The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nullfs/null_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1992, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * John Heidemann of the UCLA Ficus project.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)null_vnops.c        8.6 (Berkeley) 5/27/95
   35  *
   36  * Ancestors:
   37  *      @(#)lofs_vnops.c        1.2 (Berkeley) 6/18/92
   38  *      ...and...
   39  *      @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
   40  *
   41  * $FreeBSD$
   42  */
   43 
   44 /*
   45  * Null Layer
   46  *
   47  * (See mount_nullfs(8) for more information.)
   48  *
   49  * The null layer duplicates a portion of the filesystem
   50  * name space under a new name.  In this respect, it is
   51  * similar to the loopback filesystem.  It differs from
   52  * the loopback fs in two respects:  it is implemented using
   53  * a stackable layers techniques, and its "null-node"s stack above
   54  * all lower-layer vnodes, not just over directory vnodes.
   55  *
   56  * The null layer has two purposes.  First, it serves as a demonstration
   57  * of layering by proving a layer which does nothing.  (It actually
   58  * does everything the loopback filesystem does, which is slightly
   59  * more than nothing.)  Second, the null layer can serve as a prototype
   60  * layer.  Since it provides all necessary layer framework,
   61  * new filesystem layers can be created very easily be starting
   62  * with a null layer.
   63  *
   64  * The remainder of this man page examines the null layer as a basis
   65  * for constructing new layers.
   66  *
   67  *
   68  * INSTANTIATING NEW NULL LAYERS
   69  *
   70  * New null layers are created with mount_nullfs(8).
   71  * Mount_nullfs(8) takes two arguments, the pathname
   72  * of the lower vfs (target-pn) and the pathname where the null
   73  * layer will appear in the namespace (alias-pn).  After
   74  * the null layer is put into place, the contents
   75  * of target-pn subtree will be aliased under alias-pn.
   76  *
   77  *
   78  * OPERATION OF A NULL LAYER
   79  *
   80  * The null layer is the minimum filesystem layer,
   81  * simply bypassing all possible operations to the lower layer
   82  * for processing there.  The majority of its activity centers
   83  * on the bypass routine, through which nearly all vnode operations
   84  * pass.
   85  *
   86  * The bypass routine accepts arbitrary vnode operations for
   87  * handling by the lower layer.  It begins by examing vnode
   88  * operation arguments and replacing any null-nodes by their
   89  * lower-layer equivlants.  It then invokes the operation
   90  * on the lower layer.  Finally, it replaces the null-nodes
   91  * in the arguments and, if a vnode is return by the operation,
   92  * stacks a null-node on top of the returned vnode.
   93  *
   94  * Although bypass handles most operations, vop_getattr, vop_lock,
   95  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
   96  * bypassed. Vop_getattr must change the fsid being returned.
   97  * Vop_lock and vop_unlock must handle any locking for the
   98  * current vnode as well as pass the lock request down.
   99  * Vop_inactive and vop_reclaim are not bypassed so that
  100  * they can handle freeing null-layer specific data. Vop_print
  101  * is not bypassed to avoid excessive debugging information.
  102  * Also, certain vnode operations change the locking state within
  103  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
  104  * and symlink). Ideally these operations should not change the
  105  * lock state, but should be changed to let the caller of the
  106  * function unlock them. Otherwise all intermediate vnode layers
  107  * (such as union, umapfs, etc) must catch these functions to do
  108  * the necessary locking at their layer.
  109  *
  110  *
  111  * INSTANTIATING VNODE STACKS
  112  *
  113  * Mounting associates the null layer with a lower layer,
  114  * effect stacking two VFSes.  Vnode stacks are instead
  115  * created on demand as files are accessed.
  116  *
  117  * The initial mount creates a single vnode stack for the
  118  * root of the new null layer.  All other vnode stacks
  119  * are created as a result of vnode operations on
  120  * this or other null vnode stacks.
  121  *
  122  * New vnode stacks come into existence as a result of
  123  * an operation which returns a vnode.
  124  * The bypass routine stacks a null-node above the new
  125  * vnode before returning it to the caller.
  126  *
  127  * For example, imagine mounting a null layer with
  128  * "mount_nullfs /usr/include /dev/layer/null".
  129  * Changing directory to /dev/layer/null will assign
  130  * the root null-node (which was created when the null layer was mounted).
  131  * Now consider opening "sys".  A vop_lookup would be
  132  * done on the root null-node.  This operation would bypass through
  133  * to the lower layer which would return a vnode representing
  134  * the UFS "sys".  Null_bypass then builds a null-node
  135  * aliasing the UFS "sys" and returns this to the caller.
  136  * Later operations on the null-node "sys" will repeat this
  137  * process when constructing other vnode stacks.
  138  *
  139  *
  140  * CREATING OTHER FILE SYSTEM LAYERS
  141  *
  142  * One of the easiest ways to construct new filesystem layers is to make
  143  * a copy of the null layer, rename all files and variables, and
  144  * then begin modifing the copy.  Sed can be used to easily rename
  145  * all variables.
  146  *
  147  * The umap layer is an example of a layer descended from the
  148  * null layer.
  149  *
  150  *
  151  * INVOKING OPERATIONS ON LOWER LAYERS
  152  *
  153  * There are two techniques to invoke operations on a lower layer
  154  * when the operation cannot be completely bypassed.  Each method
  155  * is appropriate in different situations.  In both cases,
  156  * it is the responsibility of the aliasing layer to make
  157  * the operation arguments "correct" for the lower layer
  158  * by mapping a vnode arguments to the lower layer.
  159  *
  160  * The first approach is to call the aliasing layer's bypass routine.
  161  * This method is most suitable when you wish to invoke the operation
  162  * currently being handled on the lower layer.  It has the advantage
  163  * that the bypass routine already must do argument mapping.
  164  * An example of this is null_getattrs in the null layer.
  165  *
  166  * A second approach is to directly invoke vnode operations on
  167  * the lower layer with the VOP_OPERATIONNAME interface.
  168  * The advantage of this method is that it is easy to invoke
  169  * arbitrary operations on the lower layer.  The disadvantage
  170  * is that vnode arguments must be manualy mapped.
  171  *
  172  */
  173 
  174 #include <sys/param.h>
  175 #include <sys/systm.h>
  176 #include <sys/conf.h>
  177 #include <sys/kernel.h>
  178 #include <sys/lock.h>
  179 #include <sys/malloc.h>
  180 #include <sys/mount.h>
  181 #include <sys/mutex.h>
  182 #include <sys/namei.h>
  183 #include <sys/sysctl.h>
  184 #include <sys/vnode.h>
  185 #include <sys/stat.h>
  186 
  187 #include <fs/nullfs/null.h>
  188 
  189 #include <vm/vm.h>
  190 #include <vm/vm_extern.h>
  191 #include <vm/vm_object.h>
  192 #include <vm/vnode_pager.h>
  193 
  194 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
  195 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 
  196         &null_bug_bypass, 0, "");
  197 
  198 /*
  199  * This is the 10-Apr-92 bypass routine.
  200  *    This version has been optimized for speed, throwing away some
  201  * safety checks.  It should still always work, but it's not as
  202  * robust to programmer errors.
  203  *
  204  * In general, we map all vnodes going down and unmap them on the way back.
  205  * As an exception to this, vnodes can be marked "unmapped" by setting
  206  * the Nth bit in operation's vdesc_flags.
  207  *
  208  * Also, some BSD vnode operations have the side effect of vrele'ing
  209  * their arguments.  With stacking, the reference counts are held
  210  * by the upper node, not the lower one, so we must handle these
  211  * side-effects here.  This is not of concern in Sun-derived systems
  212  * since there are no such side-effects.
  213  *
  214  * This makes the following assumptions:
  215  * - only one returned vpp
  216  * - no INOUT vpp's (Sun's vop_open has one of these)
  217  * - the vnode operation vector of the first vnode should be used
  218  *   to determine what implementation of the op should be invoked
  219  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
  220  *   problems on rmdir'ing mount points and renaming?)
  221  */
  222 int
  223 null_bypass(struct vop_generic_args *ap)
  224 {
  225         struct vnode **this_vp_p;
  226         int error;
  227         struct vnode *old_vps[VDESC_MAX_VPS];
  228         struct vnode **vps_p[VDESC_MAX_VPS];
  229         struct vnode ***vppp;
  230         struct vnode *lvp;
  231         struct vnodeop_desc *descp = ap->a_desc;
  232         int reles, i;
  233 
  234         if (null_bug_bypass)
  235                 printf ("null_bypass: %s\n", descp->vdesc_name);
  236 
  237 #ifdef DIAGNOSTIC
  238         /*
  239          * We require at least one vp.
  240          */
  241         if (descp->vdesc_vp_offsets == NULL ||
  242             descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
  243                 panic ("null_bypass: no vp's in map");
  244 #endif
  245 
  246         /*
  247          * Map the vnodes going in.
  248          * Later, we'll invoke the operation based on
  249          * the first mapped vnode's operation vector.
  250          */
  251         reles = descp->vdesc_flags;
  252         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  253                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  254                         break;   /* bail out at end of list */
  255                 vps_p[i] = this_vp_p =
  256                         VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
  257                 /*
  258                  * We're not guaranteed that any but the first vnode
  259                  * are of our type.  Check for and don't map any
  260                  * that aren't.  (We must always map first vp or vclean fails.)
  261                  */
  262                 if (i && (*this_vp_p == NULLVP ||
  263                     (*this_vp_p)->v_op != &null_vnodeops)) {
  264                         old_vps[i] = NULLVP;
  265                 } else {
  266                         old_vps[i] = *this_vp_p;
  267                         *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
  268                         /*
  269                          * XXX - Several operations have the side effect
  270                          * of vrele'ing their vp's.  We must account for
  271                          * that.  (This should go away in the future.)
  272                          */
  273                         if (reles & VDESC_VP0_WILLRELE)
  274                                 VREF(*this_vp_p);
  275                 }
  276         }
  277 
  278         /*
  279          * Call the operation on the lower layer
  280          * with the modified argument structure.
  281          */
  282         if (vps_p[0] && *vps_p[0])
  283                 error = VCALL(ap);
  284         else {
  285                 printf("null_bypass: no map for %s\n", descp->vdesc_name);
  286                 error = EINVAL;
  287         }
  288 
  289         /*
  290          * Maintain the illusion of call-by-value
  291          * by restoring vnodes in the argument structure
  292          * to their original value.
  293          */
  294         reles = descp->vdesc_flags;
  295         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  296                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  297                         break;   /* bail out at end of list */
  298                 if (old_vps[i]) {
  299                         lvp = *(vps_p[i]);
  300 
  301                         /*
  302                          * If lowervp was unlocked during VOP
  303                          * operation, nullfs upper vnode could have
  304                          * been reclaimed, which changes its v_vnlock
  305                          * back to private v_lock.  In this case we
  306                          * must move lock ownership from lower to
  307                          * upper (reclaimed) vnode.
  308                          */
  309                         if (lvp != NULLVP &&
  310                             VOP_ISLOCKED(lvp) == LK_EXCLUSIVE &&
  311                             old_vps[i]->v_vnlock != lvp->v_vnlock) {
  312                                 VOP_UNLOCK(lvp);
  313                                 VOP_LOCK(old_vps[i], LK_EXCLUSIVE | LK_RETRY);
  314                         }
  315 
  316                         *(vps_p[i]) = old_vps[i];
  317 #if 0
  318                         if (reles & VDESC_VP0_WILLUNLOCK)
  319                                 VOP_UNLOCK(*(vps_p[i]), 0);
  320 #endif
  321                         if (reles & VDESC_VP0_WILLRELE)
  322                                 vrele(*(vps_p[i]));
  323                 }
  324         }
  325 
  326         /*
  327          * Map the possible out-going vpp
  328          * (Assumes that the lower layer always returns
  329          * a VREF'ed vpp unless it gets an error.)
  330          */
  331         if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
  332                 /*
  333                  * XXX - even though some ops have vpp returned vp's,
  334                  * several ops actually vrele this before returning.
  335                  * We must avoid these ops.
  336                  * (This should go away when these ops are regularized.)
  337                  */
  338                 vppp = VOPARG_OFFSETTO(struct vnode***,
  339                                  descp->vdesc_vpp_offset,ap);
  340                 if (*vppp)
  341                         error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
  342         }
  343 
  344         return (error);
  345 }
  346 
  347 static int
  348 null_add_writecount(struct vop_add_writecount_args *ap)
  349 {
  350         struct vnode *lvp, *vp;
  351         int error;
  352 
  353         vp = ap->a_vp;
  354         lvp = NULLVPTOLOWERVP(vp);
  355         VI_LOCK(vp);
  356         /* text refs are bypassed to lowervp */
  357         VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount"));
  358         VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp,
  359             ("wrong writecount inc %d", ap->a_inc));
  360         error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc);
  361         if (error == 0)
  362                 vp->v_writecount += ap->a_inc;
  363         VI_UNLOCK(vp);
  364         return (error);
  365 }
  366 
  367 /*
  368  * We have to carry on the locking protocol on the null layer vnodes
  369  * as we progress through the tree. We also have to enforce read-only
  370  * if this layer is mounted read-only.
  371  */
  372 static int
  373 null_lookup(struct vop_lookup_args *ap)
  374 {
  375         struct componentname *cnp = ap->a_cnp;
  376         struct vnode *dvp = ap->a_dvp;
  377         int flags = cnp->cn_flags;
  378         struct vnode *vp, *ldvp, *lvp;
  379         struct mount *mp;
  380         int error;
  381 
  382         mp = dvp->v_mount;
  383         if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 &&
  384             (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
  385                 return (EROFS);
  386         /*
  387          * Although it is possible to call null_bypass(), we'll do
  388          * a direct call to reduce overhead
  389          */
  390         ldvp = NULLVPTOLOWERVP(dvp);
  391         vp = lvp = NULL;
  392         KASSERT((ldvp->v_vflag & VV_ROOT) == 0 ||
  393             ((dvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) == 0),
  394             ("ldvp %p fl %#x dvp %p fl %#x flags %#x", ldvp, ldvp->v_vflag,
  395              dvp, dvp->v_vflag, flags));
  396 
  397         /*
  398          * Hold ldvp.  The reference on it, owned by dvp, is lost in
  399          * case of dvp reclamation, and we need ldvp to move our lock
  400          * from ldvp to dvp.
  401          */
  402         vhold(ldvp);
  403 
  404         error = VOP_LOOKUP(ldvp, &lvp, cnp);
  405 
  406         /*
  407          * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows
  408          * dvp to be reclaimed due to shared v_vnlock.  Check for the
  409          * doomed state and return error.
  410          */
  411         if ((error == 0 || error == EJUSTRETURN) &&
  412             VN_IS_DOOMED(dvp)) {
  413                 error = ENOENT;
  414                 if (lvp != NULL)
  415                         vput(lvp);
  416 
  417                 /*
  418                  * If vgone() did reclaimed dvp before curthread
  419                  * relocked ldvp, the locks of dvp and ldpv are no
  420                  * longer shared.  In this case, relock of ldvp in
  421                  * lower fs VOP_LOOKUP() does not restore the locking
  422                  * state of dvp.  Compensate for this by unlocking
  423                  * ldvp and locking dvp, which is also correct if the
  424                  * locks are still shared.
  425                  */
  426                 VOP_UNLOCK(ldvp);
  427                 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
  428         }
  429         vdrop(ldvp);
  430 
  431         if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 &&
  432             (mp->mnt_flag & MNT_RDONLY) != 0 &&
  433             (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
  434                 error = EROFS;
  435 
  436         if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
  437                 if (ldvp == lvp) {
  438                         *ap->a_vpp = dvp;
  439                         VREF(dvp);
  440                         vrele(lvp);
  441                 } else {
  442                         error = null_nodeget(mp, lvp, &vp);
  443                         if (error == 0)
  444                                 *ap->a_vpp = vp;
  445                 }
  446         }
  447         return (error);
  448 }
  449 
  450 static int
  451 null_open(struct vop_open_args *ap)
  452 {
  453         int retval;
  454         struct vnode *vp, *ldvp;
  455 
  456         vp = ap->a_vp;
  457         ldvp = NULLVPTOLOWERVP(vp);
  458         retval = null_bypass(&ap->a_gen);
  459         if (retval == 0) {
  460                 vp->v_object = ldvp->v_object;
  461                 if ((vn_irflag_read(ldvp) & VIRF_PGREAD) != 0) {
  462                         MPASS(vp->v_object != NULL);
  463                         if ((vn_irflag_read(vp) & VIRF_PGREAD) == 0) {
  464                                 vn_irflag_set_cond(vp, VIRF_PGREAD);
  465                         }
  466                 }
  467         }
  468         return (retval);
  469 }
  470 
  471 /*
  472  * Setattr call. Disallow write attempts if the layer is mounted read-only.
  473  */
  474 static int
  475 null_setattr(struct vop_setattr_args *ap)
  476 {
  477         struct vnode *vp = ap->a_vp;
  478         struct vattr *vap = ap->a_vap;
  479 
  480         if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
  481             vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
  482             vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
  483             (vp->v_mount->mnt_flag & MNT_RDONLY))
  484                 return (EROFS);
  485         if (vap->va_size != VNOVAL) {
  486                 switch (vp->v_type) {
  487                 case VDIR:
  488                         return (EISDIR);
  489                 case VCHR:
  490                 case VBLK:
  491                 case VSOCK:
  492                 case VFIFO:
  493                         if (vap->va_flags != VNOVAL)
  494                                 return (EOPNOTSUPP);
  495                         return (0);
  496                 case VREG:
  497                 case VLNK:
  498                 default:
  499                         /*
  500                          * Disallow write attempts if the filesystem is
  501                          * mounted read-only.
  502                          */
  503                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  504                                 return (EROFS);
  505                 }
  506         }
  507 
  508         return (null_bypass((struct vop_generic_args *)ap));
  509 }
  510 
  511 /*
  512  *  We handle stat and getattr only to change the fsid.
  513  */
  514 static int
  515 null_stat(struct vop_stat_args *ap)
  516 {
  517         int error;
  518 
  519         if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
  520                 return (error);
  521 
  522         ap->a_sb->st_dev = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
  523         return (0);
  524 }
  525 
  526 static int
  527 null_getattr(struct vop_getattr_args *ap)
  528 {
  529         int error;
  530 
  531         if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
  532                 return (error);
  533 
  534         ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
  535         return (0);
  536 }
  537 
  538 /*
  539  * Handle to disallow write access if mounted read-only.
  540  */
  541 static int
  542 null_access(struct vop_access_args *ap)
  543 {
  544         struct vnode *vp = ap->a_vp;
  545         accmode_t accmode = ap->a_accmode;
  546 
  547         /*
  548          * Disallow write attempts on read-only layers;
  549          * unless the file is a socket, fifo, or a block or
  550          * character device resident on the filesystem.
  551          */
  552         if (accmode & VWRITE) {
  553                 switch (vp->v_type) {
  554                 case VDIR:
  555                 case VLNK:
  556                 case VREG:
  557                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  558                                 return (EROFS);
  559                         break;
  560                 default:
  561                         break;
  562                 }
  563         }
  564         return (null_bypass((struct vop_generic_args *)ap));
  565 }
  566 
  567 static int
  568 null_accessx(struct vop_accessx_args *ap)
  569 {
  570         struct vnode *vp = ap->a_vp;
  571         accmode_t accmode = ap->a_accmode;
  572 
  573         /*
  574          * Disallow write attempts on read-only layers;
  575          * unless the file is a socket, fifo, or a block or
  576          * character device resident on the filesystem.
  577          */
  578         if (accmode & VWRITE) {
  579                 switch (vp->v_type) {
  580                 case VDIR:
  581                 case VLNK:
  582                 case VREG:
  583                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  584                                 return (EROFS);
  585                         break;
  586                 default:
  587                         break;
  588                 }
  589         }
  590         return (null_bypass((struct vop_generic_args *)ap));
  591 }
  592 
  593 /*
  594  * Increasing refcount of lower vnode is needed at least for the case
  595  * when lower FS is NFS to do sillyrename if the file is in use.
  596  * Unfortunately v_usecount is incremented in many places in
  597  * the kernel and, as such, there may be races that result in
  598  * the NFS client doing an extraneous silly rename, but that seems
  599  * preferable to not doing a silly rename when it is needed.
  600  */
  601 static int
  602 null_remove(struct vop_remove_args *ap)
  603 {
  604         int retval, vreleit;
  605         struct vnode *lvp, *vp;
  606 
  607         vp = ap->a_vp;
  608         if (vrefcnt(vp) > 1) {
  609                 lvp = NULLVPTOLOWERVP(vp);
  610                 VREF(lvp);
  611                 vreleit = 1;
  612         } else
  613                 vreleit = 0;
  614         VTONULL(vp)->null_flags |= NULLV_DROP;
  615         retval = null_bypass(&ap->a_gen);
  616         if (vreleit != 0)
  617                 vrele(lvp);
  618         return (retval);
  619 }
  620 
  621 /*
  622  * We handle this to eliminate null FS to lower FS
  623  * file moving. Don't know why we don't allow this,
  624  * possibly we should.
  625  */
  626 static int
  627 null_rename(struct vop_rename_args *ap)
  628 {
  629         struct vnode *tdvp = ap->a_tdvp;
  630         struct vnode *fvp = ap->a_fvp;
  631         struct vnode *fdvp = ap->a_fdvp;
  632         struct vnode *tvp = ap->a_tvp;
  633         struct null_node *tnn;
  634 
  635         /* Check for cross-device rename. */
  636         if ((fvp->v_mount != tdvp->v_mount) ||
  637             (tvp && (fvp->v_mount != tvp->v_mount))) {
  638                 if (tdvp == tvp)
  639                         vrele(tdvp);
  640                 else
  641                         vput(tdvp);
  642                 if (tvp)
  643                         vput(tvp);
  644                 vrele(fdvp);
  645                 vrele(fvp);
  646                 return (EXDEV);
  647         }
  648 
  649         if (tvp != NULL) {
  650                 tnn = VTONULL(tvp);
  651                 tnn->null_flags |= NULLV_DROP;
  652         }
  653         return (null_bypass((struct vop_generic_args *)ap));
  654 }
  655 
  656 static int
  657 null_rmdir(struct vop_rmdir_args *ap)
  658 {
  659 
  660         VTONULL(ap->a_vp)->null_flags |= NULLV_DROP;
  661         return (null_bypass(&ap->a_gen));
  662 }
  663 
  664 /*
  665  * We need to process our own vnode lock and then clear the
  666  * interlock flag as it applies only to our vnode, not the
  667  * vnodes below us on the stack.
  668  */
  669 static int
  670 null_lock(struct vop_lock1_args *ap)
  671 {
  672         struct vnode *vp = ap->a_vp;
  673         int flags;
  674         struct null_node *nn;
  675         struct vnode *lvp;
  676         int error;
  677 
  678         if ((ap->a_flags & LK_INTERLOCK) == 0)
  679                 VI_LOCK(vp);
  680         else
  681                 ap->a_flags &= ~LK_INTERLOCK;
  682         flags = ap->a_flags;
  683         nn = VTONULL(vp);
  684         /*
  685          * If we're still active we must ask the lower layer to
  686          * lock as ffs has special lock considerations in its
  687          * vop lock.
  688          */
  689         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  690                 /*
  691                  * We have to hold the vnode here to solve a potential
  692                  * reclaim race.  If we're forcibly vgone'd while we
  693                  * still have refs, a thread could be sleeping inside
  694                  * the lowervp's vop_lock routine.  When we vgone we will
  695                  * drop our last ref to the lowervp, which would allow it
  696                  * to be reclaimed.  The lowervp could then be recycled,
  697                  * in which case it is not legal to be sleeping in its VOP.
  698                  * We prevent it from being recycled by holding the vnode
  699                  * here.
  700                  */
  701                 vholdnz(lvp);
  702                 VI_UNLOCK(vp);
  703                 error = VOP_LOCK(lvp, flags);
  704 
  705                 /*
  706                  * We might have slept to get the lock and someone might have
  707                  * clean our vnode already, switching vnode lock from one in
  708                  * lowervp to v_lock in our own vnode structure.  Handle this
  709                  * case by reacquiring correct lock in requested mode.
  710                  */
  711                 if (VTONULL(vp) == NULL && error == 0) {
  712                         ap->a_flags &= ~LK_TYPE_MASK;
  713                         switch (flags & LK_TYPE_MASK) {
  714                         case LK_SHARED:
  715                                 ap->a_flags |= LK_SHARED;
  716                                 break;
  717                         case LK_UPGRADE:
  718                         case LK_EXCLUSIVE:
  719                                 ap->a_flags |= LK_EXCLUSIVE;
  720                                 break;
  721                         default:
  722                                 panic("Unsupported lock request %d\n",
  723                                     ap->a_flags);
  724                         }
  725                         VOP_UNLOCK(lvp);
  726                         error = vop_stdlock(ap);
  727                 }
  728                 vdrop(lvp);
  729         } else {
  730                 VI_UNLOCK(vp);
  731                 error = vop_stdlock(ap);
  732         }
  733 
  734         return (error);
  735 }
  736 
  737 /*
  738  * We need to process our own vnode unlock and then clear the
  739  * interlock flag as it applies only to our vnode, not the
  740  * vnodes below us on the stack.
  741  */
  742 static int
  743 null_unlock(struct vop_unlock_args *ap)
  744 {
  745         struct vnode *vp = ap->a_vp;
  746         struct null_node *nn;
  747         struct vnode *lvp;
  748         int error;
  749 
  750         nn = VTONULL(vp);
  751         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  752                 vholdnz(lvp);
  753                 error = VOP_UNLOCK(lvp);
  754                 vdrop(lvp);
  755         } else {
  756                 error = vop_stdunlock(ap);
  757         }
  758 
  759         return (error);
  760 }
  761 
  762 /*
  763  * Do not allow the VOP_INACTIVE to be passed to the lower layer,
  764  * since the reference count on the lower vnode is not related to
  765  * ours.
  766  */
  767 static int
  768 null_want_recycle(struct vnode *vp)
  769 {
  770         struct vnode *lvp;
  771         struct null_node *xp;
  772         struct mount *mp;
  773         struct null_mount *xmp;
  774 
  775         xp = VTONULL(vp);
  776         lvp = NULLVPTOLOWERVP(vp);
  777         mp = vp->v_mount;
  778         xmp = MOUNTTONULLMOUNT(mp);
  779         if ((xmp->nullm_flags & NULLM_CACHE) == 0 ||
  780             (xp->null_flags & NULLV_DROP) != 0 ||
  781             (lvp->v_vflag & VV_NOSYNC) != 0) {
  782                 /*
  783                  * If this is the last reference and caching of the
  784                  * nullfs vnodes is not enabled, or the lower vnode is
  785                  * deleted, then free up the vnode so as not to tie up
  786                  * the lower vnodes.
  787                  */
  788                 return (1);
  789         }
  790         return (0);
  791 }
  792 
  793 static int
  794 null_inactive(struct vop_inactive_args *ap)
  795 {
  796         struct vnode *vp;
  797 
  798         vp = ap->a_vp;
  799         if (null_want_recycle(vp)) {
  800                 vp->v_object = NULL;
  801                 vrecycle(vp);
  802         }
  803         return (0);
  804 }
  805 
  806 static int
  807 null_need_inactive(struct vop_need_inactive_args *ap)
  808 {
  809 
  810         return (null_want_recycle(ap->a_vp));
  811 }
  812 
  813 /*
  814  * Now, the nullfs vnode and, due to the sharing lock, the lower
  815  * vnode, are exclusively locked, and we shall destroy the null vnode.
  816  */
  817 static int
  818 null_reclaim(struct vop_reclaim_args *ap)
  819 {
  820         struct vnode *vp;
  821         struct null_node *xp;
  822         struct vnode *lowervp;
  823 
  824         vp = ap->a_vp;
  825         xp = VTONULL(vp);
  826         lowervp = xp->null_lowervp;
  827 
  828         KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
  829             ("Reclaiming incomplete null vnode %p", vp));
  830 
  831         null_hashrem(xp);
  832         /*
  833          * Use the interlock to protect the clearing of v_data to
  834          * prevent faults in null_lock().
  835          */
  836         lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
  837         VI_LOCK(vp);
  838         vp->v_data = NULL;
  839         vp->v_object = NULL;
  840         vp->v_vnlock = &vp->v_lock;
  841 
  842         /*
  843          * If we were opened for write, we leased the write reference
  844          * to the lower vnode.  If this is a reclamation due to the
  845          * forced unmount, undo the reference now.
  846          */
  847         if (vp->v_writecount > 0)
  848                 VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount);
  849         else if (vp->v_writecount < 0)
  850                 vp->v_writecount = 0;
  851 
  852         VI_UNLOCK(vp);
  853 
  854         if ((xp->null_flags & NULLV_NOUNLOCK) != 0)
  855                 vunref(lowervp);
  856         else
  857                 vput(lowervp);
  858         free(xp, M_NULLFSNODE);
  859 
  860         return (0);
  861 }
  862 
  863 static int
  864 null_print(struct vop_print_args *ap)
  865 {
  866         struct vnode *vp = ap->a_vp;
  867 
  868         printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
  869         return (0);
  870 }
  871 
  872 /* ARGSUSED */
  873 static int
  874 null_getwritemount(struct vop_getwritemount_args *ap)
  875 {
  876         struct null_node *xp;
  877         struct vnode *lowervp;
  878         struct vnode *vp;
  879 
  880         vp = ap->a_vp;
  881         VI_LOCK(vp);
  882         xp = VTONULL(vp);
  883         if (xp && (lowervp = xp->null_lowervp)) {
  884                 vholdnz(lowervp);
  885                 VI_UNLOCK(vp);
  886                 VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
  887                 vdrop(lowervp);
  888         } else {
  889                 VI_UNLOCK(vp);
  890                 *(ap->a_mpp) = NULL;
  891         }
  892         return (0);
  893 }
  894 
  895 static int
  896 null_vptofh(struct vop_vptofh_args *ap)
  897 {
  898         struct vnode *lvp;
  899 
  900         lvp = NULLVPTOLOWERVP(ap->a_vp);
  901         return VOP_VPTOFH(lvp, ap->a_fhp);
  902 }
  903 
  904 static int
  905 null_vptocnp(struct vop_vptocnp_args *ap)
  906 {
  907         struct vnode *vp = ap->a_vp;
  908         struct vnode **dvp = ap->a_vpp;
  909         struct vnode *lvp, *ldvp;
  910         struct mount *mp;
  911         int error, locked;
  912 
  913         locked = VOP_ISLOCKED(vp);
  914         lvp = NULLVPTOLOWERVP(vp);
  915         vhold(lvp);
  916         mp = vp->v_mount;
  917         vfs_ref(mp);
  918         VOP_UNLOCK(vp); /* vp is held by vn_vptocnp_locked that called us */
  919         ldvp = lvp;
  920         vref(lvp);
  921         error = vn_vptocnp(&ldvp, ap->a_buf, ap->a_buflen);
  922         vdrop(lvp);
  923         if (error != 0) {
  924                 vn_lock(vp, locked | LK_RETRY);
  925                 vfs_rel(mp);
  926                 return (ENOENT);
  927         }
  928 
  929         error = vn_lock(ldvp, LK_SHARED);
  930         if (error != 0) {
  931                 vrele(ldvp);
  932                 vn_lock(vp, locked | LK_RETRY);
  933                 vfs_rel(mp);
  934                 return (ENOENT);
  935         }
  936         error = null_nodeget(mp, ldvp, dvp);
  937         if (error == 0) {
  938 #ifdef DIAGNOSTIC
  939                 NULLVPTOLOWERVP(*dvp);
  940 #endif
  941                 VOP_UNLOCK(*dvp); /* keep reference on *dvp */
  942         }
  943         vn_lock(vp, locked | LK_RETRY);
  944         vfs_rel(mp);
  945         return (error);
  946 }
  947 
  948 static int
  949 null_read_pgcache(struct vop_read_pgcache_args *ap)
  950 {
  951         struct vnode *lvp, *vp;
  952         struct null_node *xp;
  953         int error;
  954 
  955         vp = ap->a_vp;
  956         VI_LOCK(vp);
  957         xp = VTONULL(vp);
  958         if (xp == NULL) {
  959                 VI_UNLOCK(vp);
  960                 return (EJUSTRETURN);
  961         }
  962         lvp = xp->null_lowervp;
  963         vref(lvp);
  964         VI_UNLOCK(vp);
  965         error = VOP_READ_PGCACHE(lvp, ap->a_uio, ap->a_ioflag, ap->a_cred);
  966         vrele(lvp);
  967         return (error);
  968 }
  969 
  970 /*
  971  * Avoid standard bypass, since lower dvp and vp could be no longer
  972  * valid after vput().
  973  */
  974 static int
  975 null_vput_pair(struct vop_vput_pair_args *ap)
  976 {
  977         struct mount *mp;
  978         struct vnode *dvp, *ldvp, *lvp, *vp, *vp1, **vpp;
  979         int error, res;
  980 
  981         dvp = ap->a_dvp;
  982         ldvp = NULLVPTOLOWERVP(dvp);
  983         vref(ldvp);
  984 
  985         vpp = ap->a_vpp;
  986         vp = NULL;
  987         lvp = NULL;
  988         if (vpp != NULL) {
  989                 vp = *vpp;
  990                 if (vp != NULL) {
  991                         vhold(vp);
  992                         mp = vp->v_mount;
  993                         lvp = NULLVPTOLOWERVP(vp);
  994                         if (ap->a_unlock_vp)
  995                                 vref(lvp);
  996                 }
  997         }
  998 
  999         res = VOP_VPUT_PAIR(ldvp, &lvp, ap->a_unlock_vp);
 1000 
 1001         /* lvp might have been unlocked and vp reclaimed */
 1002         if (vp != NULL) {
 1003                 if (!ap->a_unlock_vp && vp->v_vnlock != lvp->v_vnlock) {
 1004                         error = null_nodeget(mp, lvp, &vp1);
 1005                         if (error == 0) {
 1006                                 vput(vp);
 1007                                 *vpp = vp1;
 1008                         }
 1009                 }
 1010                 if (ap->a_unlock_vp)
 1011                         vrele(vp);
 1012                 vdrop(vp);
 1013         }
 1014         vrele(dvp);
 1015         return (res);
 1016 }
 1017 
 1018 /*
 1019  * Global vfs data structures
 1020  */
 1021 struct vop_vector null_vnodeops = {
 1022         .vop_bypass =           null_bypass,
 1023         .vop_access =           null_access,
 1024         .vop_accessx =          null_accessx,
 1025         .vop_advlockpurge =     vop_stdadvlockpurge,
 1026         .vop_bmap =             VOP_EOPNOTSUPP,
 1027         .vop_stat =             null_stat,
 1028         .vop_getattr =          null_getattr,
 1029         .vop_getwritemount =    null_getwritemount,
 1030         .vop_inactive =         null_inactive,
 1031         .vop_need_inactive =    null_need_inactive,
 1032         .vop_islocked =         vop_stdislocked,
 1033         .vop_lock1 =            null_lock,
 1034         .vop_lookup =           null_lookup,
 1035         .vop_open =             null_open,
 1036         .vop_print =            null_print,
 1037         .vop_read_pgcache =     null_read_pgcache,
 1038         .vop_reclaim =          null_reclaim,
 1039         .vop_remove =           null_remove,
 1040         .vop_rename =           null_rename,
 1041         .vop_rmdir =            null_rmdir,
 1042         .vop_setattr =          null_setattr,
 1043         .vop_strategy =         VOP_EOPNOTSUPP,
 1044         .vop_unlock =           null_unlock,
 1045         .vop_vptocnp =          null_vptocnp,
 1046         .vop_vptofh =           null_vptofh,
 1047         .vop_add_writecount =   null_add_writecount,
 1048         .vop_vput_pair =        null_vput_pair,
 1049 };
 1050 VFS_VOP_VECTOR_REGISTER(null_vnodeops);

Cache object: eaa954cb8f51d0c0cb3ca1650b0ec60f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.