);
  934                 uio->uio_offset = np->n_size;
  935                 mtx_unlock(&np->n_mtx);
  936         }
  937 
  938         if (uio->uio_offset < 0)
  939                 return (EINVAL);
  940         if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
  941                 return (EFBIG);
  942         if (uio->uio_resid == 0)
  943                 return (0);
  944 
  945         if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
  946                 return nfs_directio_write(vp, uio, cred, ioflag);
  947 
  948         /*
  949          * Maybe this should be above the vnode op call, but so long as
  950          * file servers have no limits, i don't think it matters
  951          */
  952         if (p != NULL) {
  953                 PROC_LOCK(p);
  954                 if (uio->uio_offset + uio->uio_resid >
  955                     lim_cur(p, RLIMIT_FSIZE)) {
  956                         psignal(p, SIGXFSZ);
  957                         PROC_UNLOCK(p);
  958                         return (EFBIG);
  959                 }
  960                 PROC_UNLOCK(p);
  961         }
  962 
  963         biosize = vp->v_mount->mnt_stat.f_iosize;
  964         /*
  965          * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
  966          * would exceed the local maximum per-file write commit size when
  967          * combined with those, we must decide whether to flush,
  968          * go synchronous, or return error.  We don't bother checking
  969          * IO_UNIT -- we just make all writes atomic anyway, as there's
  970          * no point optimizing for something that really won't ever happen.
  971          */
  972         if (!(ioflag & IO_SYNC)) {
  973                 int nflag;
  974 
  975                 mtx_lock(&np->n_mtx);
  976                 nflag = np->n_flag;
  977                 mtx_unlock(&np->n_mtx);         
  978                 int needrestart = 0;
  979                 if (nmp->nm_wcommitsize < uio->uio_resid) {
  980                         /*
  981                          * If this request could not possibly be completed
  982                          * without exceeding the maximum outstanding write
  983                          * commit size, see if we can convert it into a
  984                          * synchronous write operation.
  985                          */
  986                         if (ioflag & IO_NDELAY)
  987                                 return (EAGAIN);
  988                         ioflag |= IO_SYNC;
  989                         if (nflag & NMODIFIED)
  990                                 needrestart = 1;
  991                 } else if (nflag & NMODIFIED) {
  992                         int wouldcommit = 0;
  993                         BO_LOCK(&vp->v_bufobj);
  994                         if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
  995                                 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
  996                                     b_bobufs) {
  997                                         if (bp->b_flags & B_NEEDCOMMIT)
  998                                                 wouldcommit += bp->b_bcount;
  999                                 }
 1000                         }
 1001                         BO_UNLOCK(&vp->v_bufobj);
 1002                         /*
 1003                          * Since we're not operating synchronously and
 1004                          * bypassing the buffer cache, we are in a commit
 1005                          * and holding all of these buffers whether
 1006                          * transmitted or not.  If not limited, this
 1007                          * will lead to the buffer cache deadlocking,
 1008                          * as no one else can flush our uncommitted buffers.
 1009                          */
 1010                         wouldcommit += uio->uio_resid;
 1011                         /*
 1012                          * If we would initially exceed the maximum
 1013                          * outstanding write commit size, flush and restart.
 1014                          */
 1015                         if (wouldcommit > nmp->nm_wcommitsize)
 1016                                 needrestart = 1;
 1017                 }
 1018                 if (needrestart)
 1019                         goto flush_and_restart;
 1020         }
 1021 
 1022         do {
 1023                 NFSINCRGLOBAL(newnfsstats.biocache_writes);
 1024                 lbn = uio->uio_offset / biosize;
 1025                 on = uio->uio_offset & (biosize-1);
 1026                 n = min((unsigned)(biosize - on), uio->uio_resid);
 1027 again:
 1028                 /*
 1029                  * Handle direct append and file extension cases, calculate
 1030                  * unaligned buffer size.
 1031                  */
 1032                 mtx_lock(&np->n_mtx);
 1033                 if (uio->uio_offset == np->n_size && n) {
 1034                         mtx_unlock(&np->n_mtx);
 1035                         /*
 1036                          * Get the buffer (in its pre-append state to maintain
 1037                          * B_CACHE if it was previously set).  Resize the
 1038                          * nfsnode after we have locked the buffer to prevent
 1039                          * readers from reading garbage.
 1040                          */
 1041                         bcount = on;
 1042                         bp = nfs_getcacheblk(vp, lbn, bcount, td);
 1043 
 1044                         if (bp != NULL) {
 1045                                 long save;
 1046 
 1047                                 mtx_lock(&np->n_mtx);
 1048                                 np->n_size = uio->uio_offset + n;
 1049                                 np->n_flag |= NMODIFIED;
 1050                                 vnode_pager_setsize(vp, np->n_size);
 1051                                 mtx_unlock(&np->n_mtx);
 1052 
 1053                                 save = bp->b_flags & B_CACHE;
 1054                                 bcount += n;
 1055                                 allocbuf(bp, bcount);
 1056                                 bp->b_flags |= save;
 1057                         }
 1058                 } else {
 1059                         /*
 1060                          * Obtain the locked cache block first, and then
 1061                          * adjust the file's size as appropriate.
 1062                          */
 1063                         bcount = on + n;
 1064                         if ((off_t)lbn * biosize + bcount < np->n_size) {
 1065                                 if ((off_t)(lbn + 1) * biosize < np->n_size)
 1066                                         bcount = biosize;
 1067                                 else
 1068                                         bcount = np->n_size - (off_t)lbn * biosize;
 1069                         }
 1070                         mtx_unlock(&np->n_mtx);
 1071                         bp = nfs_getcacheblk(vp, lbn, bcount, td);
 1072                         mtx_lock(&np->n_mtx);
 1073                         if (uio->uio_offset + n > np->n_size) {
 1074                                 np->n_size = uio->uio_offset + n;
 1075                                 np->n_flag |= NMODIFIED;
 1076                                 vnode_pager_setsize(vp, np->n_size);
 1077                         }
 1078                         mtx_unlock(&np->n_mtx);
 1079                 }
 1080 
 1081                 if (!bp) {
 1082                         error = newnfs_sigintr(nmp, td);
 1083                         if (!error)
 1084                                 error = EINTR;
 1085                         break;
 1086                 }
 1087 
 1088                 /*
 1089                  * Issue a READ if B_CACHE is not set.  In special-append
 1090                  * mode, B_CACHE is based on the buffer prior to the write
 1091                  * op and is typically set, avoiding the read.  If a read
 1092                  * is required in special append mode, the server will
 1093                  * probably send us a short-read since we extended the file
 1094                  * on our end, resulting in b_resid == 0 and, thusly,
 1095                  * B_CACHE getting set.
 1096                  *
 1097                  * We can also avoid issuing the read if the write covers
 1098                  * the entire buffer.  We have to make sure the buffer state
 1099                  * is reasonable in this case since we will not be initiating
 1100                  * I/O.  See the comments in kern/vfs_bio.c's getblk() for
 1101                  * more information.
 1102                  *
 1103                  * B_CACHE may also be set due to the buffer being cached
 1104                  * normally.
 1105                  */
 1106 
 1107                 if (on == 0 && n == bcount) {
 1108                         bp->b_flags |= B_CACHE;
 1109                         bp->b_flags &= ~B_INVAL;
 1110                         bp->b_ioflags &= ~BIO_ERROR;
 1111                 }
 1112 
 1113                 if ((bp->b_flags & B_CACHE) == 0) {
 1114                         bp->b_iocmd = BIO_READ;
 1115                         vfs_busy_pages(bp, 0);
 1116                         error = ncl_doio(vp, bp, cred, td, 0);
 1117                         if (error) {
 1118                                 brelse(bp);
 1119                                 break;
 1120                         }
 1121                 }
 1122                 if (bp->b_wcred == NOCRED)
 1123                         bp->b_wcred = crhold(cred);
 1124                 mtx_lock(&np->n_mtx);
 1125                 np->n_flag |= NMODIFIED;
 1126                 mtx_unlock(&np->n_mtx);
 1127 
 1128                 /*
 1129                  * If dirtyend exceeds file size, chop it down.  This should
 1130                  * not normally occur but there is an append race where it
 1131                  * might occur XXX, so we log it.
 1132                  *
 1133                  * If the chopping creates a reverse-indexed or degenerate
 1134                  * situation with dirtyoff/end, we 0 both of them.
 1135                  */
 1136 
 1137                 if (bp->b_dirtyend > bcount) {
 1138                         ncl_printf("NFS append race @%lx:%d\n",
 1139                             (long)bp->b_blkno * DEV_BSIZE,
 1140                             bp->b_dirtyend - bcount);
 1141                         bp->b_dirtyend = bcount;
 1142                 }
 1143 
 1144                 if (bp->b_dirtyoff >= bp->b_dirtyend)
 1145                         bp->b_dirtyoff = bp->b_dirtyend = 0;
 1146 
 1147                 /*
 1148                  * If the new write will leave a contiguous dirty
 1149                  * area, just update the b_dirtyoff and b_dirtyend,
 1150                  * otherwise force a write rpc of the old dirty area.
 1151                  *
 1152                  * While it is possible to merge discontiguous writes due to
 1153                  * our having a B_CACHE buffer ( and thus valid read data
 1154                  * for the hole), we don't because it could lead to
 1155                  * significant cache coherency problems with multiple clients,
 1156                  * especially if locking is implemented later on.
 1157                  *
 1158                  * as an optimization we could theoretically maintain
 1159                  * a linked list of discontinuous areas, but we would still
 1160                  * have to commit them separately so there isn't much
 1161                  * advantage to it except perhaps a bit of asynchronization.
 1162                  */
 1163 
 1164                 if (bp->b_dirtyend > 0 &&
 1165                     (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
 1166                         if (bwrite(bp) == EINTR) {
 1167                                 error = EINTR;
 1168                                 break;
 1169                         }
 1170                         goto again;
 1171                 }
 1172 
 1173                 error = uiomove((char *)bp->b_data + on, n, uio);
 1174 
 1175                 /*
 1176                  * Since this block is being modified, it must be written
 1177                  * again and not just committed.  Since write clustering does
 1178                  * not work for the stage 1 data write, only the stage 2
 1179                  * commit rpc, we have to clear B_CLUSTEROK as well.
 1180                  */
 1181                 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1182 
 1183                 if (error) {
 1184                         bp->b_ioflags |= BIO_ERROR;
 1185                         brelse(bp);
 1186                         break;
 1187                 }
 1188 
 1189                 /*
 1190                  * Only update dirtyoff/dirtyend if not a degenerate
 1191                  * condition.
 1192                  */
 1193                 if (n) {
 1194                         if (bp->b_dirtyend > 0) {
 1195                                 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
 1196                                 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
 1197                         } else {
 1198                                 bp->b_dirtyoff = on;
 1199                                 bp->b_dirtyend = on + n;
 1200                         }
 1201                         vfs_bio_set_valid(bp, on, n);
 1202                 }
 1203 
 1204                 /*
 1205                  * If IO_SYNC do bwrite().
 1206                  *
 1207                  * IO_INVAL appears to be unused.  The idea appears to be
 1208                  * to turn off caching in this case.  Very odd.  XXX
 1209                  */
 1210                 if ((ioflag & IO_SYNC)) {
 1211                         if (ioflag & IO_INVAL)
 1212                                 bp->b_flags |= B_NOCACHE;
 1213                         error = bwrite(bp);
 1214                         if (error)
 1215                                 break;
 1216                 } else if ((n + on) == biosize) {
 1217                         bp->b_flags |= B_ASYNC;
 1218                         (void) ncl_writebp(bp, 0, NULL);
 1219                 } else {
 1220                         bdwrite(bp);
 1221                 }
 1222         } while (uio->uio_resid > 0 && n > 0);
 1223 
 1224         return (error);
 1225 }
 1226 
 1227 /*
 1228  * Get an nfs cache block.
 1229  *
 1230  * Allocate a new one if the block isn't currently in the cache
 1231  * and return the block marked busy. If the calling process is
 1232  * interrupted by a signal for an interruptible mount point, return
 1233  * NULL.
 1234  *
 1235  * The caller must carefully deal with the possible B_INVAL state of
 1236  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
 1237  * indirectly), so synchronous reads can be issued without worrying about
 1238  * the B_INVAL state.  We have to be a little more careful when dealing
 1239  * with writes (see comments in nfs_write()) when extending a file past
 1240  * its EOF.
 1241  */
 1242 static struct buf *
 1243 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
 1244 {
 1245         struct buf *bp;
 1246         struct mount *mp;
 1247         struct nfsmount *nmp;
 1248 
 1249         mp = vp->v_mount;
 1250         nmp = VFSTONFS(mp);
 1251 
 1252         if (nmp->nm_flag & NFSMNT_INT) {
 1253                 sigset_t oldset;
 1254 
 1255                 newnfs_set_sigmask(td, &oldset);
 1256                 bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
 1257                 newnfs_restore_sigmask(td, &oldset);
 1258                 while (bp == NULL) {
 1259                         if (newnfs_sigintr(nmp, td))
 1260                                 return (NULL);
 1261                         bp = getblk(vp, bn, size, 0, 2 * hz, 0);
 1262                 }
 1263         } else {
 1264                 bp = getblk(vp, bn, size, 0, 0, 0);
 1265         }
 1266 
 1267         if (vp->v_type == VREG) {
 1268                 int biosize;
 1269 
 1270                 biosize = mp->mnt_stat.f_iosize;
 1271                 bp->b_blkno = bn * (biosize / DEV_BSIZE);
 1272         }
 1273         return (bp);
 1274 }
 1275 
 1276 /*
 1277  * Flush and invalidate all dirty buffers. If another process is already
 1278  * doing the flush, just wait for completion.
 1279  */
 1280 int
 1281 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
 1282 {
 1283         struct nfsnode *np = VTONFS(vp);
 1284         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
 1285         int error = 0, slpflag, slptimeo;
 1286         int old_lock = 0;
 1287 
 1288         ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
 1289 
 1290         if ((nmp->nm_flag & NFSMNT_INT) == 0)
 1291                 intrflg = 0;
 1292         if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
 1293                 intrflg = 1;
 1294         if (intrflg) {
 1295                 slpflag = NFS_PCATCH;
 1296                 slptimeo = 2 * hz;
 1297         } else {
 1298                 slpflag = 0;
 1299                 slptimeo = 0;
 1300         }
 1301 
 1302         old_lock = ncl_upgrade_vnlock(vp);
 1303         if (vp->v_iflag & VI_DOOMED) {
 1304                 /*
 1305                  * Since vgonel() uses the generic vinvalbuf() to flush
 1306                  * dirty buffers and it does not call this function, it
 1307                  * is safe to just return OK when VI_DOOMED is set.
 1308                  */
 1309                 ncl_downgrade_vnlock(vp, old_lock);
 1310                 return (0);
 1311         }
 1312 
 1313         /*
 1314          * Now, flush as required.
 1315          */
 1316         if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
 1317                 VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
 1318                 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
 1319                 VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
 1320                 /*
 1321                  * If the page clean was interrupted, fail the invalidation.
 1322                  * Not doing so, we run the risk of losing dirty pages in the 
 1323                  * vinvalbuf() call below.
 1324                  */
 1325                 if (intrflg && (error = newnfs_sigintr(nmp, td)))
 1326                         goto out;
 1327         }
 1328 
 1329         error = vinvalbuf(vp, flags, slpflag, 0);
 1330         while (error) {
 1331                 if (intrflg && (error = newnfs_sigintr(nmp, td)))
 1332                         goto out;
 1333                 error = vinvalbuf(vp, flags, 0, slptimeo);
 1334         }
 1335         mtx_lock(&np->n_mtx);
 1336         if (np->n_directio_asyncwr == 0)
 1337                 np->n_flag &= ~NMODIFIED;
 1338         mtx_unlock(&np->n_mtx);
 1339 out:
 1340         ncl_downgrade_vnlock(vp, old_lock);
 1341         return error;
 1342 }
 1343 
 1344 /*
 1345  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
 1346  * This is mainly to avoid queueing async I/O requests when the nfsiods
 1347  * are all hung on a dead server.
 1348  *
 1349  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
 1350  * is eventually dequeued by the async daemon, ncl_doio() *will*.
 1351  */
 1352 int
 1353 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
 1354 {
 1355         int iod;
 1356         int gotiod;
 1357         int slpflag = 0;
 1358         int slptimeo = 0;
 1359         int error, error2;
 1360 
 1361         /*
 1362          * Unless iothreadcnt is set > 0, don't bother with async I/O
 1363          * threads. For LAN environments, they don't buy any significant
 1364          * performance improvement that you can't get with large block
 1365          * sizes.
 1366          */
 1367         if (nmp->nm_readahead == 0)
 1368                 return (EPERM);
 1369 
 1370         /*
 1371          * Commits are usually short and sweet so lets save some cpu and
 1372          * leave the async daemons for more important rpc's (such as reads
 1373          * and writes).
 1374          */
 1375         mtx_lock(&ncl_iod_mutex);
 1376         if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
 1377             (nmp->nm_bufqiods > ncl_numasync / 2)) {
 1378                 mtx_unlock(&ncl_iod_mutex);
 1379                 return(EIO);
 1380         }
 1381 again:
 1382         if (nmp->nm_flag & NFSMNT_INT)
 1383                 slpflag = NFS_PCATCH;
 1384         gotiod = FALSE;
 1385 
 1386         /*
 1387          * Find a free iod to process this request.
 1388          */
 1389         for (iod = 0; iod < ncl_numasync; iod++)
 1390                 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
 1391                         gotiod = TRUE;
 1392                         break;
 1393                 }
 1394 
 1395         /*
 1396          * Try to create one if none are free.
 1397          */
 1398         if (!gotiod) {
 1399                 iod = ncl_nfsiodnew(1);
 1400                 if (iod != -1)
 1401                         gotiod = TRUE;
 1402         }
 1403 
 1404         if (gotiod) {
 1405                 /*
 1406                  * Found one, so wake it up and tell it which
 1407                  * mount to process.
 1408                  */
 1409                 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
 1410                     iod, nmp));
 1411                 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
 1412                 ncl_iodmount[iod] = nmp;
 1413                 nmp->nm_bufqiods++;
 1414                 wakeup(&ncl_iodwant[iod]);
 1415         }
 1416 
 1417         /*
 1418          * If none are free, we may already have an iod working on this mount
 1419          * point.  If so, it will process our request.
 1420          */
 1421         if (!gotiod) {
 1422                 if (nmp->nm_bufqiods > 0) {
 1423                         NFS_DPF(ASYNCIO,
 1424                                 ("ncl_asyncio: %d iods are already processing mount %p\n",
 1425                                  nmp->nm_bufqiods, nmp));
 1426                         gotiod = TRUE;
 1427                 }
 1428         }
 1429 
 1430         /*
 1431          * If we have an iod which can process the request, then queue
 1432          * the buffer.
 1433          */
 1434         if (gotiod) {
 1435                 /*
 1436                  * Ensure that the queue never grows too large.  We still want
 1437                  * to asynchronize so we block rather then return EIO.
 1438                  */
 1439                 while (nmp->nm_bufqlen >= 2*ncl_numasync) {
 1440                         NFS_DPF(ASYNCIO,
 1441                                 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
 1442                         nmp->nm_bufqwant = TRUE;
 1443                         error = newnfs_msleep(td, &nmp->nm_bufq, 
 1444                             &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
 1445                            slptimeo);
 1446                         if (error) {
 1447                                 error2 = newnfs_sigintr(nmp, td);
 1448                                 if (error2) {
 1449                                         mtx_unlock(&ncl_iod_mutex);                                     
 1450                                         return (error2);
 1451                                 }
 1452                                 if (slpflag == NFS_PCATCH) {
 1453                                         slpflag = 0;
 1454                                         slptimeo = 2 * hz;
 1455                                 }
 1456                         }
 1457                         /*
 1458                          * We might have lost our iod while sleeping,
 1459                          * so check and loop if nescessary.
 1460                          */
 1461                         if (nmp->nm_bufqiods == 0) {
 1462                                 NFS_DPF(ASYNCIO,
 1463                                         ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
 1464                                 goto again;
 1465                         }
 1466                 }
 1467 
 1468                 /* We might have lost our nfsiod */
 1469                 if (nmp->nm_bufqiods == 0) {
 1470                         NFS_DPF(ASYNCIO,
 1471                                 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
 1472                         goto again;
 1473                 }
 1474 
 1475                 if (bp->b_iocmd == BIO_READ) {
 1476                         if (bp->b_rcred == NOCRED && cred != NOCRED)
 1477                                 bp->b_rcred = crhold(cred);
 1478                 } else {
 1479                         if (bp->b_wcred == NOCRED && cred != NOCRED)
 1480                                 bp->b_wcred = crhold(cred);
 1481                 }
 1482 
 1483                 if (bp->b_flags & B_REMFREE)
 1484                         bremfreef(bp);
 1485                 BUF_KERNPROC(bp);
 1486                 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
 1487                 nmp->nm_bufqlen++;
 1488                 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
 1489                         mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);                   
 1490                         VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
 1491                         VTONFS(bp->b_vp)->n_directio_asyncwr++;
 1492                         mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
 1493                 }
 1494                 mtx_unlock(&ncl_iod_mutex);
 1495                 return (0);
 1496         }
 1497 
 1498         mtx_unlock(&ncl_iod_mutex);
 1499 
 1500         /*
 1501          * All the iods are busy on other mounts, so return EIO to
 1502          * force the caller to process the i/o synchronously.
 1503          */
 1504         NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
 1505         return (EIO);
 1506 }
 1507 
 1508 void
 1509 ncl_doio_directwrite(struct buf *bp)
 1510 {
 1511         int iomode, must_commit;
 1512         struct uio *uiop = (struct uio *)bp->b_caller1;
 1513         char *iov_base = uiop->uio_iov->iov_base;
 1514         
 1515         iomode = NFSWRITE_FILESYNC;
 1516         uiop->uio_td = NULL; /* NULL since we're in nfsiod */
 1517         ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
 1518         KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
 1519         free(iov_base, M_NFSDIRECTIO);
 1520         free(uiop->uio_iov, M_NFSDIRECTIO);
 1521         free(uiop, M_NFSDIRECTIO);
 1522         if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
 1523                 struct nfsnode *np = VTONFS(bp->b_vp);
 1524                 mtx_lock(&np->n_mtx);
 1525                 np->n_directio_asyncwr--;
 1526                 if (np->n_directio_asyncwr == 0) {
 1527                         np->n_flag &= ~NMODIFIED;
 1528                         if ((np->n_flag & NFSYNCWAIT)) {
 1529                                 np->n_flag &= ~NFSYNCWAIT;
 1530                                 wakeup((caddr_t)&np->n_directio_asyncwr);
 1531                         }
 1532                 }
 1533                 mtx_unlock(&np->n_mtx);
 1534         }
 1535         bp->b_vp = NULL;
 1536         relpbuf(bp, &ncl_pbuf_freecnt);
 1537 }
 1538 
 1539 /*
 1540  * Do an I/O operation to/from a cache block. This may be called
 1541  * synchronously or from an nfsiod.
 1542  */
 1543 int
 1544 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
 1545     int called_from_strategy)
 1546 {
 1547         struct uio *uiop;
 1548         struct nfsnode *np;
 1549         struct nfsmount *nmp;
 1550         int error = 0, iomode, must_commit = 0;
 1551         struct uio uio;
 1552         struct iovec io;
 1553         struct proc *p = td ? td->td_proc : NULL;
 1554         uint8_t iocmd;
 1555         
 1556         np = VTONFS(vp);
 1557         nmp = VFSTONFS(vp->v_mount);
 1558         uiop = &uio;
 1559         uiop->uio_iov = &io;
 1560         uiop->uio_iovcnt = 1;
 1561         uiop->uio_segflg = UIO_SYSSPACE;
 1562         uiop->uio_td = td;
 1563 
 1564         /*
 1565          * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
 1566          * do this here so we do not have to do it in all the code that
 1567          * calls us.
 1568          */
 1569         bp->b_flags &= ~B_INVAL;
 1570         bp->b_ioflags &= ~BIO_ERROR;
 1571 
 1572         KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
 1573         iocmd = bp->b_iocmd;
 1574         if (iocmd == BIO_READ) {
 1575             io.iov_len = uiop->uio_resid = bp->b_bcount;
 1576             io.iov_base = bp->b_data;
 1577             uiop->uio_rw = UIO_READ;
 1578 
 1579             switch (vp->v_type) {
 1580             case VREG:
 1581                 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
 1582                 NFSINCRGLOBAL(newnfsstats.read_bios);
 1583                 error = ncl_readrpc(vp, uiop, cr);
 1584 
 1585                 if (!error) {
 1586                     if (uiop->uio_resid) {
 1587                         /*
 1588                          * If we had a short read with no error, we must have
 1589                          * hit a file hole.  We should zero-fill the remainder.
 1590                          * This can also occur if the server hits the file EOF.
 1591                          *
 1592                          * Holes used to be able to occur due to pending
 1593                          * writes, but that is not possible any longer.
 1594                          */
 1595                         int nread = bp->b_bcount - uiop->uio_resid;
 1596                         int left  = uiop->uio_resid;
 1597 
 1598                         if (left > 0)
 1599                                 bzero((char *)bp->b_data + nread, left);
 1600                         uiop->uio_resid = 0;
 1601                     }
 1602                 }
 1603                 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
 1604                 if (p && (vp->v_vflag & VV_TEXT)) {
 1605                         mtx_lock(&np->n_mtx);
 1606                         if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
 1607                                 mtx_unlock(&np->n_mtx);
 1608                                 PROC_LOCK(p);
 1609                                 killproc(p, "text file modification");
 1610                                 PROC_UNLOCK(p);
 1611                         } else
 1612                                 mtx_unlock(&np->n_mtx);
 1613                 }
 1614                 break;
 1615             case VLNK:
 1616                 uiop->uio_offset = (off_t)0;
 1617                 NFSINCRGLOBAL(newnfsstats.readlink_bios);
 1618                 error = ncl_readlinkrpc(vp, uiop, cr);
 1619                 break;
 1620             case VDIR:
 1621                 NFSINCRGLOBAL(newnfsstats.readdir_bios);
 1622                 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
 1623                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
 1624                         error = ncl_readdirplusrpc(vp, uiop, cr, td);
 1625                         if (error == NFSERR_NOTSUPP)
 1626                                 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
 1627                 }
 1628                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
 1629                         error = ncl_readdirrpc(vp, uiop, cr, td);
 1630                 /*
 1631                  * end-of-directory sets B_INVAL but does not generate an
 1632                  * error.
 1633                  */
 1634                 if (error == 0 && uiop->uio_resid == bp->b_bcount)
 1635                         bp->b_flags |= B_INVAL;
 1636                 break;
 1637             default:
 1638                 ncl_printf("ncl_doio:  type %x unexpected\n", vp->v_type);
 1639                 break;
 1640             };
 1641             if (error) {
 1642                 bp->b_ioflags |= BIO_ERROR;
 1643                 bp->b_error = error;
 1644             }
 1645         } else {
 1646             /*
 1647              * If we only need to commit, try to commit
 1648              */
 1649             if (bp->b_flags & B_NEEDCOMMIT) {
 1650                     int retv;
 1651                     off_t off;
 1652 
 1653                     off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
 1654                     retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
 1655                         bp->b_wcred, td);
 1656                     if (retv == 0) {
 1657                             bp->b_dirtyoff = bp->b_dirtyend = 0;
 1658                             bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1659                             bp->b_resid = 0;
 1660                             bufdone(bp);
 1661                             return (0);
 1662                     }
 1663                     if (retv == NFSERR_STALEWRITEVERF) {
 1664                             ncl_clearcommit(vp->v_mount);
 1665                     }
 1666             }
 1667 
 1668             /*
 1669              * Setup for actual write
 1670              */
 1671             mtx_lock(&np->n_mtx);
 1672             if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
 1673                 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
 1674             mtx_unlock(&np->n_mtx);
 1675 
 1676             if (bp->b_dirtyend > bp->b_dirtyoff) {
 1677                 io.iov_len = uiop->uio_resid = bp->b_dirtyend
 1678                     - bp->b_dirtyoff;
 1679                 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
 1680                     + bp->b_dirtyoff;
 1681                 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
 1682                 uiop->uio_rw = UIO_WRITE;
 1683                 NFSINCRGLOBAL(newnfsstats.write_bios);
 1684 
 1685                 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
 1686                     iomode = NFSWRITE_UNSTABLE;
 1687                 else
 1688                     iomode = NFSWRITE_FILESYNC;
 1689 
 1690                 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
 1691                     called_from_strategy);
 1692 
 1693                 /*
 1694                  * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
 1695                  * to cluster the buffers needing commit.  This will allow
 1696                  * the system to submit a single commit rpc for the whole
 1697                  * cluster.  We can do this even if the buffer is not 100%
 1698                  * dirty (relative to the NFS blocksize), so we optimize the
 1699                  * append-to-file-case.
 1700                  *
 1701                  * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
 1702                  * cleared because write clustering only works for commit
 1703                  * rpc's, not for the data portion of the write).
 1704                  */
 1705 
 1706                 if (!error && iomode == NFSWRITE_UNSTABLE) {
 1707                     bp->b_flags |= B_NEEDCOMMIT;
 1708                     if (bp->b_dirtyoff == 0
 1709                         && bp->b_dirtyend == bp->b_bcount)
 1710                         bp->b_flags |= B_CLUSTEROK;
 1711                 } else {
 1712                     bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1713                 }
 1714 
 1715                 /*
 1716                  * For an interrupted write, the buffer is still valid
 1717                  * and the write hasn't been pushed to the server yet,
 1718                  * so we can't set BIO_ERROR and report the interruption
 1719                  * by setting B_EINTR. For the B_ASYNC case, B_EINTR
 1720                  * is not relevant, so the rpc attempt is essentially
 1721                  * a noop.  For the case of a V3 write rpc not being
 1722                  * committed to stable storage, the block is still
 1723                  * dirty and requires either a commit rpc or another
 1724                  * write rpc with iomode == NFSV3WRITE_FILESYNC before
 1725                  * the block is reused. This is indicated by setting
 1726                  * the B_DELWRI and B_NEEDCOMMIT flags.
 1727                  *
 1728                  * EIO is returned by ncl_writerpc() to indicate a recoverable
 1729                  * write error and is handled as above, except that
 1730                  * B_EINTR isn't set. One cause of this is a stale stateid
 1731                  * error for the RPC that indicates recovery is required,
 1732                  * when called with called_from_strategy != 0.
 1733                  *
 1734                  * If the buffer is marked B_PAGING, it does not reside on
 1735                  * the vp's paging queues so we cannot call bdirty().  The
 1736                  * bp in this case is not an NFS cache block so we should
 1737                  * be safe. XXX
 1738                  *
 1739                  * The logic below breaks up errors into recoverable and 
 1740                  * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
 1741                  * and keep the buffer around for potential write retries.
 1742                  * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
 1743                  * and save the error in the nfsnode. This is less than ideal 
 1744                  * but necessary. Keeping such buffers around could potentially
 1745                  * cause buffer exhaustion eventually (they can never be written
 1746                  * out, so will get constantly be re-dirtied). It also causes
 1747                  * all sorts of vfs panics. For non-recoverable write errors, 
 1748                  * also invalidate the attrcache, so we'll be forced to go over
 1749                  * the wire for this object, returning an error to user on next
 1750                  * call (most of the time).
 1751                  */
 1752                 if (error == EINTR || error == EIO || error == ETIMEDOUT
 1753                     || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
 1754                         int s;
 1755 
 1756                         s = splbio();
 1757                         bp->b_flags &= ~(B_INVAL|B_NOCACHE);
 1758                         if ((bp->b_flags & B_PAGING) == 0) {
 1759                             bdirty(bp);
 1760                             bp->b_flags &= ~B_DONE;
 1761                         }
 1762                         if ((error == EINTR || error == ETIMEDOUT) &&
 1763                             (bp->b_flags & B_ASYNC) == 0)
 1764                             bp->b_flags |= B_EINTR;
 1765                         splx(s);
 1766                 } else {
 1767                     if (error) {
 1768                         bp->b_ioflags |= BIO_ERROR;
 1769                         bp->b_flags |= B_INVAL;
 1770                         bp->b_error = np->n_error = error;
 1771                         mtx_lock(&np->n_mtx);
 1772                         np->n_flag |= NWRITEERR;
 1773                         np->n_attrstamp = 0;
 1774                         mtx_unlock(&np->n_mtx);
 1775                     }
 1776                     bp->b_dirtyoff = bp->b_dirtyend = 0;
 1777                 }
 1778             } else {
 1779                 bp->b_resid = 0;
 1780                 bufdone(bp);
 1781                 return (0);
 1782             }
 1783         }
 1784         bp->b_resid = uiop->uio_resid;
 1785         if (must_commit)
 1786             ncl_clearcommit(vp->v_mount);
 1787         bufdone(bp);
 1788         return (error);
 1789 }
 1790 
 1791 /*
 1792  * Used to aid in handling ftruncate() operations on the NFS client side.
 1793  * Truncation creates a number of special problems for NFS.  We have to
 1794  * throw away VM pages and buffer cache buffers that are beyond EOF, and
 1795  * we have to properly handle VM pages or (potentially dirty) buffers
 1796  * that straddle the truncation point.
 1797  */
 1798 
 1799 int
 1800 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
 1801 {
 1802         struct nfsnode *np = VTONFS(vp);
 1803         u_quad_t tsize;
 1804         int biosize = vp->v_mount->mnt_stat.f_iosize;
 1805         int error = 0;
 1806 
 1807         mtx_lock(&np->n_mtx);
 1808         tsize = np->n_size;
 1809         np->n_size = nsize;
 1810         mtx_unlock(&np->n_mtx);
 1811 
 1812         if (nsize < tsize) {
 1813                 struct buf *bp;
 1814                 daddr_t lbn;
 1815                 int bufsize;
 1816 
 1817                 /*
 1818                  * vtruncbuf() doesn't get the buffer overlapping the 
 1819                  * truncation point.  We may have a B_DELWRI and/or B_CACHE
 1820                  * buffer that now needs to be truncated.
 1821                  */
 1822                 error = vtruncbuf(vp, cred, td, nsize, biosize);
 1823                 lbn = nsize / biosize;
 1824                 bufsize = nsize & (biosize - 1);
 1825                 bp = nfs_getcacheblk(vp, lbn, bufsize, td);
 1826                 if (!bp)
 1827                         return EINTR;
 1828                 if (bp->b_dirtyoff > bp->b_bcount)
 1829                         bp->b_dirtyoff = bp->b_bcount;
 1830                 if (bp->b_dirtyend > bp->b_bcount)
 1831                         bp->b_dirtyend = bp->b_bcount;
 1832                 bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
 1833                 brelse(bp);
 1834         } else {
 1835                 vnode_pager_setsize(vp, nsize);
 1836         }
 1837         return(error);
 1838 }
 1839 

Cache object: 2cad1e862c38beb4789a14937b2ae206


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.