1 /*-
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from nfs_vnops.c 8.16 (Berkeley) 5/27/95
33 */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 /*
39 * vnode op calls for Sun NFS version 2, 3 and 4
40 */
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/systm.h>
47 #include <sys/resourcevar.h>
48 #include <sys/proc.h>
49 #include <sys/mount.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/jail.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/namei.h>
56 #include <sys/socket.h>
57 #include <sys/vnode.h>
58 #include <sys/dirent.h>
59 #include <sys/fcntl.h>
60 #include <sys/lockf.h>
61 #include <sys/stat.h>
62 #include <sys/sysctl.h>
63 #include <sys/signalvar.h>
64
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_object.h>
68
69 #include <fs/nfs/nfsport.h>
70 #include <fs/nfsclient/nfsnode.h>
71 #include <fs/nfsclient/nfsmount.h>
72 #include <fs/nfsclient/nfs.h>
73 #include <fs/nfsclient/nfs_kdtrace.h>
74
75 #include <net/if.h>
76 #include <netinet/in.h>
77 #include <netinet/in_var.h>
78
79 #include <nfs/nfs_lock.h>
80
81 #ifdef KDTRACE_HOOKS
82 #include <sys/dtrace_bsd.h>
83
84 dtrace_nfsclient_accesscache_flush_probe_func_t
85 dtrace_nfscl_accesscache_flush_done_probe;
86 uint32_t nfscl_accesscache_flush_done_id;
87
88 dtrace_nfsclient_accesscache_get_probe_func_t
89 dtrace_nfscl_accesscache_get_hit_probe,
90 dtrace_nfscl_accesscache_get_miss_probe;
91 uint32_t nfscl_accesscache_get_hit_id;
92 uint32_t nfscl_accesscache_get_miss_id;
93
94 dtrace_nfsclient_accesscache_load_probe_func_t
95 dtrace_nfscl_accesscache_load_done_probe;
96 uint32_t nfscl_accesscache_load_done_id;
97 #endif /* !KDTRACE_HOOKS */
98
99 /* Defs */
100 #define TRUE 1
101 #define FALSE 0
102
103 extern struct nfsstatsv1 nfsstatsv1;
104 extern int nfsrv_useacl;
105 extern int nfscl_debuglevel;
106 MALLOC_DECLARE(M_NEWNFSREQ);
107
108 static vop_read_t nfsfifo_read;
109 static vop_write_t nfsfifo_write;
110 static vop_close_t nfsfifo_close;
111 static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
112 struct thread *);
113 static vop_lookup_t nfs_lookup;
114 static vop_create_t nfs_create;
115 static vop_mknod_t nfs_mknod;
116 static vop_open_t nfs_open;
117 static vop_pathconf_t nfs_pathconf;
118 static vop_close_t nfs_close;
119 static vop_access_t nfs_access;
120 static vop_getattr_t nfs_getattr;
121 static vop_setattr_t nfs_setattr;
122 static vop_read_t nfs_read;
123 static vop_fsync_t nfs_fsync;
124 static vop_remove_t nfs_remove;
125 static vop_link_t nfs_link;
126 static vop_rename_t nfs_rename;
127 static vop_mkdir_t nfs_mkdir;
128 static vop_rmdir_t nfs_rmdir;
129 static vop_symlink_t nfs_symlink;
130 static vop_readdir_t nfs_readdir;
131 static vop_strategy_t nfs_strategy;
132 static int nfs_lookitup(struct vnode *, char *, int,
133 struct ucred *, struct thread *, struct nfsnode **);
134 static int nfs_sillyrename(struct vnode *, struct vnode *,
135 struct componentname *);
136 static vop_access_t nfsspec_access;
137 static vop_readlink_t nfs_readlink;
138 static vop_print_t nfs_print;
139 static vop_advlock_t nfs_advlock;
140 static vop_advlockasync_t nfs_advlockasync;
141 static vop_getacl_t nfs_getacl;
142 static vop_setacl_t nfs_setacl;
143 static vop_set_text_t nfs_set_text;
144
145 /*
146 * Global vfs data structures for nfs
147 */
148 struct vop_vector newnfs_vnodeops = {
149 .vop_default = &default_vnodeops,
150 .vop_access = nfs_access,
151 .vop_advlock = nfs_advlock,
152 .vop_advlockasync = nfs_advlockasync,
153 .vop_close = nfs_close,
154 .vop_create = nfs_create,
155 .vop_fsync = nfs_fsync,
156 .vop_getattr = nfs_getattr,
157 .vop_getpages = ncl_getpages,
158 .vop_putpages = ncl_putpages,
159 .vop_inactive = ncl_inactive,
160 .vop_link = nfs_link,
161 .vop_lookup = nfs_lookup,
162 .vop_mkdir = nfs_mkdir,
163 .vop_mknod = nfs_mknod,
164 .vop_open = nfs_open,
165 .vop_pathconf = nfs_pathconf,
166 .vop_print = nfs_print,
167 .vop_read = nfs_read,
168 .vop_readdir = nfs_readdir,
169 .vop_readlink = nfs_readlink,
170 .vop_reclaim = ncl_reclaim,
171 .vop_remove = nfs_remove,
172 .vop_rename = nfs_rename,
173 .vop_rmdir = nfs_rmdir,
174 .vop_setattr = nfs_setattr,
175 .vop_strategy = nfs_strategy,
176 .vop_symlink = nfs_symlink,
177 .vop_write = ncl_write,
178 .vop_getacl = nfs_getacl,
179 .vop_setacl = nfs_setacl,
180 .vop_set_text = nfs_set_text,
181 };
182
183 struct vop_vector newnfs_fifoops = {
184 .vop_default = &fifo_specops,
185 .vop_access = nfsspec_access,
186 .vop_close = nfsfifo_close,
187 .vop_fsync = nfs_fsync,
188 .vop_getattr = nfs_getattr,
189 .vop_inactive = ncl_inactive,
190 .vop_pathconf = nfs_pathconf,
191 .vop_print = nfs_print,
192 .vop_read = nfsfifo_read,
193 .vop_reclaim = ncl_reclaim,
194 .vop_setattr = nfs_setattr,
195 .vop_write = nfsfifo_write,
196 };
197
198 static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
199 struct componentname *cnp, struct vattr *vap);
200 static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
201 int namelen, struct ucred *cred, struct thread *td);
202 static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
203 char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
204 char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
205 static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
206 struct componentname *scnp, struct sillyrename *sp);
207
208 /*
209 * Global variables
210 */
211 #define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1))
212
213 SYSCTL_DECL(_vfs_nfs);
214
215 static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
216 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
217 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
218
219 static int nfs_prime_access_cache = 0;
220 SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
221 &nfs_prime_access_cache, 0,
222 "Prime NFS ACCESS cache when fetching attributes");
223
224 static int newnfs_commit_on_close = 0;
225 SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
226 &newnfs_commit_on_close, 0, "write+commit on close, else only write");
227
228 static int nfs_clean_pages_on_close = 1;
229 SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
230 &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
231
232 int newnfs_directio_enable = 0;
233 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
234 &newnfs_directio_enable, 0, "Enable NFS directio");
235
236 int nfs_keep_dirty_on_error;
237 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW,
238 &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned");
239
240 /*
241 * This sysctl allows other processes to mmap a file that has been opened
242 * O_DIRECT by a process. In general, having processes mmap the file while
243 * Direct IO is in progress can lead to Data Inconsistencies. But, we allow
244 * this by default to prevent DoS attacks - to prevent a malicious user from
245 * opening up files O_DIRECT preventing other users from mmap'ing these
246 * files. "Protected" environments where stricter consistency guarantees are
247 * required can disable this knob. The process that opened the file O_DIRECT
248 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
249 * meaningful.
250 */
251 int newnfs_directio_allow_mmap = 1;
252 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
253 &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
254
255 #define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \
256 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE \
257 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
258
259 /*
260 * SMP Locking Note :
261 * The list of locks after the description of the lock is the ordering
262 * of other locks acquired with the lock held.
263 * np->n_mtx : Protects the fields in the nfsnode.
264 VM Object Lock
265 VI_MTX (acquired indirectly)
266 * nmp->nm_mtx : Protects the fields in the nfsmount.
267 rep->r_mtx
268 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
269 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
270 nmp->nm_mtx
271 rep->r_mtx
272 * rep->r_mtx : Protects the fields in an nfsreq.
273 */
274
275 static int
276 nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
277 struct ucred *cred, u_int32_t *retmode)
278 {
279 int error = 0, attrflag, i, lrupos;
280 u_int32_t rmode;
281 struct nfsnode *np = VTONFS(vp);
282 struct nfsvattr nfsva;
283
284 error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
285 &rmode, NULL);
286 if (attrflag)
287 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
288 if (!error) {
289 lrupos = 0;
290 mtx_lock(&np->n_mtx);
291 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
292 if (np->n_accesscache[i].uid == cred->cr_uid) {
293 np->n_accesscache[i].mode = rmode;
294 np->n_accesscache[i].stamp = time_second;
295 break;
296 }
297 if (i > 0 && np->n_accesscache[i].stamp <
298 np->n_accesscache[lrupos].stamp)
299 lrupos = i;
300 }
301 if (i == NFS_ACCESSCACHESIZE) {
302 np->n_accesscache[lrupos].uid = cred->cr_uid;
303 np->n_accesscache[lrupos].mode = rmode;
304 np->n_accesscache[lrupos].stamp = time_second;
305 }
306 mtx_unlock(&np->n_mtx);
307 if (retmode != NULL)
308 *retmode = rmode;
309 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
310 } else if (NFS_ISV4(vp)) {
311 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
312 }
313 #ifdef KDTRACE_HOOKS
314 if (error != 0)
315 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
316 error);
317 #endif
318 return (error);
319 }
320
321 /*
322 * nfs access vnode op.
323 * For nfs version 2, just return ok. File accesses may fail later.
324 * For nfs version 3, use the access rpc to check accessibility. If file modes
325 * are changed on the server, accesses might still fail later.
326 */
327 static int
328 nfs_access(struct vop_access_args *ap)
329 {
330 struct vnode *vp = ap->a_vp;
331 int error = 0, i, gotahit;
332 u_int32_t mode, wmode, rmode;
333 int v34 = NFS_ISV34(vp);
334 struct nfsnode *np = VTONFS(vp);
335
336 /*
337 * Disallow write attempts on filesystems mounted read-only;
338 * unless the file is a socket, fifo, or a block or character
339 * device resident on the filesystem.
340 */
341 if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
342 VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
343 VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
344 switch (vp->v_type) {
345 case VREG:
346 case VDIR:
347 case VLNK:
348 return (EROFS);
349 default:
350 break;
351 }
352 }
353 /*
354 * For nfs v3 or v4, check to see if we have done this recently, and if
355 * so return our cached result instead of making an ACCESS call.
356 * If not, do an access rpc, otherwise you are stuck emulating
357 * ufs_access() locally using the vattr. This may not be correct,
358 * since the server may apply other access criteria such as
359 * client uid-->server uid mapping that we do not know about.
360 */
361 if (v34) {
362 if (ap->a_accmode & VREAD)
363 mode = NFSACCESS_READ;
364 else
365 mode = 0;
366 if (vp->v_type != VDIR) {
367 if (ap->a_accmode & VWRITE)
368 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
369 if (ap->a_accmode & VAPPEND)
370 mode |= NFSACCESS_EXTEND;
371 if (ap->a_accmode & VEXEC)
372 mode |= NFSACCESS_EXECUTE;
373 if (ap->a_accmode & VDELETE)
374 mode |= NFSACCESS_DELETE;
375 } else {
376 if (ap->a_accmode & VWRITE)
377 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
378 if (ap->a_accmode & VAPPEND)
379 mode |= NFSACCESS_EXTEND;
380 if (ap->a_accmode & VEXEC)
381 mode |= NFSACCESS_LOOKUP;
382 if (ap->a_accmode & VDELETE)
383 mode |= NFSACCESS_DELETE;
384 if (ap->a_accmode & VDELETE_CHILD)
385 mode |= NFSACCESS_MODIFY;
386 }
387 /* XXX safety belt, only make blanket request if caching */
388 if (nfsaccess_cache_timeout > 0) {
389 wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
390 NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
391 NFSACCESS_DELETE | NFSACCESS_LOOKUP;
392 } else {
393 wmode = mode;
394 }
395
396 /*
397 * Does our cached result allow us to give a definite yes to
398 * this request?
399 */
400 gotahit = 0;
401 mtx_lock(&np->n_mtx);
402 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
403 if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
404 if (time_second < (np->n_accesscache[i].stamp
405 + nfsaccess_cache_timeout) &&
406 (np->n_accesscache[i].mode & mode) == mode) {
407 NFSINCRGLOBAL(nfsstatsv1.accesscache_hits);
408 gotahit = 1;
409 }
410 break;
411 }
412 }
413 mtx_unlock(&np->n_mtx);
414 #ifdef KDTRACE_HOOKS
415 if (gotahit != 0)
416 KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
417 ap->a_cred->cr_uid, mode);
418 else
419 KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
420 ap->a_cred->cr_uid, mode);
421 #endif
422 if (gotahit == 0) {
423 /*
424 * Either a no, or a don't know. Go to the wire.
425 */
426 NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
427 error = nfs34_access_otw(vp, wmode, ap->a_td,
428 ap->a_cred, &rmode);
429 if (!error &&
430 (rmode & mode) != mode)
431 error = EACCES;
432 }
433 return (error);
434 } else {
435 if ((error = nfsspec_access(ap)) != 0) {
436 return (error);
437 }
438 /*
439 * Attempt to prevent a mapped root from accessing a file
440 * which it shouldn't. We try to read a byte from the file
441 * if the user is root and the file is not zero length.
442 * After calling nfsspec_access, we should have the correct
443 * file size cached.
444 */
445 mtx_lock(&np->n_mtx);
446 if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
447 && VTONFS(vp)->n_size > 0) {
448 struct iovec aiov;
449 struct uio auio;
450 char buf[1];
451
452 mtx_unlock(&np->n_mtx);
453 aiov.iov_base = buf;
454 aiov.iov_len = 1;
455 auio.uio_iov = &aiov;
456 auio.uio_iovcnt = 1;
457 auio.uio_offset = 0;
458 auio.uio_resid = 1;
459 auio.uio_segflg = UIO_SYSSPACE;
460 auio.uio_rw = UIO_READ;
461 auio.uio_td = ap->a_td;
462
463 if (vp->v_type == VREG)
464 error = ncl_readrpc(vp, &auio, ap->a_cred);
465 else if (vp->v_type == VDIR) {
466 char* bp;
467 bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
468 aiov.iov_base = bp;
469 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
470 error = ncl_readdirrpc(vp, &auio, ap->a_cred,
471 ap->a_td);
472 free(bp, M_TEMP);
473 } else if (vp->v_type == VLNK)
474 error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
475 else
476 error = EACCES;
477 } else
478 mtx_unlock(&np->n_mtx);
479 return (error);
480 }
481 }
482
483
484 /*
485 * nfs open vnode op
486 * Check to see if the type is ok
487 * and that deletion is not in progress.
488 * For paged in text files, you will need to flush the page cache
489 * if consistency is lost.
490 */
491 /* ARGSUSED */
492 static int
493 nfs_open(struct vop_open_args *ap)
494 {
495 struct vnode *vp = ap->a_vp;
496 struct nfsnode *np = VTONFS(vp);
497 struct vattr vattr;
498 int error;
499 int fmode = ap->a_mode;
500 struct ucred *cred;
501
502 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
503 return (EOPNOTSUPP);
504
505 /*
506 * For NFSv4, we need to do the Open Op before cache validation,
507 * so that we conform to RFC3530 Sec. 9.3.1.
508 */
509 if (NFS_ISV4(vp)) {
510 error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
511 if (error) {
512 error = nfscl_maperr(ap->a_td, error, (uid_t)0,
513 (gid_t)0);
514 return (error);
515 }
516 }
517
518 /*
519 * Now, if this Open will be doing reading, re-validate/flush the
520 * cache, so that Close/Open coherency is maintained.
521 */
522 mtx_lock(&np->n_mtx);
523 if (np->n_flag & NMODIFIED) {
524 mtx_unlock(&np->n_mtx);
525 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
526 if (error == EINTR || error == EIO) {
527 if (NFS_ISV4(vp))
528 (void) nfsrpc_close(vp, 0, ap->a_td);
529 return (error);
530 }
531 mtx_lock(&np->n_mtx);
532 np->n_attrstamp = 0;
533 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
534 if (vp->v_type == VDIR)
535 np->n_direofoffset = 0;
536 mtx_unlock(&np->n_mtx);
537 error = VOP_GETATTR(vp, &vattr, ap->a_cred);
538 if (error) {
539 if (NFS_ISV4(vp))
540 (void) nfsrpc_close(vp, 0, ap->a_td);
541 return (error);
542 }
543 mtx_lock(&np->n_mtx);
544 np->n_mtime = vattr.va_mtime;
545 if (NFS_ISV4(vp))
546 np->n_change = vattr.va_filerev;
547 } else {
548 mtx_unlock(&np->n_mtx);
549 error = VOP_GETATTR(vp, &vattr, ap->a_cred);
550 if (error) {
551 if (NFS_ISV4(vp))
552 (void) nfsrpc_close(vp, 0, ap->a_td);
553 return (error);
554 }
555 mtx_lock(&np->n_mtx);
556 if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
557 NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
558 if (vp->v_type == VDIR)
559 np->n_direofoffset = 0;
560 mtx_unlock(&np->n_mtx);
561 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
562 if (error == EINTR || error == EIO) {
563 if (NFS_ISV4(vp))
564 (void) nfsrpc_close(vp, 0, ap->a_td);
565 return (error);
566 }
567 mtx_lock(&np->n_mtx);
568 np->n_mtime = vattr.va_mtime;
569 if (NFS_ISV4(vp))
570 np->n_change = vattr.va_filerev;
571 }
572 }
573
574 /*
575 * If the object has >= 1 O_DIRECT active opens, we disable caching.
576 */
577 if (newnfs_directio_enable && (fmode & O_DIRECT) &&
578 (vp->v_type == VREG)) {
579 if (np->n_directio_opens == 0) {
580 mtx_unlock(&np->n_mtx);
581 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
582 if (error) {
583 if (NFS_ISV4(vp))
584 (void) nfsrpc_close(vp, 0, ap->a_td);
585 return (error);
586 }
587 mtx_lock(&np->n_mtx);
588 np->n_flag |= NNONCACHE;
589 }
590 np->n_directio_opens++;
591 }
592
593 /* If opened for writing via NFSv4.1 or later, mark that for pNFS. */
594 if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0)
595 np->n_flag |= NWRITEOPENED;
596
597 /*
598 * If this is an open for writing, capture a reference to the
599 * credentials, so they can be used by ncl_putpages(). Using
600 * these write credentials is preferable to the credentials of
601 * whatever thread happens to be doing the VOP_PUTPAGES() since
602 * the write RPCs are less likely to fail with EACCES.
603 */
604 if ((fmode & FWRITE) != 0) {
605 cred = np->n_writecred;
606 np->n_writecred = crhold(ap->a_cred);
607 } else
608 cred = NULL;
609 mtx_unlock(&np->n_mtx);
610
611 if (cred != NULL)
612 crfree(cred);
613 vnode_create_vobject(vp, vattr.va_size, ap->a_td);
614 return (0);
615 }
616
617 /*
618 * nfs close vnode op
619 * What an NFS client should do upon close after writing is a debatable issue.
620 * Most NFS clients push delayed writes to the server upon close, basically for
621 * two reasons:
622 * 1 - So that any write errors may be reported back to the client process
623 * doing the close system call. By far the two most likely errors are
624 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
625 * 2 - To put a worst case upper bound on cache inconsistency between
626 * multiple clients for the file.
627 * There is also a consistency problem for Version 2 of the protocol w.r.t.
628 * not being able to tell if other clients are writing a file concurrently,
629 * since there is no way of knowing if the changed modify time in the reply
630 * is only due to the write for this client.
631 * (NFS Version 3 provides weak cache consistency data in the reply that
632 * should be sufficient to detect and handle this case.)
633 *
634 * The current code does the following:
635 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
636 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
637 * or commit them (this satisfies 1 and 2 except for the
638 * case where the server crashes after this close but
639 * before the commit RPC, which is felt to be "good
640 * enough". Changing the last argument to ncl_flush() to
641 * a 1 would force a commit operation, if it is felt a
642 * commit is necessary now.
643 * for NFS Version 4 - flush the dirty buffers and commit them, if
644 * nfscl_mustflush() says this is necessary.
645 * It is necessary if there is no write delegation held,
646 * in order to satisfy open/close coherency.
647 * If the file isn't cached on local stable storage,
648 * it may be necessary in order to detect "out of space"
649 * errors from the server, if the write delegation
650 * issued by the server doesn't allow the file to grow.
651 */
652 /* ARGSUSED */
653 static int
654 nfs_close(struct vop_close_args *ap)
655 {
656 struct vnode *vp = ap->a_vp;
657 struct nfsnode *np = VTONFS(vp);
658 struct nfsvattr nfsva;
659 struct ucred *cred;
660 int error = 0, ret, localcred = 0;
661 int fmode = ap->a_fflag;
662
663 if (NFSCL_FORCEDISM(vp->v_mount))
664 return (0);
665 /*
666 * During shutdown, a_cred isn't valid, so just use root.
667 */
668 if (ap->a_cred == NOCRED) {
669 cred = newnfs_getcred();
670 localcred = 1;
671 } else {
672 cred = ap->a_cred;
673 }
674 if (vp->v_type == VREG) {
675 /*
676 * Examine and clean dirty pages, regardless of NMODIFIED.
677 * This closes a major hole in close-to-open consistency.
678 * We want to push out all dirty pages (and buffers) on
679 * close, regardless of whether they were dirtied by
680 * mmap'ed writes or via write().
681 */
682 if (nfs_clean_pages_on_close && vp->v_object) {
683 VM_OBJECT_WLOCK(vp->v_object);
684 vm_object_page_clean(vp->v_object, 0, 0, 0);
685 VM_OBJECT_WUNLOCK(vp->v_object);
686 }
687 mtx_lock(&np->n_mtx);
688 if (np->n_flag & NMODIFIED) {
689 mtx_unlock(&np->n_mtx);
690 if (NFS_ISV3(vp)) {
691 /*
692 * Under NFSv3 we have dirty buffers to dispose of. We
693 * must flush them to the NFS server. We have the option
694 * of waiting all the way through the commit rpc or just
695 * waiting for the initial write. The default is to only
696 * wait through the initial write so the data is in the
697 * server's cache, which is roughly similar to the state
698 * a standard disk subsystem leaves the file in on close().
699 *
700 * We cannot clear the NMODIFIED bit in np->n_flag due to
701 * potential races with other processes, and certainly
702 * cannot clear it if we don't commit.
703 * These races occur when there is no longer the old
704 * traditional vnode locking implemented for Vnode Ops.
705 */
706 int cm = newnfs_commit_on_close ? 1 : 0;
707 error = ncl_flush(vp, MNT_WAIT, ap->a_td, cm, 0);
708 /* np->n_flag &= ~NMODIFIED; */
709 } else if (NFS_ISV4(vp)) {
710 if (nfscl_mustflush(vp) != 0) {
711 int cm = newnfs_commit_on_close ? 1 : 0;
712 error = ncl_flush(vp, MNT_WAIT, ap->a_td,
713 cm, 0);
714 /*
715 * as above w.r.t races when clearing
716 * NMODIFIED.
717 * np->n_flag &= ~NMODIFIED;
718 */
719 }
720 } else {
721 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
722 }
723 mtx_lock(&np->n_mtx);
724 }
725 /*
726 * Invalidate the attribute cache in all cases.
727 * An open is going to fetch fresh attrs any way, other procs
728 * on this node that have file open will be forced to do an
729 * otw attr fetch, but this is safe.
730 * --> A user found that their RPC count dropped by 20% when
731 * this was commented out and I can't see any requirement
732 * for it, so I've disabled it when negative lookups are
733 * enabled. (What does this have to do with negative lookup
734 * caching? Well nothing, except it was reported by the
735 * same user that needed negative lookup caching and I wanted
736 * there to be a way to disable it to see if it
737 * is the cause of some caching/coherency issue that might
738 * crop up.)
739 */
740 if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) {
741 np->n_attrstamp = 0;
742 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
743 }
744 if (np->n_flag & NWRITEERR) {
745 np->n_flag &= ~NWRITEERR;
746 error = np->n_error;
747 }
748 mtx_unlock(&np->n_mtx);
749 }
750
751 if (NFS_ISV4(vp)) {
752 /*
753 * Get attributes so "change" is up to date.
754 */
755 if (error == 0 && nfscl_mustflush(vp) != 0 &&
756 vp->v_type == VREG &&
757 (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) {
758 ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
759 NULL);
760 if (!ret) {
761 np->n_change = nfsva.na_filerev;
762 (void) nfscl_loadattrcache(&vp, &nfsva, NULL,
763 NULL, 0, 0);
764 }
765 }
766
767 /*
768 * and do the close.
769 */
770 ret = nfsrpc_close(vp, 0, ap->a_td);
771 if (!error && ret)
772 error = ret;
773 if (error)
774 error = nfscl_maperr(ap->a_td, error, (uid_t)0,
775 (gid_t)0);
776 }
777 if (newnfs_directio_enable)
778 KASSERT((np->n_directio_asyncwr == 0),
779 ("nfs_close: dirty unflushed (%d) directio buffers\n",
780 np->n_directio_asyncwr));
781 if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
782 mtx_lock(&np->n_mtx);
783 KASSERT((np->n_directio_opens > 0),
784 ("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
785 np->n_directio_opens--;
786 if (np->n_directio_opens == 0)
787 np->n_flag &= ~NNONCACHE;
788 mtx_unlock(&np->n_mtx);
789 }
790 if (localcred)
791 NFSFREECRED(cred);
792 return (error);
793 }
794
795 /*
796 * nfs getattr call from vfs.
797 */
798 static int
799 nfs_getattr(struct vop_getattr_args *ap)
800 {
801 struct vnode *vp = ap->a_vp;
802 struct thread *td = curthread; /* XXX */
803 struct nfsnode *np = VTONFS(vp);
804 int error = 0;
805 struct nfsvattr nfsva;
806 struct vattr *vap = ap->a_vap;
807 struct vattr vattr;
808
809 /*
810 * Update local times for special files.
811 */
812 mtx_lock(&np->n_mtx);
813 if (np->n_flag & (NACC | NUPD))
814 np->n_flag |= NCHG;
815 mtx_unlock(&np->n_mtx);
816 /*
817 * First look in the cache.
818 */
819 if (ncl_getattrcache(vp, &vattr) == 0) {
820 vap->va_type = vattr.va_type;
821 vap->va_mode = vattr.va_mode;
822 vap->va_nlink = vattr.va_nlink;
823 vap->va_uid = vattr.va_uid;
824 vap->va_gid = vattr.va_gid;
825 vap->va_fsid = vattr.va_fsid;
826 vap->va_fileid = vattr.va_fileid;
827 vap->va_size = vattr.va_size;
828 vap->va_blocksize = vattr.va_blocksize;
829 vap->va_atime = vattr.va_atime;
830 vap->va_mtime = vattr.va_mtime;
831 vap->va_ctime = vattr.va_ctime;
832 vap->va_gen = vattr.va_gen;
833 vap->va_flags = vattr.va_flags;
834 vap->va_rdev = vattr.va_rdev;
835 vap->va_bytes = vattr.va_bytes;
836 vap->va_filerev = vattr.va_filerev;
837 /*
838 * Get the local modify time for the case of a write
839 * delegation.
840 */
841 nfscl_deleggetmodtime(vp, &vap->va_mtime);
842 return (0);
843 }
844
845 if (NFS_ISV34(vp) && nfs_prime_access_cache &&
846 nfsaccess_cache_timeout > 0) {
847 NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
848 nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
849 if (ncl_getattrcache(vp, ap->a_vap) == 0) {
850 nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
851 return (0);
852 }
853 }
854 error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
855 if (!error)
856 error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
857 if (!error) {
858 /*
859 * Get the local modify time for the case of a write
860 * delegation.
861 */
862 nfscl_deleggetmodtime(vp, &vap->va_mtime);
863 } else if (NFS_ISV4(vp)) {
864 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
865 }
866 return (error);
867 }
868
869 /*
870 * nfs setattr call.
871 */
872 static int
873 nfs_setattr(struct vop_setattr_args *ap)
874 {
875 struct vnode *vp = ap->a_vp;
876 struct nfsnode *np = VTONFS(vp);
877 struct thread *td = curthread; /* XXX */
878 struct vattr *vap = ap->a_vap;
879 int error = 0;
880 u_quad_t tsize;
881
882 #ifndef nolint
883 tsize = (u_quad_t)0;
884 #endif
885
886 /*
887 * Setting of flags and marking of atimes are not supported.
888 */
889 if (vap->va_flags != VNOVAL)
890 return (EOPNOTSUPP);
891
892 /*
893 * Disallow write attempts if the filesystem is mounted read-only.
894 */
895 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
896 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
897 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
898 (vp->v_mount->mnt_flag & MNT_RDONLY))
899 return (EROFS);
900 if (vap->va_size != VNOVAL) {
901 switch (vp->v_type) {
902 case VDIR:
903 return (EISDIR);
904 case VCHR:
905 case VBLK:
906 case VSOCK:
907 case VFIFO:
908 if (vap->va_mtime.tv_sec == VNOVAL &&
909 vap->va_atime.tv_sec == VNOVAL &&
910 vap->va_mode == (mode_t)VNOVAL &&
911 vap->va_uid == (uid_t)VNOVAL &&
912 vap->va_gid == (gid_t)VNOVAL)
913 return (0);
914 vap->va_size = VNOVAL;
915 break;
916 default:
917 /*
918 * Disallow write attempts if the filesystem is
919 * mounted read-only.
920 */
921 if (vp->v_mount->mnt_flag & MNT_RDONLY)
922 return (EROFS);
923 /*
924 * We run vnode_pager_setsize() early (why?),
925 * we must set np->n_size now to avoid vinvalbuf
926 * V_SAVE races that might setsize a lower
927 * value.
928 */
929 mtx_lock(&np->n_mtx);
930 tsize = np->n_size;
931 mtx_unlock(&np->n_mtx);
932 error = ncl_meta_setsize(vp, td, vap->va_size);
933 mtx_lock(&np->n_mtx);
934 if (np->n_flag & NMODIFIED) {
935 tsize = np->n_size;
936 mtx_unlock(&np->n_mtx);
937 error = ncl_vinvalbuf(vp, vap->va_size == 0 ?
938 0 : V_SAVE, td, 1);
939 if (error != 0) {
940 vnode_pager_setsize(vp, tsize);
941 return (error);
942 }
943 /*
944 * Call nfscl_delegmodtime() to set the modify time
945 * locally, as required.
946 */
947 nfscl_delegmodtime(vp);
948 } else
949 mtx_unlock(&np->n_mtx);
950 /*
951 * np->n_size has already been set to vap->va_size
952 * in ncl_meta_setsize(). We must set it again since
953 * nfs_loadattrcache() could be called through
954 * ncl_meta_setsize() and could modify np->n_size.
955 */
956 mtx_lock(&np->n_mtx);
957 np->n_vattr.na_size = np->n_size = vap->va_size;
958 mtx_unlock(&np->n_mtx);
959 }
960 } else {
961 mtx_lock(&np->n_mtx);
962 if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
963 (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
964 mtx_unlock(&np->n_mtx);
965 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
966 if (error == EINTR || error == EIO)
967 return (error);
968 } else
969 mtx_unlock(&np->n_mtx);
970 }
971 error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
972 if (error && vap->va_size != VNOVAL) {
973 mtx_lock(&np->n_mtx);
974 np->n_size = np->n_vattr.na_size = tsize;
975 vnode_pager_setsize(vp, tsize);
976 mtx_unlock(&np->n_mtx);
977 }
978 return (error);
979 }
980
981 /*
982 * Do an nfs setattr rpc.
983 */
984 static int
985 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
986 struct thread *td)
987 {
988 struct nfsnode *np = VTONFS(vp);
989 int error, ret, attrflag, i;
990 struct nfsvattr nfsva;
991
992 if (NFS_ISV34(vp)) {
993 mtx_lock(&np->n_mtx);
994 for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
995 np->n_accesscache[i].stamp = 0;
996 np->n_flag |= NDELEGMOD;
997 mtx_unlock(&np->n_mtx);
998 KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
999 }
1000 error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
1001 NULL);
1002 if (attrflag) {
1003 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1004 if (ret && !error)
1005 error = ret;
1006 }
1007 if (error && NFS_ISV4(vp))
1008 error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
1009 return (error);
1010 }
1011
1012 /*
1013 * nfs lookup call, one step at a time...
1014 * First look in cache
1015 * If not found, unlock the directory nfsnode and do the rpc
1016 */
1017 static int
1018 nfs_lookup(struct vop_lookup_args *ap)
1019 {
1020 struct componentname *cnp = ap->a_cnp;
1021 struct vnode *dvp = ap->a_dvp;
1022 struct vnode **vpp = ap->a_vpp;
1023 struct mount *mp = dvp->v_mount;
1024 int flags = cnp->cn_flags;
1025 struct vnode *newvp;
1026 struct nfsmount *nmp;
1027 struct nfsnode *np, *newnp;
1028 int error = 0, attrflag, dattrflag, ltype, ncticks;
1029 struct thread *td = cnp->cn_thread;
1030 struct nfsfh *nfhp;
1031 struct nfsvattr dnfsva, nfsva;
1032 struct vattr vattr;
1033 struct timespec nctime;
1034
1035 *vpp = NULLVP;
1036 if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
1037 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
1038 return (EROFS);
1039 if (dvp->v_type != VDIR)
1040 return (ENOTDIR);
1041 nmp = VFSTONFS(mp);
1042 np = VTONFS(dvp);
1043
1044 /* For NFSv4, wait until any remove is done. */
1045 mtx_lock(&np->n_mtx);
1046 while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1047 np->n_flag |= NREMOVEWANT;
1048 (void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1049 }
1050 mtx_unlock(&np->n_mtx);
1051
1052 error = vn_dir_check_exec(dvp, cnp);
1053 if (error != 0)
1054 return (error);
1055 error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
1056 if (error > 0 && error != ENOENT)
1057 return (error);
1058 if (error == -1) {
1059 /*
1060 * Lookups of "." are special and always return the
1061 * current directory. cache_lookup() already handles
1062 * associated locking bookkeeping, etc.
1063 */
1064 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
1065 /* XXX: Is this really correct? */
1066 if (cnp->cn_nameiop != LOOKUP &&
1067 (flags & ISLASTCN))
1068 cnp->cn_flags |= SAVENAME;
1069 return (0);
1070 }
1071
1072 /*
1073 * We only accept a positive hit in the cache if the
1074 * change time of the file matches our cached copy.
1075 * Otherwise, we discard the cache entry and fallback
1076 * to doing a lookup RPC. We also only trust cache
1077 * entries for less than nm_nametimeo seconds.
1078 *
1079 * To better handle stale file handles and attributes,
1080 * clear the attribute cache of this node if it is a
1081 * leaf component, part of an open() call, and not
1082 * locally modified before fetching the attributes.
1083 * This should allow stale file handles to be detected
1084 * here where we can fall back to a LOOKUP RPC to
1085 * recover rather than having nfs_open() detect the
1086 * stale file handle and failing open(2) with ESTALE.
1087 */
1088 newvp = *vpp;
1089 newnp = VTONFS(newvp);
1090 if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
1091 (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1092 !(newnp->n_flag & NMODIFIED)) {
1093 mtx_lock(&newnp->n_mtx);
1094 newnp->n_attrstamp = 0;
1095 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1096 mtx_unlock(&newnp->n_mtx);
1097 }
1098 if (nfscl_nodeleg(newvp, 0) == 0 ||
1099 ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
1100 VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
1101 timespeccmp(&vattr.va_ctime, &nctime, ==))) {
1102 NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
1103 if (cnp->cn_nameiop != LOOKUP &&
1104 (flags & ISLASTCN))
1105 cnp->cn_flags |= SAVENAME;
1106 return (0);
1107 }
1108 cache_purge(newvp);
1109 if (dvp != newvp)
1110 vput(newvp);
1111 else
1112 vrele(newvp);
1113 *vpp = NULLVP;
1114 } else if (error == ENOENT) {
1115 if (dvp->v_iflag & VI_DOOMED)
1116 return (ENOENT);
1117 /*
1118 * We only accept a negative hit in the cache if the
1119 * modification time of the parent directory matches
1120 * the cached copy in the name cache entry.
1121 * Otherwise, we discard all of the negative cache
1122 * entries for this directory. We also only trust
1123 * negative cache entries for up to nm_negnametimeo
1124 * seconds.
1125 */
1126 if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
1127 VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1128 timespeccmp(&vattr.va_mtime, &nctime, ==)) {
1129 NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
1130 return (ENOENT);
1131 }
1132 cache_purge_negative(dvp);
1133 }
1134
1135 error = 0;
1136 newvp = NULLVP;
1137 NFSINCRGLOBAL(nfsstatsv1.lookupcache_misses);
1138 error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1139 cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1140 NULL);
1141 if (dattrflag)
1142 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1143 if (error) {
1144 if (newvp != NULLVP) {
1145 vput(newvp);
1146 *vpp = NULLVP;
1147 }
1148
1149 if (error != ENOENT) {
1150 if (NFS_ISV4(dvp))
1151 error = nfscl_maperr(td, error, (uid_t)0,
1152 (gid_t)0);
1153 return (error);
1154 }
1155
1156 /* The requested file was not found. */
1157 if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1158 (flags & ISLASTCN)) {
1159 /*
1160 * XXX: UFS does a full VOP_ACCESS(dvp,
1161 * VWRITE) here instead of just checking
1162 * MNT_RDONLY.
1163 */
1164 if (mp->mnt_flag & MNT_RDONLY)
1165 return (EROFS);
1166 cnp->cn_flags |= SAVENAME;
1167 return (EJUSTRETURN);
1168 }
1169
1170 if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) {
1171 /*
1172 * Cache the modification time of the parent
1173 * directory from the post-op attributes in
1174 * the name cache entry. The negative cache
1175 * entry will be ignored once the directory
1176 * has changed. Don't bother adding the entry
1177 * if the directory has already changed.
1178 */
1179 mtx_lock(&np->n_mtx);
1180 if (timespeccmp(&np->n_vattr.na_mtime,
1181 &dnfsva.na_mtime, ==)) {
1182 mtx_unlock(&np->n_mtx);
1183 cache_enter_time(dvp, NULL, cnp,
1184 &dnfsva.na_mtime, NULL);
1185 } else
1186 mtx_unlock(&np->n_mtx);
1187 }
1188 return (ENOENT);
1189 }
1190
1191 /*
1192 * Handle RENAME case...
1193 */
1194 if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1195 if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1196 FREE((caddr_t)nfhp, M_NFSFH);
1197 return (EISDIR);
1198 }
1199 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1200 LK_EXCLUSIVE);
1201 if (error)
1202 return (error);
1203 newvp = NFSTOV(np);
1204 if (attrflag)
1205 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1206 0, 1);
1207 *vpp = newvp;
1208 cnp->cn_flags |= SAVENAME;
1209 return (0);
1210 }
1211
1212 if (flags & ISDOTDOT) {
1213 ltype = NFSVOPISLOCKED(dvp);
1214 error = vfs_busy(mp, MBF_NOWAIT);
1215 if (error != 0) {
1216 vfs_ref(mp);
1217 NFSVOPUNLOCK(dvp, 0);
1218 error = vfs_busy(mp, 0);
1219 NFSVOPLOCK(dvp, ltype | LK_RETRY);
1220 vfs_rel(mp);
1221 if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1222 vfs_unbusy(mp);
1223 error = ENOENT;
1224 }
1225 if (error != 0)
1226 return (error);
1227 }
1228 NFSVOPUNLOCK(dvp, 0);
1229 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1230 cnp->cn_lkflags);
1231 if (error == 0)
1232 newvp = NFSTOV(np);
1233 vfs_unbusy(mp);
1234 if (newvp != dvp)
1235 NFSVOPLOCK(dvp, ltype | LK_RETRY);
1236 if (dvp->v_iflag & VI_DOOMED) {
1237 if (error == 0) {
1238 if (newvp == dvp)
1239 vrele(newvp);
1240 else
1241 vput(newvp);
1242 }
1243 error = ENOENT;
1244 }
1245 if (error != 0)
1246 return (error);
1247 if (attrflag)
1248 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1249 0, 1);
1250 } else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1251 FREE((caddr_t)nfhp, M_NFSFH);
1252 VREF(dvp);
1253 newvp = dvp;
1254 if (attrflag)
1255 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1256 0, 1);
1257 } else {
1258 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1259 cnp->cn_lkflags);
1260 if (error)
1261 return (error);
1262 newvp = NFSTOV(np);
1263 if (attrflag)
1264 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1265 0, 1);
1266 else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1267 !(np->n_flag & NMODIFIED)) {
1268 /*
1269 * Flush the attribute cache when opening a
1270 * leaf node to ensure that fresh attributes
1271 * are fetched in nfs_open() since we did not
1272 * fetch attributes from the LOOKUP reply.
1273 */
1274 mtx_lock(&np->n_mtx);
1275 np->n_attrstamp = 0;
1276 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1277 mtx_unlock(&np->n_mtx);
1278 }
1279 }
1280 if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1281 cnp->cn_flags |= SAVENAME;
1282 if ((cnp->cn_flags & MAKEENTRY) &&
1283 (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
1284 attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
1285 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1286 newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime);
1287 *vpp = newvp;
1288 return (0);
1289 }
1290
1291 /*
1292 * nfs read call.
1293 * Just call ncl_bioread() to do the work.
1294 */
1295 static int
1296 nfs_read(struct vop_read_args *ap)
1297 {
1298 struct vnode *vp = ap->a_vp;
1299
1300 switch (vp->v_type) {
1301 case VREG:
1302 return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1303 case VDIR:
1304 return (EISDIR);
1305 default:
1306 return (EOPNOTSUPP);
1307 }
1308 }
1309
1310 /*
1311 * nfs readlink call
1312 */
1313 static int
1314 nfs_readlink(struct vop_readlink_args *ap)
1315 {
1316 struct vnode *vp = ap->a_vp;
1317
1318 if (vp->v_type != VLNK)
1319 return (EINVAL);
1320 return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1321 }
1322
1323 /*
1324 * Do a readlink rpc.
1325 * Called by ncl_doio() from below the buffer cache.
1326 */
1327 int
1328 ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1329 {
1330 int error, ret, attrflag;
1331 struct nfsvattr nfsva;
1332
1333 error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1334 &attrflag, NULL);
1335 if (attrflag) {
1336 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1337 if (ret && !error)
1338 error = ret;
1339 }
1340 if (error && NFS_ISV4(vp))
1341 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1342 return (error);
1343 }
1344
1345 /*
1346 * nfs read rpc call
1347 * Ditto above
1348 */
1349 int
1350 ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1351 {
1352 int error, ret, attrflag;
1353 struct nfsvattr nfsva;
1354 struct nfsmount *nmp;
1355
1356 nmp = VFSTONFS(vnode_mount(vp));
1357 error = EIO;
1358 attrflag = 0;
1359 if (NFSHASPNFS(nmp))
1360 error = nfscl_doiods(vp, uiop, NULL, NULL,
1361 NFSV4OPEN_ACCESSREAD, 0, cred, uiop->uio_td);
1362 NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error);
1363 if (error != 0)
1364 error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva,
1365 &attrflag, NULL);
1366 if (attrflag) {
1367 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1368 if (ret && !error)
1369 error = ret;
1370 }
1371 if (error && NFS_ISV4(vp))
1372 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1373 return (error);
1374 }
1375
1376 /*
1377 * nfs write call
1378 */
1379 int
1380 ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1381 int *iomode, int *must_commit, int called_from_strategy)
1382 {
1383 struct nfsvattr nfsva;
1384 int error, attrflag, ret;
1385 struct nfsmount *nmp;
1386
1387 nmp = VFSTONFS(vnode_mount(vp));
1388 error = EIO;
1389 attrflag = 0;
1390 if (NFSHASPNFS(nmp))
1391 error = nfscl_doiods(vp, uiop, iomode, must_commit,
1392 NFSV4OPEN_ACCESSWRITE, 0, cred, uiop->uio_td);
1393 NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error);
1394 if (error != 0)
1395 error = nfsrpc_write(vp, uiop, iomode, must_commit, cred,
1396 uiop->uio_td, &nfsva, &attrflag, NULL,
1397 called_from_strategy);
1398 if (attrflag) {
1399 if (VTONFS(vp)->n_flag & ND_NFSV4)
1400 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1401 1);
1402 else
1403 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1404 1);
1405 if (ret && !error)
1406 error = ret;
1407 }
1408 if (DOINGASYNC(vp))
1409 *iomode = NFSWRITE_FILESYNC;
1410 if (error && NFS_ISV4(vp))
1411 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1412 return (error);
1413 }
1414
1415 /*
1416 * nfs mknod rpc
1417 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1418 * mode set to specify the file type and the size field for rdev.
1419 */
1420 static int
1421 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1422 struct vattr *vap)
1423 {
1424 struct nfsvattr nfsva, dnfsva;
1425 struct vnode *newvp = NULL;
1426 struct nfsnode *np = NULL, *dnp;
1427 struct nfsfh *nfhp;
1428 struct vattr vattr;
1429 int error = 0, attrflag, dattrflag;
1430 u_int32_t rdev;
1431
1432 if (vap->va_type == VCHR || vap->va_type == VBLK)
1433 rdev = vap->va_rdev;
1434 else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1435 rdev = 0xffffffff;
1436 else
1437 return (EOPNOTSUPP);
1438 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1439 return (error);
1440 error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1441 rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1442 &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1443 if (!error) {
1444 if (!nfhp)
1445 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1446 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1447 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1448 NULL);
1449 if (nfhp)
1450 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1451 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1452 }
1453 if (dattrflag)
1454 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1455 if (!error) {
1456 newvp = NFSTOV(np);
1457 if (attrflag != 0) {
1458 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1459 0, 1);
1460 if (error != 0)
1461 vput(newvp);
1462 }
1463 }
1464 if (!error) {
1465 *vpp = newvp;
1466 } else if (NFS_ISV4(dvp)) {
1467 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1468 vap->va_gid);
1469 }
1470 dnp = VTONFS(dvp);
1471 mtx_lock(&dnp->n_mtx);
1472 dnp->n_flag |= NMODIFIED;
1473 if (!dattrflag) {
1474 dnp->n_attrstamp = 0;
1475 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1476 }
1477 mtx_unlock(&dnp->n_mtx);
1478 return (error);
1479 }
1480
1481 /*
1482 * nfs mknod vop
1483 * just call nfs_mknodrpc() to do the work.
1484 */
1485 /* ARGSUSED */
1486 static int
1487 nfs_mknod(struct vop_mknod_args *ap)
1488 {
1489 return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1490 }
1491
1492 static struct mtx nfs_cverf_mtx;
1493 MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1494 MTX_DEF);
1495
1496 static nfsquad_t
1497 nfs_get_cverf(void)
1498 {
1499 static nfsquad_t cverf;
1500 nfsquad_t ret;
1501 static int cverf_initialized = 0;
1502
1503 mtx_lock(&nfs_cverf_mtx);
1504 if (cverf_initialized == 0) {
1505 cverf.lval[0] = arc4random();
1506 cverf.lval[1] = arc4random();
1507 cverf_initialized = 1;
1508 } else
1509 cverf.qval++;
1510 ret = cverf;
1511 mtx_unlock(&nfs_cverf_mtx);
1512
1513 return (ret);
1514 }
1515
1516 /*
1517 * nfs file create call
1518 */
1519 static int
1520 nfs_create(struct vop_create_args *ap)
1521 {
1522 struct vnode *dvp = ap->a_dvp;
1523 struct vattr *vap = ap->a_vap;
1524 struct componentname *cnp = ap->a_cnp;
1525 struct nfsnode *np = NULL, *dnp;
1526 struct vnode *newvp = NULL;
1527 struct nfsmount *nmp;
1528 struct nfsvattr dnfsva, nfsva;
1529 struct nfsfh *nfhp;
1530 nfsquad_t cverf;
1531 int error = 0, attrflag, dattrflag, fmode = 0;
1532 struct vattr vattr;
1533
1534 /*
1535 * Oops, not for me..
1536 */
1537 if (vap->va_type == VSOCK)
1538 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1539
1540 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1541 return (error);
1542 if (vap->va_vaflags & VA_EXCLUSIVE)
1543 fmode |= O_EXCL;
1544 dnp = VTONFS(dvp);
1545 nmp = VFSTONFS(vnode_mount(dvp));
1546 again:
1547 /* For NFSv4, wait until any remove is done. */
1548 mtx_lock(&dnp->n_mtx);
1549 while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1550 dnp->n_flag |= NREMOVEWANT;
1551 (void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1552 }
1553 mtx_unlock(&dnp->n_mtx);
1554
1555 cverf = nfs_get_cverf();
1556 error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1557 vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1558 &nfhp, &attrflag, &dattrflag, NULL);
1559 if (!error) {
1560 if (nfhp == NULL)
1561 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1562 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1563 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1564 NULL);
1565 if (nfhp != NULL)
1566 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1567 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1568 }
1569 if (dattrflag)
1570 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1571 if (!error) {
1572 newvp = NFSTOV(np);
1573 if (attrflag == 0)
1574 error = nfsrpc_getattr(newvp, cnp->cn_cred,
1575 cnp->cn_thread, &nfsva, NULL);
1576 if (error == 0)
1577 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1578 0, 1);
1579 }
1580 if (error) {
1581 if (newvp != NULL) {
1582 vput(newvp);
1583 newvp = NULL;
1584 }
1585 if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1586 error == NFSERR_NOTSUPP) {
1587 fmode &= ~O_EXCL;
1588 goto again;
1589 }
1590 } else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1591 if (nfscl_checksattr(vap, &nfsva)) {
1592 error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1593 cnp->cn_thread, &nfsva, &attrflag, NULL);
1594 if (error && (vap->va_uid != (uid_t)VNOVAL ||
1595 vap->va_gid != (gid_t)VNOVAL)) {
1596 /* try again without setting uid/gid */
1597 vap->va_uid = (uid_t)VNOVAL;
1598 vap->va_gid = (uid_t)VNOVAL;
1599 error = nfsrpc_setattr(newvp, vap, NULL,
1600 cnp->cn_cred, cnp->cn_thread, &nfsva,
1601 &attrflag, NULL);
1602 }
1603 if (attrflag)
1604 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1605 NULL, 0, 1);
1606 if (error != 0)
1607 vput(newvp);
1608 }
1609 }
1610 if (!error) {
1611 if ((cnp->cn_flags & MAKEENTRY) && attrflag)
1612 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1613 NULL);
1614 *ap->a_vpp = newvp;
1615 } else if (NFS_ISV4(dvp)) {
1616 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1617 vap->va_gid);
1618 }
1619 mtx_lock(&dnp->n_mtx);
1620 dnp->n_flag |= NMODIFIED;
1621 if (!dattrflag) {
1622 dnp->n_attrstamp = 0;
1623 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1624 }
1625 mtx_unlock(&dnp->n_mtx);
1626 return (error);
1627 }
1628
1629 /*
1630 * nfs file remove call
1631 * To try and make nfs semantics closer to ufs semantics, a file that has
1632 * other processes using the vnode is renamed instead of removed and then
1633 * removed later on the last close.
1634 * - If v_usecount > 1
1635 * If a rename is not already in the works
1636 * call nfs_sillyrename() to set it up
1637 * else
1638 * do the remove rpc
1639 */
1640 static int
1641 nfs_remove(struct vop_remove_args *ap)
1642 {
1643 struct vnode *vp = ap->a_vp;
1644 struct vnode *dvp = ap->a_dvp;
1645 struct componentname *cnp = ap->a_cnp;
1646 struct nfsnode *np = VTONFS(vp);
1647 int error = 0;
1648 struct vattr vattr;
1649
1650 KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
1651 KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
1652 if (vp->v_type == VDIR)
1653 error = EPERM;
1654 else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1655 VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1656 vattr.va_nlink > 1)) {
1657 /*
1658 * Purge the name cache so that the chance of a lookup for
1659 * the name succeeding while the remove is in progress is
1660 * minimized. Without node locking it can still happen, such
1661 * that an I/O op returns ESTALE, but since you get this if
1662 * another host removes the file..
1663 */
1664 cache_purge(vp);
1665 /*
1666 * throw away biocache buffers, mainly to avoid
1667 * unnecessary delayed writes later.
1668 */
1669 error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1670 if (error != EINTR && error != EIO)
1671 /* Do the rpc */
1672 error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1673 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1674 /*
1675 * Kludge City: If the first reply to the remove rpc is lost..
1676 * the reply to the retransmitted request will be ENOENT
1677 * since the file was in fact removed
1678 * Therefore, we cheat and return success.
1679 */
1680 if (error == ENOENT)
1681 error = 0;
1682 } else if (!np->n_sillyrename)
1683 error = nfs_sillyrename(dvp, vp, cnp);
1684 mtx_lock(&np->n_mtx);
1685 np->n_attrstamp = 0;
1686 mtx_unlock(&np->n_mtx);
1687 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1688 return (error);
1689 }
1690
1691 /*
1692 * nfs file remove rpc called from nfs_inactive
1693 */
1694 int
1695 ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1696 {
1697 /*
1698 * Make sure that the directory vnode is still valid.
1699 * XXX we should lock sp->s_dvp here.
1700 */
1701 if (sp->s_dvp->v_type == VBAD)
1702 return (0);
1703 return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1704 sp->s_cred, NULL));
1705 }
1706
1707 /*
1708 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1709 */
1710 static int
1711 nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1712 int namelen, struct ucred *cred, struct thread *td)
1713 {
1714 struct nfsvattr dnfsva;
1715 struct nfsnode *dnp = VTONFS(dvp);
1716 int error = 0, dattrflag;
1717
1718 mtx_lock(&dnp->n_mtx);
1719 dnp->n_flag |= NREMOVEINPROG;
1720 mtx_unlock(&dnp->n_mtx);
1721 error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1722 &dattrflag, NULL);
1723 mtx_lock(&dnp->n_mtx);
1724 if ((dnp->n_flag & NREMOVEWANT)) {
1725 dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1726 mtx_unlock(&dnp->n_mtx);
1727 wakeup((caddr_t)dnp);
1728 } else {
1729 dnp->n_flag &= ~NREMOVEINPROG;
1730 mtx_unlock(&dnp->n_mtx);
1731 }
1732 if (dattrflag)
1733 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1734 mtx_lock(&dnp->n_mtx);
1735 dnp->n_flag |= NMODIFIED;
1736 if (!dattrflag) {
1737 dnp->n_attrstamp = 0;
1738 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1739 }
1740 mtx_unlock(&dnp->n_mtx);
1741 if (error && NFS_ISV4(dvp))
1742 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1743 return (error);
1744 }
1745
1746 /*
1747 * nfs file rename call
1748 */
1749 static int
1750 nfs_rename(struct vop_rename_args *ap)
1751 {
1752 struct vnode *fvp = ap->a_fvp;
1753 struct vnode *tvp = ap->a_tvp;
1754 struct vnode *fdvp = ap->a_fdvp;
1755 struct vnode *tdvp = ap->a_tdvp;
1756 struct componentname *tcnp = ap->a_tcnp;
1757 struct componentname *fcnp = ap->a_fcnp;
1758 struct nfsnode *fnp = VTONFS(ap->a_fvp);
1759 struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1760 struct nfsv4node *newv4 = NULL;
1761 int error;
1762
1763 KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
1764 (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
1765 /* Check for cross-device rename */
1766 if ((fvp->v_mount != tdvp->v_mount) ||
1767 (tvp && (fvp->v_mount != tvp->v_mount))) {
1768 error = EXDEV;
1769 goto out;
1770 }
1771
1772 if (fvp == tvp) {
1773 printf("nfs_rename: fvp == tvp (can't happen)\n");
1774 error = 0;
1775 goto out;
1776 }
1777 if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0)
1778 goto out;
1779
1780 /*
1781 * We have to flush B_DELWRI data prior to renaming
1782 * the file. If we don't, the delayed-write buffers
1783 * can be flushed out later after the file has gone stale
1784 * under NFSV3. NFSV2 does not have this problem because
1785 * ( as far as I can tell ) it flushes dirty buffers more
1786 * often.
1787 *
1788 * Skip the rename operation if the fsync fails, this can happen
1789 * due to the server's volume being full, when we pushed out data
1790 * that was written back to our cache earlier. Not checking for
1791 * this condition can result in potential (silent) data loss.
1792 */
1793 error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1794 NFSVOPUNLOCK(fvp, 0);
1795 if (!error && tvp)
1796 error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1797 if (error)
1798 goto out;
1799
1800 /*
1801 * If the tvp exists and is in use, sillyrename it before doing the
1802 * rename of the new file over it.
1803 * XXX Can't sillyrename a directory.
1804 */
1805 if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1806 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1807 vput(tvp);
1808 tvp = NULL;
1809 }
1810
1811 error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1812 tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1813 tcnp->cn_thread);
1814
1815 if (error == 0 && NFS_ISV4(tdvp)) {
1816 /*
1817 * For NFSv4, check to see if it is the same name and
1818 * replace the name, if it is different.
1819 */
1820 MALLOC(newv4, struct nfsv4node *,
1821 sizeof (struct nfsv4node) +
1822 tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1823 M_NFSV4NODE, M_WAITOK);
1824 mtx_lock(&tdnp->n_mtx);
1825 mtx_lock(&fnp->n_mtx);
1826 if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1827 (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1828 NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1829 tcnp->cn_namelen) ||
1830 tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1831 NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1832 tdnp->n_fhp->nfh_len))) {
1833 #ifdef notdef
1834 { char nnn[100]; int nnnl;
1835 nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1836 bcopy(tcnp->cn_nameptr, nnn, nnnl);
1837 nnn[nnnl] = '\0';
1838 printf("ren replace=%s\n",nnn);
1839 }
1840 #endif
1841 FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1842 fnp->n_v4 = newv4;
1843 newv4 = NULL;
1844 fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1845 fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1846 NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1847 tdnp->n_fhp->nfh_len);
1848 NFSBCOPY(tcnp->cn_nameptr,
1849 NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1850 }
1851 mtx_unlock(&tdnp->n_mtx);
1852 mtx_unlock(&fnp->n_mtx);
1853 if (newv4 != NULL)
1854 FREE((caddr_t)newv4, M_NFSV4NODE);
1855 }
1856
1857 if (fvp->v_type == VDIR) {
1858 if (tvp != NULL && tvp->v_type == VDIR)
1859 cache_purge(tdvp);
1860 cache_purge(fdvp);
1861 }
1862
1863 out:
1864 if (tdvp == tvp)
1865 vrele(tdvp);
1866 else
1867 vput(tdvp);
1868 if (tvp)
1869 vput(tvp);
1870 vrele(fdvp);
1871 vrele(fvp);
1872 /*
1873 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1874 */
1875 if (error == ENOENT)
1876 error = 0;
1877 return (error);
1878 }
1879
1880 /*
1881 * nfs file rename rpc called from nfs_remove() above
1882 */
1883 static int
1884 nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1885 struct sillyrename *sp)
1886 {
1887
1888 return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1889 sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1890 scnp->cn_thread));
1891 }
1892
1893 /*
1894 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1895 */
1896 static int
1897 nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1898 int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1899 int tnamelen, struct ucred *cred, struct thread *td)
1900 {
1901 struct nfsvattr fnfsva, tnfsva;
1902 struct nfsnode *fdnp = VTONFS(fdvp);
1903 struct nfsnode *tdnp = VTONFS(tdvp);
1904 int error = 0, fattrflag, tattrflag;
1905
1906 error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1907 tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1908 &tattrflag, NULL, NULL);
1909 mtx_lock(&fdnp->n_mtx);
1910 fdnp->n_flag |= NMODIFIED;
1911 if (fattrflag != 0) {
1912 mtx_unlock(&fdnp->n_mtx);
1913 (void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1914 } else {
1915 fdnp->n_attrstamp = 0;
1916 mtx_unlock(&fdnp->n_mtx);
1917 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
1918 }
1919 mtx_lock(&tdnp->n_mtx);
1920 tdnp->n_flag |= NMODIFIED;
1921 if (tattrflag != 0) {
1922 mtx_unlock(&tdnp->n_mtx);
1923 (void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1924 } else {
1925 tdnp->n_attrstamp = 0;
1926 mtx_unlock(&tdnp->n_mtx);
1927 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1928 }
1929 if (error && NFS_ISV4(fdvp))
1930 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1931 return (error);
1932 }
1933
1934 /*
1935 * nfs hard link create call
1936 */
1937 static int
1938 nfs_link(struct vop_link_args *ap)
1939 {
1940 struct vnode *vp = ap->a_vp;
1941 struct vnode *tdvp = ap->a_tdvp;
1942 struct componentname *cnp = ap->a_cnp;
1943 struct nfsnode *np, *tdnp;
1944 struct nfsvattr nfsva, dnfsva;
1945 int error = 0, attrflag, dattrflag;
1946
1947 /*
1948 * Push all writes to the server, so that the attribute cache
1949 * doesn't get "out of sync" with the server.
1950 * XXX There should be a better way!
1951 */
1952 VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1953
1954 error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1955 cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1956 &dattrflag, NULL);
1957 tdnp = VTONFS(tdvp);
1958 mtx_lock(&tdnp->n_mtx);
1959 tdnp->n_flag |= NMODIFIED;
1960 if (dattrflag != 0) {
1961 mtx_unlock(&tdnp->n_mtx);
1962 (void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1963 } else {
1964 tdnp->n_attrstamp = 0;
1965 mtx_unlock(&tdnp->n_mtx);
1966 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1967 }
1968 if (attrflag)
1969 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1970 else {
1971 np = VTONFS(vp);
1972 mtx_lock(&np->n_mtx);
1973 np->n_attrstamp = 0;
1974 mtx_unlock(&np->n_mtx);
1975 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1976 }
1977 /*
1978 * If negative lookup caching is enabled, I might as well
1979 * add an entry for this node. Not necessary for correctness,
1980 * but if negative caching is enabled, then the system
1981 * must care about lookup caching hit rate, so...
1982 */
1983 if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
1984 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
1985 cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL);
1986 }
1987 if (error && NFS_ISV4(vp))
1988 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
1989 (gid_t)0);
1990 return (error);
1991 }
1992
1993 /*
1994 * nfs symbolic link create call
1995 */
1996 static int
1997 nfs_symlink(struct vop_symlink_args *ap)
1998 {
1999 struct vnode *dvp = ap->a_dvp;
2000 struct vattr *vap = ap->a_vap;
2001 struct componentname *cnp = ap->a_cnp;
2002 struct nfsvattr nfsva, dnfsva;
2003 struct nfsfh *nfhp;
2004 struct nfsnode *np = NULL, *dnp;
2005 struct vnode *newvp = NULL;
2006 int error = 0, attrflag, dattrflag, ret;
2007
2008 vap->va_type = VLNK;
2009 error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2010 ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
2011 &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
2012 if (nfhp) {
2013 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2014 &np, NULL, LK_EXCLUSIVE);
2015 if (!ret)
2016 newvp = NFSTOV(np);
2017 else if (!error)
2018 error = ret;
2019 }
2020 if (newvp != NULL) {
2021 if (attrflag)
2022 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2023 0, 1);
2024 } else if (!error) {
2025 /*
2026 * If we do not have an error and we could not extract the
2027 * newvp from the response due to the request being NFSv2, we
2028 * have to do a lookup in order to obtain a newvp to return.
2029 */
2030 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2031 cnp->cn_cred, cnp->cn_thread, &np);
2032 if (!error)
2033 newvp = NFSTOV(np);
2034 }
2035 if (error) {
2036 if (newvp)
2037 vput(newvp);
2038 if (NFS_ISV4(dvp))
2039 error = nfscl_maperr(cnp->cn_thread, error,
2040 vap->va_uid, vap->va_gid);
2041 } else {
2042 *ap->a_vpp = newvp;
2043 }
2044
2045 dnp = VTONFS(dvp);
2046 mtx_lock(&dnp->n_mtx);
2047 dnp->n_flag |= NMODIFIED;
2048 if (dattrflag != 0) {
2049 mtx_unlock(&dnp->n_mtx);
2050 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2051 } else {
2052 dnp->n_attrstamp = 0;
2053 mtx_unlock(&dnp->n_mtx);
2054 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2055 }
2056 /*
2057 * If negative lookup caching is enabled, I might as well
2058 * add an entry for this node. Not necessary for correctness,
2059 * but if negative caching is enabled, then the system
2060 * must care about lookup caching hit rate, so...
2061 */
2062 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2063 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2064 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL);
2065 }
2066 return (error);
2067 }
2068
2069 /*
2070 * nfs make dir call
2071 */
2072 static int
2073 nfs_mkdir(struct vop_mkdir_args *ap)
2074 {
2075 struct vnode *dvp = ap->a_dvp;
2076 struct vattr *vap = ap->a_vap;
2077 struct componentname *cnp = ap->a_cnp;
2078 struct nfsnode *np = NULL, *dnp;
2079 struct vnode *newvp = NULL;
2080 struct vattr vattr;
2081 struct nfsfh *nfhp;
2082 struct nfsvattr nfsva, dnfsva;
2083 int error = 0, attrflag, dattrflag, ret;
2084
2085 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
2086 return (error);
2087 vap->va_type = VDIR;
2088 error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2089 vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
2090 &attrflag, &dattrflag, NULL);
2091 dnp = VTONFS(dvp);
2092 mtx_lock(&dnp->n_mtx);
2093 dnp->n_flag |= NMODIFIED;
2094 if (dattrflag != 0) {
2095 mtx_unlock(&dnp->n_mtx);
2096 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2097 } else {
2098 dnp->n_attrstamp = 0;
2099 mtx_unlock(&dnp->n_mtx);
2100 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2101 }
2102 if (nfhp) {
2103 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2104 &np, NULL, LK_EXCLUSIVE);
2105 if (!ret) {
2106 newvp = NFSTOV(np);
2107 if (attrflag)
2108 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2109 NULL, 0, 1);
2110 } else if (!error)
2111 error = ret;
2112 }
2113 if (!error && newvp == NULL) {
2114 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2115 cnp->cn_cred, cnp->cn_thread, &np);
2116 if (!error) {
2117 newvp = NFSTOV(np);
2118 if (newvp->v_type != VDIR)
2119 error = EEXIST;
2120 }
2121 }
2122 if (error) {
2123 if (newvp)
2124 vput(newvp);
2125 if (NFS_ISV4(dvp))
2126 error = nfscl_maperr(cnp->cn_thread, error,
2127 vap->va_uid, vap->va_gid);
2128 } else {
2129 /*
2130 * If negative lookup caching is enabled, I might as well
2131 * add an entry for this node. Not necessary for correctness,
2132 * but if negative caching is enabled, then the system
2133 * must care about lookup caching hit rate, so...
2134 */
2135 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2136 (cnp->cn_flags & MAKEENTRY) &&
2137 attrflag != 0 && dattrflag != 0)
2138 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
2139 &dnfsva.na_ctime);
2140 *ap->a_vpp = newvp;
2141 }
2142 return (error);
2143 }
2144
2145 /*
2146 * nfs remove directory call
2147 */
2148 static int
2149 nfs_rmdir(struct vop_rmdir_args *ap)
2150 {
2151 struct vnode *vp = ap->a_vp;
2152 struct vnode *dvp = ap->a_dvp;
2153 struct componentname *cnp = ap->a_cnp;
2154 struct nfsnode *dnp;
2155 struct nfsvattr dnfsva;
2156 int error, dattrflag;
2157
2158 if (dvp == vp)
2159 return (EINVAL);
2160 error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2161 cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2162 dnp = VTONFS(dvp);
2163 mtx_lock(&dnp->n_mtx);
2164 dnp->n_flag |= NMODIFIED;
2165 if (dattrflag != 0) {
2166 mtx_unlock(&dnp->n_mtx);
2167 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2168 } else {
2169 dnp->n_attrstamp = 0;
2170 mtx_unlock(&dnp->n_mtx);
2171 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2172 }
2173
2174 cache_purge(dvp);
2175 cache_purge(vp);
2176 if (error && NFS_ISV4(dvp))
2177 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2178 (gid_t)0);
2179 /*
2180 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2181 */
2182 if (error == ENOENT)
2183 error = 0;
2184 return (error);
2185 }
2186
2187 /*
2188 * nfs readdir call
2189 */
2190 static int
2191 nfs_readdir(struct vop_readdir_args *ap)
2192 {
2193 struct vnode *vp = ap->a_vp;
2194 struct nfsnode *np = VTONFS(vp);
2195 struct uio *uio = ap->a_uio;
2196 ssize_t tresid, left;
2197 int error = 0;
2198 struct vattr vattr;
2199
2200 if (ap->a_eofflag != NULL)
2201 *ap->a_eofflag = 0;
2202 if (vp->v_type != VDIR)
2203 return(EPERM);
2204
2205 /*
2206 * First, check for hit on the EOF offset cache
2207 */
2208 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2209 (np->n_flag & NMODIFIED) == 0) {
2210 if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2211 mtx_lock(&np->n_mtx);
2212 if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2213 !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2214 mtx_unlock(&np->n_mtx);
2215 NFSINCRGLOBAL(nfsstatsv1.direofcache_hits);
2216 if (ap->a_eofflag != NULL)
2217 *ap->a_eofflag = 1;
2218 return (0);
2219 } else
2220 mtx_unlock(&np->n_mtx);
2221 }
2222 }
2223
2224 /*
2225 * NFS always guarantees that directory entries don't straddle
2226 * DIRBLKSIZ boundaries. As such, we need to limit the size
2227 * to an exact multiple of DIRBLKSIZ, to avoid copying a partial
2228 * directory entry.
2229 */
2230 left = uio->uio_resid % DIRBLKSIZ;
2231 if (left == uio->uio_resid)
2232 return (EINVAL);
2233 uio->uio_resid -= left;
2234
2235 /*
2236 * Call ncl_bioread() to do the real work.
2237 */
2238 tresid = uio->uio_resid;
2239 error = ncl_bioread(vp, uio, 0, ap->a_cred);
2240
2241 if (!error && uio->uio_resid == tresid) {
2242 NFSINCRGLOBAL(nfsstatsv1.direofcache_misses);
2243 if (ap->a_eofflag != NULL)
2244 *ap->a_eofflag = 1;
2245 }
2246
2247 /* Add the partial DIRBLKSIZ (left) back in. */
2248 uio->uio_resid += left;
2249 return (error);
2250 }
2251
2252 /*
2253 * Readdir rpc call.
2254 * Called from below the buffer cache by ncl_doio().
2255 */
2256 int
2257 ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2258 struct thread *td)
2259 {
2260 struct nfsvattr nfsva;
2261 nfsuint64 *cookiep, cookie;
2262 struct nfsnode *dnp = VTONFS(vp);
2263 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2264 int error = 0, eof, attrflag;
2265
2266 KASSERT(uiop->uio_iovcnt == 1 &&
2267 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2268 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2269 ("nfs readdirrpc bad uio"));
2270
2271 /*
2272 * If there is no cookie, assume directory was stale.
2273 */
2274 ncl_dircookie_lock(dnp);
2275 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2276 if (cookiep) {
2277 cookie = *cookiep;
2278 ncl_dircookie_unlock(dnp);
2279 } else {
2280 ncl_dircookie_unlock(dnp);
2281 return (NFSERR_BAD_COOKIE);
2282 }
2283
2284 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2285 (void)ncl_fsinfo(nmp, vp, cred, td);
2286
2287 error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2288 &attrflag, &eof, NULL);
2289 if (attrflag)
2290 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2291
2292 if (!error) {
2293 /*
2294 * We are now either at the end of the directory or have filled
2295 * the block.
2296 */
2297 if (eof)
2298 dnp->n_direofoffset = uiop->uio_offset;
2299 else {
2300 if (uiop->uio_resid > 0)
2301 printf("EEK! readdirrpc resid > 0\n");
2302 ncl_dircookie_lock(dnp);
2303 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2304 *cookiep = cookie;
2305 ncl_dircookie_unlock(dnp);
2306 }
2307 } else if (NFS_ISV4(vp)) {
2308 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2309 }
2310 return (error);
2311 }
2312
2313 /*
2314 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2315 */
2316 int
2317 ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2318 struct thread *td)
2319 {
2320 struct nfsvattr nfsva;
2321 nfsuint64 *cookiep, cookie;
2322 struct nfsnode *dnp = VTONFS(vp);
2323 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2324 int error = 0, attrflag, eof;
2325
2326 KASSERT(uiop->uio_iovcnt == 1 &&
2327 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2328 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2329 ("nfs readdirplusrpc bad uio"));
2330
2331 /*
2332 * If there is no cookie, assume directory was stale.
2333 */
2334 ncl_dircookie_lock(dnp);
2335 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2336 if (cookiep) {
2337 cookie = *cookiep;
2338 ncl_dircookie_unlock(dnp);
2339 } else {
2340 ncl_dircookie_unlock(dnp);
2341 return (NFSERR_BAD_COOKIE);
2342 }
2343
2344 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2345 (void)ncl_fsinfo(nmp, vp, cred, td);
2346 error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2347 &attrflag, &eof, NULL);
2348 if (attrflag)
2349 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2350
2351 if (!error) {
2352 /*
2353 * We are now either at end of the directory or have filled the
2354 * the block.
2355 */
2356 if (eof)
2357 dnp->n_direofoffset = uiop->uio_offset;
2358 else {
2359 if (uiop->uio_resid > 0)
2360 printf("EEK! readdirplusrpc resid > 0\n");
2361 ncl_dircookie_lock(dnp);
2362 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2363 *cookiep = cookie;
2364 ncl_dircookie_unlock(dnp);
2365 }
2366 } else if (NFS_ISV4(vp)) {
2367 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2368 }
2369 return (error);
2370 }
2371
2372 /*
2373 * Silly rename. To make the NFS filesystem that is stateless look a little
2374 * more like the "ufs" a remove of an active vnode is translated to a rename
2375 * to a funny looking filename that is removed by nfs_inactive on the
2376 * nfsnode. There is the potential for another process on a different client
2377 * to create the same funny name between the nfs_lookitup() fails and the
2378 * nfs_rename() completes, but...
2379 */
2380 static int
2381 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2382 {
2383 struct sillyrename *sp;
2384 struct nfsnode *np;
2385 int error;
2386 short pid;
2387 unsigned int lticks;
2388
2389 cache_purge(dvp);
2390 np = VTONFS(vp);
2391 KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
2392 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2393 M_NEWNFSREQ, M_WAITOK);
2394 sp->s_cred = crhold(cnp->cn_cred);
2395 sp->s_dvp = dvp;
2396 VREF(dvp);
2397
2398 /*
2399 * Fudge together a funny name.
2400 * Changing the format of the funny name to accommodate more
2401 * sillynames per directory.
2402 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2403 * CPU ticks since boot.
2404 */
2405 pid = cnp->cn_thread->td_proc->p_pid;
2406 lticks = (unsigned int)ticks;
2407 for ( ; ; ) {
2408 sp->s_namlen = sprintf(sp->s_name,
2409 ".nfs.%08x.%04x4.4", lticks,
2410 pid);
2411 if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2412 cnp->cn_thread, NULL))
2413 break;
2414 lticks++;
2415 }
2416 error = nfs_renameit(dvp, vp, cnp, sp);
2417 if (error)
2418 goto bad;
2419 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2420 cnp->cn_thread, &np);
2421 np->n_sillyrename = sp;
2422 return (0);
2423 bad:
2424 vrele(sp->s_dvp);
2425 crfree(sp->s_cred);
2426 free((caddr_t)sp, M_NEWNFSREQ);
2427 return (error);
2428 }
2429
2430 /*
2431 * Look up a file name and optionally either update the file handle or
2432 * allocate an nfsnode, depending on the value of npp.
2433 * npp == NULL --> just do the lookup
2434 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2435 * handled too
2436 * *npp != NULL --> update the file handle in the vnode
2437 */
2438 static int
2439 nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2440 struct thread *td, struct nfsnode **npp)
2441 {
2442 struct vnode *newvp = NULL, *vp;
2443 struct nfsnode *np, *dnp = VTONFS(dvp);
2444 struct nfsfh *nfhp, *onfhp;
2445 struct nfsvattr nfsva, dnfsva;
2446 struct componentname cn;
2447 int error = 0, attrflag, dattrflag;
2448 u_int hash;
2449
2450 error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2451 &nfhp, &attrflag, &dattrflag, NULL);
2452 if (dattrflag)
2453 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2454 if (npp && !error) {
2455 if (*npp != NULL) {
2456 np = *npp;
2457 vp = NFSTOV(np);
2458 /*
2459 * For NFSv4, check to see if it is the same name and
2460 * replace the name, if it is different.
2461 */
2462 if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2463 (np->n_v4->n4_namelen != len ||
2464 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2465 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2466 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2467 dnp->n_fhp->nfh_len))) {
2468 #ifdef notdef
2469 { char nnn[100]; int nnnl;
2470 nnnl = (len < 100) ? len : 99;
2471 bcopy(name, nnn, nnnl);
2472 nnn[nnnl] = '\0';
2473 printf("replace=%s\n",nnn);
2474 }
2475 #endif
2476 FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2477 MALLOC(np->n_v4, struct nfsv4node *,
2478 sizeof (struct nfsv4node) +
2479 dnp->n_fhp->nfh_len + len - 1,
2480 M_NFSV4NODE, M_WAITOK);
2481 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2482 np->n_v4->n4_namelen = len;
2483 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2484 dnp->n_fhp->nfh_len);
2485 NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2486 }
2487 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2488 FNV1_32_INIT);
2489 onfhp = np->n_fhp;
2490 /*
2491 * Rehash node for new file handle.
2492 */
2493 vfs_hash_rehash(vp, hash);
2494 np->n_fhp = nfhp;
2495 if (onfhp != NULL)
2496 FREE((caddr_t)onfhp, M_NFSFH);
2497 newvp = NFSTOV(np);
2498 } else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2499 FREE((caddr_t)nfhp, M_NFSFH);
2500 VREF(dvp);
2501 newvp = dvp;
2502 } else {
2503 cn.cn_nameptr = name;
2504 cn.cn_namelen = len;
2505 error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2506 &np, NULL, LK_EXCLUSIVE);
2507 if (error)
2508 return (error);
2509 newvp = NFSTOV(np);
2510 }
2511 if (!attrflag && *npp == NULL) {
2512 if (newvp == dvp)
2513 vrele(newvp);
2514 else
2515 vput(newvp);
2516 return (ENOENT);
2517 }
2518 if (attrflag)
2519 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2520 0, 1);
2521 }
2522 if (npp && *npp == NULL) {
2523 if (error) {
2524 if (newvp) {
2525 if (newvp == dvp)
2526 vrele(newvp);
2527 else
2528 vput(newvp);
2529 }
2530 } else
2531 *npp = np;
2532 }
2533 if (error && NFS_ISV4(dvp))
2534 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2535 return (error);
2536 }
2537
2538 /*
2539 * Nfs Version 3 and 4 commit rpc
2540 */
2541 int
2542 ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2543 struct thread *td)
2544 {
2545 struct nfsvattr nfsva;
2546 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2547 struct nfsnode *np;
2548 struct uio uio;
2549 int error, attrflag;
2550
2551 np = VTONFS(vp);
2552 error = EIO;
2553 attrflag = 0;
2554 if (NFSHASPNFS(nmp) && (np->n_flag & NDSCOMMIT) != 0) {
2555 uio.uio_offset = offset;
2556 uio.uio_resid = cnt;
2557 error = nfscl_doiods(vp, &uio, NULL, NULL,
2558 NFSV4OPEN_ACCESSWRITE, 1, cred, td);
2559 if (error != 0) {
2560 mtx_lock(&np->n_mtx);
2561 np->n_flag &= ~NDSCOMMIT;
2562 mtx_unlock(&np->n_mtx);
2563 }
2564 }
2565 if (error != 0) {
2566 mtx_lock(&nmp->nm_mtx);
2567 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2568 mtx_unlock(&nmp->nm_mtx);
2569 return (0);
2570 }
2571 mtx_unlock(&nmp->nm_mtx);
2572 error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva,
2573 &attrflag, NULL);
2574 }
2575 if (attrflag != 0)
2576 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2577 0, 1);
2578 if (error != 0 && NFS_ISV4(vp))
2579 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2580 return (error);
2581 }
2582
2583 /*
2584 * Strategy routine.
2585 * For async requests when nfsiod(s) are running, queue the request by
2586 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2587 * request.
2588 */
2589 static int
2590 nfs_strategy(struct vop_strategy_args *ap)
2591 {
2592 struct buf *bp;
2593 struct vnode *vp;
2594 struct ucred *cr;
2595
2596 bp = ap->a_bp;
2597 vp = ap->a_vp;
2598 KASSERT(bp->b_vp == vp, ("missing b_getvp"));
2599 KASSERT(!(bp->b_flags & B_DONE),
2600 ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2601 BUF_ASSERT_HELD(bp);
2602
2603 if (vp->v_type == VREG && bp->b_blkno == bp->b_lblkno)
2604 bp->b_blkno = bp->b_lblkno * (vp->v_bufobj.bo_bsize /
2605 DEV_BSIZE);
2606 if (bp->b_iocmd == BIO_READ)
2607 cr = bp->b_rcred;
2608 else
2609 cr = bp->b_wcred;
2610
2611 /*
2612 * If the op is asynchronous and an i/o daemon is waiting
2613 * queue the request, wake it up and wait for completion
2614 * otherwise just do it ourselves.
2615 */
2616 if ((bp->b_flags & B_ASYNC) == 0 ||
2617 ncl_asyncio(VFSTONFS(vp->v_mount), bp, NOCRED, curthread))
2618 (void) ncl_doio(vp, bp, cr, curthread, 1);
2619 return (0);
2620 }
2621
2622 /*
2623 * fsync vnode op. Just call ncl_flush() with commit == 1.
2624 */
2625 /* ARGSUSED */
2626 static int
2627 nfs_fsync(struct vop_fsync_args *ap)
2628 {
2629
2630 if (ap->a_vp->v_type != VREG) {
2631 /*
2632 * For NFS, metadata is changed synchronously on the server,
2633 * so there is nothing to flush. Also, ncl_flush() clears
2634 * the NMODIFIED flag and that shouldn't be done here for
2635 * directories.
2636 */
2637 return (0);
2638 }
2639 return (ncl_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1, 0));
2640 }
2641
2642 /*
2643 * Flush all the blocks associated with a vnode.
2644 * Walk through the buffer pool and push any dirty pages
2645 * associated with the vnode.
2646 * If the called_from_renewthread argument is TRUE, it has been called
2647 * from the NFSv4 renew thread and, as such, cannot block indefinitely
2648 * waiting for a buffer write to complete.
2649 */
2650 int
2651 ncl_flush(struct vnode *vp, int waitfor, struct thread *td,
2652 int commit, int called_from_renewthread)
2653 {
2654 struct nfsnode *np = VTONFS(vp);
2655 struct buf *bp;
2656 int i;
2657 struct buf *nbp;
2658 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2659 int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2660 int passone = 1, trycnt = 0;
2661 u_quad_t off, endoff, toff;
2662 struct ucred* wcred = NULL;
2663 struct buf **bvec = NULL;
2664 struct bufobj *bo;
2665 #ifndef NFS_COMMITBVECSIZ
2666 #define NFS_COMMITBVECSIZ 20
2667 #endif
2668 struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2669 int bvecsize = 0, bveccount;
2670
2671 if (called_from_renewthread != 0)
2672 slptimeo = hz;
2673 if (nmp->nm_flag & NFSMNT_INT)
2674 slpflag = PCATCH;
2675 if (!commit)
2676 passone = 0;
2677 bo = &vp->v_bufobj;
2678 /*
2679 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2680 * server, but has not been committed to stable storage on the server
2681 * yet. On the first pass, the byte range is worked out and the commit
2682 * rpc is done. On the second pass, ncl_writebp() is called to do the
2683 * job.
2684 */
2685 again:
2686 off = (u_quad_t)-1;
2687 endoff = 0;
2688 bvecpos = 0;
2689 if (NFS_ISV34(vp) && commit) {
2690 if (bvec != NULL && bvec != bvec_on_stack)
2691 free(bvec, M_TEMP);
2692 /*
2693 * Count up how many buffers waiting for a commit.
2694 */
2695 bveccount = 0;
2696 BO_LOCK(bo);
2697 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2698 if (!BUF_ISLOCKED(bp) &&
2699 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2700 == (B_DELWRI | B_NEEDCOMMIT))
2701 bveccount++;
2702 }
2703 /*
2704 * Allocate space to remember the list of bufs to commit. It is
2705 * important to use M_NOWAIT here to avoid a race with nfs_write.
2706 * If we can't get memory (for whatever reason), we will end up
2707 * committing the buffers one-by-one in the loop below.
2708 */
2709 if (bveccount > NFS_COMMITBVECSIZ) {
2710 /*
2711 * Release the vnode interlock to avoid a lock
2712 * order reversal.
2713 */
2714 BO_UNLOCK(bo);
2715 bvec = (struct buf **)
2716 malloc(bveccount * sizeof(struct buf *),
2717 M_TEMP, M_NOWAIT);
2718 BO_LOCK(bo);
2719 if (bvec == NULL) {
2720 bvec = bvec_on_stack;
2721 bvecsize = NFS_COMMITBVECSIZ;
2722 } else
2723 bvecsize = bveccount;
2724 } else {
2725 bvec = bvec_on_stack;
2726 bvecsize = NFS_COMMITBVECSIZ;
2727 }
2728 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2729 if (bvecpos >= bvecsize)
2730 break;
2731 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2732 nbp = TAILQ_NEXT(bp, b_bobufs);
2733 continue;
2734 }
2735 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2736 (B_DELWRI | B_NEEDCOMMIT)) {
2737 BUF_UNLOCK(bp);
2738 nbp = TAILQ_NEXT(bp, b_bobufs);
2739 continue;
2740 }
2741 BO_UNLOCK(bo);
2742 bremfree(bp);
2743 /*
2744 * Work out if all buffers are using the same cred
2745 * so we can deal with them all with one commit.
2746 *
2747 * NOTE: we are not clearing B_DONE here, so we have
2748 * to do it later on in this routine if we intend to
2749 * initiate I/O on the bp.
2750 *
2751 * Note: to avoid loopback deadlocks, we do not
2752 * assign b_runningbufspace.
2753 */
2754 if (wcred == NULL)
2755 wcred = bp->b_wcred;
2756 else if (wcred != bp->b_wcred)
2757 wcred = NOCRED;
2758 vfs_busy_pages(bp, 1);
2759
2760 BO_LOCK(bo);
2761 /*
2762 * bp is protected by being locked, but nbp is not
2763 * and vfs_busy_pages() may sleep. We have to
2764 * recalculate nbp.
2765 */
2766 nbp = TAILQ_NEXT(bp, b_bobufs);
2767
2768 /*
2769 * A list of these buffers is kept so that the
2770 * second loop knows which buffers have actually
2771 * been committed. This is necessary, since there
2772 * may be a race between the commit rpc and new
2773 * uncommitted writes on the file.
2774 */
2775 bvec[bvecpos++] = bp;
2776 toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2777 bp->b_dirtyoff;
2778 if (toff < off)
2779 off = toff;
2780 toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2781 if (toff > endoff)
2782 endoff = toff;
2783 }
2784 BO_UNLOCK(bo);
2785 }
2786 if (bvecpos > 0) {
2787 /*
2788 * Commit data on the server, as required.
2789 * If all bufs are using the same wcred, then use that with
2790 * one call for all of them, otherwise commit each one
2791 * separately.
2792 */
2793 if (wcred != NOCRED)
2794 retv = ncl_commit(vp, off, (int)(endoff - off),
2795 wcred, td);
2796 else {
2797 retv = 0;
2798 for (i = 0; i < bvecpos; i++) {
2799 off_t off, size;
2800 bp = bvec[i];
2801 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2802 bp->b_dirtyoff;
2803 size = (u_quad_t)(bp->b_dirtyend
2804 - bp->b_dirtyoff);
2805 retv = ncl_commit(vp, off, (int)size,
2806 bp->b_wcred, td);
2807 if (retv) break;
2808 }
2809 }
2810
2811 if (retv == NFSERR_STALEWRITEVERF)
2812 ncl_clearcommit(vp->v_mount);
2813
2814 /*
2815 * Now, either mark the blocks I/O done or mark the
2816 * blocks dirty, depending on whether the commit
2817 * succeeded.
2818 */
2819 for (i = 0; i < bvecpos; i++) {
2820 bp = bvec[i];
2821 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2822 if (retv) {
2823 /*
2824 * Error, leave B_DELWRI intact
2825 */
2826 vfs_unbusy_pages(bp);
2827 brelse(bp);
2828 } else {
2829 /*
2830 * Success, remove B_DELWRI ( bundirty() ).
2831 *
2832 * b_dirtyoff/b_dirtyend seem to be NFS
2833 * specific. We should probably move that
2834 * into bundirty(). XXX
2835 */
2836 bufobj_wref(bo);
2837 bp->b_flags |= B_ASYNC;
2838 bundirty(bp);
2839 bp->b_flags &= ~B_DONE;
2840 bp->b_ioflags &= ~BIO_ERROR;
2841 bp->b_dirtyoff = bp->b_dirtyend = 0;
2842 bufdone(bp);
2843 }
2844 }
2845 }
2846
2847 /*
2848 * Start/do any write(s) that are required.
2849 */
2850 loop:
2851 BO_LOCK(bo);
2852 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2853 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2854 if (waitfor != MNT_WAIT || passone)
2855 continue;
2856
2857 error = BUF_TIMELOCK(bp,
2858 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2859 BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo);
2860 if (error == 0) {
2861 BUF_UNLOCK(bp);
2862 goto loop;
2863 }
2864 if (error == ENOLCK) {
2865 error = 0;
2866 goto loop;
2867 }
2868 if (called_from_renewthread != 0) {
2869 /*
2870 * Return EIO so the flush will be retried
2871 * later.
2872 */
2873 error = EIO;
2874 goto done;
2875 }
2876 if (newnfs_sigintr(nmp, td)) {
2877 error = EINTR;
2878 goto done;
2879 }
2880 if (slpflag == PCATCH) {
2881 slpflag = 0;
2882 slptimeo = 2 * hz;
2883 }
2884 goto loop;
2885 }
2886 if ((bp->b_flags & B_DELWRI) == 0)
2887 panic("nfs_fsync: not dirty");
2888 if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2889 BUF_UNLOCK(bp);
2890 continue;
2891 }
2892 BO_UNLOCK(bo);
2893 bremfree(bp);
2894 if (passone || !commit)
2895 bp->b_flags |= B_ASYNC;
2896 else
2897 bp->b_flags |= B_ASYNC;
2898 bwrite(bp);
2899 if (newnfs_sigintr(nmp, td)) {
2900 error = EINTR;
2901 goto done;
2902 }
2903 goto loop;
2904 }
2905 if (passone) {
2906 passone = 0;
2907 BO_UNLOCK(bo);
2908 goto again;
2909 }
2910 if (waitfor == MNT_WAIT) {
2911 while (bo->bo_numoutput) {
2912 error = bufobj_wwait(bo, slpflag, slptimeo);
2913 if (error) {
2914 BO_UNLOCK(bo);
2915 if (called_from_renewthread != 0) {
2916 /*
2917 * Return EIO so that the flush will be
2918 * retried later.
2919 */
2920 error = EIO;
2921 goto done;
2922 }
2923 error = newnfs_sigintr(nmp, td);
2924 if (error)
2925 goto done;
2926 if (slpflag == PCATCH) {
2927 slpflag = 0;
2928 slptimeo = 2 * hz;
2929 }
2930 BO_LOCK(bo);
2931 }
2932 }
2933 if (bo->bo_dirty.bv_cnt != 0 && commit) {
2934 BO_UNLOCK(bo);
2935 goto loop;
2936 }
2937 /*
2938 * Wait for all the async IO requests to drain
2939 */
2940 BO_UNLOCK(bo);
2941 mtx_lock(&np->n_mtx);
2942 while (np->n_directio_asyncwr > 0) {
2943 np->n_flag |= NFSYNCWAIT;
2944 error = newnfs_msleep(td, &np->n_directio_asyncwr,
2945 &np->n_mtx, slpflag | (PRIBIO + 1),
2946 "nfsfsync", 0);
2947 if (error) {
2948 if (newnfs_sigintr(nmp, td)) {
2949 mtx_unlock(&np->n_mtx);
2950 error = EINTR;
2951 goto done;
2952 }
2953 }
2954 }
2955 mtx_unlock(&np->n_mtx);
2956 } else
2957 BO_UNLOCK(bo);
2958 if (NFSHASPNFS(nmp)) {
2959 nfscl_layoutcommit(vp, td);
2960 /*
2961 * Invalidate the attribute cache, since writes to a DS
2962 * won't update the size attribute.
2963 */
2964 mtx_lock(&np->n_mtx);
2965 np->n_attrstamp = 0;
2966 } else
2967 mtx_lock(&np->n_mtx);
2968 if (np->n_flag & NWRITEERR) {
2969 error = np->n_error;
2970 np->n_flag &= ~NWRITEERR;
2971 }
2972 if (commit && bo->bo_dirty.bv_cnt == 0 &&
2973 bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2974 np->n_flag &= ~NMODIFIED;
2975 mtx_unlock(&np->n_mtx);
2976 done:
2977 if (bvec != NULL && bvec != bvec_on_stack)
2978 free(bvec, M_TEMP);
2979 if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2980 (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2981 np->n_directio_asyncwr != 0)) {
2982 if (trycnt++ < 5) {
2983 /* try, try again... */
2984 passone = 1;
2985 wcred = NULL;
2986 bvec = NULL;
2987 bvecsize = 0;
2988 goto again;
2989 }
2990 vn_printf(vp, "ncl_flush failed");
2991 error = called_from_renewthread != 0 ? EIO : EBUSY;
2992 }
2993 return (error);
2994 }
2995
2996 /*
2997 * NFS advisory byte-level locks.
2998 */
2999 static int
3000 nfs_advlock(struct vop_advlock_args *ap)
3001 {
3002 struct vnode *vp = ap->a_vp;
3003 struct ucred *cred;
3004 struct nfsnode *np = VTONFS(ap->a_vp);
3005 struct proc *p = (struct proc *)ap->a_id;
3006 struct thread *td = curthread; /* XXX */
3007 struct vattr va;
3008 int ret, error = EOPNOTSUPP;
3009 u_quad_t size;
3010
3011 ret = NFSVOPLOCK(vp, LK_SHARED);
3012 if (ret != 0)
3013 return (EBADF);
3014 if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) {
3015 if (vp->v_type != VREG) {
3016 NFSVOPUNLOCK(vp, 0);
3017 return (EINVAL);
3018 }
3019 if ((ap->a_flags & F_POSIX) != 0)
3020 cred = p->p_ucred;
3021 else
3022 cred = td->td_ucred;
3023 NFSVOPLOCK(vp, LK_UPGRADE | LK_RETRY);
3024 if (vp->v_iflag & VI_DOOMED) {
3025 NFSVOPUNLOCK(vp, 0);
3026 return (EBADF);
3027 }
3028
3029 /*
3030 * If this is unlocking a write locked region, flush and
3031 * commit them before unlocking. This is required by
3032 * RFC3530 Sec. 9.3.2.
3033 */
3034 if (ap->a_op == F_UNLCK &&
3035 nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id,
3036 ap->a_flags))
3037 (void) ncl_flush(vp, MNT_WAIT, td, 1, 0);
3038
3039 /*
3040 * Loop around doing the lock op, while a blocking lock
3041 * must wait for the lock op to succeed.
3042 */
3043 do {
3044 ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
3045 ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags);
3046 if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3047 ap->a_op == F_SETLK) {
3048 NFSVOPUNLOCK(vp, 0);
3049 error = nfs_catnap(PZERO | PCATCH, ret,
3050 "ncladvl");
3051 if (error)
3052 return (EINTR);
3053 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3054 if (vp->v_iflag & VI_DOOMED) {
3055 NFSVOPUNLOCK(vp, 0);
3056 return (EBADF);
3057 }
3058 }
3059 } while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3060 ap->a_op == F_SETLK);
3061 if (ret == NFSERR_DENIED) {
3062 NFSVOPUNLOCK(vp, 0);
3063 return (EAGAIN);
3064 } else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
3065 NFSVOPUNLOCK(vp, 0);
3066 return (ret);
3067 } else if (ret != 0) {
3068 NFSVOPUNLOCK(vp, 0);
3069 return (EACCES);
3070 }
3071
3072 /*
3073 * Now, if we just got a lock, invalidate data in the buffer
3074 * cache, as required, so that the coherency conforms with
3075 * RFC3530 Sec. 9.3.2.
3076 */
3077 if (ap->a_op == F_SETLK) {
3078 if ((np->n_flag & NMODIFIED) == 0) {
3079 np->n_attrstamp = 0;
3080 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3081 ret = VOP_GETATTR(vp, &va, cred);
3082 }
3083 if ((np->n_flag & NMODIFIED) || ret ||
3084 np->n_change != va.va_filerev) {
3085 (void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
3086 np->n_attrstamp = 0;
3087 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3088 ret = VOP_GETATTR(vp, &va, cred);
3089 if (!ret) {
3090 np->n_mtime = va.va_mtime;
3091 np->n_change = va.va_filerev;
3092 }
3093 }
3094 /* Mark that a file lock has been acquired. */
3095 mtx_lock(&np->n_mtx);
3096 np->n_flag |= NHASBEENLOCKED;
3097 mtx_unlock(&np->n_mtx);
3098 }
3099 NFSVOPUNLOCK(vp, 0);
3100 return (0);
3101 } else if (!NFS_ISV4(vp)) {
3102 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3103 size = VTONFS(vp)->n_size;
3104 NFSVOPUNLOCK(vp, 0);
3105 error = lf_advlock(ap, &(vp->v_lockf), size);
3106 } else {
3107 if (nfs_advlock_p != NULL)
3108 error = nfs_advlock_p(ap);
3109 else {
3110 NFSVOPUNLOCK(vp, 0);
3111 error = ENOLCK;
3112 }
3113 }
3114 if (error == 0 && ap->a_op == F_SETLK) {
3115 error = NFSVOPLOCK(vp, LK_SHARED);
3116 if (error == 0) {
3117 /* Mark that a file lock has been acquired. */
3118 mtx_lock(&np->n_mtx);
3119 np->n_flag |= NHASBEENLOCKED;
3120 mtx_unlock(&np->n_mtx);
3121 NFSVOPUNLOCK(vp, 0);
3122 }
3123 }
3124 } else
3125 NFSVOPUNLOCK(vp, 0);
3126 return (error);
3127 }
3128
3129 /*
3130 * NFS advisory byte-level locks.
3131 */
3132 static int
3133 nfs_advlockasync(struct vop_advlockasync_args *ap)
3134 {
3135 struct vnode *vp = ap->a_vp;
3136 u_quad_t size;
3137 int error;
3138
3139 if (NFS_ISV4(vp))
3140 return (EOPNOTSUPP);
3141 error = NFSVOPLOCK(vp, LK_SHARED);
3142 if (error)
3143 return (error);
3144 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3145 size = VTONFS(vp)->n_size;
3146 NFSVOPUNLOCK(vp, 0);
3147 error = lf_advlockasync(ap, &(vp->v_lockf), size);
3148 } else {
3149 NFSVOPUNLOCK(vp, 0);
3150 error = EOPNOTSUPP;
3151 }
3152 return (error);
3153 }
3154
3155 /*
3156 * Print out the contents of an nfsnode.
3157 */
3158 static int
3159 nfs_print(struct vop_print_args *ap)
3160 {
3161 struct vnode *vp = ap->a_vp;
3162 struct nfsnode *np = VTONFS(vp);
3163
3164 printf("\tfileid %jd fsid 0x%jx", (uintmax_t)np->n_vattr.na_fileid,
3165 (uintmax_t)np->n_vattr.na_fsid);
3166 if (vp->v_type == VFIFO)
3167 fifo_printinfo(vp);
3168 printf("\n");
3169 return (0);
3170 }
3171
3172 /*
3173 * This is the "real" nfs::bwrite(struct buf*).
3174 * We set B_CACHE if this is a VMIO buffer.
3175 */
3176 int
3177 ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
3178 {
3179 int oldflags, rtval;
3180
3181 BUF_ASSERT_HELD(bp);
3182
3183 if (bp->b_flags & B_INVAL) {
3184 brelse(bp);
3185 return (0);
3186 }
3187
3188 oldflags = bp->b_flags;
3189 bp->b_flags |= B_CACHE;
3190
3191 /*
3192 * Undirty the bp. We will redirty it later if the I/O fails.
3193 */
3194 bundirty(bp);
3195 bp->b_flags &= ~B_DONE;
3196 bp->b_ioflags &= ~BIO_ERROR;
3197 bp->b_iocmd = BIO_WRITE;
3198
3199 bufobj_wref(bp->b_bufobj);
3200 curthread->td_ru.ru_oublock++;
3201
3202 /*
3203 * Note: to avoid loopback deadlocks, we do not
3204 * assign b_runningbufspace.
3205 */
3206 vfs_busy_pages(bp, 1);
3207
3208 BUF_KERNPROC(bp);
3209 bp->b_iooffset = dbtob(bp->b_blkno);
3210 bstrategy(bp);
3211
3212 if ((oldflags & B_ASYNC) != 0)
3213 return (0);
3214
3215 rtval = bufwait(bp);
3216 if (oldflags & B_DELWRI)
3217 reassignbuf(bp);
3218 brelse(bp);
3219 return (rtval);
3220 }
3221
3222 /*
3223 * nfs special file access vnode op.
3224 * Essentially just get vattr and then imitate iaccess() since the device is
3225 * local to the client.
3226 */
3227 static int
3228 nfsspec_access(struct vop_access_args *ap)
3229 {
3230 struct vattr *vap;
3231 struct ucred *cred = ap->a_cred;
3232 struct vnode *vp = ap->a_vp;
3233 accmode_t accmode = ap->a_accmode;
3234 struct vattr vattr;
3235 int error;
3236
3237 /*
3238 * Disallow write attempts on filesystems mounted read-only;
3239 * unless the file is a socket, fifo, or a block or character
3240 * device resident on the filesystem.
3241 */
3242 if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3243 switch (vp->v_type) {
3244 case VREG:
3245 case VDIR:
3246 case VLNK:
3247 return (EROFS);
3248 default:
3249 break;
3250 }
3251 }
3252 vap = &vattr;
3253 error = VOP_GETATTR(vp, vap, cred);
3254 if (error)
3255 goto out;
3256 error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3257 accmode, cred, NULL);
3258 out:
3259 return error;
3260 }
3261
3262 /*
3263 * Read wrapper for fifos.
3264 */
3265 static int
3266 nfsfifo_read(struct vop_read_args *ap)
3267 {
3268 struct nfsnode *np = VTONFS(ap->a_vp);
3269 int error;
3270
3271 /*
3272 * Set access flag.
3273 */
3274 mtx_lock(&np->n_mtx);
3275 np->n_flag |= NACC;
3276 vfs_timestamp(&np->n_atim);
3277 mtx_unlock(&np->n_mtx);
3278 error = fifo_specops.vop_read(ap);
3279 return error;
3280 }
3281
3282 /*
3283 * Write wrapper for fifos.
3284 */
3285 static int
3286 nfsfifo_write(struct vop_write_args *ap)
3287 {
3288 struct nfsnode *np = VTONFS(ap->a_vp);
3289
3290 /*
3291 * Set update flag.
3292 */
3293 mtx_lock(&np->n_mtx);
3294 np->n_flag |= NUPD;
3295 vfs_timestamp(&np->n_mtim);
3296 mtx_unlock(&np->n_mtx);
3297 return(fifo_specops.vop_write(ap));
3298 }
3299
3300 /*
3301 * Close wrapper for fifos.
3302 *
3303 * Update the times on the nfsnode then do fifo close.
3304 */
3305 static int
3306 nfsfifo_close(struct vop_close_args *ap)
3307 {
3308 struct vnode *vp = ap->a_vp;
3309 struct nfsnode *np = VTONFS(vp);
3310 struct vattr vattr;
3311 struct timespec ts;
3312
3313 mtx_lock(&np->n_mtx);
3314 if (np->n_flag & (NACC | NUPD)) {
3315 vfs_timestamp(&ts);
3316 if (np->n_flag & NACC)
3317 np->n_atim = ts;
3318 if (np->n_flag & NUPD)
3319 np->n_mtim = ts;
3320 np->n_flag |= NCHG;
3321 if (vrefcnt(vp) == 1 &&
3322 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3323 VATTR_NULL(&vattr);
3324 if (np->n_flag & NACC)
3325 vattr.va_atime = np->n_atim;
3326 if (np->n_flag & NUPD)
3327 vattr.va_mtime = np->n_mtim;
3328 mtx_unlock(&np->n_mtx);
3329 (void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3330 goto out;
3331 }
3332 }
3333 mtx_unlock(&np->n_mtx);
3334 out:
3335 return (fifo_specops.vop_close(ap));
3336 }
3337
3338 /*
3339 * Just call ncl_writebp() with the force argument set to 1.
3340 *
3341 * NOTE: B_DONE may or may not be set in a_bp on call.
3342 */
3343 static int
3344 nfs_bwrite(struct buf *bp)
3345 {
3346
3347 return (ncl_writebp(bp, 1, curthread));
3348 }
3349
3350 struct buf_ops buf_ops_newnfs = {
3351 .bop_name = "buf_ops_nfs",
3352 .bop_write = nfs_bwrite,
3353 .bop_strategy = bufstrategy,
3354 .bop_sync = bufsync,
3355 .bop_bdflush = bufbdflush,
3356 };
3357
3358 static int
3359 nfs_getacl(struct vop_getacl_args *ap)
3360 {
3361 int error;
3362
3363 if (ap->a_type != ACL_TYPE_NFS4)
3364 return (EOPNOTSUPP);
3365 error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3366 NULL);
3367 if (error > NFSERR_STALE) {
3368 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3369 error = EPERM;
3370 }
3371 return (error);
3372 }
3373
3374 static int
3375 nfs_setacl(struct vop_setacl_args *ap)
3376 {
3377 int error;
3378
3379 if (ap->a_type != ACL_TYPE_NFS4)
3380 return (EOPNOTSUPP);
3381 error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3382 NULL);
3383 if (error > NFSERR_STALE) {
3384 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3385 error = EPERM;
3386 }
3387 return (error);
3388 }
3389
3390 static int
3391 nfs_set_text(struct vop_set_text_args *ap)
3392 {
3393 struct vnode *vp = ap->a_vp;
3394 struct nfsnode *np;
3395
3396 /*
3397 * If the text file has been mmap'd, flush any dirty pages to the
3398 * buffer cache and then...
3399 * Make sure all writes are pushed to the NFS server. If this is not
3400 * done, the modify time of the file can change while the text
3401 * file is being executed. This will cause the process that is
3402 * executing the text file to be terminated.
3403 */
3404 if (vp->v_object != NULL) {
3405 VM_OBJECT_WLOCK(vp->v_object);
3406 vm_object_page_clean(vp->v_object, 0, 0, OBJPC_SYNC);
3407 VM_OBJECT_WUNLOCK(vp->v_object);
3408 }
3409
3410 /* Now, flush the buffer cache. */
3411 ncl_flush(vp, MNT_WAIT, curthread, 0, 0);
3412
3413 /* And, finally, make sure that n_mtime is up to date. */
3414 np = VTONFS(vp);
3415 mtx_lock(&np->n_mtx);
3416 np->n_mtime = np->n_vattr.na_mtime;
3417 mtx_unlock(&np->n_mtx);
3418
3419 vp->v_vflag |= VV_TEXT;
3420 return (0);
3421 }
3422
3423 /*
3424 * Return POSIX pathconf information applicable to nfs filesystems.
3425 */
3426 static int
3427 nfs_pathconf(struct vop_pathconf_args *ap)
3428 {
3429 struct nfsv3_pathconf pc;
3430 struct nfsvattr nfsva;
3431 struct vnode *vp = ap->a_vp;
3432 struct thread *td = curthread;
3433 int attrflag, error;
3434
3435 if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX ||
3436 ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED ||
3437 ap->a_name == _PC_NO_TRUNC)) ||
3438 (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) {
3439 /*
3440 * Since only the above 4 a_names are returned by the NFSv3
3441 * Pathconf RPC, there is no point in doing it for others.
3442 * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can
3443 * be used for _PC_NFS4_ACL as well.
3444 */
3445 error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva,
3446 &attrflag, NULL);
3447 if (attrflag != 0)
3448 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
3449 1);
3450 if (error != 0)
3451 return (error);
3452 } else {
3453 /*
3454 * For NFSv2 (or NFSv3 when not one of the above 4 a_names),
3455 * just fake them.
3456 */
3457 pc.pc_linkmax = LINK_MAX;
3458 pc.pc_namemax = NFS_MAXNAMLEN;
3459 pc.pc_notrunc = 1;
3460 pc.pc_chownrestricted = 1;
3461 pc.pc_caseinsensitive = 0;
3462 pc.pc_casepreserving = 1;
3463 error = 0;
3464 }
3465 switch (ap->a_name) {
3466 case _PC_LINK_MAX:
3467 *ap->a_retval = pc.pc_linkmax;
3468 break;
3469 case _PC_NAME_MAX:
3470 *ap->a_retval = pc.pc_namemax;
3471 break;
3472 case _PC_PIPE_BUF:
3473 if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO)
3474 *ap->a_retval = PIPE_BUF;
3475 else
3476 error = EINVAL;
3477 break;
3478 case _PC_CHOWN_RESTRICTED:
3479 *ap->a_retval = pc.pc_chownrestricted;
3480 break;
3481 case _PC_NO_TRUNC:
3482 *ap->a_retval = pc.pc_notrunc;
3483 break;
3484 case _PC_ACL_NFS4:
3485 if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 &&
3486 NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL))
3487 *ap->a_retval = 1;
3488 else
3489 *ap->a_retval = 0;
3490 break;
3491 case _PC_ACL_PATH_MAX:
3492 if (NFS_ISV4(vp))
3493 *ap->a_retval = ACL_MAX_ENTRIES;
3494 else
3495 *ap->a_retval = 3;
3496 break;
3497 case _PC_PRIO_IO:
3498 *ap->a_retval = 0;
3499 break;
3500 case _PC_SYNC_IO:
3501 *ap->a_retval = 0;
3502 break;
3503 case _PC_ALLOC_SIZE_MIN:
3504 *ap->a_retval = vp->v_mount->mnt_stat.f_bsize;
3505 break;
3506 case _PC_FILESIZEBITS:
3507 if (NFS_ISV34(vp))
3508 *ap->a_retval = 64;
3509 else
3510 *ap->a_retval = 32;
3511 break;
3512 case _PC_REC_INCR_XFER_SIZE:
3513 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3514 break;
3515 case _PC_REC_MAX_XFER_SIZE:
3516 *ap->a_retval = -1; /* means ``unlimited'' */
3517 break;
3518 case _PC_REC_MIN_XFER_SIZE:
3519 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3520 break;
3521 case _PC_REC_XFER_ALIGN:
3522 *ap->a_retval = PAGE_SIZE;
3523 break;
3524 case _PC_SYMLINK_MAX:
3525 *ap->a_retval = NFS_MAXPATHLEN;
3526 break;
3527
3528 default:
3529 error = vop_stdpathconf(ap);
3530 break;
3531 }
3532 return (error);
3533 }
3534
Cache object: 9b2e96a4fef9e387be3f560ef8e2504e
|