The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nullfs/null_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * John Heidemann of the UCLA Ficus project.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)null_vnops.c        8.6 (Berkeley) 5/27/95
   33  *
   34  * Ancestors:
   35  *      @(#)lofs_vnops.c        1.2 (Berkeley) 6/18/92
   36  *      ...and...
   37  *      @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
   38  *
   39  * $FreeBSD: releng/11.0/sys/fs/nullfs/null_vnops.c 298806 2016-04-29 20:51:24Z pfg $
   40  */
   41 
   42 /*
   43  * Null Layer
   44  *
   45  * (See mount_nullfs(8) for more information.)
   46  *
   47  * The null layer duplicates a portion of the filesystem
   48  * name space under a new name.  In this respect, it is
   49  * similar to the loopback filesystem.  It differs from
   50  * the loopback fs in two respects:  it is implemented using
   51  * a stackable layers techniques, and its "null-node"s stack above
   52  * all lower-layer vnodes, not just over directory vnodes.
   53  *
   54  * The null layer has two purposes.  First, it serves as a demonstration
   55  * of layering by proving a layer which does nothing.  (It actually
   56  * does everything the loopback filesystem does, which is slightly
   57  * more than nothing.)  Second, the null layer can serve as a prototype
   58  * layer.  Since it provides all necessary layer framework,
   59  * new filesystem layers can be created very easily be starting
   60  * with a null layer.
   61  *
   62  * The remainder of this man page examines the null layer as a basis
   63  * for constructing new layers.
   64  *
   65  *
   66  * INSTANTIATING NEW NULL LAYERS
   67  *
   68  * New null layers are created with mount_nullfs(8).
   69  * Mount_nullfs(8) takes two arguments, the pathname
   70  * of the lower vfs (target-pn) and the pathname where the null
   71  * layer will appear in the namespace (alias-pn).  After
   72  * the null layer is put into place, the contents
   73  * of target-pn subtree will be aliased under alias-pn.
   74  *
   75  *
   76  * OPERATION OF A NULL LAYER
   77  *
   78  * The null layer is the minimum filesystem layer,
   79  * simply bypassing all possible operations to the lower layer
   80  * for processing there.  The majority of its activity centers
   81  * on the bypass routine, through which nearly all vnode operations
   82  * pass.
   83  *
   84  * The bypass routine accepts arbitrary vnode operations for
   85  * handling by the lower layer.  It begins by examing vnode
   86  * operation arguments and replacing any null-nodes by their
   87  * lower-layer equivlants.  It then invokes the operation
   88  * on the lower layer.  Finally, it replaces the null-nodes
   89  * in the arguments and, if a vnode is return by the operation,
   90  * stacks a null-node on top of the returned vnode.
   91  *
   92  * Although bypass handles most operations, vop_getattr, vop_lock,
   93  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
   94  * bypassed. Vop_getattr must change the fsid being returned.
   95  * Vop_lock and vop_unlock must handle any locking for the
   96  * current vnode as well as pass the lock request down.
   97  * Vop_inactive and vop_reclaim are not bypassed so that
   98  * they can handle freeing null-layer specific data. Vop_print
   99  * is not bypassed to avoid excessive debugging information.
  100  * Also, certain vnode operations change the locking state within
  101  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
  102  * and symlink). Ideally these operations should not change the
  103  * lock state, but should be changed to let the caller of the
  104  * function unlock them. Otherwise all intermediate vnode layers
  105  * (such as union, umapfs, etc) must catch these functions to do
  106  * the necessary locking at their layer.
  107  *
  108  *
  109  * INSTANTIATING VNODE STACKS
  110  *
  111  * Mounting associates the null layer with a lower layer,
  112  * effect stacking two VFSes.  Vnode stacks are instead
  113  * created on demand as files are accessed.
  114  *
  115  * The initial mount creates a single vnode stack for the
  116  * root of the new null layer.  All other vnode stacks
  117  * are created as a result of vnode operations on
  118  * this or other null vnode stacks.
  119  *
  120  * New vnode stacks come into existence as a result of
  121  * an operation which returns a vnode.
  122  * The bypass routine stacks a null-node above the new
  123  * vnode before returning it to the caller.
  124  *
  125  * For example, imagine mounting a null layer with
  126  * "mount_nullfs /usr/include /dev/layer/null".
  127  * Changing directory to /dev/layer/null will assign
  128  * the root null-node (which was created when the null layer was mounted).
  129  * Now consider opening "sys".  A vop_lookup would be
  130  * done on the root null-node.  This operation would bypass through
  131  * to the lower layer which would return a vnode representing
  132  * the UFS "sys".  Null_bypass then builds a null-node
  133  * aliasing the UFS "sys" and returns this to the caller.
  134  * Later operations on the null-node "sys" will repeat this
  135  * process when constructing other vnode stacks.
  136  *
  137  *
  138  * CREATING OTHER FILE SYSTEM LAYERS
  139  *
  140  * One of the easiest ways to construct new filesystem layers is to make
  141  * a copy of the null layer, rename all files and variables, and
  142  * then begin modifing the copy.  Sed can be used to easily rename
  143  * all variables.
  144  *
  145  * The umap layer is an example of a layer descended from the
  146  * null layer.
  147  *
  148  *
  149  * INVOKING OPERATIONS ON LOWER LAYERS
  150  *
  151  * There are two techniques to invoke operations on a lower layer
  152  * when the operation cannot be completely bypassed.  Each method
  153  * is appropriate in different situations.  In both cases,
  154  * it is the responsibility of the aliasing layer to make
  155  * the operation arguments "correct" for the lower layer
  156  * by mapping a vnode arguments to the lower layer.
  157  *
  158  * The first approach is to call the aliasing layer's bypass routine.
  159  * This method is most suitable when you wish to invoke the operation
  160  * currently being handled on the lower layer.  It has the advantage
  161  * that the bypass routine already must do argument mapping.
  162  * An example of this is null_getattrs in the null layer.
  163  *
  164  * A second approach is to directly invoke vnode operations on
  165  * the lower layer with the VOP_OPERATIONNAME interface.
  166  * The advantage of this method is that it is easy to invoke
  167  * arbitrary operations on the lower layer.  The disadvantage
  168  * is that vnode arguments must be manualy mapped.
  169  *
  170  */
  171 
  172 #include <sys/param.h>
  173 #include <sys/systm.h>
  174 #include <sys/conf.h>
  175 #include <sys/kernel.h>
  176 #include <sys/lock.h>
  177 #include <sys/malloc.h>
  178 #include <sys/mount.h>
  179 #include <sys/mutex.h>
  180 #include <sys/namei.h>
  181 #include <sys/sysctl.h>
  182 #include <sys/vnode.h>
  183 
  184 #include <fs/nullfs/null.h>
  185 
  186 #include <vm/vm.h>
  187 #include <vm/vm_extern.h>
  188 #include <vm/vm_object.h>
  189 #include <vm/vnode_pager.h>
  190 
  191 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
  192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 
  193         &null_bug_bypass, 0, "");
  194 
  195 /*
  196  * This is the 10-Apr-92 bypass routine.
  197  *    This version has been optimized for speed, throwing away some
  198  * safety checks.  It should still always work, but it's not as
  199  * robust to programmer errors.
  200  *
  201  * In general, we map all vnodes going down and unmap them on the way back.
  202  * As an exception to this, vnodes can be marked "unmapped" by setting
  203  * the Nth bit in operation's vdesc_flags.
  204  *
  205  * Also, some BSD vnode operations have the side effect of vrele'ing
  206  * their arguments.  With stacking, the reference counts are held
  207  * by the upper node, not the lower one, so we must handle these
  208  * side-effects here.  This is not of concern in Sun-derived systems
  209  * since there are no such side-effects.
  210  *
  211  * This makes the following assumptions:
  212  * - only one returned vpp
  213  * - no INOUT vpp's (Sun's vop_open has one of these)
  214  * - the vnode operation vector of the first vnode should be used
  215  *   to determine what implementation of the op should be invoked
  216  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
  217  *   problems on rmdir'ing mount points and renaming?)
  218  */
  219 int
  220 null_bypass(struct vop_generic_args *ap)
  221 {
  222         struct vnode **this_vp_p;
  223         int error;
  224         struct vnode *old_vps[VDESC_MAX_VPS];
  225         struct vnode **vps_p[VDESC_MAX_VPS];
  226         struct vnode ***vppp;
  227         struct vnodeop_desc *descp = ap->a_desc;
  228         int reles, i;
  229 
  230         if (null_bug_bypass)
  231                 printf ("null_bypass: %s\n", descp->vdesc_name);
  232 
  233 #ifdef DIAGNOSTIC
  234         /*
  235          * We require at least one vp.
  236          */
  237         if (descp->vdesc_vp_offsets == NULL ||
  238             descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
  239                 panic ("null_bypass: no vp's in map");
  240 #endif
  241 
  242         /*
  243          * Map the vnodes going in.
  244          * Later, we'll invoke the operation based on
  245          * the first mapped vnode's operation vector.
  246          */
  247         reles = descp->vdesc_flags;
  248         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  249                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  250                         break;   /* bail out at end of list */
  251                 vps_p[i] = this_vp_p =
  252                         VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
  253                 /*
  254                  * We're not guaranteed that any but the first vnode
  255                  * are of our type.  Check for and don't map any
  256                  * that aren't.  (We must always map first vp or vclean fails.)
  257                  */
  258                 if (i && (*this_vp_p == NULLVP ||
  259                     (*this_vp_p)->v_op != &null_vnodeops)) {
  260                         old_vps[i] = NULLVP;
  261                 } else {
  262                         old_vps[i] = *this_vp_p;
  263                         *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
  264                         /*
  265                          * XXX - Several operations have the side effect
  266                          * of vrele'ing their vp's.  We must account for
  267                          * that.  (This should go away in the future.)
  268                          */
  269                         if (reles & VDESC_VP0_WILLRELE)
  270                                 VREF(*this_vp_p);
  271                 }
  272 
  273         }
  274 
  275         /*
  276          * Call the operation on the lower layer
  277          * with the modified argument structure.
  278          */
  279         if (vps_p[0] && *vps_p[0])
  280                 error = VCALL(ap);
  281         else {
  282                 printf("null_bypass: no map for %s\n", descp->vdesc_name);
  283                 error = EINVAL;
  284         }
  285 
  286         /*
  287          * Maintain the illusion of call-by-value
  288          * by restoring vnodes in the argument structure
  289          * to their original value.
  290          */
  291         reles = descp->vdesc_flags;
  292         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  293                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  294                         break;   /* bail out at end of list */
  295                 if (old_vps[i]) {
  296                         *(vps_p[i]) = old_vps[i];
  297 #if 0
  298                         if (reles & VDESC_VP0_WILLUNLOCK)
  299                                 VOP_UNLOCK(*(vps_p[i]), 0);
  300 #endif
  301                         if (reles & VDESC_VP0_WILLRELE)
  302                                 vrele(*(vps_p[i]));
  303                 }
  304         }
  305 
  306         /*
  307          * Map the possible out-going vpp
  308          * (Assumes that the lower layer always returns
  309          * a VREF'ed vpp unless it gets an error.)
  310          */
  311         if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
  312             !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
  313             !error) {
  314                 /*
  315                  * XXX - even though some ops have vpp returned vp's,
  316                  * several ops actually vrele this before returning.
  317                  * We must avoid these ops.
  318                  * (This should go away when these ops are regularized.)
  319                  */
  320                 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
  321                         goto out;
  322                 vppp = VOPARG_OFFSETTO(struct vnode***,
  323                                  descp->vdesc_vpp_offset,ap);
  324                 if (*vppp)
  325                         error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
  326         }
  327 
  328  out:
  329         return (error);
  330 }
  331 
  332 static int
  333 null_add_writecount(struct vop_add_writecount_args *ap)
  334 {
  335         struct vnode *lvp, *vp;
  336         int error;
  337 
  338         vp = ap->a_vp;
  339         lvp = NULLVPTOLOWERVP(vp);
  340         KASSERT(vp->v_writecount + ap->a_inc >= 0, ("wrong writecount inc"));
  341         if (vp->v_writecount > 0 && vp->v_writecount + ap->a_inc == 0)
  342                 error = VOP_ADD_WRITECOUNT(lvp, -1);
  343         else if (vp->v_writecount == 0 && vp->v_writecount + ap->a_inc > 0)
  344                 error = VOP_ADD_WRITECOUNT(lvp, 1);
  345         else
  346                 error = 0;
  347         if (error == 0)
  348                 vp->v_writecount += ap->a_inc;
  349         return (error);
  350 }
  351 
  352 /*
  353  * We have to carry on the locking protocol on the null layer vnodes
  354  * as we progress through the tree. We also have to enforce read-only
  355  * if this layer is mounted read-only.
  356  */
  357 static int
  358 null_lookup(struct vop_lookup_args *ap)
  359 {
  360         struct componentname *cnp = ap->a_cnp;
  361         struct vnode *dvp = ap->a_dvp;
  362         int flags = cnp->cn_flags;
  363         struct vnode *vp, *ldvp, *lvp;
  364         struct mount *mp;
  365         int error;
  366 
  367         mp = dvp->v_mount;
  368         if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 &&
  369             (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
  370                 return (EROFS);
  371         /*
  372          * Although it is possible to call null_bypass(), we'll do
  373          * a direct call to reduce overhead
  374          */
  375         ldvp = NULLVPTOLOWERVP(dvp);
  376         vp = lvp = NULL;
  377         KASSERT((ldvp->v_vflag & VV_ROOT) == 0 ||
  378             ((dvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) == 0),
  379             ("ldvp %p fl %#x dvp %p fl %#x flags %#x", ldvp, ldvp->v_vflag,
  380              dvp, dvp->v_vflag, flags));
  381 
  382         /*
  383          * Hold ldvp.  The reference on it, owned by dvp, is lost in
  384          * case of dvp reclamation, and we need ldvp to move our lock
  385          * from ldvp to dvp.
  386          */
  387         vhold(ldvp);
  388 
  389         error = VOP_LOOKUP(ldvp, &lvp, cnp);
  390 
  391         /*
  392          * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows
  393          * dvp to be reclaimed due to shared v_vnlock.  Check for the
  394          * doomed state and return error.
  395          */
  396         if ((error == 0 || error == EJUSTRETURN) &&
  397             (dvp->v_iflag & VI_DOOMED) != 0) {
  398                 error = ENOENT;
  399                 if (lvp != NULL)
  400                         vput(lvp);
  401 
  402                 /*
  403                  * If vgone() did reclaimed dvp before curthread
  404                  * relocked ldvp, the locks of dvp and ldpv are no
  405                  * longer shared.  In this case, relock of ldvp in
  406                  * lower fs VOP_LOOKUP() does not restore the locking
  407                  * state of dvp.  Compensate for this by unlocking
  408                  * ldvp and locking dvp, which is also correct if the
  409                  * locks are still shared.
  410                  */
  411                 VOP_UNLOCK(ldvp, 0);
  412                 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
  413         }
  414         vdrop(ldvp);
  415 
  416         if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 &&
  417             (mp->mnt_flag & MNT_RDONLY) != 0 &&
  418             (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
  419                 error = EROFS;
  420 
  421         if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
  422                 if (ldvp == lvp) {
  423                         *ap->a_vpp = dvp;
  424                         VREF(dvp);
  425                         vrele(lvp);
  426                 } else {
  427                         error = null_nodeget(mp, lvp, &vp);
  428                         if (error == 0)
  429                                 *ap->a_vpp = vp;
  430                 }
  431         }
  432         return (error);
  433 }
  434 
  435 static int
  436 null_open(struct vop_open_args *ap)
  437 {
  438         int retval;
  439         struct vnode *vp, *ldvp;
  440 
  441         vp = ap->a_vp;
  442         ldvp = NULLVPTOLOWERVP(vp);
  443         retval = null_bypass(&ap->a_gen);
  444         if (retval == 0)
  445                 vp->v_object = ldvp->v_object;
  446         return (retval);
  447 }
  448 
  449 /*
  450  * Setattr call. Disallow write attempts if the layer is mounted read-only.
  451  */
  452 static int
  453 null_setattr(struct vop_setattr_args *ap)
  454 {
  455         struct vnode *vp = ap->a_vp;
  456         struct vattr *vap = ap->a_vap;
  457 
  458         if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
  459             vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
  460             vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
  461             (vp->v_mount->mnt_flag & MNT_RDONLY))
  462                 return (EROFS);
  463         if (vap->va_size != VNOVAL) {
  464                 switch (vp->v_type) {
  465                 case VDIR:
  466                         return (EISDIR);
  467                 case VCHR:
  468                 case VBLK:
  469                 case VSOCK:
  470                 case VFIFO:
  471                         if (vap->va_flags != VNOVAL)
  472                                 return (EOPNOTSUPP);
  473                         return (0);
  474                 case VREG:
  475                 case VLNK:
  476                 default:
  477                         /*
  478                          * Disallow write attempts if the filesystem is
  479                          * mounted read-only.
  480                          */
  481                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  482                                 return (EROFS);
  483                 }
  484         }
  485 
  486         return (null_bypass((struct vop_generic_args *)ap));
  487 }
  488 
  489 /*
  490  *  We handle getattr only to change the fsid.
  491  */
  492 static int
  493 null_getattr(struct vop_getattr_args *ap)
  494 {
  495         int error;
  496 
  497         if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
  498                 return (error);
  499 
  500         ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
  501         return (0);
  502 }
  503 
  504 /*
  505  * Handle to disallow write access if mounted read-only.
  506  */
  507 static int
  508 null_access(struct vop_access_args *ap)
  509 {
  510         struct vnode *vp = ap->a_vp;
  511         accmode_t accmode = ap->a_accmode;
  512 
  513         /*
  514          * Disallow write attempts on read-only layers;
  515          * unless the file is a socket, fifo, or a block or
  516          * character device resident on the filesystem.
  517          */
  518         if (accmode & VWRITE) {
  519                 switch (vp->v_type) {
  520                 case VDIR:
  521                 case VLNK:
  522                 case VREG:
  523                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  524                                 return (EROFS);
  525                         break;
  526                 default:
  527                         break;
  528                 }
  529         }
  530         return (null_bypass((struct vop_generic_args *)ap));
  531 }
  532 
  533 static int
  534 null_accessx(struct vop_accessx_args *ap)
  535 {
  536         struct vnode *vp = ap->a_vp;
  537         accmode_t accmode = ap->a_accmode;
  538 
  539         /*
  540          * Disallow write attempts on read-only layers;
  541          * unless the file is a socket, fifo, or a block or
  542          * character device resident on the filesystem.
  543          */
  544         if (accmode & VWRITE) {
  545                 switch (vp->v_type) {
  546                 case VDIR:
  547                 case VLNK:
  548                 case VREG:
  549                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  550                                 return (EROFS);
  551                         break;
  552                 default:
  553                         break;
  554                 }
  555         }
  556         return (null_bypass((struct vop_generic_args *)ap));
  557 }
  558 
  559 /*
  560  * Increasing refcount of lower vnode is needed at least for the case
  561  * when lower FS is NFS to do sillyrename if the file is in use.
  562  * Unfortunately v_usecount is incremented in many places in
  563  * the kernel and, as such, there may be races that result in
  564  * the NFS client doing an extraneous silly rename, but that seems
  565  * preferable to not doing a silly rename when it is needed.
  566  */
  567 static int
  568 null_remove(struct vop_remove_args *ap)
  569 {
  570         int retval, vreleit;
  571         struct vnode *lvp, *vp;
  572 
  573         vp = ap->a_vp;
  574         if (vrefcnt(vp) > 1) {
  575                 lvp = NULLVPTOLOWERVP(vp);
  576                 VREF(lvp);
  577                 vreleit = 1;
  578         } else
  579                 vreleit = 0;
  580         VTONULL(vp)->null_flags |= NULLV_DROP;
  581         retval = null_bypass(&ap->a_gen);
  582         if (vreleit != 0)
  583                 vrele(lvp);
  584         return (retval);
  585 }
  586 
  587 /*
  588  * We handle this to eliminate null FS to lower FS
  589  * file moving. Don't know why we don't allow this,
  590  * possibly we should.
  591  */
  592 static int
  593 null_rename(struct vop_rename_args *ap)
  594 {
  595         struct vnode *tdvp = ap->a_tdvp;
  596         struct vnode *fvp = ap->a_fvp;
  597         struct vnode *fdvp = ap->a_fdvp;
  598         struct vnode *tvp = ap->a_tvp;
  599         struct null_node *tnn;
  600 
  601         /* Check for cross-device rename. */
  602         if ((fvp->v_mount != tdvp->v_mount) ||
  603             (tvp && (fvp->v_mount != tvp->v_mount))) {
  604                 if (tdvp == tvp)
  605                         vrele(tdvp);
  606                 else
  607                         vput(tdvp);
  608                 if (tvp)
  609                         vput(tvp);
  610                 vrele(fdvp);
  611                 vrele(fvp);
  612                 return (EXDEV);
  613         }
  614 
  615         if (tvp != NULL) {
  616                 tnn = VTONULL(tvp);
  617                 tnn->null_flags |= NULLV_DROP;
  618         }
  619         return (null_bypass((struct vop_generic_args *)ap));
  620 }
  621 
  622 static int
  623 null_rmdir(struct vop_rmdir_args *ap)
  624 {
  625 
  626         VTONULL(ap->a_vp)->null_flags |= NULLV_DROP;
  627         return (null_bypass(&ap->a_gen));
  628 }
  629 
  630 /*
  631  * We need to process our own vnode lock and then clear the
  632  * interlock flag as it applies only to our vnode, not the
  633  * vnodes below us on the stack.
  634  */
  635 static int
  636 null_lock(struct vop_lock1_args *ap)
  637 {
  638         struct vnode *vp = ap->a_vp;
  639         int flags = ap->a_flags;
  640         struct null_node *nn;
  641         struct vnode *lvp;
  642         int error;
  643 
  644 
  645         if ((flags & LK_INTERLOCK) == 0) {
  646                 VI_LOCK(vp);
  647                 ap->a_flags = flags |= LK_INTERLOCK;
  648         }
  649         nn = VTONULL(vp);
  650         /*
  651          * If we're still active we must ask the lower layer to
  652          * lock as ffs has special lock considerations in it's
  653          * vop lock.
  654          */
  655         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  656                 VI_LOCK_FLAGS(lvp, MTX_DUPOK);
  657                 VI_UNLOCK(vp);
  658                 /*
  659                  * We have to hold the vnode here to solve a potential
  660                  * reclaim race.  If we're forcibly vgone'd while we
  661                  * still have refs, a thread could be sleeping inside
  662                  * the lowervp's vop_lock routine.  When we vgone we will
  663                  * drop our last ref to the lowervp, which would allow it
  664                  * to be reclaimed.  The lowervp could then be recycled,
  665                  * in which case it is not legal to be sleeping in it's VOP.
  666                  * We prevent it from being recycled by holding the vnode
  667                  * here.
  668                  */
  669                 vholdl(lvp);
  670                 error = VOP_LOCK(lvp, flags);
  671 
  672                 /*
  673                  * We might have slept to get the lock and someone might have
  674                  * clean our vnode already, switching vnode lock from one in
  675                  * lowervp to v_lock in our own vnode structure.  Handle this
  676                  * case by reacquiring correct lock in requested mode.
  677                  */
  678                 if (VTONULL(vp) == NULL && error == 0) {
  679                         ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
  680                         switch (flags & LK_TYPE_MASK) {
  681                         case LK_SHARED:
  682                                 ap->a_flags |= LK_SHARED;
  683                                 break;
  684                         case LK_UPGRADE:
  685                         case LK_EXCLUSIVE:
  686                                 ap->a_flags |= LK_EXCLUSIVE;
  687                                 break;
  688                         default:
  689                                 panic("Unsupported lock request %d\n",
  690                                     ap->a_flags);
  691                         }
  692                         VOP_UNLOCK(lvp, 0);
  693                         error = vop_stdlock(ap);
  694                 }
  695                 vdrop(lvp);
  696         } else
  697                 error = vop_stdlock(ap);
  698 
  699         return (error);
  700 }
  701 
  702 /*
  703  * We need to process our own vnode unlock and then clear the
  704  * interlock flag as it applies only to our vnode, not the
  705  * vnodes below us on the stack.
  706  */
  707 static int
  708 null_unlock(struct vop_unlock_args *ap)
  709 {
  710         struct vnode *vp = ap->a_vp;
  711         int flags = ap->a_flags;
  712         int mtxlkflag = 0;
  713         struct null_node *nn;
  714         struct vnode *lvp;
  715         int error;
  716 
  717         if ((flags & LK_INTERLOCK) != 0)
  718                 mtxlkflag = 1;
  719         else if (mtx_owned(VI_MTX(vp)) == 0) {
  720                 VI_LOCK(vp);
  721                 mtxlkflag = 2;
  722         }
  723         nn = VTONULL(vp);
  724         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  725                 VI_LOCK_FLAGS(lvp, MTX_DUPOK);
  726                 flags |= LK_INTERLOCK;
  727                 vholdl(lvp);
  728                 VI_UNLOCK(vp);
  729                 error = VOP_UNLOCK(lvp, flags);
  730                 vdrop(lvp);
  731                 if (mtxlkflag == 0)
  732                         VI_LOCK(vp);
  733         } else {
  734                 if (mtxlkflag == 2)
  735                         VI_UNLOCK(vp);
  736                 error = vop_stdunlock(ap);
  737         }
  738 
  739         return (error);
  740 }
  741 
  742 /*
  743  * Do not allow the VOP_INACTIVE to be passed to the lower layer,
  744  * since the reference count on the lower vnode is not related to
  745  * ours.
  746  */
  747 static int
  748 null_inactive(struct vop_inactive_args *ap __unused)
  749 {
  750         struct vnode *vp, *lvp;
  751         struct null_node *xp;
  752         struct mount *mp;
  753         struct null_mount *xmp;
  754 
  755         vp = ap->a_vp;
  756         xp = VTONULL(vp);
  757         lvp = NULLVPTOLOWERVP(vp);
  758         mp = vp->v_mount;
  759         xmp = MOUNTTONULLMOUNT(mp);
  760         if ((xmp->nullm_flags & NULLM_CACHE) == 0 ||
  761             (xp->null_flags & NULLV_DROP) != 0 ||
  762             (lvp->v_vflag & VV_NOSYNC) != 0) {
  763                 /*
  764                  * If this is the last reference and caching of the
  765                  * nullfs vnodes is not enabled, or the lower vnode is
  766                  * deleted, then free up the vnode so as not to tie up
  767                  * the lower vnodes.
  768                  */
  769                 vp->v_object = NULL;
  770                 vrecycle(vp);
  771         }
  772         return (0);
  773 }
  774 
  775 /*
  776  * Now, the nullfs vnode and, due to the sharing lock, the lower
  777  * vnode, are exclusively locked, and we shall destroy the null vnode.
  778  */
  779 static int
  780 null_reclaim(struct vop_reclaim_args *ap)
  781 {
  782         struct vnode *vp;
  783         struct null_node *xp;
  784         struct vnode *lowervp;
  785 
  786         vp = ap->a_vp;
  787         xp = VTONULL(vp);
  788         lowervp = xp->null_lowervp;
  789 
  790         KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
  791             ("Reclaiming incomplete null vnode %p", vp));
  792 
  793         null_hashrem(xp);
  794         /*
  795          * Use the interlock to protect the clearing of v_data to
  796          * prevent faults in null_lock().
  797          */
  798         lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
  799         VI_LOCK(vp);
  800         vp->v_data = NULL;
  801         vp->v_object = NULL;
  802         vp->v_vnlock = &vp->v_lock;
  803         VI_UNLOCK(vp);
  804 
  805         /*
  806          * If we were opened for write, we leased one write reference
  807          * to the lower vnode.  If this is a reclamation due to the
  808          * forced unmount, undo the reference now.
  809          */
  810         if (vp->v_writecount > 0)
  811                 VOP_ADD_WRITECOUNT(lowervp, -1);
  812         if ((xp->null_flags & NULLV_NOUNLOCK) != 0)
  813                 vunref(lowervp);
  814         else
  815                 vput(lowervp);
  816         free(xp, M_NULLFSNODE);
  817 
  818         return (0);
  819 }
  820 
  821 static int
  822 null_print(struct vop_print_args *ap)
  823 {
  824         struct vnode *vp = ap->a_vp;
  825 
  826         printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
  827         return (0);
  828 }
  829 
  830 /* ARGSUSED */
  831 static int
  832 null_getwritemount(struct vop_getwritemount_args *ap)
  833 {
  834         struct null_node *xp;
  835         struct vnode *lowervp;
  836         struct vnode *vp;
  837 
  838         vp = ap->a_vp;
  839         VI_LOCK(vp);
  840         xp = VTONULL(vp);
  841         if (xp && (lowervp = xp->null_lowervp)) {
  842                 VI_LOCK_FLAGS(lowervp, MTX_DUPOK);
  843                 VI_UNLOCK(vp);
  844                 vholdl(lowervp);
  845                 VI_UNLOCK(lowervp);
  846                 VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
  847                 vdrop(lowervp);
  848         } else {
  849                 VI_UNLOCK(vp);
  850                 *(ap->a_mpp) = NULL;
  851         }
  852         return (0);
  853 }
  854 
  855 static int
  856 null_vptofh(struct vop_vptofh_args *ap)
  857 {
  858         struct vnode *lvp;
  859 
  860         lvp = NULLVPTOLOWERVP(ap->a_vp);
  861         return VOP_VPTOFH(lvp, ap->a_fhp);
  862 }
  863 
  864 static int
  865 null_vptocnp(struct vop_vptocnp_args *ap)
  866 {
  867         struct vnode *vp = ap->a_vp;
  868         struct vnode **dvp = ap->a_vpp;
  869         struct vnode *lvp, *ldvp;
  870         struct ucred *cred = ap->a_cred;
  871         int error, locked;
  872 
  873         if (vp->v_type == VDIR)
  874                 return (vop_stdvptocnp(ap));
  875 
  876         locked = VOP_ISLOCKED(vp);
  877         lvp = NULLVPTOLOWERVP(vp);
  878         vhold(lvp);
  879         VOP_UNLOCK(vp, 0); /* vp is held by vn_vptocnp_locked that called us */
  880         ldvp = lvp;
  881         vref(lvp);
  882         error = vn_vptocnp(&ldvp, cred, ap->a_buf, ap->a_buflen);
  883         vdrop(lvp);
  884         if (error != 0) {
  885                 vn_lock(vp, locked | LK_RETRY);
  886                 return (ENOENT);
  887         }
  888 
  889         /*
  890          * Exclusive lock is required by insmntque1 call in
  891          * null_nodeget()
  892          */
  893         error = vn_lock(ldvp, LK_EXCLUSIVE);
  894         if (error != 0) {
  895                 vrele(ldvp);
  896                 vn_lock(vp, locked | LK_RETRY);
  897                 return (ENOENT);
  898         }
  899         vref(ldvp);
  900         error = null_nodeget(vp->v_mount, ldvp, dvp);
  901         if (error == 0) {
  902 #ifdef DIAGNOSTIC
  903                 NULLVPTOLOWERVP(*dvp);
  904 #endif
  905                 VOP_UNLOCK(*dvp, 0); /* keep reference on *dvp */
  906         }
  907         vn_lock(vp, locked | LK_RETRY);
  908         return (error);
  909 }
  910 
  911 /*
  912  * Global vfs data structures
  913  */
  914 struct vop_vector null_vnodeops = {
  915         .vop_bypass =           null_bypass,
  916         .vop_access =           null_access,
  917         .vop_accessx =          null_accessx,
  918         .vop_advlockpurge =     vop_stdadvlockpurge,
  919         .vop_bmap =             VOP_EOPNOTSUPP,
  920         .vop_getattr =          null_getattr,
  921         .vop_getwritemount =    null_getwritemount,
  922         .vop_inactive =         null_inactive,
  923         .vop_islocked =         vop_stdislocked,
  924         .vop_lock1 =            null_lock,
  925         .vop_lookup =           null_lookup,
  926         .vop_open =             null_open,
  927         .vop_print =            null_print,
  928         .vop_reclaim =          null_reclaim,
  929         .vop_remove =           null_remove,
  930         .vop_rename =           null_rename,
  931         .vop_rmdir =            null_rmdir,
  932         .vop_setattr =          null_setattr,
  933         .vop_strategy =         VOP_EOPNOTSUPP,
  934         .vop_unlock =           null_unlock,
  935         .vop_vptocnp =          null_vptocnp,
  936         .vop_vptofh =           null_vptofh,
  937         .vop_add_writecount =   null_add_writecount,
  938 };

Cache object: 7235ac225cfc67b2f7ad13fcb910ffa5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.