The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nfsclient/nfs_clport.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * Rick Macklem at The University of Guelph.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/10.0/sys/fs/nfsclient/nfs_clport.c 255219 2013-09-05 00:09:56Z pjd $");
   36 
   37 #include "opt_inet6.h"
   38 #include "opt_kdtrace.h"
   39 
   40 #include <sys/capability.h>
   41 
   42 /*
   43  * generally, I don't like #includes inside .h files, but it seems to
   44  * be the easiest way to handle the port.
   45  */
   46 #include <sys/hash.h>
   47 #include <fs/nfs/nfsport.h>
   48 #include <netinet/if_ether.h>
   49 #include <net/if_types.h>
   50 
   51 #include <fs/nfsclient/nfs_kdtrace.h>
   52 
   53 #ifdef KDTRACE_HOOKS
   54 dtrace_nfsclient_attrcache_flush_probe_func_t
   55                 dtrace_nfscl_attrcache_flush_done_probe;
   56 uint32_t        nfscl_attrcache_flush_done_id;
   57 
   58 dtrace_nfsclient_attrcache_get_hit_probe_func_t
   59                 dtrace_nfscl_attrcache_get_hit_probe;
   60 uint32_t        nfscl_attrcache_get_hit_id;
   61 
   62 dtrace_nfsclient_attrcache_get_miss_probe_func_t
   63                 dtrace_nfscl_attrcache_get_miss_probe;
   64 uint32_t        nfscl_attrcache_get_miss_id;
   65 
   66 dtrace_nfsclient_attrcache_load_probe_func_t
   67                 dtrace_nfscl_attrcache_load_done_probe;
   68 uint32_t        nfscl_attrcache_load_done_id;
   69 #endif /* !KDTRACE_HOOKS */
   70 
   71 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
   72 extern struct vop_vector newnfs_vnodeops;
   73 extern struct vop_vector newnfs_fifoops;
   74 extern uma_zone_t newnfsnode_zone;
   75 extern struct buf_ops buf_ops_newnfs;
   76 extern int ncl_pbuf_freecnt;
   77 extern short nfsv4_cbport;
   78 extern int nfscl_enablecallb;
   79 extern int nfs_numnfscbd;
   80 extern int nfscl_inited;
   81 struct mtx nfs_clstate_mutex;
   82 struct mtx ncl_iod_mutex;
   83 NFSDLOCKMUTEX;
   84 
   85 extern void (*ncl_call_invalcaches)(struct vnode *);
   86 
   87 /*
   88  * Comparison function for vfs_hash functions.
   89  */
   90 int
   91 newnfs_vncmpf(struct vnode *vp, void *arg)
   92 {
   93         struct nfsfh *nfhp = (struct nfsfh *)arg;
   94         struct nfsnode *np = VTONFS(vp);
   95 
   96         if (np->n_fhp->nfh_len != nfhp->nfh_len ||
   97             NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
   98                 return (1);
   99         return (0);
  100 }
  101 
  102 /*
  103  * Look up a vnode/nfsnode by file handle.
  104  * Callers must check for mount points!!
  105  * In all cases, a pointer to a
  106  * nfsnode structure is returned.
  107  * This variant takes a "struct nfsfh *" as second argument and uses
  108  * that structure up, either by hanging off the nfsnode or FREEing it.
  109  */
  110 int
  111 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
  112     struct componentname *cnp, struct thread *td, struct nfsnode **npp,
  113     void *stuff, int lkflags)
  114 {
  115         struct nfsnode *np, *dnp;
  116         struct vnode *vp, *nvp;
  117         struct nfsv4node *newd, *oldd;
  118         int error;
  119         u_int hash;
  120         struct nfsmount *nmp;
  121 
  122         nmp = VFSTONFS(mntp);
  123         dnp = VTONFS(dvp);
  124         *npp = NULL;
  125 
  126         hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
  127 
  128         error = vfs_hash_get(mntp, hash, lkflags,
  129             td, &nvp, newnfs_vncmpf, nfhp);
  130         if (error == 0 && nvp != NULL) {
  131                 /*
  132                  * I believe there is a slight chance that vgonel() could
  133                  * get called on this vnode between when NFSVOPLOCK() drops
  134                  * the VI_LOCK() and vget() acquires it again, so that it
  135                  * hasn't yet had v_usecount incremented. If this were to
  136                  * happen, the VI_DOOMED flag would be set, so check for
  137                  * that here. Since we now have the v_usecount incremented,
  138                  * we should be ok until we vrele() it, if the VI_DOOMED
  139                  * flag isn't set now.
  140                  */
  141                 VI_LOCK(nvp);
  142                 if ((nvp->v_iflag & VI_DOOMED)) {
  143                         VI_UNLOCK(nvp);
  144                         vrele(nvp);
  145                         error = ENOENT;
  146                 } else {
  147                         VI_UNLOCK(nvp);
  148                 }
  149         }
  150         if (error) {
  151                 FREE((caddr_t)nfhp, M_NFSFH);
  152                 return (error);
  153         }
  154         if (nvp != NULL) {
  155                 np = VTONFS(nvp);
  156                 /*
  157                  * For NFSv4, check to see if it is the same name and
  158                  * replace the name, if it is different.
  159                  */
  160                 oldd = newd = NULL;
  161                 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
  162                     nvp->v_type == VREG &&
  163                     (np->n_v4->n4_namelen != cnp->cn_namelen ||
  164                      NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  165                      cnp->cn_namelen) ||
  166                      dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
  167                      NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  168                      dnp->n_fhp->nfh_len))) {
  169                     MALLOC(newd, struct nfsv4node *,
  170                         sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
  171                         + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
  172                     NFSLOCKNODE(np);
  173                     if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
  174                         && (np->n_v4->n4_namelen != cnp->cn_namelen ||
  175                          NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  176                          cnp->cn_namelen) ||
  177                          dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
  178                          NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  179                          dnp->n_fhp->nfh_len))) {
  180                         oldd = np->n_v4;
  181                         np->n_v4 = newd;
  182                         newd = NULL;
  183                         np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
  184                         np->n_v4->n4_namelen = cnp->cn_namelen;
  185                         NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  186                             dnp->n_fhp->nfh_len);
  187                         NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  188                             cnp->cn_namelen);
  189                     }
  190                     NFSUNLOCKNODE(np);
  191                 }
  192                 if (newd != NULL)
  193                         FREE((caddr_t)newd, M_NFSV4NODE);
  194                 if (oldd != NULL)
  195                         FREE((caddr_t)oldd, M_NFSV4NODE);
  196                 *npp = np;
  197                 FREE((caddr_t)nfhp, M_NFSFH);
  198                 return (0);
  199         }
  200         np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
  201 
  202         error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp);
  203         if (error) {
  204                 uma_zfree(newnfsnode_zone, np);
  205                 FREE((caddr_t)nfhp, M_NFSFH);
  206                 return (error);
  207         }
  208         vp = nvp;
  209         KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0"));
  210         vp->v_bufobj.bo_ops = &buf_ops_newnfs;
  211         vp->v_data = np;
  212         np->n_vnode = vp;
  213         /* 
  214          * Initialize the mutex even if the vnode is going to be a loser.
  215          * This simplifies the logic in reclaim, which can then unconditionally
  216          * destroy the mutex (in the case of the loser, or if hash_insert
  217          * happened to return an error no special casing is needed).
  218          */
  219         mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
  220 
  221         /* 
  222          * Are we getting the root? If so, make sure the vnode flags
  223          * are correct 
  224          */
  225         if ((nfhp->nfh_len == nmp->nm_fhsize) &&
  226             !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
  227                 if (vp->v_type == VNON)
  228                         vp->v_type = VDIR;
  229                 vp->v_vflag |= VV_ROOT;
  230         }
  231         
  232         np->n_fhp = nfhp;
  233         /*
  234          * For NFSv4, we have to attach the directory file handle and
  235          * file name, so that Open Ops can be done later.
  236          */
  237         if (nmp->nm_flag & NFSMNT_NFSV4) {
  238                 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
  239                     + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
  240                     M_WAITOK);
  241                 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
  242                 np->n_v4->n4_namelen = cnp->cn_namelen;
  243                 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  244                     dnp->n_fhp->nfh_len);
  245                 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  246                     cnp->cn_namelen);
  247         } else {
  248                 np->n_v4 = NULL;
  249         }
  250 
  251         /*
  252          * NFS supports recursive and shared locking.
  253          */
  254         lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
  255         VN_LOCK_AREC(vp);
  256         VN_LOCK_ASHARE(vp);
  257         error = insmntque(vp, mntp);
  258         if (error != 0) {
  259                 *npp = NULL;
  260                 mtx_destroy(&np->n_mtx);
  261                 FREE((caddr_t)nfhp, M_NFSFH);
  262                 if (np->n_v4 != NULL)
  263                         FREE((caddr_t)np->n_v4, M_NFSV4NODE);
  264                 uma_zfree(newnfsnode_zone, np);
  265                 return (error);
  266         }
  267         error = vfs_hash_insert(vp, hash, lkflags, 
  268             td, &nvp, newnfs_vncmpf, nfhp);
  269         if (error)
  270                 return (error);
  271         if (nvp != NULL) {
  272                 *npp = VTONFS(nvp);
  273                 /* vfs_hash_insert() vput()'s the losing vnode */
  274                 return (0);
  275         }
  276         *npp = np;
  277 
  278         return (0);
  279 }
  280 
  281 /*
  282  * Anothe variant of nfs_nget(). This one is only used by reopen. It
  283  * takes almost the same args as nfs_nget(), but only succeeds if an entry
  284  * exists in the cache. (Since files should already be "open" with a
  285  * vnode ref cnt on the node when reopen calls this, it should always
  286  * succeed.)
  287  * Also, don't get a vnode lock, since it may already be locked by some
  288  * other process that is handling it. This is ok, since all other threads
  289  * on the client are blocked by the nfsc_lock being exclusively held by the
  290  * caller of this function.
  291  */
  292 int
  293 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
  294     struct thread *td, struct nfsnode **npp)
  295 {
  296         struct vnode *nvp;
  297         u_int hash;
  298         struct nfsfh *nfhp;
  299         int error;
  300 
  301         *npp = NULL;
  302         /* For forced dismounts, just return error. */
  303         if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
  304                 return (EINTR);
  305         MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
  306             M_NFSFH, M_WAITOK);
  307         bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
  308         nfhp->nfh_len = fhsize;
  309 
  310         hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
  311 
  312         /*
  313          * First, try to get the vnode locked, but don't block for the lock.
  314          */
  315         error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
  316             newnfs_vncmpf, nfhp);
  317         if (error == 0 && nvp != NULL) {
  318                 NFSVOPUNLOCK(nvp, 0);
  319         } else if (error == EBUSY) {
  320                 /*
  321                  * The LK_EXCLOTHER lock type tells nfs_lock1() to not try
  322                  * and lock the vnode, but just get a v_usecount on it.
  323                  * LK_NOWAIT is set so that when vget() returns ENOENT,
  324                  * vfs_hash_get() fails instead of looping.
  325                  * If this succeeds, it is safe so long as a vflush() with
  326                  * FORCECLOSE has not been done. Since the Renew thread is
  327                  * stopped and the MNTK_UNMOUNTF flag is set before doing
  328                  * a vflush() with FORCECLOSE, we should be ok here.
  329                  */
  330                 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
  331                         error = EINTR;
  332                 else
  333                         error = vfs_hash_get(mntp, hash,
  334                             (LK_EXCLOTHER | LK_NOWAIT), td, &nvp,
  335                             newnfs_vncmpf, nfhp);
  336         }
  337         FREE(nfhp, M_NFSFH);
  338         if (error)
  339                 return (error);
  340         if (nvp != NULL) {
  341                 *npp = VTONFS(nvp);
  342                 return (0);
  343         }
  344         return (EINVAL);
  345 }
  346 
  347 /*
  348  * Load the attribute cache (that lives in the nfsnode entry) with
  349  * the attributes of the second argument and
  350  * Iff vaper not NULL
  351  *    copy the attributes to *vaper
  352  * Similar to nfs_loadattrcache(), except the attributes are passed in
  353  * instead of being parsed out of the mbuf list.
  354  */
  355 int
  356 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
  357     void *stuff, int writeattr, int dontshrink)
  358 {
  359         struct vnode *vp = *vpp;
  360         struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
  361         struct nfsnode *np;
  362         struct nfsmount *nmp;
  363         struct timespec mtime_save;
  364         u_quad_t nsize;
  365         int setnsize;
  366 
  367         /*
  368          * If v_type == VNON it is a new node, so fill in the v_type,
  369          * n_mtime fields. Check to see if it represents a special 
  370          * device, and if so, check for a possible alias. Once the
  371          * correct vnode has been obtained, fill in the rest of the
  372          * information.
  373          */
  374         np = VTONFS(vp);
  375         NFSLOCKNODE(np);
  376         if (vp->v_type != nvap->va_type) {
  377                 vp->v_type = nvap->va_type;
  378                 if (vp->v_type == VFIFO)
  379                         vp->v_op = &newnfs_fifoops;
  380                 np->n_mtime = nvap->va_mtime;
  381         }
  382         nmp = VFSTONFS(vp->v_mount);
  383         vap = &np->n_vattr.na_vattr;
  384         mtime_save = vap->va_mtime;
  385         if (writeattr) {
  386                 np->n_vattr.na_filerev = nap->na_filerev;
  387                 np->n_vattr.na_size = nap->na_size;
  388                 np->n_vattr.na_mtime = nap->na_mtime;
  389                 np->n_vattr.na_ctime = nap->na_ctime;
  390                 np->n_vattr.na_fsid = nap->na_fsid;
  391                 np->n_vattr.na_mode = nap->na_mode;
  392         } else {
  393                 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
  394                     sizeof (struct nfsvattr));
  395         }
  396 
  397         /*
  398          * For NFSv4, if the node's fsid is not equal to the mount point's
  399          * fsid, return the low order 32bits of the node's fsid. This
  400          * allows getcwd(3) to work. There is a chance that the fsid might
  401          * be the same as a local fs, but since this is in an NFS mount
  402          * point, I don't think that will cause any problems?
  403          */
  404         if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) &&
  405             (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
  406              nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) {
  407                 /*
  408                  * va_fsid needs to be set to some value derived from
  409                  * np->n_vattr.na_filesid that is not equal
  410                  * vp->v_mount->mnt_stat.f_fsid[0], so that it changes
  411                  * from the value used for the top level server volume
  412                  * in the mounted subtree.
  413                  */
  414                 if (vp->v_mount->mnt_stat.f_fsid.val[0] !=
  415                     (uint32_t)np->n_vattr.na_filesid[0])
  416                         vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0];
  417                 else
  418                         vap->va_fsid = (uint32_t)hash32_buf(
  419                             np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0);
  420         } else
  421                 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
  422         np->n_attrstamp = time_second;
  423         setnsize = 0;
  424         nsize = 0;
  425         if (vap->va_size != np->n_size) {
  426                 if (vap->va_type == VREG) {
  427                         if (dontshrink && vap->va_size < np->n_size) {
  428                                 /*
  429                                  * We've been told not to shrink the file;
  430                                  * zero np->n_attrstamp to indicate that
  431                                  * the attributes are stale.
  432                                  */
  433                                 vap->va_size = np->n_size;
  434                                 np->n_attrstamp = 0;
  435                                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  436                                 vnode_pager_setsize(vp, np->n_size);
  437                         } else if (np->n_flag & NMODIFIED) {
  438                                 /*
  439                                  * We've modified the file: Use the larger
  440                                  * of our size, and the server's size.
  441                                  */
  442                                 if (vap->va_size < np->n_size) {
  443                                         vap->va_size = np->n_size;
  444                                 } else {
  445                                         np->n_size = vap->va_size;
  446                                         np->n_flag |= NSIZECHANGED;
  447                                 }
  448                                 vnode_pager_setsize(vp, np->n_size);
  449                         } else if (vap->va_size < np->n_size) {
  450                                 /*
  451                                  * When shrinking the size, the call to
  452                                  * vnode_pager_setsize() cannot be done
  453                                  * with the mutex held, so delay it until
  454                                  * after the mtx_unlock call.
  455                                  */
  456                                 nsize = np->n_size = vap->va_size;
  457                                 np->n_flag |= NSIZECHANGED;
  458                                 setnsize = 1;
  459                         } else {
  460                                 np->n_size = vap->va_size;
  461                                 np->n_flag |= NSIZECHANGED;
  462                                 vnode_pager_setsize(vp, np->n_size);
  463                         }
  464                 } else {
  465                         np->n_size = vap->va_size;
  466                 }
  467         }
  468         /*
  469          * The following checks are added to prevent a race between (say)
  470          * a READDIR+ and a WRITE. 
  471          * READDIR+, WRITE requests sent out.
  472          * READDIR+ resp, WRITE resp received on client.
  473          * However, the WRITE resp was handled before the READDIR+ resp
  474          * causing the post op attrs from the write to be loaded first
  475          * and the attrs from the READDIR+ to be loaded later. If this 
  476          * happens, we have stale attrs loaded into the attrcache.
  477          * We detect this by for the mtime moving back. We invalidate the 
  478          * attrcache when this happens.
  479          */
  480         if (timespeccmp(&mtime_save, &vap->va_mtime, >)) {
  481                 /* Size changed or mtime went backwards */
  482                 np->n_attrstamp = 0;
  483                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  484         }
  485         if (vaper != NULL) {
  486                 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
  487                 if (np->n_flag & NCHG) {
  488                         if (np->n_flag & NACC)
  489                                 vaper->va_atime = np->n_atim;
  490                         if (np->n_flag & NUPD)
  491                                 vaper->va_mtime = np->n_mtim;
  492                 }
  493         }
  494 #ifdef KDTRACE_HOOKS
  495         if (np->n_attrstamp != 0)
  496                 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0);
  497 #endif
  498         NFSUNLOCKNODE(np);
  499         if (setnsize)
  500                 vnode_pager_setsize(vp, nsize);
  501         return (0);
  502 }
  503 
  504 /*
  505  * Fill in the client id name. For these bytes:
  506  * 1 - they must be unique
  507  * 2 - they should be persistent across client reboots
  508  * 1 is more critical than 2
  509  * Use the mount point's unique id plus either the uuid or, if that
  510  * isn't set, random junk.
  511  */
  512 void
  513 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
  514 {
  515         int uuidlen;
  516 
  517         /*
  518          * First, put in the 64bit mount point identifier.
  519          */
  520         if (idlen >= sizeof (u_int64_t)) {
  521                 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
  522                 cp += sizeof (u_int64_t);
  523                 idlen -= sizeof (u_int64_t);
  524         }
  525 
  526         /*
  527          * If uuid is non-zero length, use it.
  528          */
  529         uuidlen = strlen(uuid);
  530         if (uuidlen > 0 && idlen >= uuidlen) {
  531                 NFSBCOPY(uuid, cp, uuidlen);
  532                 cp += uuidlen;
  533                 idlen -= uuidlen;
  534         }
  535 
  536         /*
  537          * This only normally happens if the uuid isn't set.
  538          */
  539         while (idlen > 0) {
  540                 *cp++ = (u_int8_t)(arc4random() % 256);
  541                 idlen--;
  542         }
  543 }
  544 
  545 /*
  546  * Fill in a lock owner name. For now, pid + the process's creation time.
  547  */
  548 void
  549 nfscl_filllockowner(void *id, u_int8_t *cp, int flags)
  550 {
  551         union {
  552                 u_int32_t       lval;
  553                 u_int8_t        cval[4];
  554         } tl;
  555         struct proc *p;
  556 
  557         if (id == NULL) {
  558                 printf("NULL id\n");
  559                 bzero(cp, NFSV4CL_LOCKNAMELEN);
  560                 return;
  561         }
  562         if ((flags & F_POSIX) != 0) {
  563                 p = (struct proc *)id;
  564                 tl.lval = p->p_pid;
  565                 *cp++ = tl.cval[0];
  566                 *cp++ = tl.cval[1];
  567                 *cp++ = tl.cval[2];
  568                 *cp++ = tl.cval[3];
  569                 tl.lval = p->p_stats->p_start.tv_sec;
  570                 *cp++ = tl.cval[0];
  571                 *cp++ = tl.cval[1];
  572                 *cp++ = tl.cval[2];
  573                 *cp++ = tl.cval[3];
  574                 tl.lval = p->p_stats->p_start.tv_usec;
  575                 *cp++ = tl.cval[0];
  576                 *cp++ = tl.cval[1];
  577                 *cp++ = tl.cval[2];
  578                 *cp = tl.cval[3];
  579         } else if ((flags & F_FLOCK) != 0) {
  580                 bcopy(&id, cp, sizeof(id));
  581                 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id));
  582         } else {
  583                 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n");
  584                 bzero(cp, NFSV4CL_LOCKNAMELEN);
  585         }
  586 }
  587 
  588 /*
  589  * Find the parent process for the thread passed in as an argument.
  590  * If none exists, return NULL, otherwise return a thread for the parent.
  591  * (Can be any of the threads, since it is only used for td->td_proc.)
  592  */
  593 NFSPROC_T *
  594 nfscl_getparent(struct thread *td)
  595 {
  596         struct proc *p;
  597         struct thread *ptd;
  598 
  599         if (td == NULL)
  600                 return (NULL);
  601         p = td->td_proc;
  602         if (p->p_pid == 0)
  603                 return (NULL);
  604         p = p->p_pptr;
  605         if (p == NULL)
  606                 return (NULL);
  607         ptd = TAILQ_FIRST(&p->p_threads);
  608         return (ptd);
  609 }
  610 
  611 /*
  612  * Start up the renew kernel thread.
  613  */
  614 static void
  615 start_nfscl(void *arg)
  616 {
  617         struct nfsclclient *clp;
  618         struct thread *td;
  619 
  620         clp = (struct nfsclclient *)arg;
  621         td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
  622         nfscl_renewthread(clp, td);
  623         kproc_exit(0);
  624 }
  625 
  626 void
  627 nfscl_start_renewthread(struct nfsclclient *clp)
  628 {
  629 
  630         kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
  631             "nfscl");
  632 }
  633 
  634 /*
  635  * Handle wcc_data.
  636  * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
  637  * as the first Op after PutFH.
  638  * (For NFSv4, the postop attributes are after the Op, so they can't be
  639  *  parsed here. A separate call to nfscl_postop_attr() is required.)
  640  */
  641 int
  642 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
  643     struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
  644 {
  645         u_int32_t *tl;
  646         struct nfsnode *np = VTONFS(vp);
  647         struct nfsvattr nfsva;
  648         int error = 0;
  649 
  650         if (wccflagp != NULL)
  651                 *wccflagp = 0;
  652         if (nd->nd_flag & ND_NFSV3) {
  653                 *flagp = 0;
  654                 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
  655                 if (*tl == newnfs_true) {
  656                         NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
  657                         if (wccflagp != NULL) {
  658                                 mtx_lock(&np->n_mtx);
  659                                 *wccflagp = (np->n_mtime.tv_sec ==
  660                                     fxdr_unsigned(u_int32_t, *(tl + 2)) &&
  661                                     np->n_mtime.tv_nsec ==
  662                                     fxdr_unsigned(u_int32_t, *(tl + 3)));
  663                                 mtx_unlock(&np->n_mtx);
  664                         }
  665                 }
  666                 error = nfscl_postop_attr(nd, nap, flagp, stuff);
  667         } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
  668             == (ND_NFSV4 | ND_V4WCCATTR)) {
  669                 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
  670                     NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
  671                     NULL, NULL, NULL, NULL, NULL);
  672                 if (error)
  673                         return (error);
  674                 /*
  675                  * Get rid of Op# and status for next op.
  676                  */
  677                 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  678                 if (*++tl)
  679                         nd->nd_flag |= ND_NOMOREDATA;
  680                 if (wccflagp != NULL &&
  681                     nfsva.na_vattr.va_mtime.tv_sec != 0) {
  682                         mtx_lock(&np->n_mtx);
  683                         *wccflagp = (np->n_mtime.tv_sec ==
  684                             nfsva.na_vattr.va_mtime.tv_sec &&
  685                             np->n_mtime.tv_nsec ==
  686                             nfsva.na_vattr.va_mtime.tv_sec);
  687                         mtx_unlock(&np->n_mtx);
  688                 }
  689         }
  690 nfsmout:
  691         return (error);
  692 }
  693 
  694 /*
  695  * Get postop attributes.
  696  */
  697 int
  698 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
  699     void *stuff)
  700 {
  701         u_int32_t *tl;
  702         int error = 0;
  703 
  704         *retp = 0;
  705         if (nd->nd_flag & ND_NOMOREDATA)
  706                 return (error);
  707         if (nd->nd_flag & ND_NFSV3) {
  708                 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
  709                 *retp = fxdr_unsigned(int, *tl);
  710         } else if (nd->nd_flag & ND_NFSV4) {
  711                 /*
  712                  * For NFSv4, the postop attr are at the end, so no point
  713                  * in looking if nd_repstat != 0.
  714                  */
  715                 if (!nd->nd_repstat) {
  716                         NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  717                         if (*(tl + 1))
  718                                 /* should never happen since nd_repstat != 0 */
  719                                 nd->nd_flag |= ND_NOMOREDATA;
  720                         else
  721                                 *retp = 1;
  722                 }
  723         } else if (!nd->nd_repstat) {
  724                 /* For NFSv2, the attributes are here iff nd_repstat == 0 */
  725                 *retp = 1;
  726         }
  727         if (*retp) {
  728                 error = nfsm_loadattr(nd, nap);
  729                 if (error)
  730                         *retp = 0;
  731         }
  732 nfsmout:
  733         return (error);
  734 }
  735 
  736 /*
  737  * Fill in the setable attributes. The full argument indicates whether
  738  * to fill in them all or just mode and time.
  739  */
  740 void
  741 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
  742     struct vnode *vp, int flags, u_int32_t rdev)
  743 {
  744         u_int32_t *tl;
  745         struct nfsv2_sattr *sp;
  746         nfsattrbit_t attrbits;
  747 
  748         switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
  749         case ND_NFSV2:
  750                 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
  751                 if (vap->va_mode == (mode_t)VNOVAL)
  752                         sp->sa_mode = newnfs_xdrneg1;
  753                 else
  754                         sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
  755                 if (vap->va_uid == (uid_t)VNOVAL)
  756                         sp->sa_uid = newnfs_xdrneg1;
  757                 else
  758                         sp->sa_uid = txdr_unsigned(vap->va_uid);
  759                 if (vap->va_gid == (gid_t)VNOVAL)
  760                         sp->sa_gid = newnfs_xdrneg1;
  761                 else
  762                         sp->sa_gid = txdr_unsigned(vap->va_gid);
  763                 if (flags & NFSSATTR_SIZE0)
  764                         sp->sa_size = 0;
  765                 else if (flags & NFSSATTR_SIZENEG1)
  766                         sp->sa_size = newnfs_xdrneg1;
  767                 else if (flags & NFSSATTR_SIZERDEV)
  768                         sp->sa_size = txdr_unsigned(rdev);
  769                 else
  770                         sp->sa_size = txdr_unsigned(vap->va_size);
  771                 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
  772                 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
  773                 break;
  774         case ND_NFSV3:
  775                 if (vap->va_mode != (mode_t)VNOVAL) {
  776                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  777                         *tl++ = newnfs_true;
  778                         *tl = txdr_unsigned(vap->va_mode);
  779                 } else {
  780                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  781                         *tl = newnfs_false;
  782                 }
  783                 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
  784                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  785                         *tl++ = newnfs_true;
  786                         *tl = txdr_unsigned(vap->va_uid);
  787                 } else {
  788                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  789                         *tl = newnfs_false;
  790                 }
  791                 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
  792                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  793                         *tl++ = newnfs_true;
  794                         *tl = txdr_unsigned(vap->va_gid);
  795                 } else {
  796                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  797                         *tl = newnfs_false;
  798                 }
  799                 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
  800                         NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  801                         *tl++ = newnfs_true;
  802                         txdr_hyper(vap->va_size, tl);
  803                 } else {
  804                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  805                         *tl = newnfs_false;
  806                 }
  807                 if (vap->va_atime.tv_sec != VNOVAL) {
  808                         if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
  809                                 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  810                                 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
  811                                 txdr_nfsv3time(&vap->va_atime, tl);
  812                         } else {
  813                                 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  814                                 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
  815                         }
  816                 } else {
  817                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  818                         *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
  819                 }
  820                 if (vap->va_mtime.tv_sec != VNOVAL) {
  821                         if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
  822                                 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  823                                 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
  824                                 txdr_nfsv3time(&vap->va_mtime, tl);
  825                         } else {
  826                                 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  827                                 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
  828                         }
  829                 } else {
  830                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  831                         *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
  832                 }
  833                 break;
  834         case ND_NFSV4:
  835                 NFSZERO_ATTRBIT(&attrbits);
  836                 if (vap->va_mode != (mode_t)VNOVAL)
  837                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
  838                 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
  839                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
  840                 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
  841                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
  842                 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
  843                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
  844                 if (vap->va_atime.tv_sec != VNOVAL)
  845                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
  846                 if (vap->va_mtime.tv_sec != VNOVAL)
  847                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
  848                 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0,
  849                     &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0);
  850                 break;
  851         };
  852 }
  853 
  854 /*
  855  * nfscl_request() - mostly a wrapper for newnfs_request().
  856  */
  857 int
  858 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
  859     struct ucred *cred, void *stuff)
  860 {
  861         int ret, vers;
  862         struct nfsmount *nmp;
  863 
  864         nmp = VFSTONFS(vp->v_mount);
  865         if (nd->nd_flag & ND_NFSV4)
  866                 vers = NFS_VER4;
  867         else if (nd->nd_flag & ND_NFSV3)
  868                 vers = NFS_VER3;
  869         else
  870                 vers = NFS_VER2;
  871         ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
  872                 NFS_PROG, vers, NULL, 1, NULL, NULL);
  873         return (ret);
  874 }
  875 
  876 /*
  877  * fill in this bsden's variant of statfs using nfsstatfs.
  878  */
  879 void
  880 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
  881 {
  882         struct statfs *sbp = (struct statfs *)statfs;
  883 
  884         if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
  885                 sbp->f_bsize = NFS_FABLKSIZE;
  886                 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE;
  887                 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE;
  888                 /*
  889                  * Although sf_abytes is uint64_t and f_bavail is int64_t,
  890                  * the value after dividing by NFS_FABLKSIZE is small
  891                  * enough that it will fit in 63bits, so it is ok to
  892                  * assign it to f_bavail without fear that it will become
  893                  * negative.
  894                  */
  895                 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE;
  896                 sbp->f_files = sfp->sf_tfiles;
  897                 /* Since f_ffree is int64_t, clip it to 63bits. */
  898                 if (sfp->sf_ffiles > INT64_MAX)
  899                         sbp->f_ffree = INT64_MAX;
  900                 else
  901                         sbp->f_ffree = sfp->sf_ffiles;
  902         } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
  903                 /*
  904                  * The type casts to (int32_t) ensure that this code is
  905                  * compatible with the old NFS client, in that it will
  906                  * propagate bit31 to the high order bits. This may or may
  907                  * not be correct for NFSv2, but since it is a legacy
  908                  * environment, I'd rather retain backwards compatibility.
  909                  */
  910                 sbp->f_bsize = (int32_t)sfp->sf_bsize;
  911                 sbp->f_blocks = (int32_t)sfp->sf_blocks;
  912                 sbp->f_bfree = (int32_t)sfp->sf_bfree;
  913                 sbp->f_bavail = (int32_t)sfp->sf_bavail;
  914                 sbp->f_files = 0;
  915                 sbp->f_ffree = 0;
  916         }
  917 }
  918 
  919 /*
  920  * Use the fsinfo stuff to update the mount point.
  921  */
  922 void
  923 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
  924 {
  925 
  926         if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
  927             fsp->fs_wtpref >= NFS_FABLKSIZE)
  928                 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
  929                     ~(NFS_FABLKSIZE - 1);
  930         if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
  931                 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
  932                 if (nmp->nm_wsize == 0)
  933                         nmp->nm_wsize = fsp->fs_wtmax;
  934         }
  935         if (nmp->nm_wsize < NFS_FABLKSIZE)
  936                 nmp->nm_wsize = NFS_FABLKSIZE;
  937         if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
  938             fsp->fs_rtpref >= NFS_FABLKSIZE)
  939                 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
  940                     ~(NFS_FABLKSIZE - 1);
  941         if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
  942                 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
  943                 if (nmp->nm_rsize == 0)
  944                         nmp->nm_rsize = fsp->fs_rtmax;
  945         }
  946         if (nmp->nm_rsize < NFS_FABLKSIZE)
  947                 nmp->nm_rsize = NFS_FABLKSIZE;
  948         if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
  949             && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
  950                 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
  951                     ~(NFS_DIRBLKSIZ - 1);
  952         if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
  953                 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
  954                 if (nmp->nm_readdirsize == 0)
  955                         nmp->nm_readdirsize = fsp->fs_rtmax;
  956         }
  957         if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
  958                 nmp->nm_readdirsize = NFS_DIRBLKSIZ;
  959         if (fsp->fs_maxfilesize > 0 &&
  960             fsp->fs_maxfilesize < nmp->nm_maxfilesize)
  961                 nmp->nm_maxfilesize = fsp->fs_maxfilesize;
  962         nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
  963         nmp->nm_state |= NFSSTA_GOTFSINFO;
  964 }
  965 
  966 /*
  967  * Get a pointer to my IP addrress and return it.
  968  * Return NULL if you can't find one.
  969  */
  970 u_int8_t *
  971 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
  972 {
  973         struct sockaddr_in sad, *sin;
  974         struct rtentry *rt;
  975         u_int8_t *retp = NULL;
  976         static struct in_addr laddr;
  977 
  978         *isinet6p = 0;
  979         /*
  980          * Loop up a route for the destination address.
  981          */
  982         if (nmp->nm_nam->sa_family == AF_INET) {
  983                 bzero(&sad, sizeof (sad));
  984                 sin = (struct sockaddr_in *)nmp->nm_nam;
  985                 sad.sin_family = AF_INET;
  986                 sad.sin_len = sizeof (struct sockaddr_in);
  987                 sad.sin_addr.s_addr = sin->sin_addr.s_addr;
  988                 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
  989                 rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL,
  990                      curthread->td_proc->p_fibnum);
  991                 if (rt != NULL) {
  992                         if (rt->rt_ifp != NULL &&
  993                             rt->rt_ifa != NULL &&
  994                             ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
  995                             rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
  996                                 sin = (struct sockaddr_in *)
  997                                     rt->rt_ifa->ifa_addr;
  998                                 laddr.s_addr = sin->sin_addr.s_addr;
  999                                 retp = (u_int8_t *)&laddr;
 1000                         }
 1001                         RTFREE_LOCKED(rt);
 1002                 }
 1003                 CURVNET_RESTORE();
 1004 #ifdef INET6
 1005         } else if (nmp->nm_nam->sa_family == AF_INET6) {
 1006                 struct sockaddr_in6 sad6, *sin6;
 1007                 static struct in6_addr laddr6;
 1008 
 1009                 bzero(&sad6, sizeof (sad6));
 1010                 sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
 1011                 sad6.sin6_family = AF_INET6;
 1012                 sad6.sin6_len = sizeof (struct sockaddr_in6);
 1013                 sad6.sin6_addr = sin6->sin6_addr;
 1014                 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
 1015                 rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL,
 1016                      curthread->td_proc->p_fibnum);
 1017                 if (rt != NULL) {
 1018                         if (rt->rt_ifp != NULL &&
 1019                             rt->rt_ifa != NULL &&
 1020                             ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
 1021                             rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
 1022                                 sin6 = (struct sockaddr_in6 *)
 1023                                     rt->rt_ifa->ifa_addr;
 1024                                 laddr6 = sin6->sin6_addr;
 1025                                 retp = (u_int8_t *)&laddr6;
 1026                                 *isinet6p = 1;
 1027                         }
 1028                         RTFREE_LOCKED(rt);
 1029                 }
 1030                 CURVNET_RESTORE();
 1031 #endif
 1032         }
 1033         return (retp);
 1034 }
 1035 
 1036 /*
 1037  * Copy NFS uid, gids from the cred structure.
 1038  */
 1039 void
 1040 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
 1041 {
 1042         int i;
 1043 
 1044         KASSERT(cr->cr_ngroups >= 0,
 1045             ("newnfs_copyincred: negative cr_ngroups"));
 1046         nfscr->nfsc_uid = cr->cr_uid;
 1047         nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
 1048         for (i = 0; i < nfscr->nfsc_ngroups; i++)
 1049                 nfscr->nfsc_groups[i] = cr->cr_groups[i];
 1050 }
 1051 
 1052 
 1053 /*
 1054  * Do any client specific initialization.
 1055  */
 1056 void
 1057 nfscl_init(void)
 1058 {
 1059         static int inited = 0;
 1060 
 1061         if (inited)
 1062                 return;
 1063         inited = 1;
 1064         nfscl_inited = 1;
 1065         ncl_pbuf_freecnt = nswbuf / 2 + 1;
 1066 }
 1067 
 1068 /*
 1069  * Check each of the attributes to be set, to ensure they aren't already
 1070  * the correct value. Disable setting ones already correct.
 1071  */
 1072 int
 1073 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
 1074 {
 1075 
 1076         if (vap->va_mode != (mode_t)VNOVAL) {
 1077                 if (vap->va_mode == nvap->na_mode)
 1078                         vap->va_mode = (mode_t)VNOVAL;
 1079         }
 1080         if (vap->va_uid != (uid_t)VNOVAL) {
 1081                 if (vap->va_uid == nvap->na_uid)
 1082                         vap->va_uid = (uid_t)VNOVAL;
 1083         }
 1084         if (vap->va_gid != (gid_t)VNOVAL) {
 1085                 if (vap->va_gid == nvap->na_gid)
 1086                         vap->va_gid = (gid_t)VNOVAL;
 1087         }
 1088         if (vap->va_size != VNOVAL) {
 1089                 if (vap->va_size == nvap->na_size)
 1090                         vap->va_size = VNOVAL;
 1091         }
 1092 
 1093         /*
 1094          * We are normally called with only a partially initialized
 1095          * VAP.  Since the NFSv3 spec says that server may use the
 1096          * file attributes to store the verifier, the spec requires
 1097          * us to do a SETATTR RPC. FreeBSD servers store the verifier
 1098          * in atime, but we can't really assume that all servers will
 1099          * so we ensure that our SETATTR sets both atime and mtime.
 1100          */
 1101         if (vap->va_mtime.tv_sec == VNOVAL)
 1102                 vfs_timestamp(&vap->va_mtime);
 1103         if (vap->va_atime.tv_sec == VNOVAL)
 1104                 vap->va_atime = vap->va_mtime;
 1105         return (1);
 1106 }
 1107 
 1108 /*
 1109  * Map nfsv4 errors to errno.h errors.
 1110  * The uid and gid arguments are only used for NFSERR_BADOWNER and that
 1111  * error should only be returned for the Open, Create and Setattr Ops.
 1112  * As such, most calls can just pass in 0 for those arguments.
 1113  */
 1114 APPLESTATIC int
 1115 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
 1116 {
 1117         struct proc *p;
 1118 
 1119         if (error < 10000)
 1120                 return (error);
 1121         if (td != NULL)
 1122                 p = td->td_proc;
 1123         else
 1124                 p = NULL;
 1125         switch (error) {
 1126         case NFSERR_BADOWNER:
 1127                 tprintf(p, LOG_INFO,
 1128                     "No name and/or group mapping for uid,gid:(%d,%d)\n",
 1129                     uid, gid);
 1130                 return (EPERM);
 1131         case NFSERR_BADNAME:
 1132         case NFSERR_BADCHAR:
 1133                 printf("nfsv4 char/name not handled by server\n");
 1134                 return (ENOENT);
 1135         case NFSERR_STALECLIENTID:
 1136         case NFSERR_STALESTATEID:
 1137         case NFSERR_EXPIRED:
 1138         case NFSERR_BADSTATEID:
 1139         case NFSERR_BADSESSION:
 1140                 printf("nfsv4 recover err returned %d\n", error);
 1141                 return (EIO);
 1142         case NFSERR_BADHANDLE:
 1143         case NFSERR_SERVERFAULT:
 1144         case NFSERR_BADTYPE:
 1145         case NFSERR_FHEXPIRED:
 1146         case NFSERR_RESOURCE:
 1147         case NFSERR_MOVED:
 1148         case NFSERR_NOFILEHANDLE:
 1149         case NFSERR_MINORVERMISMATCH:
 1150         case NFSERR_OLDSTATEID:
 1151         case NFSERR_BADSEQID:
 1152         case NFSERR_LEASEMOVED:
 1153         case NFSERR_RECLAIMBAD:
 1154         case NFSERR_BADXDR:
 1155         case NFSERR_OPILLEGAL:
 1156                 printf("nfsv4 client/server protocol prob err=%d\n",
 1157                     error);
 1158                 return (EIO);
 1159         default:
 1160                 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
 1161                 return (EIO);
 1162         };
 1163 }
 1164 
 1165 /*
 1166  * Check to see if the process for this owner exists. Return 1 if it doesn't
 1167  * and 0 otherwise.
 1168  */
 1169 int
 1170 nfscl_procdoesntexist(u_int8_t *own)
 1171 {
 1172         union {
 1173                 u_int32_t       lval;
 1174                 u_int8_t        cval[4];
 1175         } tl;
 1176         struct proc *p;
 1177         pid_t pid;
 1178         int ret = 0;
 1179 
 1180         tl.cval[0] = *own++;
 1181         tl.cval[1] = *own++;
 1182         tl.cval[2] = *own++;
 1183         tl.cval[3] = *own++;
 1184         pid = tl.lval;
 1185         p = pfind_locked(pid);
 1186         if (p == NULL)
 1187                 return (1);
 1188         if (p->p_stats == NULL) {
 1189                 PROC_UNLOCK(p);
 1190                 return (0);
 1191         }
 1192         tl.cval[0] = *own++;
 1193         tl.cval[1] = *own++;
 1194         tl.cval[2] = *own++;
 1195         tl.cval[3] = *own++;
 1196         if (tl.lval != p->p_stats->p_start.tv_sec) {
 1197                 ret = 1;
 1198         } else {
 1199                 tl.cval[0] = *own++;
 1200                 tl.cval[1] = *own++;
 1201                 tl.cval[2] = *own++;
 1202                 tl.cval[3] = *own;
 1203                 if (tl.lval != p->p_stats->p_start.tv_usec)
 1204                         ret = 1;
 1205         }
 1206         PROC_UNLOCK(p);
 1207         return (ret);
 1208 }
 1209 
 1210 /*
 1211  * - nfs pseudo system call for the client
 1212  */
 1213 /*
 1214  * MPSAFE
 1215  */
 1216 static int
 1217 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
 1218 {
 1219         struct file *fp;
 1220         struct nfscbd_args nfscbdarg;
 1221         struct nfsd_nfscbd_args nfscbdarg2;
 1222         struct nameidata nd;
 1223         struct nfscl_dumpmntopts dumpmntopts;
 1224         cap_rights_t rights;
 1225         char *buf;
 1226         int error;
 1227 
 1228         if (uap->flag & NFSSVC_CBADDSOCK) {
 1229                 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
 1230                 if (error)
 1231                         return (error);
 1232                 /*
 1233                  * Since we don't know what rights might be required,
 1234                  * pretend that we need them all. It is better to be too
 1235                  * careful than too reckless.
 1236                  */
 1237                 error = fget(td, nfscbdarg.sock,
 1238                     cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp);
 1239                 if (error)
 1240                         return (error);
 1241                 if (fp->f_type != DTYPE_SOCKET) {
 1242                         fdrop(fp, td);
 1243                         return (EPERM);
 1244                 }
 1245                 error = nfscbd_addsock(fp);
 1246                 fdrop(fp, td);
 1247                 if (!error && nfscl_enablecallb == 0) {
 1248                         nfsv4_cbport = nfscbdarg.port;
 1249                         nfscl_enablecallb = 1;
 1250                 }
 1251         } else if (uap->flag & NFSSVC_NFSCBD) {
 1252                 if (uap->argp == NULL) 
 1253                         return (EINVAL);
 1254                 error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
 1255                     sizeof(nfscbdarg2));
 1256                 if (error)
 1257                         return (error);
 1258                 error = nfscbd_nfsd(td, &nfscbdarg2);
 1259         } else if (uap->flag & NFSSVC_DUMPMNTOPTS) {
 1260                 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts));
 1261                 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 ||
 1262                     dumpmntopts.ndmnt_blen > 1024))
 1263                         error = EINVAL;
 1264                 if (error == 0)
 1265                         error = nfsrv_lookupfilename(&nd,
 1266                             dumpmntopts.ndmnt_fname, td);
 1267                 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name,
 1268                     "nfs") != 0) {
 1269                         vput(nd.ni_vp);
 1270                         error = EINVAL;
 1271                 }
 1272                 if (error == 0) {
 1273                         buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK);
 1274                         nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf,
 1275                             dumpmntopts.ndmnt_blen);
 1276                         vput(nd.ni_vp);
 1277                         error = copyout(buf, dumpmntopts.ndmnt_buf,
 1278                             dumpmntopts.ndmnt_blen);
 1279                         free(buf, M_TEMP);
 1280                 }
 1281         } else {
 1282                 error = EINVAL;
 1283         }
 1284         return (error);
 1285 }
 1286 
 1287 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
 1288 
 1289 /*
 1290  * Called once to initialize data structures...
 1291  */
 1292 static int
 1293 nfscl_modevent(module_t mod, int type, void *data)
 1294 {
 1295         int error = 0;
 1296         static int loaded = 0;
 1297 
 1298         switch (type) {
 1299         case MOD_LOAD:
 1300                 if (loaded)
 1301                         return (0);
 1302                 newnfs_portinit();
 1303                 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
 1304                     MTX_DEF);
 1305                 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
 1306                 nfscl_init();
 1307                 NFSD_LOCK();
 1308                 nfsrvd_cbinit(0);
 1309                 NFSD_UNLOCK();
 1310                 ncl_call_invalcaches = ncl_invalcaches;
 1311                 nfsd_call_nfscl = nfssvc_nfscl;
 1312                 loaded = 1;
 1313                 break;
 1314 
 1315         case MOD_UNLOAD:
 1316                 if (nfs_numnfscbd != 0) {
 1317                         error = EBUSY;
 1318                         break;
 1319                 }
 1320 
 1321                 /*
 1322                  * XXX: Unloading of nfscl module is unsupported.
 1323                  */
 1324 #if 0
 1325                 ncl_call_invalcaches = NULL;
 1326                 nfsd_call_nfscl = NULL;
 1327                 /* and get rid of the mutexes */
 1328                 mtx_destroy(&nfs_clstate_mutex);
 1329                 mtx_destroy(&ncl_iod_mutex);
 1330                 loaded = 0;
 1331                 break;
 1332 #else
 1333                 /* FALLTHROUGH */
 1334 #endif
 1335         default:
 1336                 error = EOPNOTSUPP;
 1337                 break;
 1338         }
 1339         return error;
 1340 }
 1341 static moduledata_t nfscl_mod = {
 1342         "nfscl",
 1343         nfscl_modevent,
 1344         NULL,
 1345 };
 1346 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
 1347 
 1348 /* So that loader and kldload(2) can find us, wherever we are.. */
 1349 MODULE_VERSION(nfscl, 1);
 1350 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
 1351 MODULE_DEPEND(nfscl, krpc, 1, 1, 1);
 1352 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1);
 1353 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1);
 1354 

Cache object: 9370aa47435a03b0ddc8ffd153ae7eff


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.