The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nullfs/null_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * John Heidemann of the UCLA Ficus project.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)null_vnops.c        8.6 (Berkeley) 5/27/95
   33  *
   34  * Ancestors:
   35  *      @(#)lofs_vnops.c        1.2 (Berkeley) 6/18/92
   36  *      ...and...
   37  *      @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
   38  *
   39  * $FreeBSD: releng/6.4/sys/fs/nullfs/null_vnops.c 172899 2007-10-23 03:38:32Z daichi $
   40  */
   41 
   42 /*
   43  * Null Layer
   44  *
   45  * (See mount_nullfs(8) for more information.)
   46  *
   47  * The null layer duplicates a portion of the filesystem
   48  * name space under a new name.  In this respect, it is
   49  * similar to the loopback filesystem.  It differs from
   50  * the loopback fs in two respects:  it is implemented using
   51  * a stackable layers techniques, and its "null-node"s stack above
   52  * all lower-layer vnodes, not just over directory vnodes.
   53  *
   54  * The null layer has two purposes.  First, it serves as a demonstration
   55  * of layering by proving a layer which does nothing.  (It actually
   56  * does everything the loopback filesystem does, which is slightly
   57  * more than nothing.)  Second, the null layer can serve as a prototype
   58  * layer.  Since it provides all necessary layer framework,
   59  * new filesystem layers can be created very easily be starting
   60  * with a null layer.
   61  *
   62  * The remainder of this man page examines the null layer as a basis
   63  * for constructing new layers.
   64  *
   65  *
   66  * INSTANTIATING NEW NULL LAYERS
   67  *
   68  * New null layers are created with mount_nullfs(8).
   69  * Mount_nullfs(8) takes two arguments, the pathname
   70  * of the lower vfs (target-pn) and the pathname where the null
   71  * layer will appear in the namespace (alias-pn).  After
   72  * the null layer is put into place, the contents
   73  * of target-pn subtree will be aliased under alias-pn.
   74  *
   75  *
   76  * OPERATION OF A NULL LAYER
   77  *
   78  * The null layer is the minimum filesystem layer,
   79  * simply bypassing all possible operations to the lower layer
   80  * for processing there.  The majority of its activity centers
   81  * on the bypass routine, through which nearly all vnode operations
   82  * pass.
   83  *
   84  * The bypass routine accepts arbitrary vnode operations for
   85  * handling by the lower layer.  It begins by examing vnode
   86  * operation arguments and replacing any null-nodes by their
   87  * lower-layer equivlants.  It then invokes the operation
   88  * on the lower layer.  Finally, it replaces the null-nodes
   89  * in the arguments and, if a vnode is return by the operation,
   90  * stacks a null-node on top of the returned vnode.
   91  *
   92  * Although bypass handles most operations, vop_getattr, vop_lock,
   93  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
   94  * bypassed. Vop_getattr must change the fsid being returned.
   95  * Vop_lock and vop_unlock must handle any locking for the
   96  * current vnode as well as pass the lock request down.
   97  * Vop_inactive and vop_reclaim are not bypassed so that
   98  * they can handle freeing null-layer specific data. Vop_print
   99  * is not bypassed to avoid excessive debugging information.
  100  * Also, certain vnode operations change the locking state within
  101  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
  102  * and symlink). Ideally these operations should not change the
  103  * lock state, but should be changed to let the caller of the
  104  * function unlock them. Otherwise all intermediate vnode layers
  105  * (such as union, umapfs, etc) must catch these functions to do
  106  * the necessary locking at their layer.
  107  *
  108  *
  109  * INSTANTIATING VNODE STACKS
  110  *
  111  * Mounting associates the null layer with a lower layer,
  112  * effect stacking two VFSes.  Vnode stacks are instead
  113  * created on demand as files are accessed.
  114  *
  115  * The initial mount creates a single vnode stack for the
  116  * root of the new null layer.  All other vnode stacks
  117  * are created as a result of vnode operations on
  118  * this or other null vnode stacks.
  119  *
  120  * New vnode stacks come into existance as a result of
  121  * an operation which returns a vnode.
  122  * The bypass routine stacks a null-node above the new
  123  * vnode before returning it to the caller.
  124  *
  125  * For example, imagine mounting a null layer with
  126  * "mount_nullfs /usr/include /dev/layer/null".
  127  * Changing directory to /dev/layer/null will assign
  128  * the root null-node (which was created when the null layer was mounted).
  129  * Now consider opening "sys".  A vop_lookup would be
  130  * done on the root null-node.  This operation would bypass through
  131  * to the lower layer which would return a vnode representing
  132  * the UFS "sys".  Null_bypass then builds a null-node
  133  * aliasing the UFS "sys" and returns this to the caller.
  134  * Later operations on the null-node "sys" will repeat this
  135  * process when constructing other vnode stacks.
  136  *
  137  *
  138  * CREATING OTHER FILE SYSTEM LAYERS
  139  *
  140  * One of the easiest ways to construct new filesystem layers is to make
  141  * a copy of the null layer, rename all files and variables, and
  142  * then begin modifing the copy.  Sed can be used to easily rename
  143  * all variables.
  144  *
  145  * The umap layer is an example of a layer descended from the
  146  * null layer.
  147  *
  148  *
  149  * INVOKING OPERATIONS ON LOWER LAYERS
  150  *
  151  * There are two techniques to invoke operations on a lower layer
  152  * when the operation cannot be completely bypassed.  Each method
  153  * is appropriate in different situations.  In both cases,
  154  * it is the responsibility of the aliasing layer to make
  155  * the operation arguments "correct" for the lower layer
  156  * by mapping a vnode arguments to the lower layer.
  157  *
  158  * The first approach is to call the aliasing layer's bypass routine.
  159  * This method is most suitable when you wish to invoke the operation
  160  * currently being handled on the lower layer.  It has the advantage
  161  * that the bypass routine already must do argument mapping.
  162  * An example of this is null_getattrs in the null layer.
  163  *
  164  * A second approach is to directly invoke vnode operations on
  165  * the lower layer with the VOP_OPERATIONNAME interface.
  166  * The advantage of this method is that it is easy to invoke
  167  * arbitrary operations on the lower layer.  The disadvantage
  168  * is that vnode arguments must be manualy mapped.
  169  *
  170  */
  171 
  172 #include <sys/param.h>
  173 #include <sys/systm.h>
  174 #include <sys/conf.h>
  175 #include <sys/kernel.h>
  176 #include <sys/lock.h>
  177 #include <sys/malloc.h>
  178 #include <sys/mount.h>
  179 #include <sys/mutex.h>
  180 #include <sys/namei.h>
  181 #include <sys/sysctl.h>
  182 #include <sys/vnode.h>
  183 #include <sys/kdb.h>
  184 
  185 #include <fs/nullfs/null.h>
  186 
  187 #include <vm/vm.h>
  188 #include <vm/vm_extern.h>
  189 #include <vm/vm_object.h>
  190 #include <vm/vnode_pager.h>
  191 
  192 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
  193 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 
  194         &null_bug_bypass, 0, "");
  195 
  196 /*
  197  * This is the 10-Apr-92 bypass routine.
  198  *    This version has been optimized for speed, throwing away some
  199  * safety checks.  It should still always work, but it's not as
  200  * robust to programmer errors.
  201  *
  202  * In general, we map all vnodes going down and unmap them on the way back.
  203  * As an exception to this, vnodes can be marked "unmapped" by setting
  204  * the Nth bit in operation's vdesc_flags.
  205  *
  206  * Also, some BSD vnode operations have the side effect of vrele'ing
  207  * their arguments.  With stacking, the reference counts are held
  208  * by the upper node, not the lower one, so we must handle these
  209  * side-effects here.  This is not of concern in Sun-derived systems
  210  * since there are no such side-effects.
  211  *
  212  * This makes the following assumptions:
  213  * - only one returned vpp
  214  * - no INOUT vpp's (Sun's vop_open has one of these)
  215  * - the vnode operation vector of the first vnode should be used
  216  *   to determine what implementation of the op should be invoked
  217  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
  218  *   problems on rmdir'ing mount points and renaming?)
  219  */
  220 int
  221 null_bypass(struct vop_generic_args *ap)
  222 {
  223         struct vnode **this_vp_p;
  224         int error;
  225         struct vnode *old_vps[VDESC_MAX_VPS];
  226         struct vnode **vps_p[VDESC_MAX_VPS];
  227         struct vnode ***vppp;
  228         struct vnodeop_desc *descp = ap->a_desc;
  229         int reles, i;
  230 
  231         if (null_bug_bypass)
  232                 printf ("null_bypass: %s\n", descp->vdesc_name);
  233 
  234 #ifdef DIAGNOSTIC
  235         /*
  236          * We require at least one vp.
  237          */
  238         if (descp->vdesc_vp_offsets == NULL ||
  239             descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
  240                 panic ("null_bypass: no vp's in map");
  241 #endif
  242 
  243         /*
  244          * Map the vnodes going in.
  245          * Later, we'll invoke the operation based on
  246          * the first mapped vnode's operation vector.
  247          */
  248         reles = descp->vdesc_flags;
  249         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  250                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  251                         break;   /* bail out at end of list */
  252                 vps_p[i] = this_vp_p =
  253                         VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
  254                 /*
  255                  * We're not guaranteed that any but the first vnode
  256                  * are of our type.  Check for and don't map any
  257                  * that aren't.  (We must always map first vp or vclean fails.)
  258                  */
  259                 if (i && (*this_vp_p == NULLVP ||
  260                     (*this_vp_p)->v_op != &null_vnodeops)) {
  261                         old_vps[i] = NULLVP;
  262                 } else {
  263                         old_vps[i] = *this_vp_p;
  264                         *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
  265                         /*
  266                          * XXX - Several operations have the side effect
  267                          * of vrele'ing their vp's.  We must account for
  268                          * that.  (This should go away in the future.)
  269                          */
  270                         if (reles & VDESC_VP0_WILLRELE)
  271                                 VREF(*this_vp_p);
  272                 }
  273 
  274         }
  275 
  276         /*
  277          * Call the operation on the lower layer
  278          * with the modified argument structure.
  279          */
  280         if (vps_p[0] && *vps_p[0])
  281                 error = VCALL(ap);
  282         else {
  283                 printf("null_bypass: no map for %s\n", descp->vdesc_name);
  284                 error = EINVAL;
  285         }
  286 
  287         /*
  288          * Maintain the illusion of call-by-value
  289          * by restoring vnodes in the argument structure
  290          * to their original value.
  291          */
  292         reles = descp->vdesc_flags;
  293         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  294                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  295                         break;   /* bail out at end of list */
  296                 if (old_vps[i]) {
  297                         *(vps_p[i]) = old_vps[i];
  298 #if 0
  299                         if (reles & VDESC_VP0_WILLUNLOCK)
  300                                 VOP_UNLOCK(*(vps_p[i]), 0, curthread);
  301 #endif
  302                         if (reles & VDESC_VP0_WILLRELE)
  303                                 vrele(*(vps_p[i]));
  304                 }
  305         }
  306 
  307         /*
  308          * Map the possible out-going vpp
  309          * (Assumes that the lower layer always returns
  310          * a VREF'ed vpp unless it gets an error.)
  311          */
  312         if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
  313             !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
  314             !error) {
  315                 /*
  316                  * XXX - even though some ops have vpp returned vp's,
  317                  * several ops actually vrele this before returning.
  318                  * We must avoid these ops.
  319                  * (This should go away when these ops are regularized.)
  320                  */
  321                 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
  322                         goto out;
  323                 vppp = VOPARG_OFFSETTO(struct vnode***,
  324                                  descp->vdesc_vpp_offset,ap);
  325                 if (*vppp)
  326                         error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
  327         }
  328 
  329  out:
  330         return (error);
  331 }
  332 
  333 /*
  334  * We have to carry on the locking protocol on the null layer vnodes
  335  * as we progress through the tree. We also have to enforce read-only
  336  * if this layer is mounted read-only.
  337  */
  338 static int
  339 null_lookup(struct vop_lookup_args *ap)
  340 {
  341         struct componentname *cnp = ap->a_cnp;
  342         struct vnode *dvp = ap->a_dvp;
  343         int flags = cnp->cn_flags;
  344         struct vnode *vp, *ldvp, *lvp;
  345         int error;
  346 
  347         if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
  348             (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
  349                 return (EROFS);
  350         /*
  351          * Although it is possible to call null_bypass(), we'll do
  352          * a direct call to reduce overhead
  353          */
  354         ldvp = NULLVPTOLOWERVP(dvp);
  355         vp = lvp = NULL;
  356         error = VOP_LOOKUP(ldvp, &lvp, cnp);
  357         if (error == EJUSTRETURN && (flags & ISLASTCN) &&
  358             (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
  359             (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
  360                 error = EROFS;
  361 
  362         if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
  363                 if (ldvp == lvp) {
  364                         *ap->a_vpp = dvp;
  365                         VREF(dvp);
  366                         vrele(lvp);
  367                 } else {
  368                         error = null_nodeget(dvp->v_mount, lvp, &vp);
  369                         if (error) {
  370                                 /* XXX Cleanup needed... */
  371                                 panic("null_nodeget failed");
  372                         }
  373                         *ap->a_vpp = vp;
  374                 }
  375         }
  376         return (error);
  377 }
  378 
  379 static int
  380 null_open(struct vop_open_args *ap)
  381 {
  382         int retval;
  383         struct vnode *vp, *ldvp;
  384 
  385         vp = ap->a_vp;
  386         ldvp = NULLVPTOLOWERVP(vp);
  387         retval = null_bypass(&ap->a_gen);
  388         if (retval == 0)
  389                 vp->v_object = ldvp->v_object;
  390         return (retval);
  391 }
  392 
  393 /*
  394  * Setattr call. Disallow write attempts if the layer is mounted read-only.
  395  */
  396 static int
  397 null_setattr(struct vop_setattr_args *ap)
  398 {
  399         struct vnode *vp = ap->a_vp;
  400         struct vattr *vap = ap->a_vap;
  401 
  402         if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
  403             vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
  404             vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
  405             (vp->v_mount->mnt_flag & MNT_RDONLY))
  406                 return (EROFS);
  407         if (vap->va_size != VNOVAL) {
  408                 switch (vp->v_type) {
  409                 case VDIR:
  410                         return (EISDIR);
  411                 case VCHR:
  412                 case VBLK:
  413                 case VSOCK:
  414                 case VFIFO:
  415                         if (vap->va_flags != VNOVAL)
  416                                 return (EOPNOTSUPP);
  417                         return (0);
  418                 case VREG:
  419                 case VLNK:
  420                 default:
  421                         /*
  422                          * Disallow write attempts if the filesystem is
  423                          * mounted read-only.
  424                          */
  425                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  426                                 return (EROFS);
  427                 }
  428         }
  429 
  430         return (null_bypass((struct vop_generic_args *)ap));
  431 }
  432 
  433 /*
  434  *  We handle getattr only to change the fsid.
  435  */
  436 static int
  437 null_getattr(struct vop_getattr_args *ap)
  438 {
  439         int error;
  440 
  441         if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
  442                 return (error);
  443 
  444         ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
  445         return (0);
  446 }
  447 
  448 /*
  449  * Handle to disallow write access if mounted read-only.
  450  */
  451 static int
  452 null_access(struct vop_access_args *ap)
  453 {
  454         struct vnode *vp = ap->a_vp;
  455         mode_t mode = ap->a_mode;
  456 
  457         /*
  458          * Disallow write attempts on read-only layers;
  459          * unless the file is a socket, fifo, or a block or
  460          * character device resident on the filesystem.
  461          */
  462         if (mode & VWRITE) {
  463                 switch (vp->v_type) {
  464                 case VDIR:
  465                 case VLNK:
  466                 case VREG:
  467                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  468                                 return (EROFS);
  469                         break;
  470                 default:
  471                         break;
  472                 }
  473         }
  474         return (null_bypass((struct vop_generic_args *)ap));
  475 }
  476 
  477 /*
  478  * We handle this to eliminate null FS to lower FS
  479  * file moving. Don't know why we don't allow this,
  480  * possibly we should.
  481  */
  482 static int
  483 null_rename(struct vop_rename_args *ap)
  484 {
  485         struct vnode *tdvp = ap->a_tdvp;
  486         struct vnode *fvp = ap->a_fvp;
  487         struct vnode *fdvp = ap->a_fdvp;
  488         struct vnode *tvp = ap->a_tvp;
  489 
  490         /* Check for cross-device rename. */
  491         if ((fvp->v_mount != tdvp->v_mount) ||
  492             (tvp && (fvp->v_mount != tvp->v_mount))) {
  493                 if (tdvp == tvp)
  494                         vrele(tdvp);
  495                 else
  496                         vput(tdvp);
  497                 if (tvp)
  498                         vput(tvp);
  499                 vrele(fdvp);
  500                 vrele(fvp);
  501                 return (EXDEV);
  502         }
  503         
  504         return (null_bypass((struct vop_generic_args *)ap));
  505 }
  506 
  507 /*
  508  * We need to process our own vnode lock and then clear the
  509  * interlock flag as it applies only to our vnode, not the
  510  * vnodes below us on the stack.
  511  */
  512 static int
  513 null_lock(struct vop_lock_args *ap)
  514 {
  515         struct vnode *vp = ap->a_vp;
  516         int flags = ap->a_flags;
  517         struct thread *td = ap->a_td;
  518         struct null_node *nn;
  519         struct vnode *lvp;
  520         int error;
  521 
  522 
  523         if ((flags & LK_INTERLOCK) == 0) {
  524                 VI_LOCK(vp);
  525                 ap->a_flags = flags |= LK_INTERLOCK;
  526         }
  527         nn = VTONULL(vp);
  528         /*
  529          * If we're still active we must ask the lower layer to
  530          * lock as ffs has special lock considerations in it's
  531          * vop lock.
  532          */
  533         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  534                 VI_LOCK_FLAGS(lvp, MTX_DUPOK);
  535                 VI_UNLOCK(vp);
  536                 /*
  537                  * We have to hold the vnode here to solve a potential
  538                  * reclaim race.  If we're forcibly vgone'd while we
  539                  * still have refs, a thread could be sleeping inside
  540                  * the lowervp's vop_lock routine.  When we vgone we will
  541                  * drop our last ref to the lowervp, which would allow it
  542                  * to be reclaimed.  The lowervp could then be recycled,
  543                  * in which case it is not legal to be sleeping in it's VOP.
  544                  * We prevent it from being recycled by holding the vnode
  545                  * here.
  546                  */
  547                 vholdl(lvp);
  548                 error = VOP_LOCK(lvp, flags, td);
  549 
  550                 /*
  551                  * We might have slept to get the lock and someone might have
  552                  * clean our vnode already, switching vnode lock from one in
  553                  * lowervp to v_lock in our own vnode structure.  Handle this
  554                  * case by reacquiring correct lock in requested mode.
  555                  */
  556                 if (VTONULL(vp) == NULL && error == 0) {
  557                         ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
  558                         switch (flags & LK_TYPE_MASK) {
  559                         case LK_SHARED:
  560                                 ap->a_flags |= LK_SHARED;
  561                                 break;
  562                         case LK_UPGRADE:
  563                         case LK_EXCLUSIVE:
  564                                 ap->a_flags |= LK_EXCLUSIVE;
  565                                 break;
  566                         default:
  567                                 panic("Unsupported lock request %d\n",
  568                                     ap->a_flags);
  569                         }
  570                         VOP_UNLOCK(lvp, 0, td);
  571                         error = vop_stdlock(ap);
  572                 }
  573                 vdrop(lvp);
  574         } else
  575                 error = vop_stdlock(ap);
  576 
  577         return (error);
  578 }
  579 
  580 /*
  581  * We need to process our own vnode unlock and then clear the
  582  * interlock flag as it applies only to our vnode, not the
  583  * vnodes below us on the stack.
  584  */
  585 static int
  586 null_unlock(struct vop_unlock_args *ap)
  587 {
  588         struct vnode *vp = ap->a_vp;
  589         int flags = ap->a_flags;
  590         int mtxlkflag = 0;
  591         struct thread *td = ap->a_td;
  592         struct null_node *nn;
  593         struct vnode *lvp;
  594         int error;
  595 
  596         if ((flags & LK_INTERLOCK) != 0)
  597                 mtxlkflag = 1;
  598         else if (mtx_owned(VI_MTX(vp)) == 0) {
  599                 VI_LOCK(vp);
  600                 mtxlkflag = 2;
  601         }
  602         nn = VTONULL(vp);
  603         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  604                 VI_LOCK_FLAGS(lvp, MTX_DUPOK);
  605                 flags |= LK_INTERLOCK;
  606                 vholdl(lvp);
  607                 VI_UNLOCK(vp);
  608                 error = VOP_UNLOCK(lvp, flags, td);
  609                 vdrop(lvp);
  610                 if (mtxlkflag == 0)
  611                         VI_LOCK(vp);
  612         } else {
  613                 if (mtxlkflag == 2)
  614                         VI_UNLOCK(vp);
  615                 error = vop_stdunlock(ap);
  616         }
  617 
  618         return (error);
  619 }
  620 
  621 static int
  622 null_islocked(struct vop_islocked_args *ap)
  623 {
  624         struct vnode *vp = ap->a_vp;
  625         struct thread *td = ap->a_td;
  626 
  627         return (lockstatus(vp->v_vnlock, td));
  628 }
  629 
  630 /*
  631  * There is no way to tell that someone issued remove/rmdir operation
  632  * on the underlying filesystem. For now we just have to release lowevrp
  633  * as soon as possible.
  634  *
  635  * Note, we can't release any resources nor remove vnode from hash before 
  636  * appropriate VXLOCK stuff is is done because other process can find this
  637  * vnode in hash during inactivation and may be sitting in vget() and waiting
  638  * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
  639  */
  640 static int
  641 null_inactive(struct vop_inactive_args *ap)
  642 {
  643         struct vnode *vp = ap->a_vp;
  644         struct thread *td = ap->a_td;
  645 
  646         vp->v_object = NULL;
  647 
  648         /*
  649          * If this is the last reference, then free up the vnode
  650          * so as not to tie up the lower vnodes.
  651          */
  652         vrecycle(vp, td);
  653 
  654         return (0);
  655 }
  656 
  657 /*
  658  * Now, the VXLOCK is in force and we're free to destroy the null vnode.
  659  */
  660 static int
  661 null_reclaim(struct vop_reclaim_args *ap)
  662 {
  663         struct vnode *vp = ap->a_vp;
  664         struct null_node *xp = VTONULL(vp);
  665         struct vnode *lowervp = xp->null_lowervp;
  666         struct lock *vnlock;
  667 
  668         if (lowervp)
  669                 null_hashrem(xp);
  670         /*
  671          * Use the interlock to protect the clearing of v_data to
  672          * prevent faults in null_lock().
  673          */
  674         VI_LOCK(vp);
  675         vp->v_data = NULL;
  676         vp->v_object = NULL;
  677         vnlock = vp->v_vnlock;
  678         vp->v_vnlock = &vp->v_lock;
  679         if (lowervp) {
  680                 lockmgr(vp->v_vnlock,
  681                     LK_EXCLUSIVE|LK_INTERLOCK, VI_MTX(vp), curthread);
  682                 vput(lowervp);
  683         } else
  684                 panic("null_reclaim: reclaiming an node with now lowervp");
  685         FREE(xp, M_NULLFSNODE);
  686 
  687         return (0);
  688 }
  689 
  690 static int
  691 null_print(struct vop_print_args *ap)
  692 {
  693         struct vnode *vp = ap->a_vp;
  694 
  695         printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
  696         return (0);
  697 }
  698 
  699 /* ARGSUSED */
  700 static int
  701 null_getwritemount(struct vop_getwritemount_args *ap)
  702 {
  703         struct null_node *xp;
  704         struct vnode *lowervp;
  705         struct vnode *vp;
  706 
  707         vp = ap->a_vp;
  708         VI_LOCK(vp);
  709         xp = VTONULL(vp);
  710         if (xp && (lowervp = xp->null_lowervp)) {
  711                 VI_LOCK_FLAGS(lowervp, MTX_DUPOK);
  712                 VI_UNLOCK(vp);
  713                 vholdl(lowervp);
  714                 VI_UNLOCK(lowervp);
  715                 VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
  716                 vdrop(lowervp);
  717         } else {
  718                 VI_UNLOCK(vp);
  719                 *(ap->a_mpp) = NULL;
  720         }
  721         return (0);
  722 }
  723 
  724 /*
  725  * Global vfs data structures
  726  */
  727 struct vop_vector null_vnodeops = {
  728         .vop_bypass =           null_bypass,
  729         .vop_access =           null_access,
  730         .vop_bmap =             VOP_EOPNOTSUPP,
  731         .vop_getattr =          null_getattr,
  732         .vop_getwritemount =    null_getwritemount,
  733         .vop_inactive =         null_inactive,
  734         .vop_islocked =         null_islocked,
  735         .vop_lock =             null_lock,
  736         .vop_lookup =           null_lookup,
  737         .vop_open =             null_open,
  738         .vop_print =            null_print,
  739         .vop_reclaim =          null_reclaim,
  740         .vop_rename =           null_rename,
  741         .vop_setattr =          null_setattr,
  742         .vop_strategy =         VOP_EOPNOTSUPP,
  743         .vop_unlock =           null_unlock,
  744 };

Cache object: 32960496adb8279389dd51264f5338ae


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.