1 /*-
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
33 */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include "opt_kdtrace.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bio.h>
43 #include <sys/buf.h>
44 #include <sys/kernel.h>
45 #include <sys/mount.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_extern.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_pager.h>
55 #include <vm/vnode_pager.h>
56
57 #include <fs/nfs/nfsport.h>
58 #include <fs/nfsclient/nfsmount.h>
59 #include <fs/nfsclient/nfs.h>
60 #include <fs/nfsclient/nfsnode.h>
61 #include <fs/nfsclient/nfs_kdtrace.h>
62
63 extern int newnfs_directio_allow_mmap;
64 extern struct nfsstats newnfsstats;
65 extern struct mtx ncl_iod_mutex;
66 extern int ncl_numasync;
67 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
68 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
69 extern int newnfs_directio_enable;
70 extern int nfs_keep_dirty_on_error;
71
72 int ncl_pbuf_freecnt = -1; /* start out unlimited */
73
74 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
75 struct thread *td);
76 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
77 struct ucred *cred, int ioflag);
78
79 /*
80 * Vnode op for VM getpages.
81 */
82 int
83 ncl_getpages(struct vop_getpages_args *ap)
84 {
85 int i, error, nextoff, size, toff, count, npages;
86 struct uio uio;
87 struct iovec iov;
88 vm_offset_t kva;
89 struct buf *bp;
90 struct vnode *vp;
91 struct thread *td;
92 struct ucred *cred;
93 struct nfsmount *nmp;
94 vm_object_t object;
95 vm_page_t *pages;
96 struct nfsnode *np;
97
98 vp = ap->a_vp;
99 np = VTONFS(vp);
100 td = curthread; /* XXX */
101 cred = curthread->td_ucred; /* XXX */
102 nmp = VFSTONFS(vp->v_mount);
103 pages = ap->a_m;
104 count = ap->a_count;
105
106 if ((object = vp->v_object) == NULL) {
107 ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
108 return (VM_PAGER_ERROR);
109 }
110
111 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
112 mtx_lock(&np->n_mtx);
113 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
114 mtx_unlock(&np->n_mtx);
115 ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
116 return (VM_PAGER_ERROR);
117 } else
118 mtx_unlock(&np->n_mtx);
119 }
120
121 mtx_lock(&nmp->nm_mtx);
122 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
123 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
124 mtx_unlock(&nmp->nm_mtx);
125 /* We'll never get here for v4, because we always have fsinfo */
126 (void)ncl_fsinfo(nmp, vp, cred, td);
127 } else
128 mtx_unlock(&nmp->nm_mtx);
129
130 npages = btoc(count);
131
132 /*
133 * If the requested page is partially valid, just return it and
134 * allow the pager to zero-out the blanks. Partially valid pages
135 * can only occur at the file EOF.
136 */
137 VM_OBJECT_LOCK(object);
138 if (pages[ap->a_reqpage]->valid != 0) {
139 for (i = 0; i < npages; ++i) {
140 if (i != ap->a_reqpage) {
141 vm_page_lock(pages[i]);
142 vm_page_free(pages[i]);
143 vm_page_unlock(pages[i]);
144 }
145 }
146 VM_OBJECT_UNLOCK(object);
147 return (0);
148 }
149 VM_OBJECT_UNLOCK(object);
150
151 /*
152 * We use only the kva address for the buffer, but this is extremely
153 * convienient and fast.
154 */
155 bp = getpbuf(&ncl_pbuf_freecnt);
156
157 kva = (vm_offset_t) bp->b_data;
158 pmap_qenter(kva, pages, npages);
159 PCPU_INC(cnt.v_vnodein);
160 PCPU_ADD(cnt.v_vnodepgsin, npages);
161
162 iov.iov_base = (caddr_t) kva;
163 iov.iov_len = count;
164 uio.uio_iov = &iov;
165 uio.uio_iovcnt = 1;
166 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
167 uio.uio_resid = count;
168 uio.uio_segflg = UIO_SYSSPACE;
169 uio.uio_rw = UIO_READ;
170 uio.uio_td = td;
171
172 error = ncl_readrpc(vp, &uio, cred);
173 pmap_qremove(kva, npages);
174
175 relpbuf(bp, &ncl_pbuf_freecnt);
176
177 if (error && (uio.uio_resid == count)) {
178 ncl_printf("nfs_getpages: error %d\n", error);
179 VM_OBJECT_LOCK(object);
180 for (i = 0; i < npages; ++i) {
181 if (i != ap->a_reqpage) {
182 vm_page_lock(pages[i]);
183 vm_page_free(pages[i]);
184 vm_page_unlock(pages[i]);
185 }
186 }
187 VM_OBJECT_UNLOCK(object);
188 return (VM_PAGER_ERROR);
189 }
190
191 /*
192 * Calculate the number of bytes read and validate only that number
193 * of bytes. Note that due to pending writes, size may be 0. This
194 * does not mean that the remaining data is invalid!
195 */
196
197 size = count - uio.uio_resid;
198 VM_OBJECT_LOCK(object);
199 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
200 vm_page_t m;
201 nextoff = toff + PAGE_SIZE;
202 m = pages[i];
203
204 if (nextoff <= size) {
205 /*
206 * Read operation filled an entire page
207 */
208 m->valid = VM_PAGE_BITS_ALL;
209 KASSERT(m->dirty == 0,
210 ("nfs_getpages: page %p is dirty", m));
211 } else if (size > toff) {
212 /*
213 * Read operation filled a partial page.
214 */
215 m->valid = 0;
216 vm_page_set_valid(m, 0, size - toff);
217 KASSERT(m->dirty == 0,
218 ("nfs_getpages: page %p is dirty", m));
219 } else {
220 /*
221 * Read operation was short. If no error
222 * occured we may have hit a zero-fill
223 * section. We leave valid set to 0, and page
224 * is freed by vm_page_readahead_finish() if
225 * its index is not equal to requested, or
226 * page is zeroed and set valid by
227 * vm_pager_get_pages() for requested page.
228 */
229 ;
230 }
231 if (i != ap->a_reqpage)
232 vm_page_readahead_finish(m);
233 }
234 VM_OBJECT_UNLOCK(object);
235 return (0);
236 }
237
238 /*
239 * Vnode op for VM putpages.
240 */
241 int
242 ncl_putpages(struct vop_putpages_args *ap)
243 {
244 struct uio uio;
245 struct iovec iov;
246 vm_offset_t kva;
247 struct buf *bp;
248 int iomode, must_commit, i, error, npages, count;
249 off_t offset;
250 int *rtvals;
251 struct vnode *vp;
252 struct thread *td;
253 struct ucred *cred;
254 struct nfsmount *nmp;
255 struct nfsnode *np;
256 vm_page_t *pages;
257
258 vp = ap->a_vp;
259 np = VTONFS(vp);
260 td = curthread; /* XXX */
261 /* Set the cred to n_writecred for the write rpcs. */
262 if (np->n_writecred != NULL)
263 cred = crhold(np->n_writecred);
264 else
265 cred = crhold(curthread->td_ucred); /* XXX */
266 nmp = VFSTONFS(vp->v_mount);
267 pages = ap->a_m;
268 count = ap->a_count;
269 rtvals = ap->a_rtvals;
270 npages = btoc(count);
271 offset = IDX_TO_OFF(pages[0]->pindex);
272
273 mtx_lock(&nmp->nm_mtx);
274 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
275 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
276 mtx_unlock(&nmp->nm_mtx);
277 (void)ncl_fsinfo(nmp, vp, cred, td);
278 } else
279 mtx_unlock(&nmp->nm_mtx);
280
281 mtx_lock(&np->n_mtx);
282 if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
283 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
284 mtx_unlock(&np->n_mtx);
285 ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
286 mtx_lock(&np->n_mtx);
287 }
288
289 for (i = 0; i < npages; i++)
290 rtvals[i] = VM_PAGER_ERROR;
291
292 /*
293 * When putting pages, do not extend file past EOF.
294 */
295 if (offset + count > np->n_size) {
296 count = np->n_size - offset;
297 if (count < 0)
298 count = 0;
299 }
300 mtx_unlock(&np->n_mtx);
301
302 /*
303 * We use only the kva address for the buffer, but this is extremely
304 * convienient and fast.
305 */
306 bp = getpbuf(&ncl_pbuf_freecnt);
307
308 kva = (vm_offset_t) bp->b_data;
309 pmap_qenter(kva, pages, npages);
310 PCPU_INC(cnt.v_vnodeout);
311 PCPU_ADD(cnt.v_vnodepgsout, count);
312
313 iov.iov_base = (caddr_t) kva;
314 iov.iov_len = count;
315 uio.uio_iov = &iov;
316 uio.uio_iovcnt = 1;
317 uio.uio_offset = offset;
318 uio.uio_resid = count;
319 uio.uio_segflg = UIO_SYSSPACE;
320 uio.uio_rw = UIO_WRITE;
321 uio.uio_td = td;
322
323 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
324 iomode = NFSWRITE_UNSTABLE;
325 else
326 iomode = NFSWRITE_FILESYNC;
327
328 error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
329 crfree(cred);
330
331 pmap_qremove(kva, npages);
332 relpbuf(bp, &ncl_pbuf_freecnt);
333
334 if (error == 0 || !nfs_keep_dirty_on_error) {
335 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
336 if (must_commit)
337 ncl_clearcommit(vp->v_mount);
338 }
339 return rtvals[0];
340 }
341
342 /*
343 * For nfs, cache consistency can only be maintained approximately.
344 * Although RFC1094 does not specify the criteria, the following is
345 * believed to be compatible with the reference port.
346 * For nfs:
347 * If the file's modify time on the server has changed since the
348 * last read rpc or you have written to the file,
349 * you may have lost data cache consistency with the
350 * server, so flush all of the file's data out of the cache.
351 * Then force a getattr rpc to ensure that you have up to date
352 * attributes.
353 * NB: This implies that cache data can be read when up to
354 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
355 * attributes this could be forced by setting n_attrstamp to 0 before
356 * the VOP_GETATTR() call.
357 */
358 static inline int
359 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
360 {
361 int error = 0;
362 struct vattr vattr;
363 struct nfsnode *np = VTONFS(vp);
364 int old_lock;
365
366 /*
367 * Grab the exclusive lock before checking whether the cache is
368 * consistent.
369 * XXX - We can make this cheaper later (by acquiring cheaper locks).
370 * But for now, this suffices.
371 */
372 old_lock = ncl_upgrade_vnlock(vp);
373 if (vp->v_iflag & VI_DOOMED) {
374 ncl_downgrade_vnlock(vp, old_lock);
375 return (EBADF);
376 }
377
378 mtx_lock(&np->n_mtx);
379 if (np->n_flag & NMODIFIED) {
380 mtx_unlock(&np->n_mtx);
381 if (vp->v_type != VREG) {
382 if (vp->v_type != VDIR)
383 panic("nfs: bioread, not dir");
384 ncl_invaldir(vp);
385 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
386 if (error)
387 goto out;
388 }
389 np->n_attrstamp = 0;
390 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
391 error = VOP_GETATTR(vp, &vattr, cred);
392 if (error)
393 goto out;
394 mtx_lock(&np->n_mtx);
395 np->n_mtime = vattr.va_mtime;
396 mtx_unlock(&np->n_mtx);
397 } else {
398 mtx_unlock(&np->n_mtx);
399 error = VOP_GETATTR(vp, &vattr, cred);
400 if (error)
401 return (error);
402 mtx_lock(&np->n_mtx);
403 if ((np->n_flag & NSIZECHANGED)
404 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
405 mtx_unlock(&np->n_mtx);
406 if (vp->v_type == VDIR)
407 ncl_invaldir(vp);
408 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
409 if (error)
410 goto out;
411 mtx_lock(&np->n_mtx);
412 np->n_mtime = vattr.va_mtime;
413 np->n_flag &= ~NSIZECHANGED;
414 }
415 mtx_unlock(&np->n_mtx);
416 }
417 out:
418 ncl_downgrade_vnlock(vp, old_lock);
419 return error;
420 }
421
422 /*
423 * Vnode op for read using bio
424 */
425 int
426 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
427 {
428 struct nfsnode *np = VTONFS(vp);
429 int biosize, i;
430 struct buf *bp, *rabp;
431 struct thread *td;
432 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
433 daddr_t lbn, rabn;
434 int bcount;
435 int seqcount;
436 int nra, error = 0, n = 0, on = 0;
437 off_t tmp_off;
438
439 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
440 if (uio->uio_resid == 0)
441 return (0);
442 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */
443 return (EINVAL);
444 td = uio->uio_td;
445
446 mtx_lock(&nmp->nm_mtx);
447 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
448 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
449 mtx_unlock(&nmp->nm_mtx);
450 (void)ncl_fsinfo(nmp, vp, cred, td);
451 mtx_lock(&nmp->nm_mtx);
452 }
453 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
454 (void) newnfs_iosize(nmp);
455
456 tmp_off = uio->uio_offset + uio->uio_resid;
457 if (vp->v_type != VDIR &&
458 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
459 mtx_unlock(&nmp->nm_mtx);
460 return (EFBIG);
461 }
462 mtx_unlock(&nmp->nm_mtx);
463
464 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
465 /* No caching/ no readaheads. Just read data into the user buffer */
466 return ncl_readrpc(vp, uio, cred);
467
468 biosize = vp->v_bufobj.bo_bsize;
469 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
470
471 error = nfs_bioread_check_cons(vp, td, cred);
472 if (error)
473 return error;
474
475 do {
476 u_quad_t nsize;
477
478 mtx_lock(&np->n_mtx);
479 nsize = np->n_size;
480 mtx_unlock(&np->n_mtx);
481
482 switch (vp->v_type) {
483 case VREG:
484 NFSINCRGLOBAL(newnfsstats.biocache_reads);
485 lbn = uio->uio_offset / biosize;
486 on = uio->uio_offset & (biosize - 1);
487
488 /*
489 * Start the read ahead(s), as required.
490 */
491 if (nmp->nm_readahead > 0) {
492 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
493 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
494 rabn = lbn + 1 + nra;
495 if (incore(&vp->v_bufobj, rabn) == NULL) {
496 rabp = nfs_getcacheblk(vp, rabn, biosize, td);
497 if (!rabp) {
498 error = newnfs_sigintr(nmp, td);
499 return (error ? error : EINTR);
500 }
501 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
502 rabp->b_flags |= B_ASYNC;
503 rabp->b_iocmd = BIO_READ;
504 vfs_busy_pages(rabp, 0);
505 if (ncl_asyncio(nmp, rabp, cred, td)) {
506 rabp->b_flags |= B_INVAL;
507 rabp->b_ioflags |= BIO_ERROR;
508 vfs_unbusy_pages(rabp);
509 brelse(rabp);
510 break;
511 }
512 } else {
513 brelse(rabp);
514 }
515 }
516 }
517 }
518
519 /* Note that bcount is *not* DEV_BSIZE aligned. */
520 bcount = biosize;
521 if ((off_t)lbn * biosize >= nsize) {
522 bcount = 0;
523 } else if ((off_t)(lbn + 1) * biosize > nsize) {
524 bcount = nsize - (off_t)lbn * biosize;
525 }
526 bp = nfs_getcacheblk(vp, lbn, bcount, td);
527
528 if (!bp) {
529 error = newnfs_sigintr(nmp, td);
530 return (error ? error : EINTR);
531 }
532
533 /*
534 * If B_CACHE is not set, we must issue the read. If this
535 * fails, we return an error.
536 */
537
538 if ((bp->b_flags & B_CACHE) == 0) {
539 bp->b_iocmd = BIO_READ;
540 vfs_busy_pages(bp, 0);
541 error = ncl_doio(vp, bp, cred, td, 0);
542 if (error) {
543 brelse(bp);
544 return (error);
545 }
546 }
547
548 /*
549 * on is the offset into the current bp. Figure out how many
550 * bytes we can copy out of the bp. Note that bcount is
551 * NOT DEV_BSIZE aligned.
552 *
553 * Then figure out how many bytes we can copy into the uio.
554 */
555
556 n = 0;
557 if (on < bcount)
558 n = MIN((unsigned)(bcount - on), uio->uio_resid);
559 break;
560 case VLNK:
561 NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
562 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
563 if (!bp) {
564 error = newnfs_sigintr(nmp, td);
565 return (error ? error : EINTR);
566 }
567 if ((bp->b_flags & B_CACHE) == 0) {
568 bp->b_iocmd = BIO_READ;
569 vfs_busy_pages(bp, 0);
570 error = ncl_doio(vp, bp, cred, td, 0);
571 if (error) {
572 bp->b_ioflags |= BIO_ERROR;
573 brelse(bp);
574 return (error);
575 }
576 }
577 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
578 on = 0;
579 break;
580 case VDIR:
581 NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
582 if (np->n_direofoffset
583 && uio->uio_offset >= np->n_direofoffset) {
584 return (0);
585 }
586 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
587 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
588 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
589 if (!bp) {
590 error = newnfs_sigintr(nmp, td);
591 return (error ? error : EINTR);
592 }
593 if ((bp->b_flags & B_CACHE) == 0) {
594 bp->b_iocmd = BIO_READ;
595 vfs_busy_pages(bp, 0);
596 error = ncl_doio(vp, bp, cred, td, 0);
597 if (error) {
598 brelse(bp);
599 }
600 while (error == NFSERR_BAD_COOKIE) {
601 ncl_invaldir(vp);
602 error = ncl_vinvalbuf(vp, 0, td, 1);
603 /*
604 * Yuck! The directory has been modified on the
605 * server. The only way to get the block is by
606 * reading from the beginning to get all the
607 * offset cookies.
608 *
609 * Leave the last bp intact unless there is an error.
610 * Loop back up to the while if the error is another
611 * NFSERR_BAD_COOKIE (double yuch!).
612 */
613 for (i = 0; i <= lbn && !error; i++) {
614 if (np->n_direofoffset
615 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
616 return (0);
617 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
618 if (!bp) {
619 error = newnfs_sigintr(nmp, td);
620 return (error ? error : EINTR);
621 }
622 if ((bp->b_flags & B_CACHE) == 0) {
623 bp->b_iocmd = BIO_READ;
624 vfs_busy_pages(bp, 0);
625 error = ncl_doio(vp, bp, cred, td, 0);
626 /*
627 * no error + B_INVAL == directory EOF,
628 * use the block.
629 */
630 if (error == 0 && (bp->b_flags & B_INVAL))
631 break;
632 }
633 /*
634 * An error will throw away the block and the
635 * for loop will break out. If no error and this
636 * is not the block we want, we throw away the
637 * block and go for the next one via the for loop.
638 */
639 if (error || i < lbn)
640 brelse(bp);
641 }
642 }
643 /*
644 * The above while is repeated if we hit another cookie
645 * error. If we hit an error and it wasn't a cookie error,
646 * we give up.
647 */
648 if (error)
649 return (error);
650 }
651
652 /*
653 * If not eof and read aheads are enabled, start one.
654 * (You need the current block first, so that you have the
655 * directory offset cookie of the next block.)
656 */
657 if (nmp->nm_readahead > 0 &&
658 (bp->b_flags & B_INVAL) == 0 &&
659 (np->n_direofoffset == 0 ||
660 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
661 incore(&vp->v_bufobj, lbn + 1) == NULL) {
662 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
663 if (rabp) {
664 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
665 rabp->b_flags |= B_ASYNC;
666 rabp->b_iocmd = BIO_READ;
667 vfs_busy_pages(rabp, 0);
668 if (ncl_asyncio(nmp, rabp, cred, td)) {
669 rabp->b_flags |= B_INVAL;
670 rabp->b_ioflags |= BIO_ERROR;
671 vfs_unbusy_pages(rabp);
672 brelse(rabp);
673 }
674 } else {
675 brelse(rabp);
676 }
677 }
678 }
679 /*
680 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
681 * chopped for the EOF condition, we cannot tell how large
682 * NFS directories are going to be until we hit EOF. So
683 * an NFS directory buffer is *not* chopped to its EOF. Now,
684 * it just so happens that b_resid will effectively chop it
685 * to EOF. *BUT* this information is lost if the buffer goes
686 * away and is reconstituted into a B_CACHE state ( due to
687 * being VMIO ) later. So we keep track of the directory eof
688 * in np->n_direofoffset and chop it off as an extra step
689 * right here.
690 */
691 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
692 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
693 n = np->n_direofoffset - uio->uio_offset;
694 break;
695 default:
696 ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
697 bp = NULL;
698 break;
699 };
700
701 if (n > 0) {
702 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
703 }
704 if (vp->v_type == VLNK)
705 n = 0;
706 if (bp != NULL)
707 brelse(bp);
708 } while (error == 0 && uio->uio_resid > 0 && n > 0);
709 return (error);
710 }
711
712 /*
713 * The NFS write path cannot handle iovecs with len > 1. So we need to
714 * break up iovecs accordingly (restricting them to wsize).
715 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
716 * For the ASYNC case, 2 copies are needed. The first a copy from the
717 * user buffer to a staging buffer and then a second copy from the staging
718 * buffer to mbufs. This can be optimized by copying from the user buffer
719 * directly into mbufs and passing the chain down, but that requires a
720 * fair amount of re-working of the relevant codepaths (and can be done
721 * later).
722 */
723 static int
724 nfs_directio_write(vp, uiop, cred, ioflag)
725 struct vnode *vp;
726 struct uio *uiop;
727 struct ucred *cred;
728 int ioflag;
729 {
730 int error;
731 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
732 struct thread *td = uiop->uio_td;
733 int size;
734 int wsize;
735
736 mtx_lock(&nmp->nm_mtx);
737 wsize = nmp->nm_wsize;
738 mtx_unlock(&nmp->nm_mtx);
739 if (ioflag & IO_SYNC) {
740 int iomode, must_commit;
741 struct uio uio;
742 struct iovec iov;
743 do_sync:
744 while (uiop->uio_resid > 0) {
745 size = MIN(uiop->uio_resid, wsize);
746 size = MIN(uiop->uio_iov->iov_len, size);
747 iov.iov_base = uiop->uio_iov->iov_base;
748 iov.iov_len = size;
749 uio.uio_iov = &iov;
750 uio.uio_iovcnt = 1;
751 uio.uio_offset = uiop->uio_offset;
752 uio.uio_resid = size;
753 uio.uio_segflg = UIO_USERSPACE;
754 uio.uio_rw = UIO_WRITE;
755 uio.uio_td = td;
756 iomode = NFSWRITE_FILESYNC;
757 error = ncl_writerpc(vp, &uio, cred, &iomode,
758 &must_commit, 0);
759 KASSERT((must_commit == 0),
760 ("ncl_directio_write: Did not commit write"));
761 if (error)
762 return (error);
763 uiop->uio_offset += size;
764 uiop->uio_resid -= size;
765 if (uiop->uio_iov->iov_len <= size) {
766 uiop->uio_iovcnt--;
767 uiop->uio_iov++;
768 } else {
769 uiop->uio_iov->iov_base =
770 (char *)uiop->uio_iov->iov_base + size;
771 uiop->uio_iov->iov_len -= size;
772 }
773 }
774 } else {
775 struct uio *t_uio;
776 struct iovec *t_iov;
777 struct buf *bp;
778
779 /*
780 * Break up the write into blocksize chunks and hand these
781 * over to nfsiod's for write back.
782 * Unfortunately, this incurs a copy of the data. Since
783 * the user could modify the buffer before the write is
784 * initiated.
785 *
786 * The obvious optimization here is that one of the 2 copies
787 * in the async write path can be eliminated by copying the
788 * data here directly into mbufs and passing the mbuf chain
789 * down. But that will require a fair amount of re-working
790 * of the code and can be done if there's enough interest
791 * in NFS directio access.
792 */
793 while (uiop->uio_resid > 0) {
794 size = MIN(uiop->uio_resid, wsize);
795 size = MIN(uiop->uio_iov->iov_len, size);
796 bp = getpbuf(&ncl_pbuf_freecnt);
797 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
798 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
799 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
800 t_iov->iov_len = size;
801 t_uio->uio_iov = t_iov;
802 t_uio->uio_iovcnt = 1;
803 t_uio->uio_offset = uiop->uio_offset;
804 t_uio->uio_resid = size;
805 t_uio->uio_segflg = UIO_SYSSPACE;
806 t_uio->uio_rw = UIO_WRITE;
807 t_uio->uio_td = td;
808 KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
809 uiop->uio_segflg == UIO_SYSSPACE,
810 ("nfs_directio_write: Bad uio_segflg"));
811 if (uiop->uio_segflg == UIO_USERSPACE) {
812 error = copyin(uiop->uio_iov->iov_base,
813 t_iov->iov_base, size);
814 if (error != 0)
815 goto err_free;
816 } else
817 /*
818 * UIO_SYSSPACE may never happen, but handle
819 * it just in case it does.
820 */
821 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
822 size);
823 bp->b_flags |= B_DIRECT;
824 bp->b_iocmd = BIO_WRITE;
825 if (cred != NOCRED) {
826 crhold(cred);
827 bp->b_wcred = cred;
828 } else
829 bp->b_wcred = NOCRED;
830 bp->b_caller1 = (void *)t_uio;
831 bp->b_vp = vp;
832 error = ncl_asyncio(nmp, bp, NOCRED, td);
833 err_free:
834 if (error) {
835 free(t_iov->iov_base, M_NFSDIRECTIO);
836 free(t_iov, M_NFSDIRECTIO);
837 free(t_uio, M_NFSDIRECTIO);
838 bp->b_vp = NULL;
839 relpbuf(bp, &ncl_pbuf_freecnt);
840 if (error == EINTR)
841 return (error);
842 goto do_sync;
843 }
844 uiop->uio_offset += size;
845 uiop->uio_resid -= size;
846 if (uiop->uio_iov->iov_len <= size) {
847 uiop->uio_iovcnt--;
848 uiop->uio_iov++;
849 } else {
850 uiop->uio_iov->iov_base =
851 (char *)uiop->uio_iov->iov_base + size;
852 uiop->uio_iov->iov_len -= size;
853 }
854 }
855 }
856 return (0);
857 }
858
859 /*
860 * Vnode op for write using bio
861 */
862 int
863 ncl_write(struct vop_write_args *ap)
864 {
865 int biosize;
866 struct uio *uio = ap->a_uio;
867 struct thread *td = uio->uio_td;
868 struct vnode *vp = ap->a_vp;
869 struct nfsnode *np = VTONFS(vp);
870 struct ucred *cred = ap->a_cred;
871 int ioflag = ap->a_ioflag;
872 struct buf *bp;
873 struct vattr vattr;
874 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
875 daddr_t lbn;
876 int bcount, noncontig_write, obcount;
877 int bp_cached, n, on, error = 0, error1, wouldcommit;
878 size_t orig_resid, local_resid;
879 off_t orig_size, tmp_off;
880
881 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
882 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
883 ("ncl_write proc"));
884 if (vp->v_type != VREG)
885 return (EIO);
886 mtx_lock(&np->n_mtx);
887 if (np->n_flag & NWRITEERR) {
888 np->n_flag &= ~NWRITEERR;
889 mtx_unlock(&np->n_mtx);
890 return (np->n_error);
891 } else
892 mtx_unlock(&np->n_mtx);
893 mtx_lock(&nmp->nm_mtx);
894 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
895 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
896 mtx_unlock(&nmp->nm_mtx);
897 (void)ncl_fsinfo(nmp, vp, cred, td);
898 mtx_lock(&nmp->nm_mtx);
899 }
900 if (nmp->nm_wsize == 0)
901 (void) newnfs_iosize(nmp);
902 mtx_unlock(&nmp->nm_mtx);
903
904 /*
905 * Synchronously flush pending buffers if we are in synchronous
906 * mode or if we are appending.
907 */
908 if (ioflag & (IO_APPEND | IO_SYNC)) {
909 mtx_lock(&np->n_mtx);
910 if (np->n_flag & NMODIFIED) {
911 mtx_unlock(&np->n_mtx);
912 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
913 /*
914 * Require non-blocking, synchronous writes to
915 * dirty files to inform the program it needs
916 * to fsync(2) explicitly.
917 */
918 if (ioflag & IO_NDELAY)
919 return (EAGAIN);
920 #endif
921 np->n_attrstamp = 0;
922 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
923 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
924 if (error)
925 return (error);
926 } else
927 mtx_unlock(&np->n_mtx);
928 }
929
930 orig_resid = uio->uio_resid;
931 mtx_lock(&np->n_mtx);
932 orig_size = np->n_size;
933 mtx_unlock(&np->n_mtx);
934
935 /*
936 * If IO_APPEND then load uio_offset. We restart here if we cannot
937 * get the append lock.
938 */
939 if (ioflag & IO_APPEND) {
940 np->n_attrstamp = 0;
941 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
942 error = VOP_GETATTR(vp, &vattr, cred);
943 if (error)
944 return (error);
945 mtx_lock(&np->n_mtx);
946 uio->uio_offset = np->n_size;
947 mtx_unlock(&np->n_mtx);
948 }
949
950 if (uio->uio_offset < 0)
951 return (EINVAL);
952 tmp_off = uio->uio_offset + uio->uio_resid;
953 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
954 return (EFBIG);
955 if (uio->uio_resid == 0)
956 return (0);
957
958 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
959 return nfs_directio_write(vp, uio, cred, ioflag);
960
961 /*
962 * Maybe this should be above the vnode op call, but so long as
963 * file servers have no limits, i don't think it matters
964 */
965 if (vn_rlimit_fsize(vp, uio, td))
966 return (EFBIG);
967
968 biosize = vp->v_bufobj.bo_bsize;
969 /*
970 * Find all of this file's B_NEEDCOMMIT buffers. If our writes
971 * would exceed the local maximum per-file write commit size when
972 * combined with those, we must decide whether to flush,
973 * go synchronous, or return error. We don't bother checking
974 * IO_UNIT -- we just make all writes atomic anyway, as there's
975 * no point optimizing for something that really won't ever happen.
976 */
977 wouldcommit = 0;
978 if (!(ioflag & IO_SYNC)) {
979 int nflag;
980
981 mtx_lock(&np->n_mtx);
982 nflag = np->n_flag;
983 mtx_unlock(&np->n_mtx);
984 if (nflag & NMODIFIED) {
985 BO_LOCK(&vp->v_bufobj);
986 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
987 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
988 b_bobufs) {
989 if (bp->b_flags & B_NEEDCOMMIT)
990 wouldcommit += bp->b_bcount;
991 }
992 }
993 BO_UNLOCK(&vp->v_bufobj);
994 }
995 }
996
997 do {
998 if (!(ioflag & IO_SYNC)) {
999 wouldcommit += biosize;
1000 if (wouldcommit > nmp->nm_wcommitsize) {
1001 np->n_attrstamp = 0;
1002 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1003 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
1004 if (error)
1005 return (error);
1006 wouldcommit = biosize;
1007 }
1008 }
1009
1010 NFSINCRGLOBAL(newnfsstats.biocache_writes);
1011 lbn = uio->uio_offset / biosize;
1012 on = uio->uio_offset & (biosize-1);
1013 n = MIN((unsigned)(biosize - on), uio->uio_resid);
1014 again:
1015 /*
1016 * Handle direct append and file extension cases, calculate
1017 * unaligned buffer size.
1018 */
1019 mtx_lock(&np->n_mtx);
1020 if ((np->n_flag & NHASBEENLOCKED) == 0 &&
1021 (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
1022 noncontig_write = 1;
1023 else
1024 noncontig_write = 0;
1025 if ((uio->uio_offset == np->n_size ||
1026 (noncontig_write != 0 &&
1027 lbn == (np->n_size / biosize) &&
1028 uio->uio_offset + n > np->n_size)) && n) {
1029 mtx_unlock(&np->n_mtx);
1030 /*
1031 * Get the buffer (in its pre-append state to maintain
1032 * B_CACHE if it was previously set). Resize the
1033 * nfsnode after we have locked the buffer to prevent
1034 * readers from reading garbage.
1035 */
1036 obcount = np->n_size - (lbn * biosize);
1037 bp = nfs_getcacheblk(vp, lbn, obcount, td);
1038
1039 if (bp != NULL) {
1040 long save;
1041
1042 mtx_lock(&np->n_mtx);
1043 np->n_size = uio->uio_offset + n;
1044 np->n_flag |= NMODIFIED;
1045 vnode_pager_setsize(vp, np->n_size);
1046 mtx_unlock(&np->n_mtx);
1047
1048 save = bp->b_flags & B_CACHE;
1049 bcount = on + n;
1050 allocbuf(bp, bcount);
1051 bp->b_flags |= save;
1052 if (noncontig_write != 0 && on > obcount)
1053 vfs_bio_bzero_buf(bp, obcount, on -
1054 obcount);
1055 }
1056 } else {
1057 /*
1058 * Obtain the locked cache block first, and then
1059 * adjust the file's size as appropriate.
1060 */
1061 bcount = on + n;
1062 if ((off_t)lbn * biosize + bcount < np->n_size) {
1063 if ((off_t)(lbn + 1) * biosize < np->n_size)
1064 bcount = biosize;
1065 else
1066 bcount = np->n_size - (off_t)lbn * biosize;
1067 }
1068 mtx_unlock(&np->n_mtx);
1069 bp = nfs_getcacheblk(vp, lbn, bcount, td);
1070 mtx_lock(&np->n_mtx);
1071 if (uio->uio_offset + n > np->n_size) {
1072 np->n_size = uio->uio_offset + n;
1073 np->n_flag |= NMODIFIED;
1074 vnode_pager_setsize(vp, np->n_size);
1075 }
1076 mtx_unlock(&np->n_mtx);
1077 }
1078
1079 if (!bp) {
1080 error = newnfs_sigintr(nmp, td);
1081 if (!error)
1082 error = EINTR;
1083 break;
1084 }
1085
1086 /*
1087 * Issue a READ if B_CACHE is not set. In special-append
1088 * mode, B_CACHE is based on the buffer prior to the write
1089 * op and is typically set, avoiding the read. If a read
1090 * is required in special append mode, the server will
1091 * probably send us a short-read since we extended the file
1092 * on our end, resulting in b_resid == 0 and, thusly,
1093 * B_CACHE getting set.
1094 *
1095 * We can also avoid issuing the read if the write covers
1096 * the entire buffer. We have to make sure the buffer state
1097 * is reasonable in this case since we will not be initiating
1098 * I/O. See the comments in kern/vfs_bio.c's getblk() for
1099 * more information.
1100 *
1101 * B_CACHE may also be set due to the buffer being cached
1102 * normally.
1103 */
1104
1105 bp_cached = 1;
1106 if (on == 0 && n == bcount) {
1107 if ((bp->b_flags & B_CACHE) == 0)
1108 bp_cached = 0;
1109 bp->b_flags |= B_CACHE;
1110 bp->b_flags &= ~B_INVAL;
1111 bp->b_ioflags &= ~BIO_ERROR;
1112 }
1113
1114 if ((bp->b_flags & B_CACHE) == 0) {
1115 bp->b_iocmd = BIO_READ;
1116 vfs_busy_pages(bp, 0);
1117 error = ncl_doio(vp, bp, cred, td, 0);
1118 if (error) {
1119 brelse(bp);
1120 break;
1121 }
1122 }
1123 if (bp->b_wcred == NOCRED)
1124 bp->b_wcred = crhold(cred);
1125 mtx_lock(&np->n_mtx);
1126 np->n_flag |= NMODIFIED;
1127 mtx_unlock(&np->n_mtx);
1128
1129 /*
1130 * If dirtyend exceeds file size, chop it down. This should
1131 * not normally occur but there is an append race where it
1132 * might occur XXX, so we log it.
1133 *
1134 * If the chopping creates a reverse-indexed or degenerate
1135 * situation with dirtyoff/end, we 0 both of them.
1136 */
1137
1138 if (bp->b_dirtyend > bcount) {
1139 ncl_printf("NFS append race @%lx:%d\n",
1140 (long)bp->b_blkno * DEV_BSIZE,
1141 bp->b_dirtyend - bcount);
1142 bp->b_dirtyend = bcount;
1143 }
1144
1145 if (bp->b_dirtyoff >= bp->b_dirtyend)
1146 bp->b_dirtyoff = bp->b_dirtyend = 0;
1147
1148 /*
1149 * If the new write will leave a contiguous dirty
1150 * area, just update the b_dirtyoff and b_dirtyend,
1151 * otherwise force a write rpc of the old dirty area.
1152 *
1153 * If there has been a file lock applied to this file
1154 * or vfs.nfs.old_noncontig_writing is set, do the following:
1155 * While it is possible to merge discontiguous writes due to
1156 * our having a B_CACHE buffer ( and thus valid read data
1157 * for the hole), we don't because it could lead to
1158 * significant cache coherency problems with multiple clients,
1159 * especially if locking is implemented later on.
1160 *
1161 * If vfs.nfs.old_noncontig_writing is not set and there has
1162 * not been file locking done on this file:
1163 * Relax coherency a bit for the sake of performance and
1164 * expand the current dirty region to contain the new
1165 * write even if it means we mark some non-dirty data as
1166 * dirty.
1167 */
1168
1169 if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
1170 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1171 if (bwrite(bp) == EINTR) {
1172 error = EINTR;
1173 break;
1174 }
1175 goto again;
1176 }
1177
1178 local_resid = uio->uio_resid;
1179 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
1180
1181 if (error != 0 && !bp_cached) {
1182 /*
1183 * This block has no other content then what
1184 * possibly was written by the faulty uiomove.
1185 * Release it, forgetting the data pages, to
1186 * prevent the leak of uninitialized data to
1187 * usermode.
1188 */
1189 bp->b_ioflags |= BIO_ERROR;
1190 brelse(bp);
1191 uio->uio_offset -= local_resid - uio->uio_resid;
1192 uio->uio_resid = local_resid;
1193 break;
1194 }
1195
1196 /*
1197 * Since this block is being modified, it must be written
1198 * again and not just committed. Since write clustering does
1199 * not work for the stage 1 data write, only the stage 2
1200 * commit rpc, we have to clear B_CLUSTEROK as well.
1201 */
1202 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1203
1204 /*
1205 * Get the partial update on the progress made from
1206 * uiomove, if an error occured.
1207 */
1208 if (error != 0)
1209 n = local_resid - uio->uio_resid;
1210
1211 /*
1212 * Only update dirtyoff/dirtyend if not a degenerate
1213 * condition.
1214 */
1215 if (n > 0) {
1216 if (bp->b_dirtyend > 0) {
1217 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1218 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1219 } else {
1220 bp->b_dirtyoff = on;
1221 bp->b_dirtyend = on + n;
1222 }
1223 vfs_bio_set_valid(bp, on, n);
1224 }
1225
1226 /*
1227 * If IO_SYNC do bwrite().
1228 *
1229 * IO_INVAL appears to be unused. The idea appears to be
1230 * to turn off caching in this case. Very odd. XXX
1231 */
1232 if ((ioflag & IO_SYNC)) {
1233 if (ioflag & IO_INVAL)
1234 bp->b_flags |= B_NOCACHE;
1235 error1 = bwrite(bp);
1236 if (error1 != 0) {
1237 if (error == 0)
1238 error = error1;
1239 break;
1240 }
1241 } else if ((n + on) == biosize) {
1242 bp->b_flags |= B_ASYNC;
1243 (void) ncl_writebp(bp, 0, NULL);
1244 } else {
1245 bdwrite(bp);
1246 }
1247
1248 if (error != 0)
1249 break;
1250 } while (uio->uio_resid > 0 && n > 0);
1251
1252 if (error != 0) {
1253 if (ioflag & IO_UNIT) {
1254 VATTR_NULL(&vattr);
1255 vattr.va_size = orig_size;
1256 /* IO_SYNC is handled implicitely */
1257 (void)VOP_SETATTR(vp, &vattr, cred);
1258 uio->uio_offset -= orig_resid - uio->uio_resid;
1259 uio->uio_resid = orig_resid;
1260 }
1261 }
1262
1263 return (error);
1264 }
1265
1266 /*
1267 * Get an nfs cache block.
1268 *
1269 * Allocate a new one if the block isn't currently in the cache
1270 * and return the block marked busy. If the calling process is
1271 * interrupted by a signal for an interruptible mount point, return
1272 * NULL.
1273 *
1274 * The caller must carefully deal with the possible B_INVAL state of
1275 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1276 * indirectly), so synchronous reads can be issued without worrying about
1277 * the B_INVAL state. We have to be a little more careful when dealing
1278 * with writes (see comments in nfs_write()) when extending a file past
1279 * its EOF.
1280 */
1281 static struct buf *
1282 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1283 {
1284 struct buf *bp;
1285 struct mount *mp;
1286 struct nfsmount *nmp;
1287
1288 mp = vp->v_mount;
1289 nmp = VFSTONFS(mp);
1290
1291 if (nmp->nm_flag & NFSMNT_INT) {
1292 sigset_t oldset;
1293
1294 newnfs_set_sigmask(td, &oldset);
1295 bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
1296 newnfs_restore_sigmask(td, &oldset);
1297 while (bp == NULL) {
1298 if (newnfs_sigintr(nmp, td))
1299 return (NULL);
1300 bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1301 }
1302 } else {
1303 bp = getblk(vp, bn, size, 0, 0, 0);
1304 }
1305
1306 if (vp->v_type == VREG)
1307 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1308 return (bp);
1309 }
1310
1311 /*
1312 * Flush and invalidate all dirty buffers. If another process is already
1313 * doing the flush, just wait for completion.
1314 */
1315 int
1316 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1317 {
1318 struct nfsnode *np = VTONFS(vp);
1319 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1320 int error = 0, slpflag, slptimeo;
1321 int old_lock = 0;
1322
1323 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1324
1325 if ((nmp->nm_flag & NFSMNT_INT) == 0)
1326 intrflg = 0;
1327 if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
1328 intrflg = 1;
1329 if (intrflg) {
1330 slpflag = NFS_PCATCH;
1331 slptimeo = 2 * hz;
1332 } else {
1333 slpflag = 0;
1334 slptimeo = 0;
1335 }
1336
1337 old_lock = ncl_upgrade_vnlock(vp);
1338 if (vp->v_iflag & VI_DOOMED) {
1339 /*
1340 * Since vgonel() uses the generic vinvalbuf() to flush
1341 * dirty buffers and it does not call this function, it
1342 * is safe to just return OK when VI_DOOMED is set.
1343 */
1344 ncl_downgrade_vnlock(vp, old_lock);
1345 return (0);
1346 }
1347
1348 /*
1349 * Now, flush as required.
1350 */
1351 if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1352 VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1353 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1354 VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1355 /*
1356 * If the page clean was interrupted, fail the invalidation.
1357 * Not doing so, we run the risk of losing dirty pages in the
1358 * vinvalbuf() call below.
1359 */
1360 if (intrflg && (error = newnfs_sigintr(nmp, td)))
1361 goto out;
1362 }
1363
1364 error = vinvalbuf(vp, flags, slpflag, 0);
1365 while (error) {
1366 if (intrflg && (error = newnfs_sigintr(nmp, td)))
1367 goto out;
1368 error = vinvalbuf(vp, flags, 0, slptimeo);
1369 }
1370 mtx_lock(&np->n_mtx);
1371 if (np->n_directio_asyncwr == 0)
1372 np->n_flag &= ~NMODIFIED;
1373 mtx_unlock(&np->n_mtx);
1374 out:
1375 ncl_downgrade_vnlock(vp, old_lock);
1376 return error;
1377 }
1378
1379 /*
1380 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1381 * This is mainly to avoid queueing async I/O requests when the nfsiods
1382 * are all hung on a dead server.
1383 *
1384 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1385 * is eventually dequeued by the async daemon, ncl_doio() *will*.
1386 */
1387 int
1388 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1389 {
1390 int iod;
1391 int gotiod;
1392 int slpflag = 0;
1393 int slptimeo = 0;
1394 int error, error2;
1395
1396 /*
1397 * Commits are usually short and sweet so lets save some cpu and
1398 * leave the async daemons for more important rpc's (such as reads
1399 * and writes).
1400 *
1401 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
1402 * in the directory in order to update attributes. This can deadlock
1403 * with another thread that is waiting for async I/O to be done by
1404 * an nfsiod thread while holding a lock on one of these vnodes.
1405 * To avoid this deadlock, don't allow the async nfsiod threads to
1406 * perform Readdirplus RPCs.
1407 */
1408 mtx_lock(&ncl_iod_mutex);
1409 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1410 (nmp->nm_bufqiods > ncl_numasync / 2)) ||
1411 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
1412 mtx_unlock(&ncl_iod_mutex);
1413 return(EIO);
1414 }
1415 again:
1416 if (nmp->nm_flag & NFSMNT_INT)
1417 slpflag = NFS_PCATCH;
1418 gotiod = FALSE;
1419
1420 /*
1421 * Find a free iod to process this request.
1422 */
1423 for (iod = 0; iod < ncl_numasync; iod++)
1424 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1425 gotiod = TRUE;
1426 break;
1427 }
1428
1429 /*
1430 * Try to create one if none are free.
1431 */
1432 if (!gotiod)
1433 ncl_nfsiodnew();
1434 else {
1435 /*
1436 * Found one, so wake it up and tell it which
1437 * mount to process.
1438 */
1439 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1440 iod, nmp));
1441 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1442 ncl_iodmount[iod] = nmp;
1443 nmp->nm_bufqiods++;
1444 wakeup(&ncl_iodwant[iod]);
1445 }
1446
1447 /*
1448 * If none are free, we may already have an iod working on this mount
1449 * point. If so, it will process our request.
1450 */
1451 if (!gotiod) {
1452 if (nmp->nm_bufqiods > 0) {
1453 NFS_DPF(ASYNCIO,
1454 ("ncl_asyncio: %d iods are already processing mount %p\n",
1455 nmp->nm_bufqiods, nmp));
1456 gotiod = TRUE;
1457 }
1458 }
1459
1460 /*
1461 * If we have an iod which can process the request, then queue
1462 * the buffer.
1463 */
1464 if (gotiod) {
1465 /*
1466 * Ensure that the queue never grows too large. We still want
1467 * to asynchronize so we block rather then return EIO.
1468 */
1469 while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1470 NFS_DPF(ASYNCIO,
1471 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1472 nmp->nm_bufqwant = TRUE;
1473 error = newnfs_msleep(td, &nmp->nm_bufq,
1474 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1475 slptimeo);
1476 if (error) {
1477 error2 = newnfs_sigintr(nmp, td);
1478 if (error2) {
1479 mtx_unlock(&ncl_iod_mutex);
1480 return (error2);
1481 }
1482 if (slpflag == NFS_PCATCH) {
1483 slpflag = 0;
1484 slptimeo = 2 * hz;
1485 }
1486 }
1487 /*
1488 * We might have lost our iod while sleeping,
1489 * so check and loop if nescessary.
1490 */
1491 goto again;
1492 }
1493
1494 /* We might have lost our nfsiod */
1495 if (nmp->nm_bufqiods == 0) {
1496 NFS_DPF(ASYNCIO,
1497 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1498 goto again;
1499 }
1500
1501 if (bp->b_iocmd == BIO_READ) {
1502 if (bp->b_rcred == NOCRED && cred != NOCRED)
1503 bp->b_rcred = crhold(cred);
1504 } else {
1505 if (bp->b_wcred == NOCRED && cred != NOCRED)
1506 bp->b_wcred = crhold(cred);
1507 }
1508
1509 if (bp->b_flags & B_REMFREE)
1510 bremfreef(bp);
1511 BUF_KERNPROC(bp);
1512 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1513 nmp->nm_bufqlen++;
1514 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1515 mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1516 VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1517 VTONFS(bp->b_vp)->n_directio_asyncwr++;
1518 mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1519 }
1520 mtx_unlock(&ncl_iod_mutex);
1521 return (0);
1522 }
1523
1524 mtx_unlock(&ncl_iod_mutex);
1525
1526 /*
1527 * All the iods are busy on other mounts, so return EIO to
1528 * force the caller to process the i/o synchronously.
1529 */
1530 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1531 return (EIO);
1532 }
1533
1534 void
1535 ncl_doio_directwrite(struct buf *bp)
1536 {
1537 int iomode, must_commit;
1538 struct uio *uiop = (struct uio *)bp->b_caller1;
1539 char *iov_base = uiop->uio_iov->iov_base;
1540
1541 iomode = NFSWRITE_FILESYNC;
1542 uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1543 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1544 KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1545 free(iov_base, M_NFSDIRECTIO);
1546 free(uiop->uio_iov, M_NFSDIRECTIO);
1547 free(uiop, M_NFSDIRECTIO);
1548 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1549 struct nfsnode *np = VTONFS(bp->b_vp);
1550 mtx_lock(&np->n_mtx);
1551 np->n_directio_asyncwr--;
1552 if (np->n_directio_asyncwr == 0) {
1553 np->n_flag &= ~NMODIFIED;
1554 if ((np->n_flag & NFSYNCWAIT)) {
1555 np->n_flag &= ~NFSYNCWAIT;
1556 wakeup((caddr_t)&np->n_directio_asyncwr);
1557 }
1558 }
1559 mtx_unlock(&np->n_mtx);
1560 }
1561 bp->b_vp = NULL;
1562 relpbuf(bp, &ncl_pbuf_freecnt);
1563 }
1564
1565 /*
1566 * Do an I/O operation to/from a cache block. This may be called
1567 * synchronously or from an nfsiod.
1568 */
1569 int
1570 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1571 int called_from_strategy)
1572 {
1573 struct uio *uiop;
1574 struct nfsnode *np;
1575 struct nfsmount *nmp;
1576 int error = 0, iomode, must_commit = 0;
1577 struct uio uio;
1578 struct iovec io;
1579 struct proc *p = td ? td->td_proc : NULL;
1580 uint8_t iocmd;
1581
1582 np = VTONFS(vp);
1583 nmp = VFSTONFS(vp->v_mount);
1584 uiop = &uio;
1585 uiop->uio_iov = &io;
1586 uiop->uio_iovcnt = 1;
1587 uiop->uio_segflg = UIO_SYSSPACE;
1588 uiop->uio_td = td;
1589
1590 /*
1591 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We
1592 * do this here so we do not have to do it in all the code that
1593 * calls us.
1594 */
1595 bp->b_flags &= ~B_INVAL;
1596 bp->b_ioflags &= ~BIO_ERROR;
1597
1598 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1599 iocmd = bp->b_iocmd;
1600 if (iocmd == BIO_READ) {
1601 io.iov_len = uiop->uio_resid = bp->b_bcount;
1602 io.iov_base = bp->b_data;
1603 uiop->uio_rw = UIO_READ;
1604
1605 switch (vp->v_type) {
1606 case VREG:
1607 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1608 NFSINCRGLOBAL(newnfsstats.read_bios);
1609 error = ncl_readrpc(vp, uiop, cr);
1610
1611 if (!error) {
1612 if (uiop->uio_resid) {
1613 /*
1614 * If we had a short read with no error, we must have
1615 * hit a file hole. We should zero-fill the remainder.
1616 * This can also occur if the server hits the file EOF.
1617 *
1618 * Holes used to be able to occur due to pending
1619 * writes, but that is not possible any longer.
1620 */
1621 int nread = bp->b_bcount - uiop->uio_resid;
1622 ssize_t left = uiop->uio_resid;
1623
1624 if (left > 0)
1625 bzero((char *)bp->b_data + nread, left);
1626 uiop->uio_resid = 0;
1627 }
1628 }
1629 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1630 if (p && (vp->v_vflag & VV_TEXT)) {
1631 mtx_lock(&np->n_mtx);
1632 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1633 mtx_unlock(&np->n_mtx);
1634 PROC_LOCK(p);
1635 killproc(p, "text file modification");
1636 PROC_UNLOCK(p);
1637 } else
1638 mtx_unlock(&np->n_mtx);
1639 }
1640 break;
1641 case VLNK:
1642 uiop->uio_offset = (off_t)0;
1643 NFSINCRGLOBAL(newnfsstats.readlink_bios);
1644 error = ncl_readlinkrpc(vp, uiop, cr);
1645 break;
1646 case VDIR:
1647 NFSINCRGLOBAL(newnfsstats.readdir_bios);
1648 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1649 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1650 error = ncl_readdirplusrpc(vp, uiop, cr, td);
1651 if (error == NFSERR_NOTSUPP)
1652 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1653 }
1654 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1655 error = ncl_readdirrpc(vp, uiop, cr, td);
1656 /*
1657 * end-of-directory sets B_INVAL but does not generate an
1658 * error.
1659 */
1660 if (error == 0 && uiop->uio_resid == bp->b_bcount)
1661 bp->b_flags |= B_INVAL;
1662 break;
1663 default:
1664 ncl_printf("ncl_doio: type %x unexpected\n", vp->v_type);
1665 break;
1666 };
1667 if (error) {
1668 bp->b_ioflags |= BIO_ERROR;
1669 bp->b_error = error;
1670 }
1671 } else {
1672 /*
1673 * If we only need to commit, try to commit
1674 */
1675 if (bp->b_flags & B_NEEDCOMMIT) {
1676 int retv;
1677 off_t off;
1678
1679 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1680 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1681 bp->b_wcred, td);
1682 if (retv == 0) {
1683 bp->b_dirtyoff = bp->b_dirtyend = 0;
1684 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1685 bp->b_resid = 0;
1686 bufdone(bp);
1687 return (0);
1688 }
1689 if (retv == NFSERR_STALEWRITEVERF) {
1690 ncl_clearcommit(vp->v_mount);
1691 }
1692 }
1693
1694 /*
1695 * Setup for actual write
1696 */
1697 mtx_lock(&np->n_mtx);
1698 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1699 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1700 mtx_unlock(&np->n_mtx);
1701
1702 if (bp->b_dirtyend > bp->b_dirtyoff) {
1703 io.iov_len = uiop->uio_resid = bp->b_dirtyend
1704 - bp->b_dirtyoff;
1705 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1706 + bp->b_dirtyoff;
1707 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1708 uiop->uio_rw = UIO_WRITE;
1709 NFSINCRGLOBAL(newnfsstats.write_bios);
1710
1711 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1712 iomode = NFSWRITE_UNSTABLE;
1713 else
1714 iomode = NFSWRITE_FILESYNC;
1715
1716 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1717 called_from_strategy);
1718
1719 /*
1720 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1721 * to cluster the buffers needing commit. This will allow
1722 * the system to submit a single commit rpc for the whole
1723 * cluster. We can do this even if the buffer is not 100%
1724 * dirty (relative to the NFS blocksize), so we optimize the
1725 * append-to-file-case.
1726 *
1727 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1728 * cleared because write clustering only works for commit
1729 * rpc's, not for the data portion of the write).
1730 */
1731
1732 if (!error && iomode == NFSWRITE_UNSTABLE) {
1733 bp->b_flags |= B_NEEDCOMMIT;
1734 if (bp->b_dirtyoff == 0
1735 && bp->b_dirtyend == bp->b_bcount)
1736 bp->b_flags |= B_CLUSTEROK;
1737 } else {
1738 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1739 }
1740
1741 /*
1742 * For an interrupted write, the buffer is still valid
1743 * and the write hasn't been pushed to the server yet,
1744 * so we can't set BIO_ERROR and report the interruption
1745 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1746 * is not relevant, so the rpc attempt is essentially
1747 * a noop. For the case of a V3 write rpc not being
1748 * committed to stable storage, the block is still
1749 * dirty and requires either a commit rpc or another
1750 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1751 * the block is reused. This is indicated by setting
1752 * the B_DELWRI and B_NEEDCOMMIT flags.
1753 *
1754 * EIO is returned by ncl_writerpc() to indicate a recoverable
1755 * write error and is handled as above, except that
1756 * B_EINTR isn't set. One cause of this is a stale stateid
1757 * error for the RPC that indicates recovery is required,
1758 * when called with called_from_strategy != 0.
1759 *
1760 * If the buffer is marked B_PAGING, it does not reside on
1761 * the vp's paging queues so we cannot call bdirty(). The
1762 * bp in this case is not an NFS cache block so we should
1763 * be safe. XXX
1764 *
1765 * The logic below breaks up errors into recoverable and
1766 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1767 * and keep the buffer around for potential write retries.
1768 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1769 * and save the error in the nfsnode. This is less than ideal
1770 * but necessary. Keeping such buffers around could potentially
1771 * cause buffer exhaustion eventually (they can never be written
1772 * out, so will get constantly be re-dirtied). It also causes
1773 * all sorts of vfs panics. For non-recoverable write errors,
1774 * also invalidate the attrcache, so we'll be forced to go over
1775 * the wire for this object, returning an error to user on next
1776 * call (most of the time).
1777 */
1778 if (error == EINTR || error == EIO || error == ETIMEDOUT
1779 || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1780 int s;
1781
1782 s = splbio();
1783 bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1784 if ((bp->b_flags & B_PAGING) == 0) {
1785 bdirty(bp);
1786 bp->b_flags &= ~B_DONE;
1787 }
1788 if ((error == EINTR || error == ETIMEDOUT) &&
1789 (bp->b_flags & B_ASYNC) == 0)
1790 bp->b_flags |= B_EINTR;
1791 splx(s);
1792 } else {
1793 if (error) {
1794 bp->b_ioflags |= BIO_ERROR;
1795 bp->b_flags |= B_INVAL;
1796 bp->b_error = np->n_error = error;
1797 mtx_lock(&np->n_mtx);
1798 np->n_flag |= NWRITEERR;
1799 np->n_attrstamp = 0;
1800 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1801 mtx_unlock(&np->n_mtx);
1802 }
1803 bp->b_dirtyoff = bp->b_dirtyend = 0;
1804 }
1805 } else {
1806 bp->b_resid = 0;
1807 bufdone(bp);
1808 return (0);
1809 }
1810 }
1811 bp->b_resid = uiop->uio_resid;
1812 if (must_commit)
1813 ncl_clearcommit(vp->v_mount);
1814 bufdone(bp);
1815 return (error);
1816 }
1817
1818 /*
1819 * Used to aid in handling ftruncate() operations on the NFS client side.
1820 * Truncation creates a number of special problems for NFS. We have to
1821 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1822 * we have to properly handle VM pages or (potentially dirty) buffers
1823 * that straddle the truncation point.
1824 */
1825
1826 int
1827 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1828 {
1829 struct nfsnode *np = VTONFS(vp);
1830 u_quad_t tsize;
1831 int biosize = vp->v_bufobj.bo_bsize;
1832 int error = 0;
1833
1834 mtx_lock(&np->n_mtx);
1835 tsize = np->n_size;
1836 np->n_size = nsize;
1837 mtx_unlock(&np->n_mtx);
1838
1839 if (nsize < tsize) {
1840 struct buf *bp;
1841 daddr_t lbn;
1842 int bufsize;
1843
1844 /*
1845 * vtruncbuf() doesn't get the buffer overlapping the
1846 * truncation point. We may have a B_DELWRI and/or B_CACHE
1847 * buffer that now needs to be truncated.
1848 */
1849 error = vtruncbuf(vp, cred, td, nsize, biosize);
1850 lbn = nsize / biosize;
1851 bufsize = nsize & (biosize - 1);
1852 bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1853 if (!bp)
1854 return EINTR;
1855 if (bp->b_dirtyoff > bp->b_bcount)
1856 bp->b_dirtyoff = bp->b_bcount;
1857 if (bp->b_dirtyend > bp->b_bcount)
1858 bp->b_dirtyend = bp->b_bcount;
1859 bp->b_flags |= B_RELBUF; /* don't leave garbage around */
1860 brelse(bp);
1861 } else {
1862 vnode_pager_setsize(vp, nsize);
1863 }
1864 return(error);
1865 }
1866
Cache object: 802b1a3532994bb6d2f55c686c7a7f44
|