The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nfsclient/nfs_clport.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * Rick Macklem at The University of Guelph.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: stable/10/sys/fs/nfsclient/nfs_clport.c 321057 2017-07-16 19:36:44Z rmacklem $");
   36 
   37 #include "opt_inet6.h"
   38 #include "opt_kdtrace.h"
   39 
   40 #include <sys/capsicum.h>
   41 
   42 /*
   43  * generally, I don't like #includes inside .h files, but it seems to
   44  * be the easiest way to handle the port.
   45  */
   46 #include <sys/hash.h>
   47 #include <fs/nfs/nfsport.h>
   48 #include <netinet/if_ether.h>
   49 #include <net/if_types.h>
   50 
   51 #include <fs/nfsclient/nfs_kdtrace.h>
   52 
   53 #ifdef KDTRACE_HOOKS
   54 dtrace_nfsclient_attrcache_flush_probe_func_t
   55                 dtrace_nfscl_attrcache_flush_done_probe;
   56 uint32_t        nfscl_attrcache_flush_done_id;
   57 
   58 dtrace_nfsclient_attrcache_get_hit_probe_func_t
   59                 dtrace_nfscl_attrcache_get_hit_probe;
   60 uint32_t        nfscl_attrcache_get_hit_id;
   61 
   62 dtrace_nfsclient_attrcache_get_miss_probe_func_t
   63                 dtrace_nfscl_attrcache_get_miss_probe;
   64 uint32_t        nfscl_attrcache_get_miss_id;
   65 
   66 dtrace_nfsclient_attrcache_load_probe_func_t
   67                 dtrace_nfscl_attrcache_load_done_probe;
   68 uint32_t        nfscl_attrcache_load_done_id;
   69 #endif /* !KDTRACE_HOOKS */
   70 
   71 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
   72 extern struct vop_vector newnfs_vnodeops;
   73 extern struct vop_vector newnfs_fifoops;
   74 extern uma_zone_t newnfsnode_zone;
   75 extern struct buf_ops buf_ops_newnfs;
   76 extern int ncl_pbuf_freecnt;
   77 extern short nfsv4_cbport;
   78 extern int nfscl_enablecallb;
   79 extern int nfs_numnfscbd;
   80 extern int nfscl_inited;
   81 struct mtx ncl_iod_mutex;
   82 NFSDLOCKMUTEX;
   83 
   84 extern void (*ncl_call_invalcaches)(struct vnode *);
   85 
   86 /*
   87  * Comparison function for vfs_hash functions.
   88  */
   89 int
   90 newnfs_vncmpf(struct vnode *vp, void *arg)
   91 {
   92         struct nfsfh *nfhp = (struct nfsfh *)arg;
   93         struct nfsnode *np = VTONFS(vp);
   94 
   95         if (np->n_fhp->nfh_len != nfhp->nfh_len ||
   96             NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
   97                 return (1);
   98         return (0);
   99 }
  100 
  101 /*
  102  * Look up a vnode/nfsnode by file handle.
  103  * Callers must check for mount points!!
  104  * In all cases, a pointer to a
  105  * nfsnode structure is returned.
  106  * This variant takes a "struct nfsfh *" as second argument and uses
  107  * that structure up, either by hanging off the nfsnode or FREEing it.
  108  */
  109 int
  110 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
  111     struct componentname *cnp, struct thread *td, struct nfsnode **npp,
  112     void *stuff, int lkflags)
  113 {
  114         struct nfsnode *np, *dnp;
  115         struct vnode *vp, *nvp;
  116         struct nfsv4node *newd, *oldd;
  117         int error;
  118         u_int hash;
  119         struct nfsmount *nmp;
  120 
  121         nmp = VFSTONFS(mntp);
  122         dnp = VTONFS(dvp);
  123         *npp = NULL;
  124 
  125         hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
  126 
  127         error = vfs_hash_get(mntp, hash, lkflags,
  128             td, &nvp, newnfs_vncmpf, nfhp);
  129         if (error == 0 && nvp != NULL) {
  130                 /*
  131                  * I believe there is a slight chance that vgonel() could
  132                  * get called on this vnode between when NFSVOPLOCK() drops
  133                  * the VI_LOCK() and vget() acquires it again, so that it
  134                  * hasn't yet had v_usecount incremented. If this were to
  135                  * happen, the VI_DOOMED flag would be set, so check for
  136                  * that here. Since we now have the v_usecount incremented,
  137                  * we should be ok until we vrele() it, if the VI_DOOMED
  138                  * flag isn't set now.
  139                  */
  140                 VI_LOCK(nvp);
  141                 if ((nvp->v_iflag & VI_DOOMED)) {
  142                         VI_UNLOCK(nvp);
  143                         vrele(nvp);
  144                         error = ENOENT;
  145                 } else {
  146                         VI_UNLOCK(nvp);
  147                 }
  148         }
  149         if (error) {
  150                 FREE((caddr_t)nfhp, M_NFSFH);
  151                 return (error);
  152         }
  153         if (nvp != NULL) {
  154                 np = VTONFS(nvp);
  155                 /*
  156                  * For NFSv4, check to see if it is the same name and
  157                  * replace the name, if it is different.
  158                  */
  159                 oldd = newd = NULL;
  160                 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
  161                     nvp->v_type == VREG &&
  162                     (np->n_v4->n4_namelen != cnp->cn_namelen ||
  163                      NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  164                      cnp->cn_namelen) ||
  165                      dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
  166                      NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  167                      dnp->n_fhp->nfh_len))) {
  168                     MALLOC(newd, struct nfsv4node *,
  169                         sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
  170                         + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
  171                     NFSLOCKNODE(np);
  172                     if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
  173                         && (np->n_v4->n4_namelen != cnp->cn_namelen ||
  174                          NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  175                          cnp->cn_namelen) ||
  176                          dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
  177                          NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  178                          dnp->n_fhp->nfh_len))) {
  179                         oldd = np->n_v4;
  180                         np->n_v4 = newd;
  181                         newd = NULL;
  182                         np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
  183                         np->n_v4->n4_namelen = cnp->cn_namelen;
  184                         NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  185                             dnp->n_fhp->nfh_len);
  186                         NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  187                             cnp->cn_namelen);
  188                     }
  189                     NFSUNLOCKNODE(np);
  190                 }
  191                 if (newd != NULL)
  192                         FREE((caddr_t)newd, M_NFSV4NODE);
  193                 if (oldd != NULL)
  194                         FREE((caddr_t)oldd, M_NFSV4NODE);
  195                 *npp = np;
  196                 FREE((caddr_t)nfhp, M_NFSFH);
  197                 return (0);
  198         }
  199         np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
  200 
  201         error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp);
  202         if (error) {
  203                 uma_zfree(newnfsnode_zone, np);
  204                 FREE((caddr_t)nfhp, M_NFSFH);
  205                 return (error);
  206         }
  207         vp = nvp;
  208         KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0"));
  209         vp->v_bufobj.bo_ops = &buf_ops_newnfs;
  210         vp->v_data = np;
  211         np->n_vnode = vp;
  212         /* 
  213          * Initialize the mutex even if the vnode is going to be a loser.
  214          * This simplifies the logic in reclaim, which can then unconditionally
  215          * destroy the mutex (in the case of the loser, or if hash_insert
  216          * happened to return an error no special casing is needed).
  217          */
  218         mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
  219 
  220         /* 
  221          * Are we getting the root? If so, make sure the vnode flags
  222          * are correct 
  223          */
  224         if ((nfhp->nfh_len == nmp->nm_fhsize) &&
  225             !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
  226                 if (vp->v_type == VNON)
  227                         vp->v_type = VDIR;
  228                 vp->v_vflag |= VV_ROOT;
  229         }
  230         
  231         np->n_fhp = nfhp;
  232         /*
  233          * For NFSv4, we have to attach the directory file handle and
  234          * file name, so that Open Ops can be done later.
  235          */
  236         if (nmp->nm_flag & NFSMNT_NFSV4) {
  237                 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
  238                     + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
  239                     M_WAITOK);
  240                 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
  241                 np->n_v4->n4_namelen = cnp->cn_namelen;
  242                 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  243                     dnp->n_fhp->nfh_len);
  244                 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  245                     cnp->cn_namelen);
  246         } else {
  247                 np->n_v4 = NULL;
  248         }
  249 
  250         /*
  251          * NFS supports recursive and shared locking.
  252          */
  253         lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
  254         VN_LOCK_AREC(vp);
  255         VN_LOCK_ASHARE(vp);
  256         error = insmntque(vp, mntp);
  257         if (error != 0) {
  258                 *npp = NULL;
  259                 mtx_destroy(&np->n_mtx);
  260                 FREE((caddr_t)nfhp, M_NFSFH);
  261                 if (np->n_v4 != NULL)
  262                         FREE((caddr_t)np->n_v4, M_NFSV4NODE);
  263                 uma_zfree(newnfsnode_zone, np);
  264                 return (error);
  265         }
  266         error = vfs_hash_insert(vp, hash, lkflags, 
  267             td, &nvp, newnfs_vncmpf, nfhp);
  268         if (error)
  269                 return (error);
  270         if (nvp != NULL) {
  271                 *npp = VTONFS(nvp);
  272                 /* vfs_hash_insert() vput()'s the losing vnode */
  273                 return (0);
  274         }
  275         *npp = np;
  276 
  277         return (0);
  278 }
  279 
  280 /*
  281  * Another variant of nfs_nget(). This one is only used by reopen. It
  282  * takes almost the same args as nfs_nget(), but only succeeds if an entry
  283  * exists in the cache. (Since files should already be "open" with a
  284  * vnode ref cnt on the node when reopen calls this, it should always
  285  * succeed.)
  286  * Also, don't get a vnode lock, since it may already be locked by some
  287  * other process that is handling it. This is ok, since all other threads
  288  * on the client are blocked by the nfsc_lock being exclusively held by the
  289  * caller of this function.
  290  */
  291 int
  292 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
  293     struct thread *td, struct nfsnode **npp)
  294 {
  295         struct vnode *nvp;
  296         u_int hash;
  297         struct nfsfh *nfhp;
  298         int error;
  299 
  300         *npp = NULL;
  301         /* For forced dismounts, just return error. */
  302         if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
  303                 return (EINTR);
  304         MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
  305             M_NFSFH, M_WAITOK);
  306         bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
  307         nfhp->nfh_len = fhsize;
  308 
  309         hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
  310 
  311         /*
  312          * First, try to get the vnode locked, but don't block for the lock.
  313          */
  314         error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
  315             newnfs_vncmpf, nfhp);
  316         if (error == 0 && nvp != NULL) {
  317                 NFSVOPUNLOCK(nvp, 0);
  318         } else if (error == EBUSY) {
  319                 /*
  320                  * It is safe so long as a vflush() with
  321                  * FORCECLOSE has not been done. Since the Renew thread is
  322                  * stopped and the MNTK_UNMOUNTF flag is set before doing
  323                  * a vflush() with FORCECLOSE, we should be ok here.
  324                  */
  325                 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
  326                         error = EINTR;
  327                 else {
  328                         vfs_hash_ref(mntp, hash, td, &nvp, newnfs_vncmpf, nfhp);
  329                         if (nvp == NULL) {
  330                                 error = ENOENT;
  331                         } else if ((nvp->v_iflag & VI_DOOMED) != 0) {
  332                                 error = ENOENT;
  333                                 vrele(nvp);
  334                         } else {
  335                                 error = 0;
  336                         }
  337                 }
  338         }
  339         FREE(nfhp, M_NFSFH);
  340         if (error)
  341                 return (error);
  342         if (nvp != NULL) {
  343                 *npp = VTONFS(nvp);
  344                 return (0);
  345         }
  346         return (EINVAL);
  347 }
  348 
  349 /*
  350  * Load the attribute cache (that lives in the nfsnode entry) with
  351  * the attributes of the second argument and
  352  * Iff vaper not NULL
  353  *    copy the attributes to *vaper
  354  * Similar to nfs_loadattrcache(), except the attributes are passed in
  355  * instead of being parsed out of the mbuf list.
  356  */
  357 int
  358 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
  359     void *stuff, int writeattr, int dontshrink)
  360 {
  361         struct vnode *vp = *vpp;
  362         struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
  363         struct nfsnode *np;
  364         struct nfsmount *nmp;
  365         struct timespec mtime_save;
  366         u_quad_t nsize;
  367         int setnsize;
  368 
  369         /*
  370          * If v_type == VNON it is a new node, so fill in the v_type,
  371          * n_mtime fields. Check to see if it represents a special 
  372          * device, and if so, check for a possible alias. Once the
  373          * correct vnode has been obtained, fill in the rest of the
  374          * information.
  375          */
  376         np = VTONFS(vp);
  377         NFSLOCKNODE(np);
  378         if (vp->v_type != nvap->va_type) {
  379                 vp->v_type = nvap->va_type;
  380                 if (vp->v_type == VFIFO)
  381                         vp->v_op = &newnfs_fifoops;
  382                 np->n_mtime = nvap->va_mtime;
  383         }
  384         nmp = VFSTONFS(vp->v_mount);
  385         vap = &np->n_vattr.na_vattr;
  386         mtime_save = vap->va_mtime;
  387         if (writeattr) {
  388                 np->n_vattr.na_filerev = nap->na_filerev;
  389                 np->n_vattr.na_size = nap->na_size;
  390                 np->n_vattr.na_mtime = nap->na_mtime;
  391                 np->n_vattr.na_ctime = nap->na_ctime;
  392                 np->n_vattr.na_fsid = nap->na_fsid;
  393                 np->n_vattr.na_mode = nap->na_mode;
  394         } else {
  395                 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
  396                     sizeof (struct nfsvattr));
  397         }
  398 
  399         /*
  400          * For NFSv4, if the node's fsid is not equal to the mount point's
  401          * fsid, return the low order 32bits of the node's fsid. This
  402          * allows getcwd(3) to work. There is a chance that the fsid might
  403          * be the same as a local fs, but since this is in an NFS mount
  404          * point, I don't think that will cause any problems?
  405          */
  406         if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) &&
  407             (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
  408              nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) {
  409                 /*
  410                  * va_fsid needs to be set to some value derived from
  411                  * np->n_vattr.na_filesid that is not equal
  412                  * vp->v_mount->mnt_stat.f_fsid[0], so that it changes
  413                  * from the value used for the top level server volume
  414                  * in the mounted subtree.
  415                  */
  416                 if (vp->v_mount->mnt_stat.f_fsid.val[0] !=
  417                     (uint32_t)np->n_vattr.na_filesid[0])
  418                         vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0];
  419                 else
  420                         vap->va_fsid = (uint32_t)hash32_buf(
  421                             np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0);
  422         } else
  423                 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
  424         np->n_attrstamp = time_second;
  425         setnsize = 0;
  426         nsize = 0;
  427         if (vap->va_size != np->n_size) {
  428                 if (vap->va_type == VREG) {
  429                         if (dontshrink && vap->va_size < np->n_size) {
  430                                 /*
  431                                  * We've been told not to shrink the file;
  432                                  * zero np->n_attrstamp to indicate that
  433                                  * the attributes are stale.
  434                                  */
  435                                 vap->va_size = np->n_size;
  436                                 np->n_attrstamp = 0;
  437                                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  438                                 vnode_pager_setsize(vp, np->n_size);
  439                         } else if (np->n_flag & NMODIFIED) {
  440                                 /*
  441                                  * We've modified the file: Use the larger
  442                                  * of our size, and the server's size.
  443                                  */
  444                                 if (vap->va_size < np->n_size) {
  445                                         vap->va_size = np->n_size;
  446                                 } else {
  447                                         np->n_size = vap->va_size;
  448                                         np->n_flag |= NSIZECHANGED;
  449                                 }
  450                                 vnode_pager_setsize(vp, np->n_size);
  451                         } else if (vap->va_size < np->n_size) {
  452                                 /*
  453                                  * When shrinking the size, the call to
  454                                  * vnode_pager_setsize() cannot be done
  455                                  * with the mutex held, so delay it until
  456                                  * after the mtx_unlock call.
  457                                  */
  458                                 nsize = np->n_size = vap->va_size;
  459                                 np->n_flag |= NSIZECHANGED;
  460                                 setnsize = 1;
  461                         } else {
  462                                 np->n_size = vap->va_size;
  463                                 np->n_flag |= NSIZECHANGED;
  464                                 vnode_pager_setsize(vp, np->n_size);
  465                         }
  466                 } else {
  467                         np->n_size = vap->va_size;
  468                 }
  469         }
  470         /*
  471          * The following checks are added to prevent a race between (say)
  472          * a READDIR+ and a WRITE. 
  473          * READDIR+, WRITE requests sent out.
  474          * READDIR+ resp, WRITE resp received on client.
  475          * However, the WRITE resp was handled before the READDIR+ resp
  476          * causing the post op attrs from the write to be loaded first
  477          * and the attrs from the READDIR+ to be loaded later. If this 
  478          * happens, we have stale attrs loaded into the attrcache.
  479          * We detect this by for the mtime moving back. We invalidate the 
  480          * attrcache when this happens.
  481          */
  482         if (timespeccmp(&mtime_save, &vap->va_mtime, >)) {
  483                 /* Size changed or mtime went backwards */
  484                 np->n_attrstamp = 0;
  485                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  486         }
  487         if (vaper != NULL) {
  488                 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
  489                 if (np->n_flag & NCHG) {
  490                         if (np->n_flag & NACC)
  491                                 vaper->va_atime = np->n_atim;
  492                         if (np->n_flag & NUPD)
  493                                 vaper->va_mtime = np->n_mtim;
  494                 }
  495         }
  496 #ifdef KDTRACE_HOOKS
  497         if (np->n_attrstamp != 0)
  498                 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0);
  499 #endif
  500         NFSUNLOCKNODE(np);
  501         if (setnsize)
  502                 vnode_pager_setsize(vp, nsize);
  503         return (0);
  504 }
  505 
  506 /*
  507  * Fill in the client id name. For these bytes:
  508  * 1 - they must be unique
  509  * 2 - they should be persistent across client reboots
  510  * 1 is more critical than 2
  511  * Use the mount point's unique id plus either the uuid or, if that
  512  * isn't set, random junk.
  513  */
  514 void
  515 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
  516 {
  517         int uuidlen;
  518 
  519         /*
  520          * First, put in the 64bit mount point identifier.
  521          */
  522         if (idlen >= sizeof (u_int64_t)) {
  523                 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
  524                 cp += sizeof (u_int64_t);
  525                 idlen -= sizeof (u_int64_t);
  526         }
  527 
  528         /*
  529          * If uuid is non-zero length, use it.
  530          */
  531         uuidlen = strlen(uuid);
  532         if (uuidlen > 0 && idlen >= uuidlen) {
  533                 NFSBCOPY(uuid, cp, uuidlen);
  534                 cp += uuidlen;
  535                 idlen -= uuidlen;
  536         }
  537 
  538         /*
  539          * This only normally happens if the uuid isn't set.
  540          */
  541         while (idlen > 0) {
  542                 *cp++ = (u_int8_t)(arc4random() % 256);
  543                 idlen--;
  544         }
  545 }
  546 
  547 /*
  548  * Fill in a lock owner name. For now, pid + the process's creation time.
  549  */
  550 void
  551 nfscl_filllockowner(void *id, u_int8_t *cp, int flags)
  552 {
  553         union {
  554                 u_int32_t       lval;
  555                 u_int8_t        cval[4];
  556         } tl;
  557         struct proc *p;
  558 
  559         if (id == NULL) {
  560                 /* Return the single open_owner of all 0 bytes. */
  561                 bzero(cp, NFSV4CL_LOCKNAMELEN);
  562                 return;
  563         }
  564         if ((flags & F_POSIX) != 0) {
  565                 p = (struct proc *)id;
  566                 tl.lval = p->p_pid;
  567                 *cp++ = tl.cval[0];
  568                 *cp++ = tl.cval[1];
  569                 *cp++ = tl.cval[2];
  570                 *cp++ = tl.cval[3];
  571                 tl.lval = p->p_stats->p_start.tv_sec;
  572                 *cp++ = tl.cval[0];
  573                 *cp++ = tl.cval[1];
  574                 *cp++ = tl.cval[2];
  575                 *cp++ = tl.cval[3];
  576                 tl.lval = p->p_stats->p_start.tv_usec;
  577                 *cp++ = tl.cval[0];
  578                 *cp++ = tl.cval[1];
  579                 *cp++ = tl.cval[2];
  580                 *cp = tl.cval[3];
  581         } else if ((flags & F_FLOCK) != 0) {
  582                 bcopy(&id, cp, sizeof(id));
  583                 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id));
  584         } else {
  585                 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n");
  586                 bzero(cp, NFSV4CL_LOCKNAMELEN);
  587         }
  588 }
  589 
  590 /*
  591  * Find the parent process for the thread passed in as an argument.
  592  * If none exists, return NULL, otherwise return a thread for the parent.
  593  * (Can be any of the threads, since it is only used for td->td_proc.)
  594  */
  595 NFSPROC_T *
  596 nfscl_getparent(struct thread *td)
  597 {
  598         struct proc *p;
  599         struct thread *ptd;
  600 
  601         if (td == NULL)
  602                 return (NULL);
  603         p = td->td_proc;
  604         if (p->p_pid == 0)
  605                 return (NULL);
  606         p = p->p_pptr;
  607         if (p == NULL)
  608                 return (NULL);
  609         ptd = TAILQ_FIRST(&p->p_threads);
  610         return (ptd);
  611 }
  612 
  613 /*
  614  * Start up the renew kernel thread.
  615  */
  616 static void
  617 start_nfscl(void *arg)
  618 {
  619         struct nfsclclient *clp;
  620         struct thread *td;
  621 
  622         clp = (struct nfsclclient *)arg;
  623         td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
  624         nfscl_renewthread(clp, td);
  625         kproc_exit(0);
  626 }
  627 
  628 void
  629 nfscl_start_renewthread(struct nfsclclient *clp)
  630 {
  631 
  632         kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
  633             "nfscl");
  634 }
  635 
  636 /*
  637  * Handle wcc_data.
  638  * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
  639  * as the first Op after PutFH.
  640  * (For NFSv4, the postop attributes are after the Op, so they can't be
  641  *  parsed here. A separate call to nfscl_postop_attr() is required.)
  642  */
  643 int
  644 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
  645     struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
  646 {
  647         u_int32_t *tl;
  648         struct nfsnode *np = VTONFS(vp);
  649         struct nfsvattr nfsva;
  650         int error = 0;
  651 
  652         if (wccflagp != NULL)
  653                 *wccflagp = 0;
  654         if (nd->nd_flag & ND_NFSV3) {
  655                 *flagp = 0;
  656                 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
  657                 if (*tl == newnfs_true) {
  658                         NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
  659                         if (wccflagp != NULL) {
  660                                 mtx_lock(&np->n_mtx);
  661                                 *wccflagp = (np->n_mtime.tv_sec ==
  662                                     fxdr_unsigned(u_int32_t, *(tl + 2)) &&
  663                                     np->n_mtime.tv_nsec ==
  664                                     fxdr_unsigned(u_int32_t, *(tl + 3)));
  665                                 mtx_unlock(&np->n_mtx);
  666                         }
  667                 }
  668                 error = nfscl_postop_attr(nd, nap, flagp, stuff);
  669                 if (wccflagp != NULL && *flagp == 0)
  670                         *wccflagp = 0;
  671         } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
  672             == (ND_NFSV4 | ND_V4WCCATTR)) {
  673                 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
  674                     NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
  675                     NULL, NULL, NULL, NULL, NULL);
  676                 if (error)
  677                         return (error);
  678                 /*
  679                  * Get rid of Op# and status for next op.
  680                  */
  681                 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  682                 if (*++tl)
  683                         nd->nd_flag |= ND_NOMOREDATA;
  684                 if (wccflagp != NULL &&
  685                     nfsva.na_vattr.va_mtime.tv_sec != 0) {
  686                         mtx_lock(&np->n_mtx);
  687                         *wccflagp = (np->n_mtime.tv_sec ==
  688                             nfsva.na_vattr.va_mtime.tv_sec &&
  689                             np->n_mtime.tv_nsec ==
  690                             nfsva.na_vattr.va_mtime.tv_sec);
  691                         mtx_unlock(&np->n_mtx);
  692                 }
  693         }
  694 nfsmout:
  695         return (error);
  696 }
  697 
  698 /*
  699  * Get postop attributes.
  700  */
  701 int
  702 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
  703     void *stuff)
  704 {
  705         u_int32_t *tl;
  706         int error = 0;
  707 
  708         *retp = 0;
  709         if (nd->nd_flag & ND_NOMOREDATA)
  710                 return (error);
  711         if (nd->nd_flag & ND_NFSV3) {
  712                 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
  713                 *retp = fxdr_unsigned(int, *tl);
  714         } else if (nd->nd_flag & ND_NFSV4) {
  715                 /*
  716                  * For NFSv4, the postop attr are at the end, so no point
  717                  * in looking if nd_repstat != 0.
  718                  */
  719                 if (!nd->nd_repstat) {
  720                         NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  721                         if (*(tl + 1))
  722                                 /* should never happen since nd_repstat != 0 */
  723                                 nd->nd_flag |= ND_NOMOREDATA;
  724                         else
  725                                 *retp = 1;
  726                 }
  727         } else if (!nd->nd_repstat) {
  728                 /* For NFSv2, the attributes are here iff nd_repstat == 0 */
  729                 *retp = 1;
  730         }
  731         if (*retp) {
  732                 error = nfsm_loadattr(nd, nap);
  733                 if (error)
  734                         *retp = 0;
  735         }
  736 nfsmout:
  737         return (error);
  738 }
  739 
  740 /*
  741  * Fill in the setable attributes. The full argument indicates whether
  742  * to fill in them all or just mode and time.
  743  */
  744 void
  745 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
  746     struct vnode *vp, int flags, u_int32_t rdev)
  747 {
  748         u_int32_t *tl;
  749         struct nfsv2_sattr *sp;
  750         nfsattrbit_t attrbits;
  751 
  752         switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
  753         case ND_NFSV2:
  754                 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
  755                 if (vap->va_mode == (mode_t)VNOVAL)
  756                         sp->sa_mode = newnfs_xdrneg1;
  757                 else
  758                         sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
  759                 if (vap->va_uid == (uid_t)VNOVAL)
  760                         sp->sa_uid = newnfs_xdrneg1;
  761                 else
  762                         sp->sa_uid = txdr_unsigned(vap->va_uid);
  763                 if (vap->va_gid == (gid_t)VNOVAL)
  764                         sp->sa_gid = newnfs_xdrneg1;
  765                 else
  766                         sp->sa_gid = txdr_unsigned(vap->va_gid);
  767                 if (flags & NFSSATTR_SIZE0)
  768                         sp->sa_size = 0;
  769                 else if (flags & NFSSATTR_SIZENEG1)
  770                         sp->sa_size = newnfs_xdrneg1;
  771                 else if (flags & NFSSATTR_SIZERDEV)
  772                         sp->sa_size = txdr_unsigned(rdev);
  773                 else
  774                         sp->sa_size = txdr_unsigned(vap->va_size);
  775                 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
  776                 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
  777                 break;
  778         case ND_NFSV3:
  779                 if (vap->va_mode != (mode_t)VNOVAL) {
  780                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  781                         *tl++ = newnfs_true;
  782                         *tl = txdr_unsigned(vap->va_mode);
  783                 } else {
  784                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  785                         *tl = newnfs_false;
  786                 }
  787                 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
  788                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  789                         *tl++ = newnfs_true;
  790                         *tl = txdr_unsigned(vap->va_uid);
  791                 } else {
  792                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  793                         *tl = newnfs_false;
  794                 }
  795                 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
  796                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  797                         *tl++ = newnfs_true;
  798                         *tl = txdr_unsigned(vap->va_gid);
  799                 } else {
  800                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  801                         *tl = newnfs_false;
  802                 }
  803                 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
  804                         NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  805                         *tl++ = newnfs_true;
  806                         txdr_hyper(vap->va_size, tl);
  807                 } else {
  808                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  809                         *tl = newnfs_false;
  810                 }
  811                 if (vap->va_atime.tv_sec != VNOVAL) {
  812                         if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
  813                                 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  814                                 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
  815                                 txdr_nfsv3time(&vap->va_atime, tl);
  816                         } else {
  817                                 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  818                                 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
  819                         }
  820                 } else {
  821                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  822                         *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
  823                 }
  824                 if (vap->va_mtime.tv_sec != VNOVAL) {
  825                         if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
  826                                 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  827                                 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
  828                                 txdr_nfsv3time(&vap->va_mtime, tl);
  829                         } else {
  830                                 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  831                                 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
  832                         }
  833                 } else {
  834                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  835                         *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
  836                 }
  837                 break;
  838         case ND_NFSV4:
  839                 NFSZERO_ATTRBIT(&attrbits);
  840                 if (vap->va_mode != (mode_t)VNOVAL)
  841                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
  842                 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
  843                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
  844                 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
  845                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
  846                 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
  847                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
  848                 if (vap->va_atime.tv_sec != VNOVAL)
  849                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
  850                 if (vap->va_mtime.tv_sec != VNOVAL)
  851                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
  852                 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0,
  853                     &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0);
  854                 break;
  855         };
  856 }
  857 
  858 /*
  859  * nfscl_request() - mostly a wrapper for newnfs_request().
  860  */
  861 int
  862 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
  863     struct ucred *cred, void *stuff)
  864 {
  865         int ret, vers;
  866         struct nfsmount *nmp;
  867 
  868         nmp = VFSTONFS(vp->v_mount);
  869         if (nd->nd_flag & ND_NFSV4)
  870                 vers = NFS_VER4;
  871         else if (nd->nd_flag & ND_NFSV3)
  872                 vers = NFS_VER3;
  873         else
  874                 vers = NFS_VER2;
  875         ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
  876                 NFS_PROG, vers, NULL, 1, NULL, NULL);
  877         return (ret);
  878 }
  879 
  880 /*
  881  * fill in this bsden's variant of statfs using nfsstatfs.
  882  */
  883 void
  884 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
  885 {
  886         struct statfs *sbp = (struct statfs *)statfs;
  887 
  888         if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
  889                 sbp->f_bsize = NFS_FABLKSIZE;
  890                 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE;
  891                 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE;
  892                 /*
  893                  * Although sf_abytes is uint64_t and f_bavail is int64_t,
  894                  * the value after dividing by NFS_FABLKSIZE is small
  895                  * enough that it will fit in 63bits, so it is ok to
  896                  * assign it to f_bavail without fear that it will become
  897                  * negative.
  898                  */
  899                 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE;
  900                 sbp->f_files = sfp->sf_tfiles;
  901                 /* Since f_ffree is int64_t, clip it to 63bits. */
  902                 if (sfp->sf_ffiles > INT64_MAX)
  903                         sbp->f_ffree = INT64_MAX;
  904                 else
  905                         sbp->f_ffree = sfp->sf_ffiles;
  906         } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
  907                 /*
  908                  * The type casts to (int32_t) ensure that this code is
  909                  * compatible with the old NFS client, in that it will
  910                  * propagate bit31 to the high order bits. This may or may
  911                  * not be correct for NFSv2, but since it is a legacy
  912                  * environment, I'd rather retain backwards compatibility.
  913                  */
  914                 sbp->f_bsize = (int32_t)sfp->sf_bsize;
  915                 sbp->f_blocks = (int32_t)sfp->sf_blocks;
  916                 sbp->f_bfree = (int32_t)sfp->sf_bfree;
  917                 sbp->f_bavail = (int32_t)sfp->sf_bavail;
  918                 sbp->f_files = 0;
  919                 sbp->f_ffree = 0;
  920         }
  921 }
  922 
  923 /*
  924  * Use the fsinfo stuff to update the mount point.
  925  */
  926 void
  927 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
  928 {
  929 
  930         if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
  931             fsp->fs_wtpref >= NFS_FABLKSIZE)
  932                 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
  933                     ~(NFS_FABLKSIZE - 1);
  934         if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
  935                 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
  936                 if (nmp->nm_wsize == 0)
  937                         nmp->nm_wsize = fsp->fs_wtmax;
  938         }
  939         if (nmp->nm_wsize < NFS_FABLKSIZE)
  940                 nmp->nm_wsize = NFS_FABLKSIZE;
  941         if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
  942             fsp->fs_rtpref >= NFS_FABLKSIZE)
  943                 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
  944                     ~(NFS_FABLKSIZE - 1);
  945         if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
  946                 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
  947                 if (nmp->nm_rsize == 0)
  948                         nmp->nm_rsize = fsp->fs_rtmax;
  949         }
  950         if (nmp->nm_rsize < NFS_FABLKSIZE)
  951                 nmp->nm_rsize = NFS_FABLKSIZE;
  952         if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
  953             && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
  954                 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
  955                     ~(NFS_DIRBLKSIZ - 1);
  956         if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
  957                 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
  958                 if (nmp->nm_readdirsize == 0)
  959                         nmp->nm_readdirsize = fsp->fs_rtmax;
  960         }
  961         if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
  962                 nmp->nm_readdirsize = NFS_DIRBLKSIZ;
  963         if (fsp->fs_maxfilesize > 0 &&
  964             fsp->fs_maxfilesize < nmp->nm_maxfilesize)
  965                 nmp->nm_maxfilesize = fsp->fs_maxfilesize;
  966         nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
  967         nmp->nm_state |= NFSSTA_GOTFSINFO;
  968 }
  969 
  970 /*
  971  * Get a pointer to my IP addrress and return it.
  972  * Return NULL if you can't find one.
  973  */
  974 u_int8_t *
  975 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
  976 {
  977         struct sockaddr_in sad, *sin;
  978         struct rtentry *rt;
  979         u_int8_t *retp = NULL;
  980         static struct in_addr laddr;
  981 
  982         *isinet6p = 0;
  983         /*
  984          * Loop up a route for the destination address.
  985          */
  986         if (nmp->nm_nam->sa_family == AF_INET) {
  987                 bzero(&sad, sizeof (sad));
  988                 sin = (struct sockaddr_in *)nmp->nm_nam;
  989                 sad.sin_family = AF_INET;
  990                 sad.sin_len = sizeof (struct sockaddr_in);
  991                 sad.sin_addr.s_addr = sin->sin_addr.s_addr;
  992                 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
  993                 rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL,
  994                      curthread->td_proc->p_fibnum);
  995                 if (rt != NULL) {
  996                         if (rt->rt_ifp != NULL &&
  997                             rt->rt_ifa != NULL &&
  998                             ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
  999                             rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
 1000                                 sin = (struct sockaddr_in *)
 1001                                     rt->rt_ifa->ifa_addr;
 1002                                 laddr.s_addr = sin->sin_addr.s_addr;
 1003                                 retp = (u_int8_t *)&laddr;
 1004                         }
 1005                         RTFREE_LOCKED(rt);
 1006                 }
 1007                 CURVNET_RESTORE();
 1008 #ifdef INET6
 1009         } else if (nmp->nm_nam->sa_family == AF_INET6) {
 1010                 struct sockaddr_in6 sad6, *sin6;
 1011                 static struct in6_addr laddr6;
 1012 
 1013                 bzero(&sad6, sizeof (sad6));
 1014                 sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
 1015                 sad6.sin6_family = AF_INET6;
 1016                 sad6.sin6_len = sizeof (struct sockaddr_in6);
 1017                 sad6.sin6_addr = sin6->sin6_addr;
 1018                 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
 1019                 rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL,
 1020                      curthread->td_proc->p_fibnum);
 1021                 if (rt != NULL) {
 1022                         if (rt->rt_ifp != NULL &&
 1023                             rt->rt_ifa != NULL &&
 1024                             ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
 1025                             rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
 1026                                 sin6 = (struct sockaddr_in6 *)
 1027                                     rt->rt_ifa->ifa_addr;
 1028                                 laddr6 = sin6->sin6_addr;
 1029                                 retp = (u_int8_t *)&laddr6;
 1030                                 *isinet6p = 1;
 1031                         }
 1032                         RTFREE_LOCKED(rt);
 1033                 }
 1034                 CURVNET_RESTORE();
 1035 #endif
 1036         }
 1037         return (retp);
 1038 }
 1039 
 1040 /*
 1041  * Copy NFS uid, gids from the cred structure.
 1042  */
 1043 void
 1044 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
 1045 {
 1046         int i;
 1047 
 1048         KASSERT(cr->cr_ngroups >= 0,
 1049             ("newnfs_copyincred: negative cr_ngroups"));
 1050         nfscr->nfsc_uid = cr->cr_uid;
 1051         nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
 1052         for (i = 0; i < nfscr->nfsc_ngroups; i++)
 1053                 nfscr->nfsc_groups[i] = cr->cr_groups[i];
 1054 }
 1055 
 1056 
 1057 /*
 1058  * Do any client specific initialization.
 1059  */
 1060 void
 1061 nfscl_init(void)
 1062 {
 1063         static int inited = 0;
 1064 
 1065         if (inited)
 1066                 return;
 1067         inited = 1;
 1068         nfscl_inited = 1;
 1069         ncl_pbuf_freecnt = nswbuf / 2 + 1;
 1070 }
 1071 
 1072 /*
 1073  * Check each of the attributes to be set, to ensure they aren't already
 1074  * the correct value. Disable setting ones already correct.
 1075  */
 1076 int
 1077 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
 1078 {
 1079 
 1080         if (vap->va_mode != (mode_t)VNOVAL) {
 1081                 if (vap->va_mode == nvap->na_mode)
 1082                         vap->va_mode = (mode_t)VNOVAL;
 1083         }
 1084         if (vap->va_uid != (uid_t)VNOVAL) {
 1085                 if (vap->va_uid == nvap->na_uid)
 1086                         vap->va_uid = (uid_t)VNOVAL;
 1087         }
 1088         if (vap->va_gid != (gid_t)VNOVAL) {
 1089                 if (vap->va_gid == nvap->na_gid)
 1090                         vap->va_gid = (gid_t)VNOVAL;
 1091         }
 1092         if (vap->va_size != VNOVAL) {
 1093                 if (vap->va_size == nvap->na_size)
 1094                         vap->va_size = VNOVAL;
 1095         }
 1096 
 1097         /*
 1098          * We are normally called with only a partially initialized
 1099          * VAP.  Since the NFSv3 spec says that server may use the
 1100          * file attributes to store the verifier, the spec requires
 1101          * us to do a SETATTR RPC. FreeBSD servers store the verifier
 1102          * in atime, but we can't really assume that all servers will
 1103          * so we ensure that our SETATTR sets both atime and mtime.
 1104          * Set the VA_UTIMES_NULL flag for this case, so that
 1105          * the server's time will be used.  This is needed to
 1106          * work around a bug in some Solaris servers, where
 1107          * setting the time TOCLIENT causes the Setattr RPC
 1108          * to return NFS_OK, but not set va_mode.
 1109          */
 1110         if (vap->va_mtime.tv_sec == VNOVAL) {
 1111                 vfs_timestamp(&vap->va_mtime);
 1112                 vap->va_vaflags |= VA_UTIMES_NULL;
 1113         }
 1114         if (vap->va_atime.tv_sec == VNOVAL)
 1115                 vap->va_atime = vap->va_mtime;
 1116         return (1);
 1117 }
 1118 
 1119 /*
 1120  * Map nfsv4 errors to errno.h errors.
 1121  * The uid and gid arguments are only used for NFSERR_BADOWNER and that
 1122  * error should only be returned for the Open, Create and Setattr Ops.
 1123  * As such, most calls can just pass in 0 for those arguments.
 1124  */
 1125 APPLESTATIC int
 1126 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
 1127 {
 1128         struct proc *p;
 1129 
 1130         if (error < 10000 || error >= NFSERR_STALEWRITEVERF)
 1131                 return (error);
 1132         if (td != NULL)
 1133                 p = td->td_proc;
 1134         else
 1135                 p = NULL;
 1136         switch (error) {
 1137         case NFSERR_BADOWNER:
 1138                 tprintf(p, LOG_INFO,
 1139                     "No name and/or group mapping for uid,gid:(%d,%d)\n",
 1140                     uid, gid);
 1141                 return (EPERM);
 1142         case NFSERR_BADNAME:
 1143         case NFSERR_BADCHAR:
 1144                 printf("nfsv4 char/name not handled by server\n");
 1145                 return (ENOENT);
 1146         case NFSERR_STALECLIENTID:
 1147         case NFSERR_STALESTATEID:
 1148         case NFSERR_EXPIRED:
 1149         case NFSERR_BADSTATEID:
 1150         case NFSERR_BADSESSION:
 1151                 printf("nfsv4 recover err returned %d\n", error);
 1152                 return (EIO);
 1153         case NFSERR_BADHANDLE:
 1154         case NFSERR_SERVERFAULT:
 1155         case NFSERR_BADTYPE:
 1156         case NFSERR_FHEXPIRED:
 1157         case NFSERR_RESOURCE:
 1158         case NFSERR_MOVED:
 1159         case NFSERR_NOFILEHANDLE:
 1160         case NFSERR_MINORVERMISMATCH:
 1161         case NFSERR_OLDSTATEID:
 1162         case NFSERR_BADSEQID:
 1163         case NFSERR_LEASEMOVED:
 1164         case NFSERR_RECLAIMBAD:
 1165         case NFSERR_BADXDR:
 1166         case NFSERR_OPILLEGAL:
 1167                 printf("nfsv4 client/server protocol prob err=%d\n",
 1168                     error);
 1169                 return (EIO);
 1170         default:
 1171                 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
 1172                 return (EIO);
 1173         };
 1174 }
 1175 
 1176 /*
 1177  * Check to see if the process for this owner exists. Return 1 if it doesn't
 1178  * and 0 otherwise.
 1179  */
 1180 int
 1181 nfscl_procdoesntexist(u_int8_t *own)
 1182 {
 1183         union {
 1184                 u_int32_t       lval;
 1185                 u_int8_t        cval[4];
 1186         } tl;
 1187         struct proc *p;
 1188         pid_t pid;
 1189         int i, ret = 0;
 1190 
 1191         /* For the single open_owner of all 0 bytes, just return 0. */
 1192         for (i = 0; i < NFSV4CL_LOCKNAMELEN; i++)
 1193                 if (own[i] != 0)
 1194                         break;
 1195         if (i == NFSV4CL_LOCKNAMELEN)
 1196                 return (0);
 1197 
 1198         tl.cval[0] = *own++;
 1199         tl.cval[1] = *own++;
 1200         tl.cval[2] = *own++;
 1201         tl.cval[3] = *own++;
 1202         pid = tl.lval;
 1203         p = pfind_locked(pid);
 1204         if (p == NULL)
 1205                 return (1);
 1206         if (p->p_stats == NULL) {
 1207                 PROC_UNLOCK(p);
 1208                 return (0);
 1209         }
 1210         tl.cval[0] = *own++;
 1211         tl.cval[1] = *own++;
 1212         tl.cval[2] = *own++;
 1213         tl.cval[3] = *own++;
 1214         if (tl.lval != p->p_stats->p_start.tv_sec) {
 1215                 ret = 1;
 1216         } else {
 1217                 tl.cval[0] = *own++;
 1218                 tl.cval[1] = *own++;
 1219                 tl.cval[2] = *own++;
 1220                 tl.cval[3] = *own;
 1221                 if (tl.lval != p->p_stats->p_start.tv_usec)
 1222                         ret = 1;
 1223         }
 1224         PROC_UNLOCK(p);
 1225         return (ret);
 1226 }
 1227 
 1228 /*
 1229  * - nfs pseudo system call for the client
 1230  */
 1231 /*
 1232  * MPSAFE
 1233  */
 1234 static int
 1235 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
 1236 {
 1237         struct file *fp;
 1238         struct nfscbd_args nfscbdarg;
 1239         struct nfsd_nfscbd_args nfscbdarg2;
 1240         struct nameidata nd;
 1241         struct nfscl_dumpmntopts dumpmntopts;
 1242         cap_rights_t rights;
 1243         char *buf;
 1244         int error;
 1245 
 1246         if (uap->flag & NFSSVC_CBADDSOCK) {
 1247                 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
 1248                 if (error)
 1249                         return (error);
 1250                 /*
 1251                  * Since we don't know what rights might be required,
 1252                  * pretend that we need them all. It is better to be too
 1253                  * careful than too reckless.
 1254                  */
 1255                 error = fget(td, nfscbdarg.sock,
 1256                     cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp);
 1257                 if (error)
 1258                         return (error);
 1259                 if (fp->f_type != DTYPE_SOCKET) {
 1260                         fdrop(fp, td);
 1261                         return (EPERM);
 1262                 }
 1263                 error = nfscbd_addsock(fp);
 1264                 fdrop(fp, td);
 1265                 if (!error && nfscl_enablecallb == 0) {
 1266                         nfsv4_cbport = nfscbdarg.port;
 1267                         nfscl_enablecallb = 1;
 1268                 }
 1269         } else if (uap->flag & NFSSVC_NFSCBD) {
 1270                 if (uap->argp == NULL) 
 1271                         return (EINVAL);
 1272                 error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
 1273                     sizeof(nfscbdarg2));
 1274                 if (error)
 1275                         return (error);
 1276                 error = nfscbd_nfsd(td, &nfscbdarg2);
 1277         } else if (uap->flag & NFSSVC_DUMPMNTOPTS) {
 1278                 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts));
 1279                 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 ||
 1280                     dumpmntopts.ndmnt_blen > 1024))
 1281                         error = EINVAL;
 1282                 if (error == 0)
 1283                         error = nfsrv_lookupfilename(&nd,
 1284                             dumpmntopts.ndmnt_fname, td);
 1285                 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name,
 1286                     "nfs") != 0) {
 1287                         vput(nd.ni_vp);
 1288                         error = EINVAL;
 1289                 }
 1290                 if (error == 0) {
 1291                         buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK);
 1292                         nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf,
 1293                             dumpmntopts.ndmnt_blen);
 1294                         vput(nd.ni_vp);
 1295                         error = copyout(buf, dumpmntopts.ndmnt_buf,
 1296                             dumpmntopts.ndmnt_blen);
 1297                         free(buf, M_TEMP);
 1298                 }
 1299         } else {
 1300                 error = EINVAL;
 1301         }
 1302         return (error);
 1303 }
 1304 
 1305 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
 1306 
 1307 /*
 1308  * Called once to initialize data structures...
 1309  */
 1310 static int
 1311 nfscl_modevent(module_t mod, int type, void *data)
 1312 {
 1313         int error = 0;
 1314         static int loaded = 0;
 1315 
 1316         switch (type) {
 1317         case MOD_LOAD:
 1318                 if (loaded)
 1319                         return (0);
 1320                 newnfs_portinit();
 1321                 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
 1322                 nfscl_init();
 1323                 NFSD_LOCK();
 1324                 nfsrvd_cbinit(0);
 1325                 NFSD_UNLOCK();
 1326                 ncl_call_invalcaches = ncl_invalcaches;
 1327                 nfsd_call_nfscl = nfssvc_nfscl;
 1328                 loaded = 1;
 1329                 break;
 1330 
 1331         case MOD_UNLOAD:
 1332                 if (nfs_numnfscbd != 0) {
 1333                         error = EBUSY;
 1334                         break;
 1335                 }
 1336 
 1337                 /*
 1338                  * XXX: Unloading of nfscl module is unsupported.
 1339                  */
 1340 #if 0
 1341                 ncl_call_invalcaches = NULL;
 1342                 nfsd_call_nfscl = NULL;
 1343                 /* and get rid of the mutexes */
 1344                 mtx_destroy(&ncl_iod_mutex);
 1345                 loaded = 0;
 1346                 break;
 1347 #else
 1348                 /* FALLTHROUGH */
 1349 #endif
 1350         default:
 1351                 error = EOPNOTSUPP;
 1352                 break;
 1353         }
 1354         return error;
 1355 }
 1356 static moduledata_t nfscl_mod = {
 1357         "nfscl",
 1358         nfscl_modevent,
 1359         NULL,
 1360 };
 1361 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
 1362 
 1363 /* So that loader and kldload(2) can find us, wherever we are.. */
 1364 MODULE_VERSION(nfscl, 1);
 1365 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
 1366 MODULE_DEPEND(nfscl, krpc, 1, 1, 1);
 1367 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1);
 1368 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1);
 1369 

Cache object: c052eed663a261d6343a68b1512b5570


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.