The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nfsclient/nfs_clport.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * Rick Macklem at The University of Guelph.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/9.0/sys/fs/nfsclient/nfs_clport.c 224778 2011-08-11 12:30:23Z rwatson $");
   36 
   37 #include "opt_kdtrace.h"
   38 
   39 #include <sys/capability.h>
   40 
   41 /*
   42  * generally, I don't like #includes inside .h files, but it seems to
   43  * be the easiest way to handle the port.
   44  */
   45 #include <sys/hash.h>
   46 #include <fs/nfs/nfsport.h>
   47 #include <netinet/if_ether.h>
   48 #include <net/if_types.h>
   49 
   50 #include <fs/nfsclient/nfs_kdtrace.h>
   51 
   52 #ifdef KDTRACE_HOOKS
   53 dtrace_nfsclient_attrcache_flush_probe_func_t
   54                 dtrace_nfscl_attrcache_flush_done_probe;
   55 uint32_t        nfscl_attrcache_flush_done_id;
   56 
   57 dtrace_nfsclient_attrcache_get_hit_probe_func_t
   58                 dtrace_nfscl_attrcache_get_hit_probe;
   59 uint32_t        nfscl_attrcache_get_hit_id;
   60 
   61 dtrace_nfsclient_attrcache_get_miss_probe_func_t
   62                 dtrace_nfscl_attrcache_get_miss_probe;
   63 uint32_t        nfscl_attrcache_get_miss_id;
   64 
   65 dtrace_nfsclient_attrcache_load_probe_func_t
   66                 dtrace_nfscl_attrcache_load_done_probe;
   67 uint32_t        nfscl_attrcache_load_done_id;
   68 #endif /* !KDTRACE_HOOKS */
   69 
   70 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
   71 extern struct vop_vector newnfs_vnodeops;
   72 extern struct vop_vector newnfs_fifoops;
   73 extern uma_zone_t newnfsnode_zone;
   74 extern struct buf_ops buf_ops_newnfs;
   75 extern int ncl_pbuf_freecnt;
   76 extern short nfsv4_cbport;
   77 extern int nfscl_enablecallb;
   78 extern int nfs_numnfscbd;
   79 extern int nfscl_inited;
   80 struct mtx nfs_clstate_mutex;
   81 struct mtx ncl_iod_mutex;
   82 NFSDLOCKMUTEX;
   83 
   84 extern void (*ncl_call_invalcaches)(struct vnode *);
   85 
   86 /*
   87  * Comparison function for vfs_hash functions.
   88  */
   89 int
   90 newnfs_vncmpf(struct vnode *vp, void *arg)
   91 {
   92         struct nfsfh *nfhp = (struct nfsfh *)arg;
   93         struct nfsnode *np = VTONFS(vp);
   94 
   95         if (np->n_fhp->nfh_len != nfhp->nfh_len ||
   96             NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
   97                 return (1);
   98         return (0);
   99 }
  100 
  101 /*
  102  * Look up a vnode/nfsnode by file handle.
  103  * Callers must check for mount points!!
  104  * In all cases, a pointer to a
  105  * nfsnode structure is returned.
  106  * This variant takes a "struct nfsfh *" as second argument and uses
  107  * that structure up, either by hanging off the nfsnode or FREEing it.
  108  */
  109 int
  110 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
  111     struct componentname *cnp, struct thread *td, struct nfsnode **npp,
  112     void *stuff, int lkflags)
  113 {
  114         struct nfsnode *np, *dnp;
  115         struct vnode *vp, *nvp;
  116         struct nfsv4node *newd, *oldd;
  117         int error;
  118         u_int hash;
  119         struct nfsmount *nmp;
  120 
  121         nmp = VFSTONFS(mntp);
  122         dnp = VTONFS(dvp);
  123         *npp = NULL;
  124 
  125         hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
  126 
  127         error = vfs_hash_get(mntp, hash, lkflags,
  128             td, &nvp, newnfs_vncmpf, nfhp);
  129         if (error == 0 && nvp != NULL) {
  130                 /*
  131                  * I believe there is a slight chance that vgonel() could
  132                  * get called on this vnode between when NFSVOPLOCK() drops
  133                  * the VI_LOCK() and vget() acquires it again, so that it
  134                  * hasn't yet had v_usecount incremented. If this were to
  135                  * happen, the VI_DOOMED flag would be set, so check for
  136                  * that here. Since we now have the v_usecount incremented,
  137                  * we should be ok until we vrele() it, if the VI_DOOMED
  138                  * flag isn't set now.
  139                  */
  140                 VI_LOCK(nvp);
  141                 if ((nvp->v_iflag & VI_DOOMED)) {
  142                         VI_UNLOCK(nvp);
  143                         vrele(nvp);
  144                         error = ENOENT;
  145                 } else {
  146                         VI_UNLOCK(nvp);
  147                 }
  148         }
  149         if (error) {
  150                 FREE((caddr_t)nfhp, M_NFSFH);
  151                 return (error);
  152         }
  153         if (nvp != NULL) {
  154                 np = VTONFS(nvp);
  155                 /*
  156                  * For NFSv4, check to see if it is the same name and
  157                  * replace the name, if it is different.
  158                  */
  159                 oldd = newd = NULL;
  160                 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
  161                     nvp->v_type == VREG &&
  162                     (np->n_v4->n4_namelen != cnp->cn_namelen ||
  163                      NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  164                      cnp->cn_namelen) ||
  165                      dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
  166                      NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  167                      dnp->n_fhp->nfh_len))) {
  168                     MALLOC(newd, struct nfsv4node *,
  169                         sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
  170                         + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
  171                     NFSLOCKNODE(np);
  172                     if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
  173                         && (np->n_v4->n4_namelen != cnp->cn_namelen ||
  174                          NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  175                          cnp->cn_namelen) ||
  176                          dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
  177                          NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  178                          dnp->n_fhp->nfh_len))) {
  179                         oldd = np->n_v4;
  180                         np->n_v4 = newd;
  181                         newd = NULL;
  182                         np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
  183                         np->n_v4->n4_namelen = cnp->cn_namelen;
  184                         NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  185                             dnp->n_fhp->nfh_len);
  186                         NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  187                             cnp->cn_namelen);
  188                     }
  189                     NFSUNLOCKNODE(np);
  190                 }
  191                 if (newd != NULL)
  192                         FREE((caddr_t)newd, M_NFSV4NODE);
  193                 if (oldd != NULL)
  194                         FREE((caddr_t)oldd, M_NFSV4NODE);
  195                 *npp = np;
  196                 FREE((caddr_t)nfhp, M_NFSFH);
  197                 return (0);
  198         }
  199 
  200         /*
  201          * Allocate before getnewvnode since doing so afterward
  202          * might cause a bogus v_data pointer to get dereferenced
  203          * elsewhere if zalloc should block.
  204          */
  205         np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
  206 
  207         error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp);
  208         if (error) {
  209                 uma_zfree(newnfsnode_zone, np);
  210                 FREE((caddr_t)nfhp, M_NFSFH);
  211                 return (error);
  212         }
  213         vp = nvp;
  214         vp->v_bufobj.bo_ops = &buf_ops_newnfs;
  215         vp->v_data = np;
  216         np->n_vnode = vp;
  217         /* 
  218          * Initialize the mutex even if the vnode is going to be a loser.
  219          * This simplifies the logic in reclaim, which can then unconditionally
  220          * destroy the mutex (in the case of the loser, or if hash_insert
  221          * happened to return an error no special casing is needed).
  222          */
  223         mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
  224 
  225         /* 
  226          * Are we getting the root? If so, make sure the vnode flags
  227          * are correct 
  228          */
  229         if ((nfhp->nfh_len == nmp->nm_fhsize) &&
  230             !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
  231                 if (vp->v_type == VNON)
  232                         vp->v_type = VDIR;
  233                 vp->v_vflag |= VV_ROOT;
  234         }
  235         
  236         np->n_fhp = nfhp;
  237         /*
  238          * For NFSv4, we have to attach the directory file handle and
  239          * file name, so that Open Ops can be done later.
  240          */
  241         if (nmp->nm_flag & NFSMNT_NFSV4) {
  242                 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
  243                     + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
  244                     M_WAITOK);
  245                 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
  246                 np->n_v4->n4_namelen = cnp->cn_namelen;
  247                 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
  248                     dnp->n_fhp->nfh_len);
  249                 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
  250                     cnp->cn_namelen);
  251         } else {
  252                 np->n_v4 = NULL;
  253         }
  254 
  255         /*
  256          * NFS supports recursive and shared locking.
  257          */
  258         lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
  259         VN_LOCK_AREC(vp);
  260         VN_LOCK_ASHARE(vp);
  261         error = insmntque(vp, mntp);
  262         if (error != 0) {
  263                 *npp = NULL;
  264                 mtx_destroy(&np->n_mtx);
  265                 FREE((caddr_t)nfhp, M_NFSFH);
  266                 if (np->n_v4 != NULL)
  267                         FREE((caddr_t)np->n_v4, M_NFSV4NODE);
  268                 uma_zfree(newnfsnode_zone, np);
  269                 return (error);
  270         }
  271         error = vfs_hash_insert(vp, hash, lkflags, 
  272             td, &nvp, newnfs_vncmpf, nfhp);
  273         if (error)
  274                 return (error);
  275         if (nvp != NULL) {
  276                 *npp = VTONFS(nvp);
  277                 /* vfs_hash_insert() vput()'s the losing vnode */
  278                 return (0);
  279         }
  280         *npp = np;
  281 
  282         return (0);
  283 }
  284 
  285 /*
  286  * Anothe variant of nfs_nget(). This one is only used by reopen. It
  287  * takes almost the same args as nfs_nget(), but only succeeds if an entry
  288  * exists in the cache. (Since files should already be "open" with a
  289  * vnode ref cnt on the node when reopen calls this, it should always
  290  * succeed.)
  291  * Also, don't get a vnode lock, since it may already be locked by some
  292  * other process that is handling it. This is ok, since all other threads
  293  * on the client are blocked by the nfsc_lock being exclusively held by the
  294  * caller of this function.
  295  */
  296 int
  297 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
  298     struct thread *td, struct nfsnode **npp)
  299 {
  300         struct vnode *nvp;
  301         u_int hash;
  302         struct nfsfh *nfhp;
  303         int error;
  304 
  305         *npp = NULL;
  306         /* For forced dismounts, just return error. */
  307         if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
  308                 return (EINTR);
  309         MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
  310             M_NFSFH, M_WAITOK);
  311         bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
  312         nfhp->nfh_len = fhsize;
  313 
  314         hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
  315 
  316         /*
  317          * First, try to get the vnode locked, but don't block for the lock.
  318          */
  319         error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
  320             newnfs_vncmpf, nfhp);
  321         if (error == 0 && nvp != NULL) {
  322                 NFSVOPUNLOCK(nvp, 0);
  323         } else if (error == EBUSY) {
  324                 /*
  325                  * The LK_EXCLOTHER lock type tells nfs_lock1() to not try
  326                  * and lock the vnode, but just get a v_usecount on it.
  327                  * LK_NOWAIT is set so that when vget() returns ENOENT,
  328                  * vfs_hash_get() fails instead of looping.
  329                  * If this succeeds, it is safe so long as a vflush() with
  330                  * FORCECLOSE has not been done. Since the Renew thread is
  331                  * stopped and the MNTK_UNMOUNTF flag is set before doing
  332                  * a vflush() with FORCECLOSE, we should be ok here.
  333                  */
  334                 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
  335                         error = EINTR;
  336                 else
  337                         error = vfs_hash_get(mntp, hash,
  338                             (LK_EXCLOTHER | LK_NOWAIT), td, &nvp,
  339                             newnfs_vncmpf, nfhp);
  340         }
  341         FREE(nfhp, M_NFSFH);
  342         if (error)
  343                 return (error);
  344         if (nvp != NULL) {
  345                 *npp = VTONFS(nvp);
  346                 return (0);
  347         }
  348         return (EINVAL);
  349 }
  350 
  351 /*
  352  * Load the attribute cache (that lives in the nfsnode entry) with
  353  * the attributes of the second argument and
  354  * Iff vaper not NULL
  355  *    copy the attributes to *vaper
  356  * Similar to nfs_loadattrcache(), except the attributes are passed in
  357  * instead of being parsed out of the mbuf list.
  358  */
  359 int
  360 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
  361     void *stuff, int writeattr, int dontshrink)
  362 {
  363         struct vnode *vp = *vpp;
  364         struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
  365         struct nfsnode *np;
  366         struct nfsmount *nmp;
  367         struct timespec mtime_save;
  368 
  369         /*
  370          * If v_type == VNON it is a new node, so fill in the v_type,
  371          * n_mtime fields. Check to see if it represents a special 
  372          * device, and if so, check for a possible alias. Once the
  373          * correct vnode has been obtained, fill in the rest of the
  374          * information.
  375          */
  376         np = VTONFS(vp);
  377         NFSLOCKNODE(np);
  378         if (vp->v_type != nvap->va_type) {
  379                 vp->v_type = nvap->va_type;
  380                 if (vp->v_type == VFIFO)
  381                         vp->v_op = &newnfs_fifoops;
  382                 np->n_mtime = nvap->va_mtime;
  383         }
  384         nmp = VFSTONFS(vp->v_mount);
  385         vap = &np->n_vattr.na_vattr;
  386         mtime_save = vap->va_mtime;
  387         if (writeattr) {
  388                 np->n_vattr.na_filerev = nap->na_filerev;
  389                 np->n_vattr.na_size = nap->na_size;
  390                 np->n_vattr.na_mtime = nap->na_mtime;
  391                 np->n_vattr.na_ctime = nap->na_ctime;
  392                 np->n_vattr.na_fsid = nap->na_fsid;
  393                 np->n_vattr.na_mode = nap->na_mode;
  394         } else {
  395                 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
  396                     sizeof (struct nfsvattr));
  397         }
  398 
  399         /*
  400          * For NFSv4, if the node's fsid is not equal to the mount point's
  401          * fsid, return the low order 32bits of the node's fsid. This
  402          * allows getcwd(3) to work. There is a chance that the fsid might
  403          * be the same as a local fs, but since this is in an NFS mount
  404          * point, I don't think that will cause any problems?
  405          */
  406         if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) &&
  407             (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
  408              nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) {
  409                 /*
  410                  * va_fsid needs to be set to some value derived from
  411                  * np->n_vattr.na_filesid that is not equal
  412                  * vp->v_mount->mnt_stat.f_fsid[0], so that it changes
  413                  * from the value used for the top level server volume
  414                  * in the mounted subtree.
  415                  */
  416                 if (vp->v_mount->mnt_stat.f_fsid.val[0] !=
  417                     (uint32_t)np->n_vattr.na_filesid[0])
  418                         vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0];
  419                 else
  420                         vap->va_fsid = (uint32_t)hash32_buf(
  421                             np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0);
  422         } else
  423                 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
  424         np->n_attrstamp = time_second;
  425         if (vap->va_size != np->n_size) {
  426                 if (vap->va_type == VREG) {
  427                         if (dontshrink && vap->va_size < np->n_size) {
  428                                 /*
  429                                  * We've been told not to shrink the file;
  430                                  * zero np->n_attrstamp to indicate that
  431                                  * the attributes are stale.
  432                                  */
  433                                 vap->va_size = np->n_size;
  434                                 np->n_attrstamp = 0;
  435                                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  436                         } else if (np->n_flag & NMODIFIED) {
  437                                 /*
  438                                  * We've modified the file: Use the larger
  439                                  * of our size, and the server's size.
  440                                  */
  441                                 if (vap->va_size < np->n_size) {
  442                                         vap->va_size = np->n_size;
  443                                 } else {
  444                                         np->n_size = vap->va_size;
  445                                         np->n_flag |= NSIZECHANGED;
  446                                 }
  447                         } else {
  448                                 np->n_size = vap->va_size;
  449                                 np->n_flag |= NSIZECHANGED;
  450                         }
  451                         vnode_pager_setsize(vp, np->n_size);
  452                 } else {
  453                         np->n_size = vap->va_size;
  454                 }
  455         }
  456         /*
  457          * The following checks are added to prevent a race between (say)
  458          * a READDIR+ and a WRITE. 
  459          * READDIR+, WRITE requests sent out.
  460          * READDIR+ resp, WRITE resp received on client.
  461          * However, the WRITE resp was handled before the READDIR+ resp
  462          * causing the post op attrs from the write to be loaded first
  463          * and the attrs from the READDIR+ to be loaded later. If this 
  464          * happens, we have stale attrs loaded into the attrcache.
  465          * We detect this by for the mtime moving back. We invalidate the 
  466          * attrcache when this happens.
  467          */
  468         if (timespeccmp(&mtime_save, &vap->va_mtime, >)) {
  469                 /* Size changed or mtime went backwards */
  470                 np->n_attrstamp = 0;
  471                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  472         }
  473         if (vaper != NULL) {
  474                 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
  475                 if (np->n_flag & NCHG) {
  476                         if (np->n_flag & NACC)
  477                                 vaper->va_atime = np->n_atim;
  478                         if (np->n_flag & NUPD)
  479                                 vaper->va_mtime = np->n_mtim;
  480                 }
  481         }
  482 #ifdef KDTRACE_HOOKS
  483         if (np->n_attrstamp != 0)
  484                 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0);
  485 #endif
  486         NFSUNLOCKNODE(np);
  487         return (0);
  488 }
  489 
  490 /*
  491  * Fill in the client id name. For these bytes:
  492  * 1 - they must be unique
  493  * 2 - they should be persistent across client reboots
  494  * 1 is more critical than 2
  495  * Use the mount point's unique id plus either the uuid or, if that
  496  * isn't set, random junk.
  497  */
  498 void
  499 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
  500 {
  501         int uuidlen;
  502 
  503         /*
  504          * First, put in the 64bit mount point identifier.
  505          */
  506         if (idlen >= sizeof (u_int64_t)) {
  507                 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
  508                 cp += sizeof (u_int64_t);
  509                 idlen -= sizeof (u_int64_t);
  510         }
  511 
  512         /*
  513          * If uuid is non-zero length, use it.
  514          */
  515         uuidlen = strlen(uuid);
  516         if (uuidlen > 0 && idlen >= uuidlen) {
  517                 NFSBCOPY(uuid, cp, uuidlen);
  518                 cp += uuidlen;
  519                 idlen -= uuidlen;
  520         }
  521 
  522         /*
  523          * This only normally happens if the uuid isn't set.
  524          */
  525         while (idlen > 0) {
  526                 *cp++ = (u_int8_t)(arc4random() % 256);
  527                 idlen--;
  528         }
  529 }
  530 
  531 /*
  532  * Fill in a lock owner name. For now, pid + the process's creation time.
  533  */
  534 void
  535 nfscl_filllockowner(void *id, u_int8_t *cp, int flags)
  536 {
  537         union {
  538                 u_int32_t       lval;
  539                 u_int8_t        cval[4];
  540         } tl;
  541         struct proc *p;
  542 
  543         if (id == NULL) {
  544                 printf("NULL id\n");
  545                 bzero(cp, NFSV4CL_LOCKNAMELEN);
  546                 return;
  547         }
  548         if ((flags & F_POSIX) != 0) {
  549                 p = (struct proc *)id;
  550                 tl.lval = p->p_pid;
  551                 *cp++ = tl.cval[0];
  552                 *cp++ = tl.cval[1];
  553                 *cp++ = tl.cval[2];
  554                 *cp++ = tl.cval[3];
  555                 tl.lval = p->p_stats->p_start.tv_sec;
  556                 *cp++ = tl.cval[0];
  557                 *cp++ = tl.cval[1];
  558                 *cp++ = tl.cval[2];
  559                 *cp++ = tl.cval[3];
  560                 tl.lval = p->p_stats->p_start.tv_usec;
  561                 *cp++ = tl.cval[0];
  562                 *cp++ = tl.cval[1];
  563                 *cp++ = tl.cval[2];
  564                 *cp = tl.cval[3];
  565         } else if ((flags & F_FLOCK) != 0) {
  566                 bcopy(&id, cp, sizeof(id));
  567                 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id));
  568         } else {
  569                 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n");
  570                 bzero(cp, NFSV4CL_LOCKNAMELEN);
  571         }
  572 }
  573 
  574 /*
  575  * Find the parent process for the thread passed in as an argument.
  576  * If none exists, return NULL, otherwise return a thread for the parent.
  577  * (Can be any of the threads, since it is only used for td->td_proc.)
  578  */
  579 NFSPROC_T *
  580 nfscl_getparent(struct thread *td)
  581 {
  582         struct proc *p;
  583         struct thread *ptd;
  584 
  585         if (td == NULL)
  586                 return (NULL);
  587         p = td->td_proc;
  588         if (p->p_pid == 0)
  589                 return (NULL);
  590         p = p->p_pptr;
  591         if (p == NULL)
  592                 return (NULL);
  593         ptd = TAILQ_FIRST(&p->p_threads);
  594         return (ptd);
  595 }
  596 
  597 /*
  598  * Start up the renew kernel thread.
  599  */
  600 static void
  601 start_nfscl(void *arg)
  602 {
  603         struct nfsclclient *clp;
  604         struct thread *td;
  605 
  606         clp = (struct nfsclclient *)arg;
  607         td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
  608         nfscl_renewthread(clp, td);
  609         kproc_exit(0);
  610 }
  611 
  612 void
  613 nfscl_start_renewthread(struct nfsclclient *clp)
  614 {
  615 
  616         kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
  617             "nfscl");
  618 }
  619 
  620 /*
  621  * Handle wcc_data.
  622  * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
  623  * as the first Op after PutFH.
  624  * (For NFSv4, the postop attributes are after the Op, so they can't be
  625  *  parsed here. A separate call to nfscl_postop_attr() is required.)
  626  */
  627 int
  628 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
  629     struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
  630 {
  631         u_int32_t *tl;
  632         struct nfsnode *np = VTONFS(vp);
  633         struct nfsvattr nfsva;
  634         int error = 0;
  635 
  636         if (wccflagp != NULL)
  637                 *wccflagp = 0;
  638         if (nd->nd_flag & ND_NFSV3) {
  639                 *flagp = 0;
  640                 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
  641                 if (*tl == newnfs_true) {
  642                         NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
  643                         if (wccflagp != NULL) {
  644                                 mtx_lock(&np->n_mtx);
  645                                 *wccflagp = (np->n_mtime.tv_sec ==
  646                                     fxdr_unsigned(u_int32_t, *(tl + 2)) &&
  647                                     np->n_mtime.tv_nsec ==
  648                                     fxdr_unsigned(u_int32_t, *(tl + 3)));
  649                                 mtx_unlock(&np->n_mtx);
  650                         }
  651                 }
  652                 error = nfscl_postop_attr(nd, nap, flagp, stuff);
  653         } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
  654             == (ND_NFSV4 | ND_V4WCCATTR)) {
  655                 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
  656                     NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
  657                     NULL, NULL, NULL, NULL, NULL);
  658                 if (error)
  659                         return (error);
  660                 /*
  661                  * Get rid of Op# and status for next op.
  662                  */
  663                 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  664                 if (*++tl)
  665                         nd->nd_flag |= ND_NOMOREDATA;
  666                 if (wccflagp != NULL &&
  667                     nfsva.na_vattr.va_mtime.tv_sec != 0) {
  668                         mtx_lock(&np->n_mtx);
  669                         *wccflagp = (np->n_mtime.tv_sec ==
  670                             nfsva.na_vattr.va_mtime.tv_sec &&
  671                             np->n_mtime.tv_nsec ==
  672                             nfsva.na_vattr.va_mtime.tv_sec);
  673                         mtx_unlock(&np->n_mtx);
  674                 }
  675         }
  676 nfsmout:
  677         return (error);
  678 }
  679 
  680 /*
  681  * Get postop attributes.
  682  */
  683 int
  684 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
  685     void *stuff)
  686 {
  687         u_int32_t *tl;
  688         int error = 0;
  689 
  690         *retp = 0;
  691         if (nd->nd_flag & ND_NOMOREDATA)
  692                 return (error);
  693         if (nd->nd_flag & ND_NFSV3) {
  694                 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
  695                 *retp = fxdr_unsigned(int, *tl);
  696         } else if (nd->nd_flag & ND_NFSV4) {
  697                 /*
  698                  * For NFSv4, the postop attr are at the end, so no point
  699                  * in looking if nd_repstat != 0.
  700                  */
  701                 if (!nd->nd_repstat) {
  702                         NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  703                         if (*(tl + 1))
  704                                 /* should never happen since nd_repstat != 0 */
  705                                 nd->nd_flag |= ND_NOMOREDATA;
  706                         else
  707                                 *retp = 1;
  708                 }
  709         } else if (!nd->nd_repstat) {
  710                 /* For NFSv2, the attributes are here iff nd_repstat == 0 */
  711                 *retp = 1;
  712         }
  713         if (*retp) {
  714                 error = nfsm_loadattr(nd, nap);
  715                 if (error)
  716                         *retp = 0;
  717         }
  718 nfsmout:
  719         return (error);
  720 }
  721 
  722 /*
  723  * Fill in the setable attributes. The full argument indicates whether
  724  * to fill in them all or just mode and time.
  725  */
  726 void
  727 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
  728     struct vnode *vp, int flags, u_int32_t rdev)
  729 {
  730         u_int32_t *tl;
  731         struct nfsv2_sattr *sp;
  732         nfsattrbit_t attrbits;
  733         struct timeval curtime;
  734 
  735         switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
  736         case ND_NFSV2:
  737                 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
  738                 if (vap->va_mode == (mode_t)VNOVAL)
  739                         sp->sa_mode = newnfs_xdrneg1;
  740                 else
  741                         sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
  742                 if (vap->va_uid == (uid_t)VNOVAL)
  743                         sp->sa_uid = newnfs_xdrneg1;
  744                 else
  745                         sp->sa_uid = txdr_unsigned(vap->va_uid);
  746                 if (vap->va_gid == (gid_t)VNOVAL)
  747                         sp->sa_gid = newnfs_xdrneg1;
  748                 else
  749                         sp->sa_gid = txdr_unsigned(vap->va_gid);
  750                 if (flags & NFSSATTR_SIZE0)
  751                         sp->sa_size = 0;
  752                 else if (flags & NFSSATTR_SIZENEG1)
  753                         sp->sa_size = newnfs_xdrneg1;
  754                 else if (flags & NFSSATTR_SIZERDEV)
  755                         sp->sa_size = txdr_unsigned(rdev);
  756                 else
  757                         sp->sa_size = txdr_unsigned(vap->va_size);
  758                 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
  759                 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
  760                 break;
  761         case ND_NFSV3:
  762                 getmicrotime(&curtime);
  763                 if (vap->va_mode != (mode_t)VNOVAL) {
  764                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  765                         *tl++ = newnfs_true;
  766                         *tl = txdr_unsigned(vap->va_mode);
  767                 } else {
  768                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  769                         *tl = newnfs_false;
  770                 }
  771                 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
  772                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  773                         *tl++ = newnfs_true;
  774                         *tl = txdr_unsigned(vap->va_uid);
  775                 } else {
  776                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  777                         *tl = newnfs_false;
  778                 }
  779                 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
  780                         NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
  781                         *tl++ = newnfs_true;
  782                         *tl = txdr_unsigned(vap->va_gid);
  783                 } else {
  784                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  785                         *tl = newnfs_false;
  786                 }
  787                 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
  788                         NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  789                         *tl++ = newnfs_true;
  790                         txdr_hyper(vap->va_size, tl);
  791                 } else {
  792                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  793                         *tl = newnfs_false;
  794                 }
  795                 if (vap->va_atime.tv_sec != VNOVAL) {
  796                         if (vap->va_atime.tv_sec != curtime.tv_sec) {
  797                                 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  798                                 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
  799                                 txdr_nfsv3time(&vap->va_atime, tl);
  800                         } else {
  801                                 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  802                                 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
  803                         }
  804                 } else {
  805                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  806                         *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
  807                 }
  808                 if (vap->va_mtime.tv_sec != VNOVAL) {
  809                         if (vap->va_mtime.tv_sec != curtime.tv_sec) {
  810                                 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
  811                                 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
  812                                 txdr_nfsv3time(&vap->va_mtime, tl);
  813                         } else {
  814                                 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  815                                 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
  816                         }
  817                 } else {
  818                         NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
  819                         *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
  820                 }
  821                 break;
  822         case ND_NFSV4:
  823                 NFSZERO_ATTRBIT(&attrbits);
  824                 if (vap->va_mode != (mode_t)VNOVAL)
  825                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
  826                 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
  827                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
  828                 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
  829                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
  830                 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
  831                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
  832                 if (vap->va_atime.tv_sec != VNOVAL)
  833                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
  834                 if (vap->va_mtime.tv_sec != VNOVAL)
  835                         NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
  836                 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0,
  837                     &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0);
  838                 break;
  839         };
  840 }
  841 
  842 /*
  843  * nfscl_request() - mostly a wrapper for newnfs_request().
  844  */
  845 int
  846 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
  847     struct ucred *cred, void *stuff)
  848 {
  849         int ret, vers;
  850         struct nfsmount *nmp;
  851 
  852         nmp = VFSTONFS(vp->v_mount);
  853         if (nd->nd_flag & ND_NFSV4)
  854                 vers = NFS_VER4;
  855         else if (nd->nd_flag & ND_NFSV3)
  856                 vers = NFS_VER3;
  857         else
  858                 vers = NFS_VER2;
  859         ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
  860                 NFS_PROG, vers, NULL, 1, NULL);
  861         return (ret);
  862 }
  863 
  864 /*
  865  * fill in this bsden's variant of statfs using nfsstatfs.
  866  */
  867 void
  868 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
  869 {
  870         struct statfs *sbp = (struct statfs *)statfs;
  871 
  872         if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
  873                 sbp->f_bsize = NFS_FABLKSIZE;
  874                 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE;
  875                 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE;
  876                 /*
  877                  * Although sf_abytes is uint64_t and f_bavail is int64_t,
  878                  * the value after dividing by NFS_FABLKSIZE is small
  879                  * enough that it will fit in 63bits, so it is ok to
  880                  * assign it to f_bavail without fear that it will become
  881                  * negative.
  882                  */
  883                 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE;
  884                 sbp->f_files = sfp->sf_tfiles;
  885                 /* Since f_ffree is int64_t, clip it to 63bits. */
  886                 if (sfp->sf_ffiles > INT64_MAX)
  887                         sbp->f_ffree = INT64_MAX;
  888                 else
  889                         sbp->f_ffree = sfp->sf_ffiles;
  890         } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
  891                 /*
  892                  * The type casts to (int32_t) ensure that this code is
  893                  * compatible with the old NFS client, in that it will
  894                  * propagate bit31 to the high order bits. This may or may
  895                  * not be correct for NFSv2, but since it is a legacy
  896                  * environment, I'd rather retain backwards compatibility.
  897                  */
  898                 sbp->f_bsize = (int32_t)sfp->sf_bsize;
  899                 sbp->f_blocks = (int32_t)sfp->sf_blocks;
  900                 sbp->f_bfree = (int32_t)sfp->sf_bfree;
  901                 sbp->f_bavail = (int32_t)sfp->sf_bavail;
  902                 sbp->f_files = 0;
  903                 sbp->f_ffree = 0;
  904         }
  905 }
  906 
  907 /*
  908  * Use the fsinfo stuff to update the mount point.
  909  */
  910 void
  911 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
  912 {
  913 
  914         if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
  915             fsp->fs_wtpref >= NFS_FABLKSIZE)
  916                 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
  917                     ~(NFS_FABLKSIZE - 1);
  918         if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
  919                 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
  920                 if (nmp->nm_wsize == 0)
  921                         nmp->nm_wsize = fsp->fs_wtmax;
  922         }
  923         if (nmp->nm_wsize < NFS_FABLKSIZE)
  924                 nmp->nm_wsize = NFS_FABLKSIZE;
  925         if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
  926             fsp->fs_rtpref >= NFS_FABLKSIZE)
  927                 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
  928                     ~(NFS_FABLKSIZE - 1);
  929         if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
  930                 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
  931                 if (nmp->nm_rsize == 0)
  932                         nmp->nm_rsize = fsp->fs_rtmax;
  933         }
  934         if (nmp->nm_rsize < NFS_FABLKSIZE)
  935                 nmp->nm_rsize = NFS_FABLKSIZE;
  936         if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
  937             && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
  938                 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
  939                     ~(NFS_DIRBLKSIZ - 1);
  940         if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
  941                 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
  942                 if (nmp->nm_readdirsize == 0)
  943                         nmp->nm_readdirsize = fsp->fs_rtmax;
  944         }
  945         if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
  946                 nmp->nm_readdirsize = NFS_DIRBLKSIZ;
  947         if (fsp->fs_maxfilesize > 0 &&
  948             fsp->fs_maxfilesize < nmp->nm_maxfilesize)
  949                 nmp->nm_maxfilesize = fsp->fs_maxfilesize;
  950         nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
  951         nmp->nm_state |= NFSSTA_GOTFSINFO;
  952 }
  953 
  954 /*
  955  * Get a pointer to my IP addrress and return it.
  956  * Return NULL if you can't find one.
  957  */
  958 u_int8_t *
  959 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
  960 {
  961         struct sockaddr_in sad, *sin;
  962         struct rtentry *rt;
  963         u_int8_t *retp = NULL;
  964         static struct in_addr laddr;
  965 
  966         *isinet6p = 0;
  967         /*
  968          * Loop up a route for the destination address.
  969          */
  970         if (nmp->nm_nam->sa_family == AF_INET) {
  971                 bzero(&sad, sizeof (sad));
  972                 sin = (struct sockaddr_in *)nmp->nm_nam;
  973                 sad.sin_family = AF_INET;
  974                 sad.sin_len = sizeof (struct sockaddr_in);
  975                 sad.sin_addr.s_addr = sin->sin_addr.s_addr;
  976                 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
  977                 rt = rtalloc1((struct sockaddr *)&sad, 0, 0UL);
  978                 if (rt != NULL) {
  979                         if (rt->rt_ifp != NULL &&
  980                             rt->rt_ifa != NULL &&
  981                             ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
  982                             rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
  983                                 sin = (struct sockaddr_in *)
  984                                     rt->rt_ifa->ifa_addr;
  985                                 laddr.s_addr = sin->sin_addr.s_addr;
  986                                 retp = (u_int8_t *)&laddr;
  987                         }
  988                         RTFREE_LOCKED(rt);
  989                 }
  990                 CURVNET_RESTORE();
  991 #ifdef INET6
  992         } else if (nmp->nm_nam->sa_family == AF_INET6) {
  993                 struct sockaddr_in6 sad6, *sin6;
  994                 static struct in6_addr laddr6;
  995 
  996                 bzero(&sad6, sizeof (sad6));
  997                 sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
  998                 sad6.sin6_family = AF_INET6;
  999                 sad6.sin6_len = sizeof (struct sockaddr_in6);
 1000                 sad6.sin6_addr = sin6->sin6_addr;
 1001                 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
 1002                 rt = rtalloc1((struct sockaddr *)&sad6, 0, 0UL);
 1003                 if (rt != NULL) {
 1004                         if (rt->rt_ifp != NULL &&
 1005                             rt->rt_ifa != NULL &&
 1006                             ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
 1007                             rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
 1008                                 sin6 = (struct sockaddr_in6 *)
 1009                                     rt->rt_ifa->ifa_addr;
 1010                                 laddr6 = sin6->sin6_addr;
 1011                                 retp = (u_int8_t *)&laddr6;
 1012                                 *isinet6p = 1;
 1013                         }
 1014                         RTFREE_LOCKED(rt);
 1015                 }
 1016                 CURVNET_RESTORE();
 1017 #endif
 1018         }
 1019         return (retp);
 1020 }
 1021 
 1022 /*
 1023  * Copy NFS uid, gids from the cred structure.
 1024  */
 1025 void
 1026 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
 1027 {
 1028         int i;
 1029 
 1030         KASSERT(cr->cr_ngroups >= 0,
 1031             ("newnfs_copyincred: negative cr_ngroups"));
 1032         nfscr->nfsc_uid = cr->cr_uid;
 1033         nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
 1034         for (i = 0; i < nfscr->nfsc_ngroups; i++)
 1035                 nfscr->nfsc_groups[i] = cr->cr_groups[i];
 1036 }
 1037 
 1038 
 1039 /*
 1040  * Do any client specific initialization.
 1041  */
 1042 void
 1043 nfscl_init(void)
 1044 {
 1045         static int inited = 0;
 1046 
 1047         if (inited)
 1048                 return;
 1049         inited = 1;
 1050         nfscl_inited = 1;
 1051         ncl_pbuf_freecnt = nswbuf / 2 + 1;
 1052 }
 1053 
 1054 /*
 1055  * Check each of the attributes to be set, to ensure they aren't already
 1056  * the correct value. Disable setting ones already correct.
 1057  */
 1058 int
 1059 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
 1060 {
 1061 
 1062         if (vap->va_mode != (mode_t)VNOVAL) {
 1063                 if (vap->va_mode == nvap->na_mode)
 1064                         vap->va_mode = (mode_t)VNOVAL;
 1065         }
 1066         if (vap->va_uid != (uid_t)VNOVAL) {
 1067                 if (vap->va_uid == nvap->na_uid)
 1068                         vap->va_uid = (uid_t)VNOVAL;
 1069         }
 1070         if (vap->va_gid != (gid_t)VNOVAL) {
 1071                 if (vap->va_gid == nvap->na_gid)
 1072                         vap->va_gid = (gid_t)VNOVAL;
 1073         }
 1074         if (vap->va_size != VNOVAL) {
 1075                 if (vap->va_size == nvap->na_size)
 1076                         vap->va_size = VNOVAL;
 1077         }
 1078 
 1079         /*
 1080          * We are normally called with only a partially initialized
 1081          * VAP.  Since the NFSv3 spec says that server may use the
 1082          * file attributes to store the verifier, the spec requires
 1083          * us to do a SETATTR RPC. FreeBSD servers store the verifier
 1084          * in atime, but we can't really assume that all servers will
 1085          * so we ensure that our SETATTR sets both atime and mtime.
 1086          */
 1087         if (vap->va_mtime.tv_sec == VNOVAL)
 1088                 vfs_timestamp(&vap->va_mtime);
 1089         if (vap->va_atime.tv_sec == VNOVAL)
 1090                 vap->va_atime = vap->va_mtime;
 1091         return (1);
 1092 }
 1093 
 1094 /*
 1095  * Map nfsv4 errors to errno.h errors.
 1096  * The uid and gid arguments are only used for NFSERR_BADOWNER and that
 1097  * error should only be returned for the Open, Create and Setattr Ops.
 1098  * As such, most calls can just pass in 0 for those arguments.
 1099  */
 1100 APPLESTATIC int
 1101 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
 1102 {
 1103         struct proc *p;
 1104 
 1105         if (error < 10000)
 1106                 return (error);
 1107         if (td != NULL)
 1108                 p = td->td_proc;
 1109         else
 1110                 p = NULL;
 1111         switch (error) {
 1112         case NFSERR_BADOWNER:
 1113                 tprintf(p, LOG_INFO,
 1114                     "No name and/or group mapping for uid,gid:(%d,%d)\n",
 1115                     uid, gid);
 1116                 return (EPERM);
 1117         case NFSERR_STALECLIENTID:
 1118         case NFSERR_STALESTATEID:
 1119         case NFSERR_EXPIRED:
 1120         case NFSERR_BADSTATEID:
 1121                 printf("nfsv4 recover err returned %d\n", error);
 1122                 return (EIO);
 1123         case NFSERR_BADHANDLE:
 1124         case NFSERR_SERVERFAULT:
 1125         case NFSERR_BADTYPE:
 1126         case NFSERR_FHEXPIRED:
 1127         case NFSERR_RESOURCE:
 1128         case NFSERR_MOVED:
 1129         case NFSERR_NOFILEHANDLE:
 1130         case NFSERR_MINORVERMISMATCH:
 1131         case NFSERR_OLDSTATEID:
 1132         case NFSERR_BADSEQID:
 1133         case NFSERR_LEASEMOVED:
 1134         case NFSERR_RECLAIMBAD:
 1135         case NFSERR_BADXDR:
 1136         case NFSERR_BADCHAR:
 1137         case NFSERR_BADNAME:
 1138         case NFSERR_OPILLEGAL:
 1139                 printf("nfsv4 client/server protocol prob err=%d\n",
 1140                     error);
 1141                 return (EIO);
 1142         default:
 1143                 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
 1144                 return (EIO);
 1145         };
 1146 }
 1147 
 1148 /*
 1149  * Locate a process by number; return only "live" processes -- i.e., neither
 1150  * zombies nor newly born but incompletely initialized processes.  By not
 1151  * returning processes in the PRS_NEW state, we allow callers to avoid
 1152  * testing for that condition to avoid dereferencing p_ucred, et al.
 1153  * Identical to pfind() in kern_proc.c, except it assume the list is
 1154  * already locked.
 1155  */
 1156 static struct proc *
 1157 pfind_locked(pid_t pid)
 1158 {
 1159         struct proc *p;
 1160 
 1161         LIST_FOREACH(p, PIDHASH(pid), p_hash)
 1162                 if (p->p_pid == pid) {
 1163                         PROC_LOCK(p);
 1164                         if (p->p_state == PRS_NEW) {
 1165                                 PROC_UNLOCK(p);
 1166                                 p = NULL;
 1167                         }
 1168                         break;
 1169                 }
 1170         return (p);
 1171 }
 1172 
 1173 /*
 1174  * Check to see if the process for this owner exists. Return 1 if it doesn't
 1175  * and 0 otherwise.
 1176  */
 1177 int
 1178 nfscl_procdoesntexist(u_int8_t *own)
 1179 {
 1180         union {
 1181                 u_int32_t       lval;
 1182                 u_int8_t        cval[4];
 1183         } tl;
 1184         struct proc *p;
 1185         pid_t pid;
 1186         int ret = 0;
 1187 
 1188         tl.cval[0] = *own++;
 1189         tl.cval[1] = *own++;
 1190         tl.cval[2] = *own++;
 1191         tl.cval[3] = *own++;
 1192         pid = tl.lval;
 1193         p = pfind_locked(pid);
 1194         if (p == NULL)
 1195                 return (1);
 1196         if (p->p_stats == NULL) {
 1197                 PROC_UNLOCK(p);
 1198                 return (0);
 1199         }
 1200         tl.cval[0] = *own++;
 1201         tl.cval[1] = *own++;
 1202         tl.cval[2] = *own++;
 1203         tl.cval[3] = *own++;
 1204         if (tl.lval != p->p_stats->p_start.tv_sec) {
 1205                 ret = 1;
 1206         } else {
 1207                 tl.cval[0] = *own++;
 1208                 tl.cval[1] = *own++;
 1209                 tl.cval[2] = *own++;
 1210                 tl.cval[3] = *own;
 1211                 if (tl.lval != p->p_stats->p_start.tv_usec)
 1212                         ret = 1;
 1213         }
 1214         PROC_UNLOCK(p);
 1215         return (ret);
 1216 }
 1217 
 1218 /*
 1219  * - nfs pseudo system call for the client
 1220  */
 1221 /*
 1222  * MPSAFE
 1223  */
 1224 static int
 1225 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
 1226 {
 1227         struct file *fp;
 1228         struct nfscbd_args nfscbdarg;
 1229         struct nfsd_nfscbd_args nfscbdarg2;
 1230         int error;
 1231 
 1232         if (uap->flag & NFSSVC_CBADDSOCK) {
 1233                 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
 1234                 if (error)
 1235                         return (error);
 1236                 /*
 1237                  * Since we don't know what rights might be required,
 1238                  * pretend that we need them all. It is better to be too
 1239                  * careful than too reckless.
 1240                  */
 1241                 if ((error = fget(td, nfscbdarg.sock, CAP_SOCK_ALL, &fp))
 1242                     != 0) {
 1243                         return (error);
 1244                 }
 1245                 if (fp->f_type != DTYPE_SOCKET) {
 1246                         fdrop(fp, td);
 1247                         return (EPERM);
 1248                 }
 1249                 error = nfscbd_addsock(fp);
 1250                 fdrop(fp, td);
 1251                 if (!error && nfscl_enablecallb == 0) {
 1252                         nfsv4_cbport = nfscbdarg.port;
 1253                         nfscl_enablecallb = 1;
 1254                 }
 1255         } else if (uap->flag & NFSSVC_NFSCBD) {
 1256                 if (uap->argp == NULL) 
 1257                         return (EINVAL);
 1258                 error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
 1259                     sizeof(nfscbdarg2));
 1260                 if (error)
 1261                         return (error);
 1262                 error = nfscbd_nfsd(td, &nfscbdarg2);
 1263         } else {
 1264                 error = EINVAL;
 1265         }
 1266         return (error);
 1267 }
 1268 
 1269 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
 1270 
 1271 /*
 1272  * Called once to initialize data structures...
 1273  */
 1274 static int
 1275 nfscl_modevent(module_t mod, int type, void *data)
 1276 {
 1277         int error = 0;
 1278         static int loaded = 0;
 1279 
 1280         switch (type) {
 1281         case MOD_LOAD:
 1282                 if (loaded)
 1283                         return (0);
 1284                 newnfs_portinit();
 1285                 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
 1286                     MTX_DEF);
 1287                 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
 1288                 nfscl_init();
 1289                 NFSD_LOCK();
 1290                 nfsrvd_cbinit(0);
 1291                 NFSD_UNLOCK();
 1292                 ncl_call_invalcaches = ncl_invalcaches;
 1293                 nfsd_call_nfscl = nfssvc_nfscl;
 1294                 loaded = 1;
 1295                 break;
 1296 
 1297         case MOD_UNLOAD:
 1298                 if (nfs_numnfscbd != 0) {
 1299                         error = EBUSY;
 1300                         break;
 1301                 }
 1302 
 1303                 /*
 1304                  * XXX: Unloading of nfscl module is unsupported.
 1305                  */
 1306 #if 0
 1307                 ncl_call_invalcaches = NULL;
 1308                 nfsd_call_nfscl = NULL;
 1309                 /* and get rid of the mutexes */
 1310                 mtx_destroy(&nfs_clstate_mutex);
 1311                 mtx_destroy(&ncl_iod_mutex);
 1312                 loaded = 0;
 1313                 break;
 1314 #else
 1315                 /* FALLTHROUGH */
 1316 #endif
 1317         default:
 1318                 error = EOPNOTSUPP;
 1319                 break;
 1320         }
 1321         return error;
 1322 }
 1323 static moduledata_t nfscl_mod = {
 1324         "nfscl",
 1325         nfscl_modevent,
 1326         NULL,
 1327 };
 1328 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
 1329 
 1330 /* So that loader and kldload(2) can find us, wherever we are.. */
 1331 MODULE_VERSION(nfscl, 1);
 1332 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
 1333 MODULE_DEPEND(nfscl, krpc, 1, 1, 1);
 1334 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1);
 1335 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1);
 1336 

Cache object: 9cdfeed613fa5fc22b244ddcf80bf850


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.