The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nullfs/null_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1992, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * John Heidemann of the UCLA Ficus project.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)null_vnops.c        8.6 (Berkeley) 5/27/95
   33  *
   34  * Ancestors:
   35  *      @(#)lofs_vnops.c        1.2 (Berkeley) 6/18/92
   36  *      ...and...
   37  *      @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
   38  *
   39  * $FreeBSD: releng/5.3/sys/fs/nullfs/null_vnops.c 128019 2004-04-07 20:46:16Z imp $
   40  */
   41 
   42 /*
   43  * Null Layer
   44  *
   45  * (See mount_nullfs(8) for more information.)
   46  *
   47  * The null layer duplicates a portion of the filesystem
   48  * name space under a new name.  In this respect, it is
   49  * similar to the loopback filesystem.  It differs from
   50  * the loopback fs in two respects:  it is implemented using
   51  * a stackable layers techniques, and its "null-node"s stack above
   52  * all lower-layer vnodes, not just over directory vnodes.
   53  *
   54  * The null layer has two purposes.  First, it serves as a demonstration
   55  * of layering by proving a layer which does nothing.  (It actually
   56  * does everything the loopback filesystem does, which is slightly
   57  * more than nothing.)  Second, the null layer can serve as a prototype
   58  * layer.  Since it provides all necessary layer framework,
   59  * new filesystem layers can be created very easily be starting
   60  * with a null layer.
   61  *
   62  * The remainder of this man page examines the null layer as a basis
   63  * for constructing new layers.
   64  *
   65  *
   66  * INSTANTIATING NEW NULL LAYERS
   67  *
   68  * New null layers are created with mount_nullfs(8).
   69  * Mount_nullfs(8) takes two arguments, the pathname
   70  * of the lower vfs (target-pn) and the pathname where the null
   71  * layer will appear in the namespace (alias-pn).  After
   72  * the null layer is put into place, the contents
   73  * of target-pn subtree will be aliased under alias-pn.
   74  *
   75  *
   76  * OPERATION OF A NULL LAYER
   77  *
   78  * The null layer is the minimum filesystem layer,
   79  * simply bypassing all possible operations to the lower layer
   80  * for processing there.  The majority of its activity centers
   81  * on the bypass routine, through which nearly all vnode operations
   82  * pass.
   83  *
   84  * The bypass routine accepts arbitrary vnode operations for
   85  * handling by the lower layer.  It begins by examing vnode
   86  * operation arguments and replacing any null-nodes by their
   87  * lower-layer equivlants.  It then invokes the operation
   88  * on the lower layer.  Finally, it replaces the null-nodes
   89  * in the arguments and, if a vnode is return by the operation,
   90  * stacks a null-node on top of the returned vnode.
   91  *
   92  * Although bypass handles most operations, vop_getattr, vop_lock,
   93  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
   94  * bypassed. Vop_getattr must change the fsid being returned.
   95  * Vop_lock and vop_unlock must handle any locking for the
   96  * current vnode as well as pass the lock request down.
   97  * Vop_inactive and vop_reclaim are not bypassed so that
   98  * they can handle freeing null-layer specific data. Vop_print
   99  * is not bypassed to avoid excessive debugging information.
  100  * Also, certain vnode operations change the locking state within
  101  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
  102  * and symlink). Ideally these operations should not change the
  103  * lock state, but should be changed to let the caller of the
  104  * function unlock them. Otherwise all intermediate vnode layers
  105  * (such as union, umapfs, etc) must catch these functions to do
  106  * the necessary locking at their layer.
  107  *
  108  *
  109  * INSTANTIATING VNODE STACKS
  110  *
  111  * Mounting associates the null layer with a lower layer,
  112  * effect stacking two VFSes.  Vnode stacks are instead
  113  * created on demand as files are accessed.
  114  *
  115  * The initial mount creates a single vnode stack for the
  116  * root of the new null layer.  All other vnode stacks
  117  * are created as a result of vnode operations on
  118  * this or other null vnode stacks.
  119  *
  120  * New vnode stacks come into existance as a result of
  121  * an operation which returns a vnode.
  122  * The bypass routine stacks a null-node above the new
  123  * vnode before returning it to the caller.
  124  *
  125  * For example, imagine mounting a null layer with
  126  * "mount_nullfs /usr/include /dev/layer/null".
  127  * Changing directory to /dev/layer/null will assign
  128  * the root null-node (which was created when the null layer was mounted).
  129  * Now consider opening "sys".  A vop_lookup would be
  130  * done on the root null-node.  This operation would bypass through
  131  * to the lower layer which would return a vnode representing
  132  * the UFS "sys".  Null_bypass then builds a null-node
  133  * aliasing the UFS "sys" and returns this to the caller.
  134  * Later operations on the null-node "sys" will repeat this
  135  * process when constructing other vnode stacks.
  136  *
  137  *
  138  * CREATING OTHER FILE SYSTEM LAYERS
  139  *
  140  * One of the easiest ways to construct new filesystem layers is to make
  141  * a copy of the null layer, rename all files and variables, and
  142  * then begin modifing the copy.  Sed can be used to easily rename
  143  * all variables.
  144  *
  145  * The umap layer is an example of a layer descended from the
  146  * null layer.
  147  *
  148  *
  149  * INVOKING OPERATIONS ON LOWER LAYERS
  150  *
  151  * There are two techniques to invoke operations on a lower layer
  152  * when the operation cannot be completely bypassed.  Each method
  153  * is appropriate in different situations.  In both cases,
  154  * it is the responsibility of the aliasing layer to make
  155  * the operation arguments "correct" for the lower layer
  156  * by mapping a vnode arguments to the lower layer.
  157  *
  158  * The first approach is to call the aliasing layer's bypass routine.
  159  * This method is most suitable when you wish to invoke the operation
  160  * currently being handled on the lower layer.  It has the advantage
  161  * that the bypass routine already must do argument mapping.
  162  * An example of this is null_getattrs in the null layer.
  163  *
  164  * A second approach is to directly invoke vnode operations on
  165  * the lower layer with the VOP_OPERATIONNAME interface.
  166  * The advantage of this method is that it is easy to invoke
  167  * arbitrary operations on the lower layer.  The disadvantage
  168  * is that vnode arguments must be manualy mapped.
  169  *
  170  */
  171 
  172 #include <sys/param.h>
  173 #include <sys/systm.h>
  174 #include <sys/conf.h>
  175 #include <sys/kernel.h>
  176 #include <sys/lock.h>
  177 #include <sys/malloc.h>
  178 #include <sys/mount.h>
  179 #include <sys/mutex.h>
  180 #include <sys/namei.h>
  181 #include <sys/sysctl.h>
  182 #include <sys/vnode.h>
  183 
  184 #include <fs/nullfs/null.h>
  185 
  186 #include <vm/vm.h>
  187 #include <vm/vm_extern.h>
  188 #include <vm/vm_object.h>
  189 #include <vm/vnode_pager.h>
  190 
  191 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
  192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 
  193         &null_bug_bypass, 0, "");
  194 
  195 static int      null_access(struct vop_access_args *ap);
  196 static int      null_createvobject(struct vop_createvobject_args *ap);
  197 static int      null_destroyvobject(struct vop_destroyvobject_args *ap);
  198 static int      null_getattr(struct vop_getattr_args *ap);
  199 static int      null_getvobject(struct vop_getvobject_args *ap);
  200 static int      null_inactive(struct vop_inactive_args *ap);
  201 static int      null_islocked(struct vop_islocked_args *ap);
  202 static int      null_lock(struct vop_lock_args *ap);
  203 static int      null_lookup(struct vop_lookup_args *ap);
  204 static int      null_open(struct vop_open_args *ap);
  205 static int      null_print(struct vop_print_args *ap);
  206 static int      null_reclaim(struct vop_reclaim_args *ap);
  207 static int      null_rename(struct vop_rename_args *ap);
  208 static int      null_setattr(struct vop_setattr_args *ap);
  209 static int      null_unlock(struct vop_unlock_args *ap);
  210 
  211 /*
  212  * This is the 10-Apr-92 bypass routine.
  213  *    This version has been optimized for speed, throwing away some
  214  * safety checks.  It should still always work, but it's not as
  215  * robust to programmer errors.
  216  *
  217  * In general, we map all vnodes going down and unmap them on the way back.
  218  * As an exception to this, vnodes can be marked "unmapped" by setting
  219  * the Nth bit in operation's vdesc_flags.
  220  *
  221  * Also, some BSD vnode operations have the side effect of vrele'ing
  222  * their arguments.  With stacking, the reference counts are held
  223  * by the upper node, not the lower one, so we must handle these
  224  * side-effects here.  This is not of concern in Sun-derived systems
  225  * since there are no such side-effects.
  226  *
  227  * This makes the following assumptions:
  228  * - only one returned vpp
  229  * - no INOUT vpp's (Sun's vop_open has one of these)
  230  * - the vnode operation vector of the first vnode should be used
  231  *   to determine what implementation of the op should be invoked
  232  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
  233  *   problems on rmdir'ing mount points and renaming?)
  234  */
  235 int
  236 null_bypass(ap)
  237         struct vop_generic_args /* {
  238                 struct vnodeop_desc *a_desc;
  239                 <other random data follows, presumably>
  240         } */ *ap;
  241 {
  242         register struct vnode **this_vp_p;
  243         int error;
  244         struct vnode *old_vps[VDESC_MAX_VPS];
  245         struct vnode **vps_p[VDESC_MAX_VPS];
  246         struct vnode ***vppp;
  247         struct vnodeop_desc *descp = ap->a_desc;
  248         int reles, i;
  249 
  250         if (null_bug_bypass)
  251                 printf ("null_bypass: %s\n", descp->vdesc_name);
  252 
  253 #ifdef DIAGNOSTIC
  254         /*
  255          * We require at least one vp.
  256          */
  257         if (descp->vdesc_vp_offsets == NULL ||
  258             descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
  259                 panic ("null_bypass: no vp's in map");
  260 #endif
  261 
  262         /*
  263          * Map the vnodes going in.
  264          * Later, we'll invoke the operation based on
  265          * the first mapped vnode's operation vector.
  266          */
  267         reles = descp->vdesc_flags;
  268         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  269                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  270                         break;   /* bail out at end of list */
  271                 vps_p[i] = this_vp_p =
  272                         VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
  273                 /*
  274                  * We're not guaranteed that any but the first vnode
  275                  * are of our type.  Check for and don't map any
  276                  * that aren't.  (We must always map first vp or vclean fails.)
  277                  */
  278                 if (i && (*this_vp_p == NULLVP ||
  279                     (*this_vp_p)->v_op != null_vnodeop_p)) {
  280                         old_vps[i] = NULLVP;
  281                 } else {
  282                         old_vps[i] = *this_vp_p;
  283                         *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
  284                         /*
  285                          * XXX - Several operations have the side effect
  286                          * of vrele'ing their vp's.  We must account for
  287                          * that.  (This should go away in the future.)
  288                          */
  289                         if (reles & VDESC_VP0_WILLRELE)
  290                                 VREF(*this_vp_p);
  291                 }
  292 
  293         }
  294 
  295         /*
  296          * Call the operation on the lower layer
  297          * with the modified argument structure.
  298          */
  299         if (vps_p[0] && *vps_p[0])
  300                 error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
  301         else {
  302                 printf("null_bypass: no map for %s\n", descp->vdesc_name);
  303                 error = EINVAL;
  304         }
  305 
  306         /*
  307          * Maintain the illusion of call-by-value
  308          * by restoring vnodes in the argument structure
  309          * to their original value.
  310          */
  311         reles = descp->vdesc_flags;
  312         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  313                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  314                         break;   /* bail out at end of list */
  315                 if (old_vps[i]) {
  316                         *(vps_p[i]) = old_vps[i];
  317 #if 0
  318                         if (reles & VDESC_VP0_WILLUNLOCK)
  319                                 VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread);
  320 #endif
  321                         if (reles & VDESC_VP0_WILLRELE)
  322                                 vrele(*(vps_p[i]));
  323                 }
  324         }
  325 
  326         /*
  327          * Map the possible out-going vpp
  328          * (Assumes that the lower layer always returns
  329          * a VREF'ed vpp unless it gets an error.)
  330          */
  331         if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
  332             !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
  333             !error) {
  334                 /*
  335                  * XXX - even though some ops have vpp returned vp's,
  336                  * several ops actually vrele this before returning.
  337                  * We must avoid these ops.
  338                  * (This should go away when these ops are regularized.)
  339                  */
  340                 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
  341                         goto out;
  342                 vppp = VOPARG_OFFSETTO(struct vnode***,
  343                                  descp->vdesc_vpp_offset,ap);
  344                 if (*vppp)
  345                         error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
  346         }
  347 
  348  out:
  349         return (error);
  350 }
  351 
  352 /*
  353  * We have to carry on the locking protocol on the null layer vnodes
  354  * as we progress through the tree. We also have to enforce read-only
  355  * if this layer is mounted read-only.
  356  */
  357 static int
  358 null_lookup(ap)
  359         struct vop_lookup_args /* {
  360                 struct vnode * a_dvp;
  361                 struct vnode ** a_vpp;
  362                 struct componentname * a_cnp;
  363         } */ *ap;
  364 {
  365         struct componentname *cnp = ap->a_cnp;
  366         struct vnode *dvp = ap->a_dvp;
  367         struct thread *td = cnp->cn_thread;
  368         int flags = cnp->cn_flags;
  369         struct vnode *vp, *ldvp, *lvp;
  370         int error;
  371 
  372         if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
  373             (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
  374                 return (EROFS);
  375         /*
  376          * Although it is possible to call null_bypass(), we'll do
  377          * a direct call to reduce overhead
  378          */
  379         ldvp = NULLVPTOLOWERVP(dvp);
  380         vp = lvp = NULL;
  381         error = VOP_LOOKUP(ldvp, &lvp, cnp);
  382         if (error == EJUSTRETURN && (flags & ISLASTCN) &&
  383             (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
  384             (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
  385                 error = EROFS;
  386 
  387         /*
  388          * Rely only on the PDIRUNLOCK flag which should be carefully
  389          * tracked by underlying filesystem.
  390          */
  391         if ((cnp->cn_flags & PDIRUNLOCK) && dvp->v_vnlock != ldvp->v_vnlock)
  392                 VOP_UNLOCK(dvp, LK_THISLAYER, td);
  393         if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
  394                 if (ldvp == lvp) {
  395                         *ap->a_vpp = dvp;
  396                         VREF(dvp);
  397                         vrele(lvp);
  398                 } else {
  399                         error = null_nodeget(dvp->v_mount, lvp, &vp);
  400                         if (error) {
  401                                 /* XXX Cleanup needed... */
  402                                 panic("null_nodeget failed");
  403                         }
  404                         *ap->a_vpp = vp;
  405                 }
  406         }
  407         return (error);
  408 }
  409 
  410 /*
  411  * Setattr call. Disallow write attempts if the layer is mounted read-only.
  412  */
  413 static int
  414 null_setattr(ap)
  415         struct vop_setattr_args /* {
  416                 struct vnodeop_desc *a_desc;
  417                 struct vnode *a_vp;
  418                 struct vattr *a_vap;
  419                 struct ucred *a_cred;
  420                 struct thread *a_td;
  421         } */ *ap;
  422 {
  423         struct vnode *vp = ap->a_vp;
  424         struct vattr *vap = ap->a_vap;
  425 
  426         if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
  427             vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
  428             vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
  429             (vp->v_mount->mnt_flag & MNT_RDONLY))
  430                 return (EROFS);
  431         if (vap->va_size != VNOVAL) {
  432                 switch (vp->v_type) {
  433                 case VDIR:
  434                         return (EISDIR);
  435                 case VCHR:
  436                 case VBLK:
  437                 case VSOCK:
  438                 case VFIFO:
  439                         if (vap->va_flags != VNOVAL)
  440                                 return (EOPNOTSUPP);
  441                         return (0);
  442                 case VREG:
  443                 case VLNK:
  444                 default:
  445                         /*
  446                          * Disallow write attempts if the filesystem is
  447                          * mounted read-only.
  448                          */
  449                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  450                                 return (EROFS);
  451                 }
  452         }
  453 
  454         return (null_bypass((struct vop_generic_args *)ap));
  455 }
  456 
  457 /*
  458  *  We handle getattr only to change the fsid.
  459  */
  460 static int
  461 null_getattr(ap)
  462         struct vop_getattr_args /* {
  463                 struct vnode *a_vp;
  464                 struct vattr *a_vap;
  465                 struct ucred *a_cred;
  466                 struct thread *a_td;
  467         } */ *ap;
  468 {
  469         int error;
  470 
  471         if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
  472                 return (error);
  473 
  474         ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
  475         return (0);
  476 }
  477 
  478 /*
  479  * Handle to disallow write access if mounted read-only.
  480  */
  481 static int
  482 null_access(ap)
  483         struct vop_access_args /* {
  484                 struct vnode *a_vp;
  485                 int  a_mode;
  486                 struct ucred *a_cred;
  487                 struct thread *a_td;
  488         } */ *ap;
  489 {
  490         struct vnode *vp = ap->a_vp;
  491         mode_t mode = ap->a_mode;
  492 
  493         /*
  494          * Disallow write attempts on read-only layers;
  495          * unless the file is a socket, fifo, or a block or
  496          * character device resident on the filesystem.
  497          */
  498         if (mode & VWRITE) {
  499                 switch (vp->v_type) {
  500                 case VDIR:
  501                 case VLNK:
  502                 case VREG:
  503                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  504                                 return (EROFS);
  505                         break;
  506                 default:
  507                         break;
  508                 }
  509         }
  510         return (null_bypass((struct vop_generic_args *)ap));
  511 }
  512 
  513 /*
  514  * We must handle open to be able to catch MNT_NODEV and friends.
  515  */
  516 static int
  517 null_open(ap)
  518         struct vop_open_args /* {
  519                 struct vnode *a_vp;
  520                 int  a_mode;
  521                 struct ucred *a_cred;
  522                 struct thread *a_td;
  523         } */ *ap;
  524 {
  525         struct vnode *vp = ap->a_vp;
  526         struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
  527 
  528         if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
  529             (lvp->v_type == VBLK || lvp->v_type == VCHR))
  530                 return ENXIO;
  531 
  532         return (null_bypass((struct vop_generic_args *)ap));
  533 }
  534 
  535 /*
  536  * We handle this to eliminate null FS to lower FS
  537  * file moving. Don't know why we don't allow this,
  538  * possibly we should.
  539  */
  540 static int
  541 null_rename(ap)
  542         struct vop_rename_args /* {
  543                 struct vnode *a_fdvp;
  544                 struct vnode *a_fvp;
  545                 struct componentname *a_fcnp;
  546                 struct vnode *a_tdvp;
  547                 struct vnode *a_tvp;
  548                 struct componentname *a_tcnp;
  549         } */ *ap;
  550 {
  551         struct vnode *tdvp = ap->a_tdvp;
  552         struct vnode *fvp = ap->a_fvp;
  553         struct vnode *fdvp = ap->a_fdvp;
  554         struct vnode *tvp = ap->a_tvp;
  555 
  556         /* Check for cross-device rename. */
  557         if ((fvp->v_mount != tdvp->v_mount) ||
  558             (tvp && (fvp->v_mount != tvp->v_mount))) {
  559                 if (tdvp == tvp)
  560                         vrele(tdvp);
  561                 else
  562                         vput(tdvp);
  563                 if (tvp)
  564                         vput(tvp);
  565                 vrele(fdvp);
  566                 vrele(fvp);
  567                 return (EXDEV);
  568         }
  569         
  570         return (null_bypass((struct vop_generic_args *)ap));
  571 }
  572 
  573 /*
  574  * We need to process our own vnode lock and then clear the
  575  * interlock flag as it applies only to our vnode, not the
  576  * vnodes below us on the stack.
  577  */
  578 static int
  579 null_lock(ap)
  580         struct vop_lock_args /* {
  581                 struct vnode *a_vp;
  582                 int a_flags;
  583                 struct thread *a_td;
  584         } */ *ap;
  585 {
  586         struct vnode *vp = ap->a_vp;
  587         int flags = ap->a_flags;
  588         struct thread *td = ap->a_td;
  589         struct vnode *lvp;
  590         int error;
  591         struct null_node *nn;
  592 
  593         if (flags & LK_THISLAYER) {
  594                 if (vp->v_vnlock != NULL) {
  595                         /* lock is shared across layers */
  596                         if (flags & LK_INTERLOCK)
  597                                 mtx_unlock(&vp->v_interlock);
  598                         return 0;
  599                 }
  600                 error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
  601                     &vp->v_interlock, td);
  602                 return (error);
  603         }
  604 
  605         if (vp->v_vnlock != NULL) {
  606                 /*
  607                  * The lower level has exported a struct lock to us. Use
  608                  * it so that all vnodes in the stack lock and unlock
  609                  * simultaneously. Note: we don't DRAIN the lock as DRAIN
  610                  * decommissions the lock - just because our vnode is
  611                  * going away doesn't mean the struct lock below us is.
  612                  * LK_EXCLUSIVE is fine.
  613                  */
  614                 if ((flags & LK_INTERLOCK) == 0) {
  615                         VI_LOCK(vp);
  616                         flags |= LK_INTERLOCK;
  617                 }
  618                 nn = VTONULL(vp);
  619                 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
  620                         NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
  621                         /*
  622                          * Emulate lock draining by waiting for all other
  623                          * pending locks to complete.  Afterwards the
  624                          * lockmgr call might block, but no other threads
  625                          * will attempt to use this nullfs vnode due to the
  626                          * VI_XLOCK flag.
  627                          */
  628                         while (nn->null_pending_locks > 0) {
  629                                 nn->null_drain_wakeup = 1;
  630                                 msleep(&nn->null_pending_locks,
  631                                        VI_MTX(vp),
  632                                        PVFS,
  633                                        "nuldr", 0);
  634                         }
  635                         error = lockmgr(vp->v_vnlock,
  636                                         (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
  637                                         VI_MTX(vp), td);
  638                         return error;
  639                 }
  640                 nn->null_pending_locks++;
  641                 error = lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td);
  642                 VI_LOCK(vp);
  643                 /*
  644                  * If we're called from vrele then v_usecount can have been 0
  645                  * and another process might have initiated a recycle 
  646                  * operation.  When that happens, just back out.
  647                  */
  648                 if (error == 0 && (vp->v_iflag & VI_XLOCK) != 0 &&
  649                     td != vp->v_vxthread) {
  650                         lockmgr(vp->v_vnlock,
  651                                 (flags & ~LK_TYPE_MASK) | LK_RELEASE,
  652                                 VI_MTX(vp), td);
  653                         VI_LOCK(vp);
  654                         error = ENOENT;
  655                 }
  656                 nn->null_pending_locks--;
  657                 /*
  658                  * Wakeup the process draining the vnode after all
  659                  * pending lock attempts has been failed.
  660                  */
  661                 if (nn->null_pending_locks == 0 &&
  662                     nn->null_drain_wakeup != 0) {
  663                         nn->null_drain_wakeup = 0;
  664                         wakeup(&nn->null_pending_locks);
  665                 }
  666                 if (error == ENOENT && (vp->v_iflag & VI_XLOCK) != 0 &&
  667                     vp->v_vxthread != curthread) {
  668                         vp->v_iflag |= VI_XWANT;
  669                         msleep(vp, VI_MTX(vp), PINOD, "nulbo", 0);
  670                 }
  671                 VI_UNLOCK(vp);
  672                 return error;
  673         } else {
  674                 /*
  675                  * To prevent race conditions involving doing a lookup
  676                  * on "..", we have to lock the lower node, then lock our
  677                  * node. Most of the time it won't matter that we lock our
  678                  * node (as any locking would need the lower one locked
  679                  * first). But we can LK_DRAIN the upper lock as a step
  680                  * towards decomissioning it.
  681                  */
  682                 lvp = NULLVPTOLOWERVP(vp);
  683                 if (lvp == NULL)
  684                         return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td));
  685                 if (flags & LK_INTERLOCK) {
  686                         mtx_unlock(&vp->v_interlock);
  687                         flags &= ~LK_INTERLOCK;
  688                 }
  689                 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
  690                         error = VOP_LOCK(lvp,
  691                                 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td);
  692                 } else
  693                         error = VOP_LOCK(lvp, flags, td);
  694                 if (error)
  695                         return (error); 
  696                 error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td);
  697                 if (error)
  698                         VOP_UNLOCK(lvp, 0, td);
  699                 return (error);
  700         }
  701 }
  702 
  703 /*
  704  * We need to process our own vnode unlock and then clear the
  705  * interlock flag as it applies only to our vnode, not the
  706  * vnodes below us on the stack.
  707  */
  708 static int
  709 null_unlock(ap)
  710         struct vop_unlock_args /* {
  711                 struct vnode *a_vp;
  712                 int a_flags;
  713                 struct thread *a_td;
  714         } */ *ap;
  715 {
  716         struct vnode *vp = ap->a_vp;
  717         int flags = ap->a_flags;
  718         struct thread *td = ap->a_td;
  719         struct vnode *lvp;
  720 
  721         if (vp->v_vnlock != NULL) {
  722                 if (flags & LK_THISLAYER)
  723                         return 0;       /* the lock is shared across layers */
  724                 flags &= ~LK_THISLAYER;
  725                 return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
  726                         &vp->v_interlock, td));
  727         }
  728         lvp = NULLVPTOLOWERVP(vp);
  729         if (lvp == NULL)
  730                 return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
  731         if ((flags & LK_THISLAYER) == 0) {
  732                 if (flags & LK_INTERLOCK) {
  733                         mtx_unlock(&vp->v_interlock);
  734                         flags &= ~LK_INTERLOCK;
  735                 }
  736                 VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td);
  737         } else
  738                 flags &= ~LK_THISLAYER;
  739         return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
  740 }
  741 
  742 static int
  743 null_islocked(ap)
  744         struct vop_islocked_args /* {
  745                 struct vnode *a_vp;
  746                 struct thread *a_td;
  747         } */ *ap;
  748 {
  749         struct vnode *vp = ap->a_vp;
  750         struct thread *td = ap->a_td;
  751 
  752         if (vp->v_vnlock != NULL)
  753                 return (lockstatus(vp->v_vnlock, td));
  754         return (lockstatus(&vp->v_lock, td));
  755 }
  756 
  757 /*
  758  * There is no way to tell that someone issued remove/rmdir operation
  759  * on the underlying filesystem. For now we just have to release lowevrp
  760  * as soon as possible.
  761  *
  762  * Note, we can't release any resources nor remove vnode from hash before 
  763  * appropriate VXLOCK stuff is is done because other process can find this
  764  * vnode in hash during inactivation and may be sitting in vget() and waiting
  765  * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
  766  */
  767 static int
  768 null_inactive(ap)
  769         struct vop_inactive_args /* {
  770                 struct vnode *a_vp;
  771                 struct thread *a_td;
  772         } */ *ap;
  773 {
  774         struct vnode *vp = ap->a_vp;
  775         struct thread *td = ap->a_td;
  776 
  777         VOP_UNLOCK(vp, 0, td);
  778 
  779         /*
  780          * If this is the last reference, then free up the vnode
  781          * so as not to tie up the lower vnodes.
  782          */
  783         vrecycle(vp, NULL, td);
  784 
  785         return (0);
  786 }
  787 
  788 /*
  789  * Now, the VXLOCK is in force and we're free to destroy the null vnode.
  790  */
  791 static int
  792 null_reclaim(ap)
  793         struct vop_reclaim_args /* {
  794                 struct vnode *a_vp;
  795                 struct thread *a_td;
  796         } */ *ap;
  797 {
  798         struct vnode *vp = ap->a_vp;
  799         struct null_node *xp = VTONULL(vp);
  800         struct vnode *lowervp = xp->null_lowervp;
  801 
  802         if (lowervp) {
  803                 null_hashrem(xp);
  804 
  805                 vrele(lowervp);
  806                 vrele(lowervp);
  807         }
  808 
  809         vp->v_data = NULL;
  810         vp->v_vnlock = &vp->v_lock;
  811         FREE(xp, M_NULLFSNODE);
  812 
  813         return (0);
  814 }
  815 
  816 static int
  817 null_print(ap)
  818         struct vop_print_args /* {
  819                 struct vnode *a_vp;
  820         } */ *ap;
  821 {
  822         register struct vnode *vp = ap->a_vp;
  823         printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
  824         return (0);
  825 }
  826 
  827 /*
  828  * Let an underlying filesystem do the work
  829  */
  830 static int
  831 null_createvobject(ap)
  832         struct vop_createvobject_args /* {
  833                 struct vnode *vp;
  834                 struct ucred *cred;
  835                 struct thread *td;
  836         } */ *ap;
  837 {
  838         struct vnode *vp = ap->a_vp;
  839         struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
  840         int error;
  841 
  842         if (vp->v_type == VNON || lowervp == NULL)
  843                 return 0;
  844         error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_td);
  845         if (error)
  846                 return (error);
  847         vp->v_vflag |= VV_OBJBUF;
  848         return (0);
  849 }
  850 
  851 /*
  852  * We have nothing to destroy and this operation shouldn't be bypassed.
  853  */
  854 static int
  855 null_destroyvobject(ap)
  856         struct vop_destroyvobject_args /* {
  857                 struct vnode *vp;
  858         } */ *ap;
  859 {
  860         struct vnode *vp = ap->a_vp;
  861 
  862         vp->v_vflag &= ~VV_OBJBUF;
  863         return (0);
  864 }
  865 
  866 static int
  867 null_getvobject(ap)
  868         struct vop_getvobject_args /* {
  869                 struct vnode *vp;
  870                 struct vm_object **objpp;
  871         } */ *ap;
  872 {
  873         struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
  874 
  875         if (lvp == NULL)
  876                 return EINVAL;
  877         return (VOP_GETVOBJECT(lvp, ap->a_objpp));
  878 }
  879 
  880 /*
  881  * Global vfs data structures
  882  */
  883 vop_t **null_vnodeop_p;
  884 static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
  885         { &vop_default_desc,            (vop_t *) null_bypass },
  886 
  887         { &vop_access_desc,             (vop_t *) null_access },
  888         { &vop_bmap_desc,               (vop_t *) vop_eopnotsupp },
  889         { &vop_createvobject_desc,      (vop_t *) null_createvobject },
  890         { &vop_destroyvobject_desc,     (vop_t *) null_destroyvobject },
  891         { &vop_getattr_desc,            (vop_t *) null_getattr },
  892         { &vop_getvobject_desc,         (vop_t *) null_getvobject },
  893         { &vop_getwritemount_desc,      (vop_t *) vop_stdgetwritemount},
  894         { &vop_inactive_desc,           (vop_t *) null_inactive },
  895         { &vop_islocked_desc,           (vop_t *) null_islocked },
  896         { &vop_lock_desc,               (vop_t *) null_lock },
  897         { &vop_lookup_desc,             (vop_t *) null_lookup },
  898         { &vop_open_desc,               (vop_t *) null_open },
  899         { &vop_print_desc,              (vop_t *) null_print },
  900         { &vop_reclaim_desc,            (vop_t *) null_reclaim },
  901         { &vop_rename_desc,             (vop_t *) null_rename },
  902         { &vop_setattr_desc,            (vop_t *) null_setattr },
  903         { &vop_strategy_desc,           (vop_t *) vop_eopnotsupp },
  904         { &vop_unlock_desc,             (vop_t *) null_unlock },
  905         { NULL, NULL }
  906 };
  907 static struct vnodeopv_desc null_vnodeop_opv_desc =
  908         { &null_vnodeop_p, null_vnodeop_entries };
  909 
  910 VNODEOP_SET(null_vnodeop_opv_desc);

Cache object: 7c9d1c7549188664dd0e92948ca48dd9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.