The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nfsclient/nfs_clport.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * Rick Macklem at The University of Guelph.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/9.1/sys/fs/nfsclient/nfs_clport.c 232292 2012-02-29 09:47:26Z bz $");
   36 
   37 #include "opt_inet6.h"
   38 #include "opt_kdtrace.h"
   39 
   40 #include <sys/capability.h>
   41 
   42 /*
   43  * generally, I don't like #includes inside .h files, but it seems to
   44  * be the easiest way to handle the port.
   45  */
   46 #include <sys/hash.h>
   47 #include <fs/nfs/nfsport.h>
   48 #include <netinet/if_ether.h>
   49 #include <net/if_types.h>
   50 
   51 #include <fs/nfsclient/nfs_kdtrace.h>
   52 
   53 #ifdef KDTRACE_HOOKS
   54 dtrace_nfsclient_attrcache_flush_probe_func_t
   55                 dtrace_nfscl_attrcache_flush_done_probe;
   56 uint32_t        nfscl_attrcache_flush_done_id;
   57 
   58 dtrace_nfsclient_attrcache_get_hit_probe_func_t
   59                 dtrace_nfscl_attrcache_get_hit_probe;
   60 uint32_t        nfscl_attrcache_get_hit_id;
   61 
   62 dtrace_nfsclient_attrcache_get_miss_probe_func_t
   63                 dtrace_nfscl_attrcache_get_miss_probe;
   64 uint32_t        nfscl_attrcache_get_miss_id;
   65 
   66 dtrace_nfsclient_attrcache_load_probe_func_t
   67                 dtrace_nfscl_attrcache_load_done_probe;
   68 uint32_t        nfscl_attrcache_load_done_id;
   69 #endif /* !KDTRACE_HOOKS */
   70 
   71 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
   72 extern struct vop_vector newnfs_vnodeops;
   73 extern struct vop_vector newnfs_fifoops;
   74 extern uma_zone_t newnfsnode_zone;
   75 extern struct buf_ops buf_ops_newnfs;
   76 extern int ncl_pbuf_freecnt;
   77 extern short nfsv4_cbport;
   78 extern int nfscl_enablecallb;
   79 extern int nfs_numnfscbd;
   80 extern int nfscl_inited;
   81 struct mtx nfs_clstate_mutex;
   82 struct mtx ncl_iod_mutex;
   83 NFSDLOCKMUTEX;
   84 
   85 extern void (*ncl_call_invalcaches)(struct vnode *);
   86 
   87 /*
   88  * Comparison function for vfs_hash functions.
   89  */
   90 int
   91 newnfs_vncmpf(struct vnode *vp, void *arg)
   92 {
   93         struct nfsfh *nfhp = (struct nfsfh *)arg;
   94         struct nfsnode *np = VTONFS(vp);
   95 
   96         if (np->n_fhp->nfh_len != nfhp->nfh_len ||
   97             NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
   98                 return (1);
   99         return (0);
  100 }
  101 
  102 /*
  103  * Look up a vnode/nfsnode by file handle.
  104  * Callers must check for mount points!!
  105  * In all cases, a pointer to a
  106  * nfsnode structure is returned.
  107  * This variant takes a "struct nfsfh *" as second argument and uses
  108  * that structure up, either by hanging off the nfsnode or FREEing it.
  109  */
  110 int
  111 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
  112     struct componentname *cnp, struct thread *td, struct nfsnode **npp,
  113     void *stuff, int lkflags)
  114 {
  115         struct nfsnode *np, *dnp;
  116         struct vnode *vp, *nvp;
  117         struct nfsv4node *newd, *oldd;
  118         int error;
  119         u_int hash;
  120         struct nfsmount *nmp;
  121 
  122         nmp = VFSTONFS(mntp);
  123         dnp = VTONFS(dvp);
  124         *npp = NULL;
  125 
  126         hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
  127 
  128         error = vfs_hash_get(mntp, hash, lkflags,
  129             td, &nvp, newnfs_vncmpf, nfhp);
  130         if (error == 0 && nvp != NULL) {
  131                 /*
  132                  * I believe there is a slight chance that vgonel() could
  133                  * get called on this vnode between when NFSVOPLOCK() drops
  134                  * the VI_LOCK() and vget() acquires it again, so that it
  135                  * hasn't yet had v_usecount incremented. If this were to
  136                  * happen, the VI_DOOMED flag would be set, so check for
  137                  * that here. Since we now have the v_usecount incremented,
  138                  * we should be ok until we vrele() it, if the VI_DOOMED
  139                  * flag isn't set now.
  140                  */
  141                 VI_LOCK(nvp);
  142                 if ((nvp->v_iflag & VI_DOOMED)) {
  143                         VI_UNLOCK(nvp);
  144                         vrele(nvp);
  145                         error = ENOENT;
  146                 } else {
  147                         VI_UNLOCK(nvp);
  148                 }
  149         }
  150         if (error) {
  151                 FREE((caddr_t)nfhp, M_NFSFH);
  152                 return (error);
  153         }
  154         if (nvp != NULL) {
  155                 np = VTONFS(nvp);
  156                 /*
  157                  * For NFSv4, check to see if it is the same name and
  158                  * replace the name, if it is different.
  159                  */
  160                 oldd = newd = NULL;
  161                 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
  162                     nvp->v_type == VREG &&
  163                     (np->n_v4->n4_namelen != cnp->cn_namelen ||
  164                      NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  165                      cnp->cn_namelen) ||
  166                      dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
  167                      NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  168                      dnp->n_fhp->nfh_len))) {
  169                     MALLOC(newd, struct nfsv4node *,
  170                         sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
  171                         + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
  172                     NFSLOCKNODE(np);
  173                     if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
  174                         && (np->n_v4->n4_namelen != cnp->cn_namelen ||
  175                          NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  176                          cnp->cn_namelen) ||
  177                          dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
  178                          NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  179                          dnp->n_fhp->nfh_len))) {
  180                         oldd = np->n_v4;
  181                         np->n_v4 = newd;
  182                         newd = NULL;
  183                         np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
  184                         np->n_v4->n4_namelen = cnp->cn_namelen;
  185                         NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  186                             dnp->n_fhp->nfh_len);
  187                         NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  188                             cnp->cn_namelen);
  189                     }
  190                     NFSUNLOCKNODE(np);
  191                 }
  192                 if (newd != NULL)
  193                         FREE((caddr_t)newd, M_NFSV4NODE);
  194                 if (oldd != NULL)
  195                         FREE((caddr_t)oldd, M_NFSV4NODE);
  196                 *npp = np;
  197                 FREE((caddr_t)nfhp, M_NFSFH);
  198                 return (0);
  199         }
  200 
  201         /*
  202          * Allocate before getnewvnode since doing so afterward
  203          * might cause a bogus v_data pointer to get dereferenced
  204          * elsewhere if zalloc should block.
  205          */
  206         np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
  207 
  208         error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp);
  209         if (error) {
  210                 uma_zfree(newnfsnode_zone, np);
  211                 FREE((caddr_t)nfhp, M_NFSFH);
  212                 return (error);
  213         }
  214         vp = nvp;
  215         KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0"));
  216         vp->v_bufobj.bo_ops = &buf_ops_newnfs;
  217         vp->v_data = np;
  218         np->n_vnode = vp;
  219         /* 
  220          * Initialize the mutex even if the vnode is going to be a loser.
  221          * This simplifies the logic in reclaim, which can then unconditionally
  222          * destroy the mutex (in the case of the loser, or if hash_insert
  223          * happened to return an error no special casing is needed).
  224          */
  225         mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
  226 
  227         /* 
  228          * Are we getting the root? If so, make sure the vnode flags
  229          * are correct 
  230          */
  231         if ((nfhp->nfh_len == nmp->nm_fhsize) &&
  232             !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
  233                 if (vp->v_type == VNON)
  234                         vp->v_type = VDIR;
  235                 vp->v_vflag |= VV_ROOT;
  236         }
  237         
  238         np->n_fhp = nfhp;
  239         /*
  240          * For NFSv4, we have to attach the directory file handle and
  241          * file name, so that Open Ops can be done later.
  242          */
  243         if (nmp->nm_flag & NFSMNT_NFSV4) {
  244                 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
  245                     + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
  246                     M_WAITOK);
  247                 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
  248                 np->n_v4->n4_namelen = cnp->cn_namelen;
  249                 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  250                     dnp->n_fhp->nfh_len);
  251                 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  252                     cnp->cn_namelen);
  253         } else {
  254                 np->n_v4 = NULL;
  255         }
  256 
  257         /*
  258          * NFS supports recursive and shared locking.
  259          */
  260         lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
  261         VN_LOCK_AREC(vp);
  262         VN_LOCK_ASHARE(vp);
  263         error = insmntque(vp, mntp);
  264         if (error != 0) {
  265                 *npp = NULL;
  266                 mtx_destroy(&np->n_mtx);
  267                 FREE((caddr_t)nfhp, M_NFSFH);
  268                 if (np->n_v4 != NULL)
  269                         FREE((caddr_t)np->n_v4, M_NFSV4NODE);
  270                 uma_zfree(newnfsnode_zone, np);
  271                 return (error);
  272         }
  273         error = vfs_hash_insert(vp, hash, lkflags, 
  274             td, &nvp, newnfs_vncmpf, nfhp);
  275         if (error)
  276                 return (error);
  277         if (nvp != NULL) {
  278                 *npp = VTONFS(nvp);
  279                 /* vfs_hash_insert() vput()'s the losing vnode */
  280                 return (0);
  281         }
  282         *npp = np;
  283 
  284         return (0);
  285 }
  286 
  287 /*
  288  * Anothe variant of nfs_nget(). This one is only used by reopen. It
  289  * takes almost the same args as nfs_nget(), but only succeeds if an entry
  290  * exists in the cache. (Since files should already be "open" with a
  291  * vnode ref cnt on the node when reopen calls this, it should always
  292  * succeed.)
  293  * Also, don't get a vnode lock, since it may already be locked by some
  294  * other process that is handling it. This is ok, since all other threads
  295  * on the client are blocked by the nfsc_lock being exclusively held by the
  296  * caller of this function.
  297  */
  298 int
  299 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
  300     struct thread *td, struct nfsnode **npp)
  301 {
  302         struct vnode *nvp;
  303         u_int hash;
  304         struct nfsfh *nfhp;
  305         int error;
  306 
  307         *npp = NULL;
  308         /* For forced dismounts, just return error. */
  309         if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
  310                 return (EINTR);
  311         MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
  312             M_NFSFH, M_WAITOK);
  313         bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
  314         nfhp->nfh_len = fhsize;
  315 
  316         hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
  317 
  318         /*
  319          * First, try to get the vnode locked, but don't block for the lock.
  320          */
  321         error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
  322             newnfs_vncmpf, nfhp);
  323         if (error == 0 && nvp != NULL) {
  324                 NFSVOPUNLOCK(nvp, 0);
  325         } else if (error == EBUSY) {
  326                 /*
  327                  * The LK_EXCLOTHER lock type tells nfs_lock1() to not try
  328                  * and lock the vnode, but just get a v_usecount on it.
  329                  * LK_NOWAIT is set so that when vget() returns ENOENT,
  330                  * vfs_hash_get() fails instead of looping.
  331                  * If this succeeds, it is safe so long as a vflush() with
  332                  * FORCECLOSE has not been done. Since the Renew thread is
  333                  * stopped and the MNTK_UNMOUNTF flag is set before doing
  334                  * a vflush() with FORCECLOSE, we should be ok here.
  335                  */
  336                 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
  337                         error = EINTR;
  338                 else
  339                         error = vfs_hash_get(mntp, hash,
  340                             (LK_EXCLOTHER | LK_NOWAIT), td, &nvp,
  341                             newnfs_vncmpf, nfhp);
  342         }
  343         FREE(nfhp, M_NFSFH);
  344         if (error)
  345                 return (error);
  346         if (nvp != NULL) {
  347                 *npp = VTONFS(nvp);
  348                 return (0);
  349         }
  350         return (EINVAL);
  351 }
  352 
  353 /*
  354  * Load the attribute cache (that lives in the nfsnode entry) with
  355  * the attributes of the second argument and
  356  * Iff vaper not NULL
  357  *    copy the attributes to *vaper
  358  * Similar to nfs_loadattrcache(), except the attributes are passed in
  359  * instead of being parsed out of the mbuf list.
  360  */
  361 int
  362 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
  363     void *stuff, int writeattr, int dontshrink)
  364 {
  365         struct vnode *vp = *vpp;
  366         struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
  367         struct nfsnode *np;
  368         struct nfsmount *nmp;
  369         struct timespec mtime_save;
  370 
  371         /*
  372          * If v_type == VNON it is a new node, so fill in the v_type,
  373          * n_mtime fields. Check to see if it represents a special 
  374          * device, and if so, check for a possible alias. Once the
  375          * correct vnode has been obtained, fill in the rest of the
  376          * information.
  377          */
  378         np = VTONFS(vp);
  379         NFSLOCKNODE(np);
  380         if (vp->v_type != nvap->va_type) {
  381                 vp->v_type = nvap->va_type;
  382                 if (vp->v_type == VFIFO)
  383                         vp->v_op = &newnfs_fifoops;
  384                 np->n_mtime = nvap->va_mtime;
  385         }
  386         nmp = VFSTONFS(vp->v_mount);
  387         vap = &np->n_vattr.na_vattr;
  388         mtime_save = vap->va_mtime;
  389         if (writeattr) {
  390                 np->n_vattr.na_filerev = nap->na_filerev;
  391                 np->n_vattr.na_size = nap->na_size;
  392                 np->n_vattr.na_mtime = nap->na_mtime;
  393                 np->n_vattr.na_ctime = nap->na_ctime;
  394                 np->n_vattr.na_fsid = nap->na_fsid;
  395                 np->n_vattr.na_mode = nap->na_mode;
  396         } else {
  397                 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
  398                     sizeof (struct nfsvattr));
  399         }
  400 
  401         /*
  402          * For NFSv4, if the node's fsid is not equal to the mount point's
  403          * fsid, return the low order 32bits of the node's fsid. This
  404          * allows getcwd(3) to work. There is a chance that the fsid might
  405          * be the same as a local fs, but since this is in an NFS mount
  406          * point, I don't think that will cause any problems?
  407          */
  408         if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) &&
  409             (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
  410              nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) {
  411                 /*
  412                  * va_fsid needs to be set to some value derived from
  413                  * np->n_vattr.na_filesid that is not equal
  414                  * vp->v_mount->mnt_stat.f_fsid[0], so that it changes
  415                  * from the value used for the top level server volume
  416                  * in the mounted subtree.
  417                  */
  418                 if (vp->v_mount->mnt_stat.f_fsid.val[0] !=
  419                     (uint32_t)np->n_vattr.na_filesid[0])
  420                         vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0];
  421                 else
  422                         vap->va_fsid = (uint32_t)hash32_buf(
  423                             np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0);
  424         } else
  425                 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
  426         np->n_attrstamp = time_second;
  427         if (vap->va_size != np->n_size) {
  428                 if (vap->va_type == VREG) {
  429                         if (dontshrink && vap->va_size < np->n_size) {
  430                                 /*
  431                                  * We've been told not to shrink the file;
  432                                  * zero np->n_attrstamp to indicate that
  433                                  * the attributes are stale.
  434                                  */
  435                                 vap->va_size = np->n_size;
  436                                 np->n_attrstamp = 0;
  437                                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  438                         } else if (np->n_flag & NMODIFIED) {
  439                                 /*
  440                                  * We've modified the file: Use the larger
  441                                  * of our size, and the server's size.
  442                                  */
  443                                 if (vap->va_size < np->n_size) {
  444                                         vap->va_size = np->n_size;
  445                                 } else {
  446                                         np->n_size = vap->va_size;
  447                                         np->n_flag |= NSIZECHANGED;
  448                                 }
  449                         } else {
  450                                 np->n_size = vap->va_size;
  451                                 np->n_flag |= NSIZECHANGED;
  452                         }
  453                         vnode_pager_setsize(vp, np->n_size);
  454                 } else {
  455                         np->n_size = vap->va_size;
  456                 }
  457         }
  458         /*
  459          * The following checks are added to prevent a race between (say)
  460          * a READDIR+ and a WRITE. 
  461          * READDIR+, WRITE requests sent out.
  462          * READDIR+ resp, WRITE resp received on client.
  463          * However, the WRITE resp was handled before the READDIR+ resp
  464          * causing the post op attrs from the write to be loaded first
  465          * and the attrs from the READDIR+ to be loaded later. If this 
  466          * happens, we have stale attrs loaded into the attrcache.
  467          * We detect this by for the mtime moving back. We invalidate the 
  468          * attrcache when this happens.
  469          */
  470         if (timespeccmp(&mtime_save, &vap->va_mtime, >)) {
  471                 /* Size changed or mtime went backwards */
  472                 np->n_attrstamp = 0;
  473                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  474         }
  475         if (vaper != NULL) {
  476                 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
  477                 if (np->n_flag & NCHG) {
  478                         if (np->n_flag & NACC)
  479                                 vaper->va_atime = np->n_atim;
  480                         if (np->n_flag & NUPD)
  481                                 vaper->va_mtime = np->n_mtim;
  482                 }
  483         }
  484 #ifdef KDTRACE_HOOKS
  485         if (np->n_attrstamp != 0)
  486                 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0);
  487 #endif
  488         NFSUNLOCKNODE(np);
  489         return (0);
  490 }
  491 
  492 /*
  493  * Fill in the client id name. For these bytes:
  494  * 1 - they must be unique
  495  * 2 - they should be persistent across client reboots
  496  * 1 is more critical than 2
  497  * Use the mount point's unique id plus either the uuid or, if that
  498  * isn't set, random junk.
  499  */
  500 void
  501 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
  502 {
  503         int uuidlen;
  504 
  505         /*
  506          * First, put in the 64bit mount point identifier.
  507          */
  508         if (idlen >= sizeof (u_int64_t)) {
  509                 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
  510                 cp += sizeof (u_int64_t);
  511                 idlen -= sizeof (u_int64_t);
  512         }
  513 
  514         /*
  515          * If uuid is non-zero length, use it.
  516          */
  517         uuidlen = strlen(uuid);
  518         if (uuidlen > 0 && idlen >= uuidlen) {
  519                 NFSBCOPY(uuid, cp, uuidlen);
  520                 cp += uuidlen;
  521                 idlen -= uuidlen;
  522         }
  523 
  524         /*
  525          * This only normally happens if the uuid isn't set.
  526          */
  527         while (idlen > 0) {
  528                 *cp++ = (u_int8_t)(arc4random() % 256);
  529                 idlen--;
  530         }
  531 }
  532 
  533 /*
  534  * Fill in a lock owner name. For now, pid + the process's creation time.
  535  */
  536 void
  537 nfscl_filllockowner(void *id, u_int8_t *cp, int flags)
  538 {
  539         union {
  540                 u_int32_t       lval;
  541                 u_int8_t        cval[4];
  542         } tl;
  543         struct proc *p;
  544 
  545         if (id == NULL) {
  546                 printf("NULL id\n");
  547                 bzero(cp, NFSV4CL_LOCKNAMELEN);
  548                 return;
  549         }
  550         if ((flags & F_POSIX) != 0) {
  551                 p = (struct proc *)id;
  552                 tl.lval = p->p_pid;
  553                 *cp++ = tl.cval[0];
  554                 *cp++ = tl.cval[1];
  555                 *cp++ = tl.cval[2];
  556                 *cp++ = tl.cval[3];
  557                 tl.lval = p->p_stats->p_start.tv_sec;
  558                 *cp++ = tl.cval[0];
  559                 *cp++ = tl.cval[1];
  560                 *cp++ = tl.cval[2];
  561                 *cp++ = tl.cval[3];
  562                 tl.lval = p->p_stats->p_start.tv_usec;
  563                 *cp++ = tl.cval[0];
  564                 *cp++ = tl.cval[1];
  565                 *cp++ = tl.cval[2];
  566                 *cp = tl.cval[3];
  567         } else if ((flags & F_FLOCK) != 0) {
  568                 bcopy(&id, cp, sizeof(id));
  569                 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id));
  570         } else {
  571                 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n");
  572                 bzero(cp, NFSV4CL_LOCKNAMELEN);
  573         }
  574 }
  575 
  576 /*
  577  * Find the parent process for the thread passed in as an argument.
  578  * If none exists, return NULL, otherwise return a thread for the parent.
  579  * (Can be any of the threads, since it is only used for td->td_proc.)
  580  */
  581 NFSPROC_T *
  582 nfscl_getparent(struct thread *td)
  583 {
  584         struct proc *p;
  585         struct thread *ptd;
  586 
  587         if (td == NULL)
  588                 return (NULL);
  589         p = td->td_proc;
  590         if (p->p_pid == 0)
  591                 return (NULL);
  592         p = p->p_pptr;
  593         if (p == NULL)
  594                 return (NULL);
  595         ptd = TAILQ_FIRST(&p->p_threads);
  596         return (ptd);
  597 }
  598 
  599 /*
  600  * Start up the renew kernel thread.
  601  */
  602 static void
  603 start_nfscl(void *arg)
  604 {
  605         struct nfsclclient *clp;
  606         struct thread *td;
  607 
  608         clp = (struct nfsclclient *)arg;
  609         td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
  610         nfscl_renewthread(clp, td);
  611         kproc_exit(0);
  612 }
  613 
  614 void
  615 nfscl_start_renewthread(struct nfsclclient *clp)
  616 {
  617 
  618         kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
  619             "nfscl");
  620 }
  621 
  622 /*
  623  * Handle wcc_data.
  624  * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
  625  * as the first Op after PutFH.
  626  * (For NFSv4, the postop attributes are after the Op, so they can't be
  627  *  parsed here. A separate call to nfscl_postop_attr() is required.)
  628  */
  629 int
  630 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
  631     struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
  632 {
  633         u_int32_t *tl;
  634         struct nfsnode *np = VTONFS(vp);
  635         struct nfsvattr nfsva;
  636         int error = 0;
  637 
  638         if (wccflagp != NULL)
  639                 *wccflagp = 0;
  640         if (nd->nd_flag & ND_NFSV3) {
  641                 *flagp = 0;
  642                 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
  643                 if (*tl == newnfs_true) {
  644                         NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
  645                         if (wccflagp != NULL) {
  646                                 mtx_lock(&np->n_mtx);
  647                                 *wccflagp = (np->n_mtime.tv_sec ==
  648                                     fxdr_unsigned(u_int32_t, *(tl + 2)) &&
  649                                     np->n_mtime.tv_nsec ==
  650                                     fxdr_unsigned(u_int32_t, *(tl + 3)));
  651                                 mtx_unlock(&np->n_mtx);
  652                         }
  653                 }
  654                 error = nfscl_postop_attr(nd, nap, flagp, stuff);
  655         } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
  656             == (ND_NFSV4 | ND_V4WCCATTR)) {
  657                 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
  658                     NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
  659                     NULL, NULL, NULL, NULL, NULL);
  660                 if (error)
  661                         return (error);
  662                 /*
  663                  * Get rid of Op# and status for next op.
  664                  */
  665                 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  666                 if (*++tl)
  667                         nd->nd_flag |= ND_NOMOREDATA;
  668                 if (wccflagp != NULL &&
  669                     nfsva.na_vattr.va_mtime.tv_sec != 0) {
  670                         mtx_lock(&np->n_mtx);
  671                         *wccflagp = (np->n_mtime.tv_sec ==
  672                             nfsva.na_vattr.va_mtime.tv_sec &&
  673                             np->n_mtime.tv_nsec ==
  674                             nfsva.na_vattr.va_mtime.tv_sec);
  675                         mtx_unlock(&np->n_mtx);
  676                 }
  677         }
  678 nfsmout:
  679         return (error);
  680 }
  681 
  682 /*
  683  * Get postop attributes.
  684  */
  685 int
  686 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
  687     void *stuff)
  688 {
  689         u_int32_t *tl;
  690         int error = 0;
  691 
  692         *retp = 0;
  693         if (nd->nd_flag & ND_NOMOREDATA)
  694                 return (error);
  695         if (nd->nd_flag & ND_NFSV3) {
  696                 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
  697                 *retp = fxdr_unsigned(int, *tl);
  698         } else if (nd->nd_flag & ND_NFSV4) {
  699                 /*
  700                  * For NFSv4, the postop attr are at the end, so no point
  701                  * in looking if nd_repstat != 0.
  702                  */
  703                 if (!nd->nd_repstat) {
  704                         NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  705                         if (*(tl + 1))
  706                                 /* should never happen since nd_repstat != 0 */
  707                                 nd->nd_flag |= ND_NOMOREDATA;
  708                         else
  709                                 *retp = 1;
  710                 }
  711         } else if (!nd->nd_repstat) {
  712                 /* For NFSv2, the attributes are here iff nd_repstat == 0 */
  713                 *retp = 1;
  714         }
  715         if (*retp) {
  716                 error = nfsm_loadattr(nd, nap);
  717                 if (error)
  718                         *retp = 0;
  719         }
  720 nfsmout:
  721         return (error);
  722 }
  723 
  724 /*
  725  * Fill in the setable attributes. The full argument indicates whether
  726  * to fill in them all or just mode and time.
  727  */
  728 void
  729 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
  730     struct vnode *vp, int flags, u_int32_t rdev)
  731 {
  732         u_int32_t *tl;
  733         struct nfsv2_sattr *sp;
  734         nfsattrbit_t attrbits;
  735         struct timeval curtime;
  736 
  737         switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
  738         case ND_NFSV2:
  739                 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
  740                 if (vap->va_mode == (mode_t)VNOVAL)
  741                         sp->sa_mode = newnfs_xdrneg1;
  742                 else
  743                         sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
  744                 if (vap->va_uid == (uid_t)VNOVAL)
  745                         sp->sa_uid = newnfs_xdrneg1;
  746                 else
  747                         sp->sa_uid = txdr_unsigned(vap->va_uid);
  748                 if (vap->va_gid == (gid_t)VNOVAL)
  749                         sp->sa_gid = newnfs_xdrneg1;
  750                 else
  751                         sp->sa_gid = txdr_unsigned(vap->va_gid);
  752                 if (flags & NFSSATTR_SIZE0)
  753                         sp->sa_size = 0;
  754                 else if (flags & NFSSATTR_SIZENEG1)
  755                         sp->sa_size = newnfs_xdrneg1;
  756                 else if (flags & NFSSATTR_SIZERDEV)
  757                         sp->sa_size = txdr_unsigned(rdev);
  758                 else
  759                         sp->sa_size = txdr_unsigned(vap->va_size);
  760                 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
  761                 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
  762                 break;
  763         case ND_NFSV3:
  764                 getmicrotime(&curtime);
  765                 if (vap->va_mode != (mode_t)VNOVAL) {
  766                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  767                         *tl++ = newnfs_true;
  768                         *tl = txdr_unsigned(vap->va_mode);
  769                 } else {
  770                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  771                         *tl = newnfs_false;
  772                 }
  773                 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
  774                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  775                         *tl++ = newnfs_true;
  776                         *tl = txdr_unsigned(vap->va_uid);
  777                 } else {
  778                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  779                         *tl = newnfs_false;
  780                 }
  781                 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
  782                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  783                         *tl++ = newnfs_true;
  784                         *tl = txdr_unsigned(vap->va_gid);
  785                 } else {
  786                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  787                         *tl = newnfs_false;
  788                 }
  789                 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
  790                         NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  791                         *tl++ = newnfs_true;
  792                         txdr_hyper(vap->va_size, tl);
  793                 } else {
  794                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  795                         *tl = newnfs_false;
  796                 }
  797                 if (vap->va_atime.tv_sec != VNOVAL) {
  798                         if (vap->va_atime.tv_sec != curtime.tv_sec) {
  799                                 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  800                                 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
  801                                 txdr_nfsv3time(&vap->va_atime, tl);
  802                         } else {
  803                                 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  804                                 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
  805                         }
  806                 } else {
  807                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  808                         *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
  809                 }
  810                 if (vap->va_mtime.tv_sec != VNOVAL) {
  811                         if (vap->va_mtime.tv_sec != curtime.tv_sec) {
  812                                 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  813                                 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
  814                                 txdr_nfsv3time(&vap->va_mtime, tl);
  815                         } else {
  816                                 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  817                                 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
  818                         }
  819                 } else {
  820                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  821                         *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
  822                 }
  823                 break;
  824         case ND_NFSV4:
  825                 NFSZERO_ATTRBIT(&attrbits);
  826                 if (vap->va_mode != (mode_t)VNOVAL)
  827                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
  828                 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
  829                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
  830                 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
  831                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
  832                 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
  833                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
  834                 if (vap->va_atime.tv_sec != VNOVAL)
  835                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
  836                 if (vap->va_mtime.tv_sec != VNOVAL)
  837                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
  838                 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0,
  839                     &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0);
  840                 break;
  841         };
  842 }
  843 
  844 /*
  845  * nfscl_request() - mostly a wrapper for newnfs_request().
  846  */
  847 int
  848 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
  849     struct ucred *cred, void *stuff)
  850 {
  851         int ret, vers;
  852         struct nfsmount *nmp;
  853 
  854         nmp = VFSTONFS(vp->v_mount);
  855         if (nd->nd_flag & ND_NFSV4)
  856                 vers = NFS_VER4;
  857         else if (nd->nd_flag & ND_NFSV3)
  858                 vers = NFS_VER3;
  859         else
  860                 vers = NFS_VER2;
  861         ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
  862                 NFS_PROG, vers, NULL, 1, NULL);
  863         return (ret);
  864 }
  865 
  866 /*
  867  * fill in this bsden's variant of statfs using nfsstatfs.
  868  */
  869 void
  870 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
  871 {
  872         struct statfs *sbp = (struct statfs *)statfs;
  873 
  874         if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
  875                 sbp->f_bsize = NFS_FABLKSIZE;
  876                 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE;
  877                 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE;
  878                 /*
  879                  * Although sf_abytes is uint64_t and f_bavail is int64_t,
  880                  * the value after dividing by NFS_FABLKSIZE is small
  881                  * enough that it will fit in 63bits, so it is ok to
  882                  * assign it to f_bavail without fear that it will become
  883                  * negative.
  884                  */
  885                 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE;
  886                 sbp->f_files = sfp->sf_tfiles;
  887                 /* Since f_ffree is int64_t, clip it to 63bits. */
  888                 if (sfp->sf_ffiles > INT64_MAX)
  889                         sbp->f_ffree = INT64_MAX;
  890                 else
  891                         sbp->f_ffree = sfp->sf_ffiles;
  892         } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
  893                 /*
  894                  * The type casts to (int32_t) ensure that this code is
  895                  * compatible with the old NFS client, in that it will
  896                  * propagate bit31 to the high order bits. This may or may
  897                  * not be correct for NFSv2, but since it is a legacy
  898                  * environment, I'd rather retain backwards compatibility.
  899                  */
  900                 sbp->f_bsize = (int32_t)sfp->sf_bsize;
  901                 sbp->f_blocks = (int32_t)sfp->sf_blocks;
  902                 sbp->f_bfree = (int32_t)sfp->sf_bfree;
  903                 sbp->f_bavail = (int32_t)sfp->sf_bavail;
  904                 sbp->f_files = 0;
  905                 sbp->f_ffree = 0;
  906         }
  907 }
  908 
  909 /*
  910  * Use the fsinfo stuff to update the mount point.
  911  */
  912 void
  913 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
  914 {
  915 
  916         if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
  917             fsp->fs_wtpref >= NFS_FABLKSIZE)
  918                 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
  919                     ~(NFS_FABLKSIZE - 1);
  920         if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
  921                 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
  922                 if (nmp->nm_wsize == 0)
  923                         nmp->nm_wsize = fsp->fs_wtmax;
  924         }
  925         if (nmp->nm_wsize < NFS_FABLKSIZE)
  926                 nmp->nm_wsize = NFS_FABLKSIZE;
  927         if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
  928             fsp->fs_rtpref >= NFS_FABLKSIZE)
  929                 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
  930                     ~(NFS_FABLKSIZE - 1);
  931         if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
  932                 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
  933                 if (nmp->nm_rsize == 0)
  934                         nmp->nm_rsize = fsp->fs_rtmax;
  935         }
  936         if (nmp->nm_rsize < NFS_FABLKSIZE)
  937                 nmp->nm_rsize = NFS_FABLKSIZE;
  938         if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
  939             && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
  940                 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
  941                     ~(NFS_DIRBLKSIZ - 1);
  942         if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
  943                 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
  944                 if (nmp->nm_readdirsize == 0)
  945                         nmp->nm_readdirsize = fsp->fs_rtmax;
  946         }
  947         if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
  948                 nmp->nm_readdirsize = NFS_DIRBLKSIZ;
  949         if (fsp->fs_maxfilesize > 0 &&
  950             fsp->fs_maxfilesize < nmp->nm_maxfilesize)
  951                 nmp->nm_maxfilesize = fsp->fs_maxfilesize;
  952         nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
  953         nmp->nm_state |= NFSSTA_GOTFSINFO;
  954 }
  955 
  956 /*
  957  * Get a pointer to my IP addrress and return it.
  958  * Return NULL if you can't find one.
  959  */
  960 u_int8_t *
  961 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
  962 {
  963         struct sockaddr_in sad, *sin;
  964         struct rtentry *rt;
  965         u_int8_t *retp = NULL;
  966         static struct in_addr laddr;
  967 
  968         *isinet6p = 0;
  969         /*
  970          * Loop up a route for the destination address.
  971          */
  972         if (nmp->nm_nam->sa_family == AF_INET) {
  973                 bzero(&sad, sizeof (sad));
  974                 sin = (struct sockaddr_in *)nmp->nm_nam;
  975                 sad.sin_family = AF_INET;
  976                 sad.sin_len = sizeof (struct sockaddr_in);
  977                 sad.sin_addr.s_addr = sin->sin_addr.s_addr;
  978                 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
  979                 rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL,
  980                      curthread->td_proc->p_fibnum);
  981                 if (rt != NULL) {
  982                         if (rt->rt_ifp != NULL &&
  983                             rt->rt_ifa != NULL &&
  984                             ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
  985                             rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
  986                                 sin = (struct sockaddr_in *)
  987                                     rt->rt_ifa->ifa_addr;
  988                                 laddr.s_addr = sin->sin_addr.s_addr;
  989                                 retp = (u_int8_t *)&laddr;
  990                         }
  991                         RTFREE_LOCKED(rt);
  992                 }
  993                 CURVNET_RESTORE();
  994 #ifdef INET6
  995         } else if (nmp->nm_nam->sa_family == AF_INET6) {
  996                 struct sockaddr_in6 sad6, *sin6;
  997                 static struct in6_addr laddr6;
  998 
  999                 bzero(&sad6, sizeof (sad6));
 1000                 sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
 1001                 sad6.sin6_family = AF_INET6;
 1002                 sad6.sin6_len = sizeof (struct sockaddr_in6);
 1003                 sad6.sin6_addr = sin6->sin6_addr;
 1004                 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
 1005                 rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL,
 1006                      curthread->td_proc->p_fibnum);
 1007                 if (rt != NULL) {
 1008                         if (rt->rt_ifp != NULL &&
 1009                             rt->rt_ifa != NULL &&
 1010                             ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
 1011                             rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
 1012                                 sin6 = (struct sockaddr_in6 *)
 1013                                     rt->rt_ifa->ifa_addr;
 1014                                 laddr6 = sin6->sin6_addr;
 1015                                 retp = (u_int8_t *)&laddr6;
 1016                                 *isinet6p = 1;
 1017                         }
 1018                         RTFREE_LOCKED(rt);
 1019                 }
 1020                 CURVNET_RESTORE();
 1021 #endif
 1022         }
 1023         return (retp);
 1024 }
 1025 
 1026 /*
 1027  * Copy NFS uid, gids from the cred structure.
 1028  */
 1029 void
 1030 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
 1031 {
 1032         int i;
 1033 
 1034         KASSERT(cr->cr_ngroups >= 0,
 1035             ("newnfs_copyincred: negative cr_ngroups"));
 1036         nfscr->nfsc_uid = cr->cr_uid;
 1037         nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
 1038         for (i = 0; i < nfscr->nfsc_ngroups; i++)
 1039                 nfscr->nfsc_groups[i] = cr->cr_groups[i];
 1040 }
 1041 
 1042 
 1043 /*
 1044  * Do any client specific initialization.
 1045  */
 1046 void
 1047 nfscl_init(void)
 1048 {
 1049         static int inited = 0;
 1050 
 1051         if (inited)
 1052                 return;
 1053         inited = 1;
 1054         nfscl_inited = 1;
 1055         ncl_pbuf_freecnt = nswbuf / 2 + 1;
 1056 }
 1057 
 1058 /*
 1059  * Check each of the attributes to be set, to ensure they aren't already
 1060  * the correct value. Disable setting ones already correct.
 1061  */
 1062 int
 1063 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
 1064 {
 1065 
 1066         if (vap->va_mode != (mode_t)VNOVAL) {
 1067                 if (vap->va_mode == nvap->na_mode)
 1068                         vap->va_mode = (mode_t)VNOVAL;
 1069         }
 1070         if (vap->va_uid != (uid_t)VNOVAL) {
 1071                 if (vap->va_uid == nvap->na_uid)
 1072                         vap->va_uid = (uid_t)VNOVAL;
 1073         }
 1074         if (vap->va_gid != (gid_t)VNOVAL) {
 1075                 if (vap->va_gid == nvap->na_gid)
 1076                         vap->va_gid = (gid_t)VNOVAL;
 1077         }
 1078         if (vap->va_size != VNOVAL) {
 1079                 if (vap->va_size == nvap->na_size)
 1080                         vap->va_size = VNOVAL;
 1081         }
 1082 
 1083         /*
 1084          * We are normally called with only a partially initialized
 1085          * VAP.  Since the NFSv3 spec says that server may use the
 1086          * file attributes to store the verifier, the spec requires
 1087          * us to do a SETATTR RPC. FreeBSD servers store the verifier
 1088          * in atime, but we can't really assume that all servers will
 1089          * so we ensure that our SETATTR sets both atime and mtime.
 1090          */
 1091         if (vap->va_mtime.tv_sec == VNOVAL)
 1092                 vfs_timestamp(&vap->va_mtime);
 1093         if (vap->va_atime.tv_sec == VNOVAL)
 1094                 vap->va_atime = vap->va_mtime;
 1095         return (1);
 1096 }
 1097 
 1098 /*
 1099  * Map nfsv4 errors to errno.h errors.
 1100  * The uid and gid arguments are only used for NFSERR_BADOWNER and that
 1101  * error should only be returned for the Open, Create and Setattr Ops.
 1102  * As such, most calls can just pass in 0 for those arguments.
 1103  */
 1104 APPLESTATIC int
 1105 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
 1106 {
 1107         struct proc *p;
 1108 
 1109         if (error < 10000)
 1110                 return (error);
 1111         if (td != NULL)
 1112                 p = td->td_proc;
 1113         else
 1114                 p = NULL;
 1115         switch (error) {
 1116         case NFSERR_BADOWNER:
 1117                 tprintf(p, LOG_INFO,
 1118                     "No name and/or group mapping for uid,gid:(%d,%d)\n",
 1119                     uid, gid);
 1120                 return (EPERM);
 1121         case NFSERR_STALECLIENTID:
 1122         case NFSERR_STALESTATEID:
 1123         case NFSERR_EXPIRED:
 1124         case NFSERR_BADSTATEID:
 1125                 printf("nfsv4 recover err returned %d\n", error);
 1126                 return (EIO);
 1127         case NFSERR_BADHANDLE:
 1128         case NFSERR_SERVERFAULT:
 1129         case NFSERR_BADTYPE:
 1130         case NFSERR_FHEXPIRED:
 1131         case NFSERR_RESOURCE:
 1132         case NFSERR_MOVED:
 1133         case NFSERR_NOFILEHANDLE:
 1134         case NFSERR_MINORVERMISMATCH:
 1135         case NFSERR_OLDSTATEID:
 1136         case NFSERR_BADSEQID:
 1137         case NFSERR_LEASEMOVED:
 1138         case NFSERR_RECLAIMBAD:
 1139         case NFSERR_BADXDR:
 1140         case NFSERR_BADCHAR:
 1141         case NFSERR_BADNAME:
 1142         case NFSERR_OPILLEGAL:
 1143                 printf("nfsv4 client/server protocol prob err=%d\n",
 1144                     error);
 1145                 return (EIO);
 1146         default:
 1147                 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
 1148                 return (EIO);
 1149         };
 1150 }
 1151 
 1152 /*
 1153  * Locate a process by number; return only "live" processes -- i.e., neither
 1154  * zombies nor newly born but incompletely initialized processes.  By not
 1155  * returning processes in the PRS_NEW state, we allow callers to avoid
 1156  * testing for that condition to avoid dereferencing p_ucred, et al.
 1157  * Identical to pfind() in kern_proc.c, except it assume the list is
 1158  * already locked.
 1159  */
 1160 static struct proc *
 1161 pfind_locked(pid_t pid)
 1162 {
 1163         struct proc *p;
 1164 
 1165         LIST_FOREACH(p, PIDHASH(pid), p_hash)
 1166                 if (p->p_pid == pid) {
 1167                         PROC_LOCK(p);
 1168                         if (p->p_state == PRS_NEW) {
 1169                                 PROC_UNLOCK(p);
 1170                                 p = NULL;
 1171                         }
 1172                         break;
 1173                 }
 1174         return (p);
 1175 }
 1176 
 1177 /*
 1178  * Check to see if the process for this owner exists. Return 1 if it doesn't
 1179  * and 0 otherwise.
 1180  */
 1181 int
 1182 nfscl_procdoesntexist(u_int8_t *own)
 1183 {
 1184         union {
 1185                 u_int32_t       lval;
 1186                 u_int8_t        cval[4];
 1187         } tl;
 1188         struct proc *p;
 1189         pid_t pid;
 1190         int ret = 0;
 1191 
 1192         tl.cval[0] = *own++;
 1193         tl.cval[1] = *own++;
 1194         tl.cval[2] = *own++;
 1195         tl.cval[3] = *own++;
 1196         pid = tl.lval;
 1197         p = pfind_locked(pid);
 1198         if (p == NULL)
 1199                 return (1);
 1200         if (p->p_stats == NULL) {
 1201                 PROC_UNLOCK(p);
 1202                 return (0);
 1203         }
 1204         tl.cval[0] = *own++;
 1205         tl.cval[1] = *own++;
 1206         tl.cval[2] = *own++;
 1207         tl.cval[3] = *own++;
 1208         if (tl.lval != p->p_stats->p_start.tv_sec) {
 1209                 ret = 1;
 1210         } else {
 1211                 tl.cval[0] = *own++;
 1212                 tl.cval[1] = *own++;
 1213                 tl.cval[2] = *own++;
 1214                 tl.cval[3] = *own;
 1215                 if (tl.lval != p->p_stats->p_start.tv_usec)
 1216                         ret = 1;
 1217         }
 1218         PROC_UNLOCK(p);
 1219         return (ret);
 1220 }
 1221 
 1222 /*
 1223  * - nfs pseudo system call for the client
 1224  */
 1225 /*
 1226  * MPSAFE
 1227  */
 1228 static int
 1229 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
 1230 {
 1231         struct file *fp;
 1232         struct nfscbd_args nfscbdarg;
 1233         struct nfsd_nfscbd_args nfscbdarg2;
 1234         int error;
 1235 
 1236         if (uap->flag & NFSSVC_CBADDSOCK) {
 1237                 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
 1238                 if (error)
 1239                         return (error);
 1240                 /*
 1241                  * Since we don't know what rights might be required,
 1242                  * pretend that we need them all. It is better to be too
 1243                  * careful than too reckless.
 1244                  */
 1245                 if ((error = fget(td, nfscbdarg.sock, CAP_SOCK_ALL, &fp))
 1246                     != 0) {
 1247                         return (error);
 1248                 }
 1249                 if (fp->f_type != DTYPE_SOCKET) {
 1250                         fdrop(fp, td);
 1251                         return (EPERM);
 1252                 }
 1253                 error = nfscbd_addsock(fp);
 1254                 fdrop(fp, td);
 1255                 if (!error && nfscl_enablecallb == 0) {
 1256                         nfsv4_cbport = nfscbdarg.port;
 1257                         nfscl_enablecallb = 1;
 1258                 }
 1259         } else if (uap->flag & NFSSVC_NFSCBD) {
 1260                 if (uap->argp == NULL) 
 1261                         return (EINVAL);
 1262                 error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
 1263                     sizeof(nfscbdarg2));
 1264                 if (error)
 1265                         return (error);
 1266                 error = nfscbd_nfsd(td, &nfscbdarg2);
 1267         } else {
 1268                 error = EINVAL;
 1269         }
 1270         return (error);
 1271 }
 1272 
 1273 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
 1274 
 1275 /*
 1276  * Called once to initialize data structures...
 1277  */
 1278 static int
 1279 nfscl_modevent(module_t mod, int type, void *data)
 1280 {
 1281         int error = 0;
 1282         static int loaded = 0;
 1283 
 1284         switch (type) {
 1285         case MOD_LOAD:
 1286                 if (loaded)
 1287                         return (0);
 1288                 newnfs_portinit();
 1289                 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
 1290                     MTX_DEF);
 1291                 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
 1292                 nfscl_init();
 1293                 NFSD_LOCK();
 1294                 nfsrvd_cbinit(0);
 1295                 NFSD_UNLOCK();
 1296                 ncl_call_invalcaches = ncl_invalcaches;
 1297                 nfsd_call_nfscl = nfssvc_nfscl;
 1298                 loaded = 1;
 1299                 break;
 1300 
 1301         case MOD_UNLOAD:
 1302                 if (nfs_numnfscbd != 0) {
 1303                         error = EBUSY;
 1304                         break;
 1305                 }
 1306 
 1307                 /*
 1308                  * XXX: Unloading of nfscl module is unsupported.
 1309                  */
 1310 #if 0
 1311                 ncl_call_invalcaches = NULL;
 1312                 nfsd_call_nfscl = NULL;
 1313                 /* and get rid of the mutexes */
 1314                 mtx_destroy(&nfs_clstate_mutex);
 1315                 mtx_destroy(&ncl_iod_mutex);
 1316                 loaded = 0;
 1317                 break;
 1318 #else
 1319                 /* FALLTHROUGH */
 1320 #endif
 1321         default:
 1322                 error = EOPNOTSUPP;
 1323                 break;
 1324         }
 1325         return error;
 1326 }
 1327 static moduledata_t nfscl_mod = {
 1328         "nfscl",
 1329         nfscl_modevent,
 1330         NULL,
 1331 };
 1332 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
 1333 
 1334 /* So that loader and kldload(2) can find us, wherever we are.. */
 1335 MODULE_VERSION(nfscl, 1);
 1336 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
 1337 MODULE_DEPEND(nfscl, krpc, 1, 1, 1);
 1338 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1);
 1339 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1);
 1340 

Cache object: 57c33dab85d39c9c6f721356b0814e61


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.