The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nullfs/null_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1992, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * John Heidemann of the UCLA Ficus project.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)null_vnops.c        8.6 (Berkeley) 5/27/95
   35  *
   36  * Ancestors:
   37  *      @(#)lofs_vnops.c        1.2 (Berkeley) 6/18/92
   38  *      ...and...
   39  *      @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
   40  *
   41  * $FreeBSD$
   42  */
   43 
   44 /*
   45  * Null Layer
   46  *
   47  * (See mount_nullfs(8) for more information.)
   48  *
   49  * The null layer duplicates a portion of the filesystem
   50  * name space under a new name.  In this respect, it is
   51  * similar to the loopback filesystem.  It differs from
   52  * the loopback fs in two respects:  it is implemented using
   53  * a stackable layers techniques, and its "null-node"s stack above
   54  * all lower-layer vnodes, not just over directory vnodes.
   55  *
   56  * The null layer has two purposes.  First, it serves as a demonstration
   57  * of layering by proving a layer which does nothing.  (It actually
   58  * does everything the loopback filesystem does, which is slightly
   59  * more than nothing.)  Second, the null layer can serve as a prototype
   60  * layer.  Since it provides all necessary layer framework,
   61  * new filesystem layers can be created very easily be starting
   62  * with a null layer.
   63  *
   64  * The remainder of this man page examines the null layer as a basis
   65  * for constructing new layers.
   66  *
   67  *
   68  * INSTANTIATING NEW NULL LAYERS
   69  *
   70  * New null layers are created with mount_nullfs(8).
   71  * Mount_nullfs(8) takes two arguments, the pathname
   72  * of the lower vfs (target-pn) and the pathname where the null
   73  * layer will appear in the namespace (alias-pn).  After
   74  * the null layer is put into place, the contents
   75  * of target-pn subtree will be aliased under alias-pn.
   76  *
   77  *
   78  * OPERATION OF A NULL LAYER
   79  *
   80  * The null layer is the minimum filesystem layer,
   81  * simply bypassing all possible operations to the lower layer
   82  * for processing there.  The majority of its activity centers
   83  * on the bypass routine, through which nearly all vnode operations
   84  * pass.
   85  *
   86  * The bypass routine accepts arbitrary vnode operations for
   87  * handling by the lower layer.  It begins by examining vnode
   88  * operation arguments and replacing any null-nodes by their
   89  * lower-layer equivlants.  It then invokes the operation
   90  * on the lower layer.  Finally, it replaces the null-nodes
   91  * in the arguments and, if a vnode is return by the operation,
   92  * stacks a null-node on top of the returned vnode.
   93  *
   94  * Although bypass handles most operations, vop_getattr, vop_lock,
   95  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
   96  * bypassed. Vop_getattr must change the fsid being returned.
   97  * Vop_lock and vop_unlock must handle any locking for the
   98  * current vnode as well as pass the lock request down.
   99  * Vop_inactive and vop_reclaim are not bypassed so that
  100  * they can handle freeing null-layer specific data. Vop_print
  101  * is not bypassed to avoid excessive debugging information.
  102  * Also, certain vnode operations change the locking state within
  103  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
  104  * and symlink). Ideally these operations should not change the
  105  * lock state, but should be changed to let the caller of the
  106  * function unlock them. Otherwise all intermediate vnode layers
  107  * (such as union, umapfs, etc) must catch these functions to do
  108  * the necessary locking at their layer.
  109  *
  110  *
  111  * INSTANTIATING VNODE STACKS
  112  *
  113  * Mounting associates the null layer with a lower layer,
  114  * effect stacking two VFSes.  Vnode stacks are instead
  115  * created on demand as files are accessed.
  116  *
  117  * The initial mount creates a single vnode stack for the
  118  * root of the new null layer.  All other vnode stacks
  119  * are created as a result of vnode operations on
  120  * this or other null vnode stacks.
  121  *
  122  * New vnode stacks come into existence as a result of
  123  * an operation which returns a vnode.
  124  * The bypass routine stacks a null-node above the new
  125  * vnode before returning it to the caller.
  126  *
  127  * For example, imagine mounting a null layer with
  128  * "mount_nullfs /usr/include /dev/layer/null".
  129  * Changing directory to /dev/layer/null will assign
  130  * the root null-node (which was created when the null layer was mounted).
  131  * Now consider opening "sys".  A vop_lookup would be
  132  * done on the root null-node.  This operation would bypass through
  133  * to the lower layer which would return a vnode representing
  134  * the UFS "sys".  Null_bypass then builds a null-node
  135  * aliasing the UFS "sys" and returns this to the caller.
  136  * Later operations on the null-node "sys" will repeat this
  137  * process when constructing other vnode stacks.
  138  *
  139  *
  140  * CREATING OTHER FILE SYSTEM LAYERS
  141  *
  142  * One of the easiest ways to construct new filesystem layers is to make
  143  * a copy of the null layer, rename all files and variables, and
  144  * then begin modifing the copy.  Sed can be used to easily rename
  145  * all variables.
  146  *
  147  * The umap layer is an example of a layer descended from the
  148  * null layer.
  149  *
  150  *
  151  * INVOKING OPERATIONS ON LOWER LAYERS
  152  *
  153  * There are two techniques to invoke operations on a lower layer
  154  * when the operation cannot be completely bypassed.  Each method
  155  * is appropriate in different situations.  In both cases,
  156  * it is the responsibility of the aliasing layer to make
  157  * the operation arguments "correct" for the lower layer
  158  * by mapping a vnode arguments to the lower layer.
  159  *
  160  * The first approach is to call the aliasing layer's bypass routine.
  161  * This method is most suitable when you wish to invoke the operation
  162  * currently being handled on the lower layer.  It has the advantage
  163  * that the bypass routine already must do argument mapping.
  164  * An example of this is null_getattrs in the null layer.
  165  *
  166  * A second approach is to directly invoke vnode operations on
  167  * the lower layer with the VOP_OPERATIONNAME interface.
  168  * The advantage of this method is that it is easy to invoke
  169  * arbitrary operations on the lower layer.  The disadvantage
  170  * is that vnode arguments must be manualy mapped.
  171  *
  172  */
  173 
  174 #include <sys/param.h>
  175 #include <sys/systm.h>
  176 #include <sys/conf.h>
  177 #include <sys/kernel.h>
  178 #include <sys/lock.h>
  179 #include <sys/malloc.h>
  180 #include <sys/mount.h>
  181 #include <sys/mutex.h>
  182 #include <sys/namei.h>
  183 #include <sys/sysctl.h>
  184 #include <sys/vnode.h>
  185 
  186 #include <fs/nullfs/null.h>
  187 
  188 #include <vm/vm.h>
  189 #include <vm/vm_extern.h>
  190 #include <vm/vm_object.h>
  191 #include <vm/vnode_pager.h>
  192 
  193 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
  194 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 
  195         &null_bug_bypass, 0, "");
  196 
  197 /*
  198  * This is the 10-Apr-92 bypass routine.
  199  *    This version has been optimized for speed, throwing away some
  200  * safety checks.  It should still always work, but it's not as
  201  * robust to programmer errors.
  202  *
  203  * In general, we map all vnodes going down and unmap them on the way back.
  204  * As an exception to this, vnodes can be marked "unmapped" by setting
  205  * the Nth bit in operation's vdesc_flags.
  206  *
  207  * Also, some BSD vnode operations have the side effect of vrele'ing
  208  * their arguments.  With stacking, the reference counts are held
  209  * by the upper node, not the lower one, so we must handle these
  210  * side-effects here.  This is not of concern in Sun-derived systems
  211  * since there are no such side-effects.
  212  *
  213  * This makes the following assumptions:
  214  * - only one returned vpp
  215  * - no INOUT vpp's (Sun's vop_open has one of these)
  216  * - the vnode operation vector of the first vnode should be used
  217  *   to determine what implementation of the op should be invoked
  218  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
  219  *   problems on rmdir'ing mount points and renaming?)
  220  */
  221 int
  222 null_bypass(struct vop_generic_args *ap)
  223 {
  224         struct vnode **this_vp_p;
  225         int error;
  226         struct vnode *old_vps[VDESC_MAX_VPS];
  227         struct vnode **vps_p[VDESC_MAX_VPS];
  228         struct vnode ***vppp;
  229         struct vnodeop_desc *descp = ap->a_desc;
  230         int reles, i;
  231 
  232         if (null_bug_bypass)
  233                 printf ("null_bypass: %s\n", descp->vdesc_name);
  234 
  235 #ifdef DIAGNOSTIC
  236         /*
  237          * We require at least one vp.
  238          */
  239         if (descp->vdesc_vp_offsets == NULL ||
  240             descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
  241                 panic ("null_bypass: no vp's in map");
  242 #endif
  243 
  244         /*
  245          * Map the vnodes going in.
  246          * Later, we'll invoke the operation based on
  247          * the first mapped vnode's operation vector.
  248          */
  249         reles = descp->vdesc_flags;
  250         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  251                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  252                         break;   /* bail out at end of list */
  253                 vps_p[i] = this_vp_p =
  254                         VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
  255                 /*
  256                  * We're not guaranteed that any but the first vnode
  257                  * are of our type.  Check for and don't map any
  258                  * that aren't.  (We must always map first vp or vclean fails.)
  259                  */
  260                 if (i && (*this_vp_p == NULLVP ||
  261                     (*this_vp_p)->v_op != &null_vnodeops)) {
  262                         old_vps[i] = NULLVP;
  263                 } else {
  264                         old_vps[i] = *this_vp_p;
  265                         *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
  266                         /*
  267                          * XXX - Several operations have the side effect
  268                          * of vrele'ing their vp's.  We must account for
  269                          * that.  (This should go away in the future.)
  270                          */
  271                         if (reles & VDESC_VP0_WILLRELE)
  272                                 VREF(*this_vp_p);
  273                 }
  274 
  275         }
  276 
  277         /*
  278          * Call the operation on the lower layer
  279          * with the modified argument structure.
  280          */
  281         if (vps_p[0] && *vps_p[0])
  282                 error = VCALL(ap);
  283         else {
  284                 printf("null_bypass: no map for %s\n", descp->vdesc_name);
  285                 error = EINVAL;
  286         }
  287 
  288         /*
  289          * Maintain the illusion of call-by-value
  290          * by restoring vnodes in the argument structure
  291          * to their original value.
  292          */
  293         reles = descp->vdesc_flags;
  294         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  295                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  296                         break;   /* bail out at end of list */
  297                 if (old_vps[i]) {
  298                         *(vps_p[i]) = old_vps[i];
  299 #if 0
  300                         if (reles & VDESC_VP0_WILLUNLOCK)
  301                                 VOP_UNLOCK(*(vps_p[i]), 0);
  302 #endif
  303                         if (reles & VDESC_VP0_WILLRELE)
  304                                 vrele(*(vps_p[i]));
  305                 }
  306         }
  307 
  308         /*
  309          * Map the possible out-going vpp
  310          * (Assumes that the lower layer always returns
  311          * a VREF'ed vpp unless it gets an error.)
  312          */
  313         if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
  314             !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
  315             !error) {
  316                 /*
  317                  * XXX - even though some ops have vpp returned vp's,
  318                  * several ops actually vrele this before returning.
  319                  * We must avoid these ops.
  320                  * (This should go away when these ops are regularized.)
  321                  */
  322                 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
  323                         goto out;
  324                 vppp = VOPARG_OFFSETTO(struct vnode***,
  325                                  descp->vdesc_vpp_offset,ap);
  326                 if (*vppp)
  327                         error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
  328         }
  329 
  330  out:
  331         return (error);
  332 }
  333 
  334 static int
  335 null_add_writecount(struct vop_add_writecount_args *ap)
  336 {
  337         struct vnode *lvp, *vp;
  338         int error;
  339 
  340         vp = ap->a_vp;
  341         lvp = NULLVPTOLOWERVP(vp);
  342         VI_LOCK(vp);
  343         /* text refs are bypassed to lowervp */
  344         VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount"));
  345         VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp,
  346             ("wrong writecount inc %d", ap->a_inc));
  347         error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc);
  348         if (error == 0)
  349                 vp->v_writecount += ap->a_inc;
  350         VI_UNLOCK(vp);
  351         return (error);
  352 }
  353 
  354 /*
  355  * We have to carry on the locking protocol on the null layer vnodes
  356  * as we progress through the tree. We also have to enforce read-only
  357  * if this layer is mounted read-only.
  358  */
  359 static int
  360 null_lookup(struct vop_lookup_args *ap)
  361 {
  362         struct componentname *cnp = ap->a_cnp;
  363         struct vnode *dvp = ap->a_dvp;
  364         int flags = cnp->cn_flags;
  365         struct vnode *vp, *ldvp, *lvp;
  366         struct mount *mp;
  367         int error;
  368 
  369         mp = dvp->v_mount;
  370         if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 &&
  371             (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
  372                 return (EROFS);
  373         /*
  374          * Although it is possible to call null_bypass(), we'll do
  375          * a direct call to reduce overhead
  376          */
  377         ldvp = NULLVPTOLOWERVP(dvp);
  378         vp = lvp = NULL;
  379 
  380         /*
  381          * Renames in the lower mounts might create an inconsistent
  382          * configuration where lower vnode is moved out of the
  383          * directory tree remounted by our null mount.  Do not try to
  384          * handle it fancy, just avoid VOP_LOOKUP() with DOTDOT name
  385          * which cannot be handled by VOP, at least passing over lower
  386          * root.
  387          */
  388         if ((ldvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) != 0) {
  389                 KASSERT((dvp->v_vflag & VV_ROOT) == 0,
  390                     ("ldvp %p fl %#x dvp %p fl %#x flags %#x",
  391                     ldvp, ldvp->v_vflag, dvp, dvp->v_vflag, flags));
  392                 return (ENOENT);
  393         }
  394 
  395         /*
  396          * Hold ldvp.  The reference on it, owned by dvp, is lost in
  397          * case of dvp reclamation, and we need ldvp to move our lock
  398          * from ldvp to dvp.
  399          */
  400         vhold(ldvp);
  401 
  402         error = VOP_LOOKUP(ldvp, &lvp, cnp);
  403 
  404         /*
  405          * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows
  406          * dvp to be reclaimed due to shared v_vnlock.  Check for the
  407          * doomed state and return error.
  408          */
  409         if ((error == 0 || error == EJUSTRETURN) &&
  410             (dvp->v_iflag & VI_DOOMED) != 0) {
  411                 error = ENOENT;
  412                 if (lvp != NULL)
  413                         vput(lvp);
  414 
  415                 /*
  416                  * If vgone() did reclaimed dvp before curthread
  417                  * relocked ldvp, the locks of dvp and ldpv are no
  418                  * longer shared.  In this case, relock of ldvp in
  419                  * lower fs VOP_LOOKUP() does not restore the locking
  420                  * state of dvp.  Compensate for this by unlocking
  421                  * ldvp and locking dvp, which is also correct if the
  422                  * locks are still shared.
  423                  */
  424                 VOP_UNLOCK(ldvp, 0);
  425                 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
  426         }
  427         vdrop(ldvp);
  428 
  429         if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 &&
  430             (mp->mnt_flag & MNT_RDONLY) != 0 &&
  431             (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
  432                 error = EROFS;
  433 
  434         if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
  435                 if (ldvp == lvp) {
  436                         *ap->a_vpp = dvp;
  437                         VREF(dvp);
  438                         vrele(lvp);
  439                 } else {
  440                         error = null_nodeget(mp, lvp, &vp);
  441                         if (error == 0)
  442                                 *ap->a_vpp = vp;
  443                 }
  444         }
  445         return (error);
  446 }
  447 
  448 static int
  449 null_open(struct vop_open_args *ap)
  450 {
  451         int retval;
  452         struct vnode *vp, *ldvp;
  453 
  454         vp = ap->a_vp;
  455         ldvp = NULLVPTOLOWERVP(vp);
  456         retval = null_bypass(&ap->a_gen);
  457         if (retval == 0)
  458                 vp->v_object = ldvp->v_object;
  459         return (retval);
  460 }
  461 
  462 /*
  463  * Setattr call. Disallow write attempts if the layer is mounted read-only.
  464  */
  465 static int
  466 null_setattr(struct vop_setattr_args *ap)
  467 {
  468         struct vnode *vp = ap->a_vp;
  469         struct vattr *vap = ap->a_vap;
  470 
  471         if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
  472             vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
  473             vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
  474             (vp->v_mount->mnt_flag & MNT_RDONLY))
  475                 return (EROFS);
  476         if (vap->va_size != VNOVAL) {
  477                 switch (vp->v_type) {
  478                 case VDIR:
  479                         return (EISDIR);
  480                 case VCHR:
  481                 case VBLK:
  482                 case VSOCK:
  483                 case VFIFO:
  484                         if (vap->va_flags != VNOVAL)
  485                                 return (EOPNOTSUPP);
  486                         return (0);
  487                 case VREG:
  488                 case VLNK:
  489                 default:
  490                         /*
  491                          * Disallow write attempts if the filesystem is
  492                          * mounted read-only.
  493                          */
  494                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  495                                 return (EROFS);
  496                 }
  497         }
  498 
  499         return (null_bypass((struct vop_generic_args *)ap));
  500 }
  501 
  502 /*
  503  *  We handle getattr only to change the fsid.
  504  */
  505 static int
  506 null_getattr(struct vop_getattr_args *ap)
  507 {
  508         int error;
  509 
  510         if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
  511                 return (error);
  512 
  513         ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
  514         return (0);
  515 }
  516 
  517 /*
  518  * Handle to disallow write access if mounted read-only.
  519  */
  520 static int
  521 null_access(struct vop_access_args *ap)
  522 {
  523         struct vnode *vp = ap->a_vp;
  524         accmode_t accmode = ap->a_accmode;
  525 
  526         /*
  527          * Disallow write attempts on read-only layers;
  528          * unless the file is a socket, fifo, or a block or
  529          * character device resident on the filesystem.
  530          */
  531         if (accmode & VWRITE) {
  532                 switch (vp->v_type) {
  533                 case VDIR:
  534                 case VLNK:
  535                 case VREG:
  536                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  537                                 return (EROFS);
  538                         break;
  539                 default:
  540                         break;
  541                 }
  542         }
  543         return (null_bypass((struct vop_generic_args *)ap));
  544 }
  545 
  546 static int
  547 null_accessx(struct vop_accessx_args *ap)
  548 {
  549         struct vnode *vp = ap->a_vp;
  550         accmode_t accmode = ap->a_accmode;
  551 
  552         /*
  553          * Disallow write attempts on read-only layers;
  554          * unless the file is a socket, fifo, or a block or
  555          * character device resident on the filesystem.
  556          */
  557         if (accmode & VWRITE) {
  558                 switch (vp->v_type) {
  559                 case VDIR:
  560                 case VLNK:
  561                 case VREG:
  562                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  563                                 return (EROFS);
  564                         break;
  565                 default:
  566                         break;
  567                 }
  568         }
  569         return (null_bypass((struct vop_generic_args *)ap));
  570 }
  571 
  572 /*
  573  * Increasing refcount of lower vnode is needed at least for the case
  574  * when lower FS is NFS to do sillyrename if the file is in use.
  575  * Unfortunately v_usecount is incremented in many places in
  576  * the kernel and, as such, there may be races that result in
  577  * the NFS client doing an extraneous silly rename, but that seems
  578  * preferable to not doing a silly rename when it is needed.
  579  */
  580 static int
  581 null_remove(struct vop_remove_args *ap)
  582 {
  583         int retval, vreleit;
  584         struct vnode *lvp, *vp;
  585 
  586         vp = ap->a_vp;
  587         if (vrefcnt(vp) > 1) {
  588                 lvp = NULLVPTOLOWERVP(vp);
  589                 VREF(lvp);
  590                 vreleit = 1;
  591         } else
  592                 vreleit = 0;
  593         VTONULL(vp)->null_flags |= NULLV_DROP;
  594         retval = null_bypass(&ap->a_gen);
  595         if (vreleit != 0)
  596                 vrele(lvp);
  597         return (retval);
  598 }
  599 
  600 /*
  601  * We handle this to eliminate null FS to lower FS
  602  * file moving. Don't know why we don't allow this,
  603  * possibly we should.
  604  */
  605 static int
  606 null_rename(struct vop_rename_args *ap)
  607 {
  608         struct vnode *tdvp = ap->a_tdvp;
  609         struct vnode *fvp = ap->a_fvp;
  610         struct vnode *fdvp = ap->a_fdvp;
  611         struct vnode *tvp = ap->a_tvp;
  612         struct null_node *tnn;
  613 
  614         /* Check for cross-device rename. */
  615         if ((fvp->v_mount != tdvp->v_mount) ||
  616             (tvp && (fvp->v_mount != tvp->v_mount))) {
  617                 if (tdvp == tvp)
  618                         vrele(tdvp);
  619                 else
  620                         vput(tdvp);
  621                 if (tvp)
  622                         vput(tvp);
  623                 vrele(fdvp);
  624                 vrele(fvp);
  625                 return (EXDEV);
  626         }
  627 
  628         if (tvp != NULL) {
  629                 tnn = VTONULL(tvp);
  630                 tnn->null_flags |= NULLV_DROP;
  631         }
  632         return (null_bypass((struct vop_generic_args *)ap));
  633 }
  634 
  635 static int
  636 null_rmdir(struct vop_rmdir_args *ap)
  637 {
  638 
  639         VTONULL(ap->a_vp)->null_flags |= NULLV_DROP;
  640         return (null_bypass(&ap->a_gen));
  641 }
  642 
  643 /*
  644  * We need to process our own vnode lock and then clear the
  645  * interlock flag as it applies only to our vnode, not the
  646  * vnodes below us on the stack.
  647  */
  648 static int
  649 null_lock(struct vop_lock1_args *ap)
  650 {
  651         struct vnode *vp = ap->a_vp;
  652         int flags = ap->a_flags;
  653         struct null_node *nn;
  654         struct vnode *lvp;
  655         int error;
  656 
  657 
  658         if ((flags & LK_INTERLOCK) == 0) {
  659                 VI_LOCK(vp);
  660                 ap->a_flags = flags |= LK_INTERLOCK;
  661         }
  662         nn = VTONULL(vp);
  663         /*
  664          * If we're still active we must ask the lower layer to
  665          * lock as ffs has special lock considerations in its
  666          * vop lock.
  667          */
  668         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  669                 VI_LOCK_FLAGS(lvp, MTX_DUPOK);
  670                 VI_UNLOCK(vp);
  671                 /*
  672                  * We have to hold the vnode here to solve a potential
  673                  * reclaim race.  If we're forcibly vgone'd while we
  674                  * still have refs, a thread could be sleeping inside
  675                  * the lowervp's vop_lock routine.  When we vgone we will
  676                  * drop our last ref to the lowervp, which would allow it
  677                  * to be reclaimed.  The lowervp could then be recycled,
  678                  * in which case it is not legal to be sleeping in its VOP.
  679                  * We prevent it from being recycled by holding the vnode
  680                  * here.
  681                  */
  682                 vholdl(lvp);
  683                 error = VOP_LOCK(lvp, flags);
  684 
  685                 /*
  686                  * We might have slept to get the lock and someone might have
  687                  * clean our vnode already, switching vnode lock from one in
  688                  * lowervp to v_lock in our own vnode structure.  Handle this
  689                  * case by reacquiring correct lock in requested mode.
  690                  */
  691                 if (VTONULL(vp) == NULL && error == 0) {
  692                         ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
  693                         switch (flags & LK_TYPE_MASK) {
  694                         case LK_SHARED:
  695                                 ap->a_flags |= LK_SHARED;
  696                                 break;
  697                         case LK_UPGRADE:
  698                         case LK_EXCLUSIVE:
  699                                 ap->a_flags |= LK_EXCLUSIVE;
  700                                 break;
  701                         default:
  702                                 panic("Unsupported lock request %d\n",
  703                                     ap->a_flags);
  704                         }
  705                         VOP_UNLOCK(lvp, 0);
  706                         error = vop_stdlock(ap);
  707                 }
  708                 vdrop(lvp);
  709         } else
  710                 error = vop_stdlock(ap);
  711 
  712         return (error);
  713 }
  714 
  715 /*
  716  * We need to process our own vnode unlock and then clear the
  717  * interlock flag as it applies only to our vnode, not the
  718  * vnodes below us on the stack.
  719  */
  720 static int
  721 null_unlock(struct vop_unlock_args *ap)
  722 {
  723         struct vnode *vp = ap->a_vp;
  724         int flags = ap->a_flags;
  725         int mtxlkflag = 0;
  726         struct null_node *nn;
  727         struct vnode *lvp;
  728         int error;
  729 
  730         if ((flags & LK_INTERLOCK) != 0)
  731                 mtxlkflag = 1;
  732         else if (mtx_owned(VI_MTX(vp)) == 0) {
  733                 VI_LOCK(vp);
  734                 mtxlkflag = 2;
  735         }
  736         nn = VTONULL(vp);
  737         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  738                 VI_LOCK_FLAGS(lvp, MTX_DUPOK);
  739                 flags |= LK_INTERLOCK;
  740                 vholdl(lvp);
  741                 VI_UNLOCK(vp);
  742                 error = VOP_UNLOCK(lvp, flags);
  743                 vdrop(lvp);
  744                 if (mtxlkflag == 0)
  745                         VI_LOCK(vp);
  746         } else {
  747                 if (mtxlkflag == 2)
  748                         VI_UNLOCK(vp);
  749                 error = vop_stdunlock(ap);
  750         }
  751 
  752         return (error);
  753 }
  754 
  755 /*
  756  * Do not allow the VOP_INACTIVE to be passed to the lower layer,
  757  * since the reference count on the lower vnode is not related to
  758  * ours.
  759  */
  760 static int
  761 null_inactive(struct vop_inactive_args *ap __unused)
  762 {
  763         struct vnode *vp, *lvp;
  764         struct null_node *xp;
  765         struct mount *mp;
  766         struct null_mount *xmp;
  767 
  768         vp = ap->a_vp;
  769         xp = VTONULL(vp);
  770         lvp = NULLVPTOLOWERVP(vp);
  771         mp = vp->v_mount;
  772         xmp = MOUNTTONULLMOUNT(mp);
  773         if ((xmp->nullm_flags & NULLM_CACHE) == 0 ||
  774             (xp->null_flags & NULLV_DROP) != 0 ||
  775             (lvp->v_vflag & VV_NOSYNC) != 0) {
  776                 /*
  777                  * If this is the last reference and caching of the
  778                  * nullfs vnodes is not enabled, or the lower vnode is
  779                  * deleted, then free up the vnode so as not to tie up
  780                  * the lower vnodes.
  781                  */
  782                 vp->v_object = NULL;
  783                 vrecycle(vp);
  784         }
  785         return (0);
  786 }
  787 
  788 /*
  789  * Now, the nullfs vnode and, due to the sharing lock, the lower
  790  * vnode, are exclusively locked, and we shall destroy the null vnode.
  791  */
  792 static int
  793 null_reclaim(struct vop_reclaim_args *ap)
  794 {
  795         struct vnode *vp;
  796         struct null_node *xp;
  797         struct vnode *lowervp;
  798 
  799         vp = ap->a_vp;
  800         xp = VTONULL(vp);
  801         lowervp = xp->null_lowervp;
  802 
  803         KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
  804             ("Reclaiming incomplete null vnode %p", vp));
  805 
  806         null_hashrem(xp);
  807         /*
  808          * Use the interlock to protect the clearing of v_data to
  809          * prevent faults in null_lock().
  810          */
  811         lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
  812         VI_LOCK(vp);
  813         vp->v_data = NULL;
  814         vp->v_object = NULL;
  815         vp->v_vnlock = &vp->v_lock;
  816 
  817         /*
  818          * If we were opened for write, we leased the write reference
  819          * to the lower vnode.  If this is a reclamation due to the
  820          * forced unmount, undo the reference now.
  821          */
  822         if (vp->v_writecount > 0)
  823                 VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount);
  824         else if (vp->v_writecount < 0)
  825                 vp->v_writecount = 0;
  826 
  827         VI_UNLOCK(vp);
  828 
  829         if ((xp->null_flags & NULLV_NOUNLOCK) != 0)
  830                 vunref(lowervp);
  831         else
  832                 vput(lowervp);
  833         free(xp, M_NULLFSNODE);
  834 
  835         return (0);
  836 }
  837 
  838 static int
  839 null_print(struct vop_print_args *ap)
  840 {
  841         struct vnode *vp = ap->a_vp;
  842 
  843         printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
  844         return (0);
  845 }
  846 
  847 /* ARGSUSED */
  848 static int
  849 null_getwritemount(struct vop_getwritemount_args *ap)
  850 {
  851         struct null_node *xp;
  852         struct vnode *lowervp;
  853         struct vnode *vp;
  854 
  855         vp = ap->a_vp;
  856         VI_LOCK(vp);
  857         xp = VTONULL(vp);
  858         if (xp && (lowervp = xp->null_lowervp)) {
  859                 VI_LOCK_FLAGS(lowervp, MTX_DUPOK);
  860                 VI_UNLOCK(vp);
  861                 vholdl(lowervp);
  862                 VI_UNLOCK(lowervp);
  863                 VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
  864                 vdrop(lowervp);
  865         } else {
  866                 VI_UNLOCK(vp);
  867                 *(ap->a_mpp) = NULL;
  868         }
  869         return (0);
  870 }
  871 
  872 static int
  873 null_vptofh(struct vop_vptofh_args *ap)
  874 {
  875         struct vnode *lvp;
  876 
  877         lvp = NULLVPTOLOWERVP(ap->a_vp);
  878         return VOP_VPTOFH(lvp, ap->a_fhp);
  879 }
  880 
  881 static int
  882 null_vptocnp(struct vop_vptocnp_args *ap)
  883 {
  884         struct vnode *vp = ap->a_vp;
  885         struct vnode **dvp = ap->a_vpp;
  886         struct vnode *lvp, *ldvp;
  887         struct ucred *cred = ap->a_cred;
  888         struct mount *mp;
  889         int error, locked;
  890 
  891         locked = VOP_ISLOCKED(vp);
  892         lvp = NULLVPTOLOWERVP(vp);
  893         vhold(lvp);
  894         mp = vp->v_mount;
  895         vfs_ref(mp);
  896         VOP_UNLOCK(vp, 0); /* vp is held by vn_vptocnp_locked that called us */
  897         ldvp = lvp;
  898         vref(lvp);
  899         error = vn_vptocnp(&ldvp, cred, ap->a_buf, ap->a_buflen);
  900         vdrop(lvp);
  901         if (error != 0) {
  902                 vn_lock(vp, locked | LK_RETRY);
  903                 vfs_rel(mp);
  904                 return (ENOENT);
  905         }
  906 
  907         /*
  908          * Exclusive lock is required by insmntque1 call in
  909          * null_nodeget()
  910          */
  911         error = vn_lock(ldvp, LK_EXCLUSIVE);
  912         if (error != 0) {
  913                 vrele(ldvp);
  914                 vn_lock(vp, locked | LK_RETRY);
  915                 vfs_rel(mp);
  916                 return (ENOENT);
  917         }
  918         error = null_nodeget(mp, ldvp, dvp);
  919         if (error == 0) {
  920 #ifdef DIAGNOSTIC
  921                 NULLVPTOLOWERVP(*dvp);
  922 #endif
  923                 VOP_UNLOCK(*dvp, 0); /* keep reference on *dvp */
  924         }
  925         vn_lock(vp, locked | LK_RETRY);
  926         vfs_rel(mp);
  927         return (error);
  928 }
  929 
  930 /*
  931  * Global vfs data structures
  932  */
  933 struct vop_vector null_vnodeops = {
  934         .vop_bypass =           null_bypass,
  935         .vop_access =           null_access,
  936         .vop_accessx =          null_accessx,
  937         .vop_advlockpurge =     vop_stdadvlockpurge,
  938         .vop_bmap =             VOP_EOPNOTSUPP,
  939         .vop_getattr =          null_getattr,
  940         .vop_getwritemount =    null_getwritemount,
  941         .vop_inactive =         null_inactive,
  942         .vop_islocked =         vop_stdislocked,
  943         .vop_lock1 =            null_lock,
  944         .vop_lookup =           null_lookup,
  945         .vop_open =             null_open,
  946         .vop_print =            null_print,
  947         .vop_reclaim =          null_reclaim,
  948         .vop_remove =           null_remove,
  949         .vop_rename =           null_rename,
  950         .vop_rmdir =            null_rmdir,
  951         .vop_setattr =          null_setattr,
  952         .vop_strategy =         VOP_EOPNOTSUPP,
  953         .vop_unlock =           null_unlock,
  954         .vop_vptocnp =          null_vptocnp,
  955         .vop_vptofh =           null_vptofh,
  956         .vop_add_writecount =   null_add_writecount,
  957 };

Cache object: 9250edc9a7da46e449c320b251df3888


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.