The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nullfs/null_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1992, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * John Heidemann of the UCLA Ficus project.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by the University of
   19  *      California, Berkeley and its contributors.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)null_vnops.c        8.6 (Berkeley) 5/27/95
   37  *
   38  * Ancestors:
   39  *      @(#)lofs_vnops.c        1.2 (Berkeley) 6/18/92
   40  *      ...and...
   41  *      @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
   42  *
   43  * $FreeBSD: releng/5.0/sys/fs/nullfs/null_vnops.c 105211 2002-10-16 08:00:32Z phk $
   44  */
   45 
   46 /*
   47  * Null Layer
   48  *
   49  * (See mount_nullfs(8) for more information.)
   50  *
   51  * The null layer duplicates a portion of the filesystem
   52  * name space under a new name.  In this respect, it is
   53  * similar to the loopback filesystem.  It differs from
   54  * the loopback fs in two respects:  it is implemented using
   55  * a stackable layers techniques, and its "null-node"s stack above
   56  * all lower-layer vnodes, not just over directory vnodes.
   57  *
   58  * The null layer has two purposes.  First, it serves as a demonstration
   59  * of layering by proving a layer which does nothing.  (It actually
   60  * does everything the loopback filesystem does, which is slightly
   61  * more than nothing.)  Second, the null layer can serve as a prototype
   62  * layer.  Since it provides all necessary layer framework,
   63  * new filesystem layers can be created very easily be starting
   64  * with a null layer.
   65  *
   66  * The remainder of this man page examines the null layer as a basis
   67  * for constructing new layers.
   68  *
   69  *
   70  * INSTANTIATING NEW NULL LAYERS
   71  *
   72  * New null layers are created with mount_nullfs(8).
   73  * Mount_nullfs(8) takes two arguments, the pathname
   74  * of the lower vfs (target-pn) and the pathname where the null
   75  * layer will appear in the namespace (alias-pn).  After
   76  * the null layer is put into place, the contents
   77  * of target-pn subtree will be aliased under alias-pn.
   78  *
   79  *
   80  * OPERATION OF A NULL LAYER
   81  *
   82  * The null layer is the minimum filesystem layer,
   83  * simply bypassing all possible operations to the lower layer
   84  * for processing there.  The majority of its activity centers
   85  * on the bypass routine, through which nearly all vnode operations
   86  * pass.
   87  *
   88  * The bypass routine accepts arbitrary vnode operations for
   89  * handling by the lower layer.  It begins by examing vnode
   90  * operation arguments and replacing any null-nodes by their
   91  * lower-layer equivlants.  It then invokes the operation
   92  * on the lower layer.  Finally, it replaces the null-nodes
   93  * in the arguments and, if a vnode is return by the operation,
   94  * stacks a null-node on top of the returned vnode.
   95  *
   96  * Although bypass handles most operations, vop_getattr, vop_lock,
   97  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
   98  * bypassed. Vop_getattr must change the fsid being returned.
   99  * Vop_lock and vop_unlock must handle any locking for the
  100  * current vnode as well as pass the lock request down.
  101  * Vop_inactive and vop_reclaim are not bypassed so that
  102  * they can handle freeing null-layer specific data. Vop_print
  103  * is not bypassed to avoid excessive debugging information.
  104  * Also, certain vnode operations change the locking state within
  105  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
  106  * and symlink). Ideally these operations should not change the
  107  * lock state, but should be changed to let the caller of the
  108  * function unlock them. Otherwise all intermediate vnode layers
  109  * (such as union, umapfs, etc) must catch these functions to do
  110  * the necessary locking at their layer.
  111  *
  112  *
  113  * INSTANTIATING VNODE STACKS
  114  *
  115  * Mounting associates the null layer with a lower layer,
  116  * effect stacking two VFSes.  Vnode stacks are instead
  117  * created on demand as files are accessed.
  118  *
  119  * The initial mount creates a single vnode stack for the
  120  * root of the new null layer.  All other vnode stacks
  121  * are created as a result of vnode operations on
  122  * this or other null vnode stacks.
  123  *
  124  * New vnode stacks come into existance as a result of
  125  * an operation which returns a vnode.
  126  * The bypass routine stacks a null-node above the new
  127  * vnode before returning it to the caller.
  128  *
  129  * For example, imagine mounting a null layer with
  130  * "mount_nullfs /usr/include /dev/layer/null".
  131  * Changing directory to /dev/layer/null will assign
  132  * the root null-node (which was created when the null layer was mounted).
  133  * Now consider opening "sys".  A vop_lookup would be
  134  * done on the root null-node.  This operation would bypass through
  135  * to the lower layer which would return a vnode representing
  136  * the UFS "sys".  Null_bypass then builds a null-node
  137  * aliasing the UFS "sys" and returns this to the caller.
  138  * Later operations on the null-node "sys" will repeat this
  139  * process when constructing other vnode stacks.
  140  *
  141  *
  142  * CREATING OTHER FILE SYSTEM LAYERS
  143  *
  144  * One of the easiest ways to construct new filesystem layers is to make
  145  * a copy of the null layer, rename all files and variables, and
  146  * then begin modifing the copy.  Sed can be used to easily rename
  147  * all variables.
  148  *
  149  * The umap layer is an example of a layer descended from the
  150  * null layer.
  151  *
  152  *
  153  * INVOKING OPERATIONS ON LOWER LAYERS
  154  *
  155  * There are two techniques to invoke operations on a lower layer
  156  * when the operation cannot be completely bypassed.  Each method
  157  * is appropriate in different situations.  In both cases,
  158  * it is the responsibility of the aliasing layer to make
  159  * the operation arguments "correct" for the lower layer
  160  * by mapping an vnode arguments to the lower layer.
  161  *
  162  * The first approach is to call the aliasing layer's bypass routine.
  163  * This method is most suitable when you wish to invoke the operation
  164  * currently being handled on the lower layer.  It has the advantage
  165  * that the bypass routine already must do argument mapping.
  166  * An example of this is null_getattrs in the null layer.
  167  *
  168  * A second approach is to directly invoke vnode operations on
  169  * the lower layer with the VOP_OPERATIONNAME interface.
  170  * The advantage of this method is that it is easy to invoke
  171  * arbitrary operations on the lower layer.  The disadvantage
  172  * is that vnode arguments must be manualy mapped.
  173  *
  174  */
  175 
  176 #include <sys/param.h>
  177 #include <sys/systm.h>
  178 #include <sys/conf.h>
  179 #include <sys/kernel.h>
  180 #include <sys/lock.h>
  181 #include <sys/malloc.h>
  182 #include <sys/mount.h>
  183 #include <sys/mutex.h>
  184 #include <sys/namei.h>
  185 #include <sys/sysctl.h>
  186 #include <sys/vnode.h>
  187 
  188 #include <fs/nullfs/null.h>
  189 
  190 #include <vm/vm.h>
  191 #include <vm/vm_extern.h>
  192 #include <vm/vm_object.h>
  193 #include <vm/vnode_pager.h>
  194 
  195 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
  196 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 
  197         &null_bug_bypass, 0, "");
  198 
  199 static int      null_access(struct vop_access_args *ap);
  200 static int      null_createvobject(struct vop_createvobject_args *ap);
  201 static int      null_destroyvobject(struct vop_destroyvobject_args *ap);
  202 static int      null_getattr(struct vop_getattr_args *ap);
  203 static int      null_getvobject(struct vop_getvobject_args *ap);
  204 static int      null_inactive(struct vop_inactive_args *ap);
  205 static int      null_islocked(struct vop_islocked_args *ap);
  206 static int      null_lock(struct vop_lock_args *ap);
  207 static int      null_lookup(struct vop_lookup_args *ap);
  208 static int      null_open(struct vop_open_args *ap);
  209 static int      null_print(struct vop_print_args *ap);
  210 static int      null_reclaim(struct vop_reclaim_args *ap);
  211 static int      null_rename(struct vop_rename_args *ap);
  212 static int      null_setattr(struct vop_setattr_args *ap);
  213 static int      null_unlock(struct vop_unlock_args *ap);
  214 
  215 /*
  216  * This is the 10-Apr-92 bypass routine.
  217  *    This version has been optimized for speed, throwing away some
  218  * safety checks.  It should still always work, but it's not as
  219  * robust to programmer errors.
  220  *
  221  * In general, we map all vnodes going down and unmap them on the way back.
  222  * As an exception to this, vnodes can be marked "unmapped" by setting
  223  * the Nth bit in operation's vdesc_flags.
  224  *
  225  * Also, some BSD vnode operations have the side effect of vrele'ing
  226  * their arguments.  With stacking, the reference counts are held
  227  * by the upper node, not the lower one, so we must handle these
  228  * side-effects here.  This is not of concern in Sun-derived systems
  229  * since there are no such side-effects.
  230  *
  231  * This makes the following assumptions:
  232  * - only one returned vpp
  233  * - no INOUT vpp's (Sun's vop_open has one of these)
  234  * - the vnode operation vector of the first vnode should be used
  235  *   to determine what implementation of the op should be invoked
  236  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
  237  *   problems on rmdir'ing mount points and renaming?)
  238  */
  239 int
  240 null_bypass(ap)
  241         struct vop_generic_args /* {
  242                 struct vnodeop_desc *a_desc;
  243                 <other random data follows, presumably>
  244         } */ *ap;
  245 {
  246         register struct vnode **this_vp_p;
  247         int error;
  248         struct vnode *old_vps[VDESC_MAX_VPS];
  249         struct vnode **vps_p[VDESC_MAX_VPS];
  250         struct vnode ***vppp;
  251         struct vnodeop_desc *descp = ap->a_desc;
  252         int reles, i;
  253 
  254         if (null_bug_bypass)
  255                 printf ("null_bypass: %s\n", descp->vdesc_name);
  256 
  257 #ifdef DIAGNOSTIC
  258         /*
  259          * We require at least one vp.
  260          */
  261         if (descp->vdesc_vp_offsets == NULL ||
  262             descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
  263                 panic ("null_bypass: no vp's in map");
  264 #endif
  265 
  266         /*
  267          * Map the vnodes going in.
  268          * Later, we'll invoke the operation based on
  269          * the first mapped vnode's operation vector.
  270          */
  271         reles = descp->vdesc_flags;
  272         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  273                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  274                         break;   /* bail out at end of list */
  275                 vps_p[i] = this_vp_p =
  276                         VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
  277                 /*
  278                  * We're not guaranteed that any but the first vnode
  279                  * are of our type.  Check for and don't map any
  280                  * that aren't.  (We must always map first vp or vclean fails.)
  281                  */
  282                 if (i && (*this_vp_p == NULLVP ||
  283                     (*this_vp_p)->v_op != null_vnodeop_p)) {
  284                         old_vps[i] = NULLVP;
  285                 } else {
  286                         old_vps[i] = *this_vp_p;
  287                         *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
  288                         /*
  289                          * XXX - Several operations have the side effect
  290                          * of vrele'ing their vp's.  We must account for
  291                          * that.  (This should go away in the future.)
  292                          */
  293                         if (reles & VDESC_VP0_WILLRELE)
  294                                 VREF(*this_vp_p);
  295                 }
  296 
  297         }
  298 
  299         /*
  300          * Call the operation on the lower layer
  301          * with the modified argument structure.
  302          */
  303         if (vps_p[0] && *vps_p[0])
  304                 error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
  305         else {
  306                 printf("null_bypass: no map for %s\n", descp->vdesc_name);
  307                 error = EINVAL;
  308         }
  309 
  310         /*
  311          * Maintain the illusion of call-by-value
  312          * by restoring vnodes in the argument structure
  313          * to their original value.
  314          */
  315         reles = descp->vdesc_flags;
  316         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  317                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  318                         break;   /* bail out at end of list */
  319                 if (old_vps[i]) {
  320                         *(vps_p[i]) = old_vps[i];
  321 #if 0
  322                         if (reles & VDESC_VP0_WILLUNLOCK)
  323                                 VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread);
  324 #endif
  325                         if (reles & VDESC_VP0_WILLRELE)
  326                                 vrele(*(vps_p[i]));
  327                 }
  328         }
  329 
  330         /*
  331          * Map the possible out-going vpp
  332          * (Assumes that the lower layer always returns
  333          * a VREF'ed vpp unless it gets an error.)
  334          */
  335         if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
  336             !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
  337             !error) {
  338                 /*
  339                  * XXX - even though some ops have vpp returned vp's,
  340                  * several ops actually vrele this before returning.
  341                  * We must avoid these ops.
  342                  * (This should go away when these ops are regularized.)
  343                  */
  344                 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
  345                         goto out;
  346                 vppp = VOPARG_OFFSETTO(struct vnode***,
  347                                  descp->vdesc_vpp_offset,ap);
  348                 if (*vppp)
  349                         error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
  350         }
  351 
  352  out:
  353         return (error);
  354 }
  355 
  356 /*
  357  * We have to carry on the locking protocol on the null layer vnodes
  358  * as we progress through the tree. We also have to enforce read-only
  359  * if this layer is mounted read-only.
  360  */
  361 static int
  362 null_lookup(ap)
  363         struct vop_lookup_args /* {
  364                 struct vnode * a_dvp;
  365                 struct vnode ** a_vpp;
  366                 struct componentname * a_cnp;
  367         } */ *ap;
  368 {
  369         struct componentname *cnp = ap->a_cnp;
  370         struct vnode *dvp = ap->a_dvp;
  371         struct thread *td = cnp->cn_thread;
  372         int flags = cnp->cn_flags;
  373         struct vnode *vp, *ldvp, *lvp;
  374         int error;
  375 
  376         if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
  377             (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
  378                 return (EROFS);
  379         /*
  380          * Although it is possible to call null_bypass(), we'll do
  381          * a direct call to reduce overhead
  382          */
  383         ldvp = NULLVPTOLOWERVP(dvp);
  384         vp = lvp = NULL;
  385         error = VOP_LOOKUP(ldvp, &lvp, cnp);
  386         if (error == EJUSTRETURN && (flags & ISLASTCN) &&
  387             (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
  388             (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
  389                 error = EROFS;
  390 
  391         /*
  392          * Rely only on the PDIRUNLOCK flag which should be carefully
  393          * tracked by underlying filesystem.
  394          */
  395         if (cnp->cn_flags & PDIRUNLOCK)
  396                 VOP_UNLOCK(dvp, LK_THISLAYER, td);
  397         if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
  398                 if (ldvp == lvp) {
  399                         *ap->a_vpp = dvp;
  400                         VREF(dvp);
  401                         vrele(lvp);
  402                 } else {
  403                         error = null_nodeget(dvp->v_mount, lvp, &vp);
  404                         if (error) {
  405                                 /* XXX Cleanup needed... */
  406                                 panic("null_nodeget failed");
  407                         }
  408                         *ap->a_vpp = vp;
  409                 }
  410         }
  411         return (error);
  412 }
  413 
  414 /*
  415  * Setattr call. Disallow write attempts if the layer is mounted read-only.
  416  */
  417 static int
  418 null_setattr(ap)
  419         struct vop_setattr_args /* {
  420                 struct vnodeop_desc *a_desc;
  421                 struct vnode *a_vp;
  422                 struct vattr *a_vap;
  423                 struct ucred *a_cred;
  424                 struct thread *a_td;
  425         } */ *ap;
  426 {
  427         struct vnode *vp = ap->a_vp;
  428         struct vattr *vap = ap->a_vap;
  429 
  430         if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
  431             vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
  432             vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
  433             (vp->v_mount->mnt_flag & MNT_RDONLY))
  434                 return (EROFS);
  435         if (vap->va_size != VNOVAL) {
  436                 switch (vp->v_type) {
  437                 case VDIR:
  438                         return (EISDIR);
  439                 case VCHR:
  440                 case VBLK:
  441                 case VSOCK:
  442                 case VFIFO:
  443                         if (vap->va_flags != VNOVAL)
  444                                 return (EOPNOTSUPP);
  445                         return (0);
  446                 case VREG:
  447                 case VLNK:
  448                 default:
  449                         /*
  450                          * Disallow write attempts if the filesystem is
  451                          * mounted read-only.
  452                          */
  453                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  454                                 return (EROFS);
  455                 }
  456         }
  457 
  458         return (null_bypass((struct vop_generic_args *)ap));
  459 }
  460 
  461 /*
  462  *  We handle getattr only to change the fsid.
  463  */
  464 static int
  465 null_getattr(ap)
  466         struct vop_getattr_args /* {
  467                 struct vnode *a_vp;
  468                 struct vattr *a_vap;
  469                 struct ucred *a_cred;
  470                 struct thread *a_td;
  471         } */ *ap;
  472 {
  473         int error;
  474 
  475         if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
  476                 return (error);
  477 
  478         ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
  479         return (0);
  480 }
  481 
  482 /*
  483  * Handle to disallow write access if mounted read-only.
  484  */
  485 static int
  486 null_access(ap)
  487         struct vop_access_args /* {
  488                 struct vnode *a_vp;
  489                 int  a_mode;
  490                 struct ucred *a_cred;
  491                 struct thread *a_td;
  492         } */ *ap;
  493 {
  494         struct vnode *vp = ap->a_vp;
  495         mode_t mode = ap->a_mode;
  496 
  497         /*
  498          * Disallow write attempts on read-only layers;
  499          * unless the file is a socket, fifo, or a block or
  500          * character device resident on the filesystem.
  501          */
  502         if (mode & VWRITE) {
  503                 switch (vp->v_type) {
  504                 case VDIR:
  505                 case VLNK:
  506                 case VREG:
  507                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  508                                 return (EROFS);
  509                         break;
  510                 default:
  511                         break;
  512                 }
  513         }
  514         return (null_bypass((struct vop_generic_args *)ap));
  515 }
  516 
  517 /*
  518  * We must handle open to be able to catch MNT_NODEV and friends.
  519  */
  520 static int
  521 null_open(ap)
  522         struct vop_open_args /* {
  523                 struct vnode *a_vp;
  524                 int  a_mode;
  525                 struct ucred *a_cred;
  526                 struct thread *a_td;
  527         } */ *ap;
  528 {
  529         struct vnode *vp = ap->a_vp;
  530         struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
  531 
  532         if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
  533             (lvp->v_type == VBLK || lvp->v_type == VCHR))
  534                 return ENXIO;
  535 
  536         return (null_bypass((struct vop_generic_args *)ap));
  537 }
  538 
  539 /*
  540  * We handle this to eliminate null FS to lower FS
  541  * file moving. Don't know why we don't allow this,
  542  * possibly we should.
  543  */
  544 static int
  545 null_rename(ap)
  546         struct vop_rename_args /* {
  547                 struct vnode *a_fdvp;
  548                 struct vnode *a_fvp;
  549                 struct componentname *a_fcnp;
  550                 struct vnode *a_tdvp;
  551                 struct vnode *a_tvp;
  552                 struct componentname *a_tcnp;
  553         } */ *ap;
  554 {
  555         struct vnode *tdvp = ap->a_tdvp;
  556         struct vnode *fvp = ap->a_fvp;
  557         struct vnode *fdvp = ap->a_fdvp;
  558         struct vnode *tvp = ap->a_tvp;
  559 
  560         /* Check for cross-device rename. */
  561         if ((fvp->v_mount != tdvp->v_mount) ||
  562             (tvp && (fvp->v_mount != tvp->v_mount))) {
  563                 if (tdvp == tvp)
  564                         vrele(tdvp);
  565                 else
  566                         vput(tdvp);
  567                 if (tvp)
  568                         vput(tvp);
  569                 vrele(fdvp);
  570                 vrele(fvp);
  571                 return (EXDEV);
  572         }
  573         
  574         return (null_bypass((struct vop_generic_args *)ap));
  575 }
  576 
  577 /*
  578  * We need to process our own vnode lock and then clear the
  579  * interlock flag as it applies only to our vnode, not the
  580  * vnodes below us on the stack.
  581  */
  582 static int
  583 null_lock(ap)
  584         struct vop_lock_args /* {
  585                 struct vnode *a_vp;
  586                 int a_flags;
  587                 struct thread *a_td;
  588         } */ *ap;
  589 {
  590         struct vnode *vp = ap->a_vp;
  591         int flags = ap->a_flags;
  592         struct thread *td = ap->a_td;
  593         struct vnode *lvp;
  594         int error;
  595 
  596         if (flags & LK_THISLAYER) {
  597                 if (vp->v_vnlock != NULL) {
  598                         /* lock is shared across layers */
  599                         if (flags & LK_INTERLOCK)
  600                                 mtx_unlock(&vp->v_interlock);
  601                         return 0;
  602                 }
  603                 error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
  604                     &vp->v_interlock, td);
  605                 return (error);
  606         }
  607 
  608         if (vp->v_vnlock != NULL) {
  609                 /*
  610                  * The lower level has exported a struct lock to us. Use
  611                  * it so that all vnodes in the stack lock and unlock
  612                  * simultaneously. Note: we don't DRAIN the lock as DRAIN
  613                  * decommissions the lock - just because our vnode is
  614                  * going away doesn't mean the struct lock below us is.
  615                  * LK_EXCLUSIVE is fine.
  616                  */
  617                 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
  618                         NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
  619                         return(lockmgr(vp->v_vnlock,
  620                                 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
  621                                 &vp->v_interlock, td));
  622                 }
  623                 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td));
  624         } else {
  625                 /*
  626                  * To prevent race conditions involving doing a lookup
  627                  * on "..", we have to lock the lower node, then lock our
  628                  * node. Most of the time it won't matter that we lock our
  629                  * node (as any locking would need the lower one locked
  630                  * first). But we can LK_DRAIN the upper lock as a step
  631                  * towards decomissioning it.
  632                  */
  633                 lvp = NULLVPTOLOWERVP(vp);
  634                 if (lvp == NULL)
  635                         return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td));
  636                 if (flags & LK_INTERLOCK) {
  637                         mtx_unlock(&vp->v_interlock);
  638                         flags &= ~LK_INTERLOCK;
  639                 }
  640                 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
  641                         error = VOP_LOCK(lvp,
  642                                 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td);
  643                 } else
  644                         error = VOP_LOCK(lvp, flags, td);
  645                 if (error)
  646                         return (error); 
  647                 error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td);
  648                 if (error)
  649                         VOP_UNLOCK(lvp, 0, td);
  650                 return (error);
  651         }
  652 }
  653 
  654 /*
  655  * We need to process our own vnode unlock and then clear the
  656  * interlock flag as it applies only to our vnode, not the
  657  * vnodes below us on the stack.
  658  */
  659 static int
  660 null_unlock(ap)
  661         struct vop_unlock_args /* {
  662                 struct vnode *a_vp;
  663                 int a_flags;
  664                 struct thread *a_td;
  665         } */ *ap;
  666 {
  667         struct vnode *vp = ap->a_vp;
  668         int flags = ap->a_flags;
  669         struct thread *td = ap->a_td;
  670         struct vnode *lvp;
  671 
  672         if (vp->v_vnlock != NULL) {
  673                 if (flags & LK_THISLAYER)
  674                         return 0;       /* the lock is shared across layers */
  675                 flags &= ~LK_THISLAYER;
  676                 return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
  677                         &vp->v_interlock, td));
  678         }
  679         lvp = NULLVPTOLOWERVP(vp);
  680         if (lvp == NULL)
  681                 return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
  682         if ((flags & LK_THISLAYER) == 0) {
  683                 if (flags & LK_INTERLOCK) {
  684                         mtx_unlock(&vp->v_interlock);
  685                         flags &= ~LK_INTERLOCK;
  686                 }
  687                 VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td);
  688         } else
  689                 flags &= ~LK_THISLAYER;
  690         return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
  691 }
  692 
  693 static int
  694 null_islocked(ap)
  695         struct vop_islocked_args /* {
  696                 struct vnode *a_vp;
  697                 struct thread *a_td;
  698         } */ *ap;
  699 {
  700         struct vnode *vp = ap->a_vp;
  701         struct thread *td = ap->a_td;
  702 
  703         if (vp->v_vnlock != NULL)
  704                 return (lockstatus(vp->v_vnlock, td));
  705         return (lockstatus(&vp->v_lock, td));
  706 }
  707 
  708 /*
  709  * There is no way to tell that someone issued remove/rmdir operation
  710  * on the underlying filesystem. For now we just have to release lowevrp
  711  * as soon as possible.
  712  *
  713  * Note, we can't release any resources nor remove vnode from hash before 
  714  * appropriate VXLOCK stuff is is done because other process can find this
  715  * vnode in hash during inactivation and may be sitting in vget() and waiting
  716  * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
  717  */
  718 static int
  719 null_inactive(ap)
  720         struct vop_inactive_args /* {
  721                 struct vnode *a_vp;
  722                 struct thread *a_td;
  723         } */ *ap;
  724 {
  725         struct vnode *vp = ap->a_vp;
  726         struct thread *td = ap->a_td;
  727 
  728         VOP_UNLOCK(vp, 0, td);
  729 
  730         /*
  731          * If this is the last reference, then free up the vnode
  732          * so as not to tie up the lower vnodes.
  733          */
  734         vrecycle(vp, NULL, td);
  735 
  736         return (0);
  737 }
  738 
  739 /*
  740  * Now, the VXLOCK is in force and we're free to destroy the null vnode.
  741  */
  742 static int
  743 null_reclaim(ap)
  744         struct vop_reclaim_args /* {
  745                 struct vnode *a_vp;
  746                 struct thread *a_td;
  747         } */ *ap;
  748 {
  749         struct vnode *vp = ap->a_vp;
  750         struct null_node *xp = VTONULL(vp);
  751         struct vnode *lowervp = xp->null_lowervp;
  752 
  753         if (lowervp) {
  754                 null_hashrem(xp);
  755 
  756                 vrele(lowervp);
  757                 vrele(lowervp);
  758         }
  759 
  760         vp->v_data = NULL;
  761         vp->v_vnlock = &vp->v_lock;
  762         FREE(xp, M_NULLFSNODE);
  763 
  764         return (0);
  765 }
  766 
  767 static int
  768 null_print(ap)
  769         struct vop_print_args /* {
  770                 struct vnode *a_vp;
  771         } */ *ap;
  772 {
  773         register struct vnode *vp = ap->a_vp;
  774         printf("\ttag %s, vp=%p, lowervp=%p\n", vp->v_tag, vp,
  775                NULLVPTOLOWERVP(vp));
  776         return (0);
  777 }
  778 
  779 /*
  780  * Let an underlying filesystem do the work
  781  */
  782 static int
  783 null_createvobject(ap)
  784         struct vop_createvobject_args /* {
  785                 struct vnode *vp;
  786                 struct ucred *cred;
  787                 struct thread *td;
  788         } */ *ap;
  789 {
  790         struct vnode *vp = ap->a_vp;
  791         struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
  792         int error;
  793 
  794         if (vp->v_type == VNON || lowervp == NULL)
  795                 return 0;
  796         error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_td);
  797         if (error)
  798                 return (error);
  799         vp->v_vflag |= VV_OBJBUF;
  800         return (0);
  801 }
  802 
  803 /*
  804  * We have nothing to destroy and this operation shouldn't be bypassed.
  805  */
  806 static int
  807 null_destroyvobject(ap)
  808         struct vop_destroyvobject_args /* {
  809                 struct vnode *vp;
  810         } */ *ap;
  811 {
  812         struct vnode *vp = ap->a_vp;
  813 
  814         vp->v_vflag &= ~VV_OBJBUF;
  815         return (0);
  816 }
  817 
  818 static int
  819 null_getvobject(ap)
  820         struct vop_getvobject_args /* {
  821                 struct vnode *vp;
  822                 struct vm_object **objpp;
  823         } */ *ap;
  824 {
  825         struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
  826 
  827         if (lvp == NULL)
  828                 return EINVAL;
  829         return (VOP_GETVOBJECT(lvp, ap->a_objpp));
  830 }
  831 
  832 /*
  833  * Global vfs data structures
  834  */
  835 vop_t **null_vnodeop_p;
  836 static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
  837         { &vop_default_desc,            (vop_t *) null_bypass },
  838 
  839         { &vop_access_desc,             (vop_t *) null_access },
  840         { &vop_bmap_desc,               (vop_t *) vop_eopnotsupp },
  841         { &vop_createvobject_desc,      (vop_t *) null_createvobject },
  842         { &vop_destroyvobject_desc,     (vop_t *) null_destroyvobject },
  843         { &vop_getattr_desc,            (vop_t *) null_getattr },
  844         { &vop_getvobject_desc,         (vop_t *) null_getvobject },
  845         { &vop_getwritemount_desc,      (vop_t *) vop_stdgetwritemount},
  846         { &vop_inactive_desc,           (vop_t *) null_inactive },
  847         { &vop_islocked_desc,           (vop_t *) null_islocked },
  848         { &vop_lock_desc,               (vop_t *) null_lock },
  849         { &vop_lookup_desc,             (vop_t *) null_lookup },
  850         { &vop_open_desc,               (vop_t *) null_open },
  851         { &vop_print_desc,              (vop_t *) null_print },
  852         { &vop_reclaim_desc,            (vop_t *) null_reclaim },
  853         { &vop_rename_desc,             (vop_t *) null_rename },
  854         { &vop_setattr_desc,            (vop_t *) null_setattr },
  855         { &vop_strategy_desc,           (vop_t *) vop_eopnotsupp },
  856         { &vop_unlock_desc,             (vop_t *) null_unlock },
  857         { NULL, NULL }
  858 };
  859 static struct vnodeopv_desc null_vnodeop_opv_desc =
  860         { &null_vnodeop_p, null_vnodeop_entries };
  861 
  862 VNODEOP_SET(null_vnodeop_opv_desc);

Cache object: 300fc68fea3bd967a99168fc9c9c12cd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.