The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nullfs/null_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * John Heidemann of the UCLA Ficus project.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)null_vnops.c        8.6 (Berkeley) 5/27/95
   33  *
   34  * Ancestors:
   35  *      @(#)lofs_vnops.c        1.2 (Berkeley) 6/18/92
   36  *      ...and...
   37  *      @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
   38  *
   39  * $FreeBSD$
   40  */
   41 
   42 /*
   43  * Null Layer
   44  *
   45  * (See mount_nullfs(8) for more information.)
   46  *
   47  * The null layer duplicates a portion of the filesystem
   48  * name space under a new name.  In this respect, it is
   49  * similar to the loopback filesystem.  It differs from
   50  * the loopback fs in two respects:  it is implemented using
   51  * a stackable layers techniques, and its "null-node"s stack above
   52  * all lower-layer vnodes, not just over directory vnodes.
   53  *
   54  * The null layer has two purposes.  First, it serves as a demonstration
   55  * of layering by proving a layer which does nothing.  (It actually
   56  * does everything the loopback filesystem does, which is slightly
   57  * more than nothing.)  Second, the null layer can serve as a prototype
   58  * layer.  Since it provides all necessary layer framework,
   59  * new filesystem layers can be created very easily be starting
   60  * with a null layer.
   61  *
   62  * The remainder of this man page examines the null layer as a basis
   63  * for constructing new layers.
   64  *
   65  *
   66  * INSTANTIATING NEW NULL LAYERS
   67  *
   68  * New null layers are created with mount_nullfs(8).
   69  * Mount_nullfs(8) takes two arguments, the pathname
   70  * of the lower vfs (target-pn) and the pathname where the null
   71  * layer will appear in the namespace (alias-pn).  After
   72  * the null layer is put into place, the contents
   73  * of target-pn subtree will be aliased under alias-pn.
   74  *
   75  *
   76  * OPERATION OF A NULL LAYER
   77  *
   78  * The null layer is the minimum filesystem layer,
   79  * simply bypassing all possible operations to the lower layer
   80  * for processing there.  The majority of its activity centers
   81  * on the bypass routine, through which nearly all vnode operations
   82  * pass.
   83  *
   84  * The bypass routine accepts arbitrary vnode operations for
   85  * handling by the lower layer.  It begins by examing vnode
   86  * operation arguments and replacing any null-nodes by their
   87  * lower-layer equivlants.  It then invokes the operation
   88  * on the lower layer.  Finally, it replaces the null-nodes
   89  * in the arguments and, if a vnode is return by the operation,
   90  * stacks a null-node on top of the returned vnode.
   91  *
   92  * Although bypass handles most operations, vop_getattr, vop_lock,
   93  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
   94  * bypassed. Vop_getattr must change the fsid being returned.
   95  * Vop_lock and vop_unlock must handle any locking for the
   96  * current vnode as well as pass the lock request down.
   97  * Vop_inactive and vop_reclaim are not bypassed so that
   98  * they can handle freeing null-layer specific data. Vop_print
   99  * is not bypassed to avoid excessive debugging information.
  100  * Also, certain vnode operations change the locking state within
  101  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
  102  * and symlink). Ideally these operations should not change the
  103  * lock state, but should be changed to let the caller of the
  104  * function unlock them. Otherwise all intermediate vnode layers
  105  * (such as union, umapfs, etc) must catch these functions to do
  106  * the necessary locking at their layer.
  107  *
  108  *
  109  * INSTANTIATING VNODE STACKS
  110  *
  111  * Mounting associates the null layer with a lower layer,
  112  * effect stacking two VFSes.  Vnode stacks are instead
  113  * created on demand as files are accessed.
  114  *
  115  * The initial mount creates a single vnode stack for the
  116  * root of the new null layer.  All other vnode stacks
  117  * are created as a result of vnode operations on
  118  * this or other null vnode stacks.
  119  *
  120  * New vnode stacks come into existance as a result of
  121  * an operation which returns a vnode.
  122  * The bypass routine stacks a null-node above the new
  123  * vnode before returning it to the caller.
  124  *
  125  * For example, imagine mounting a null layer with
  126  * "mount_nullfs /usr/include /dev/layer/null".
  127  * Changing directory to /dev/layer/null will assign
  128  * the root null-node (which was created when the null layer was mounted).
  129  * Now consider opening "sys".  A vop_lookup would be
  130  * done on the root null-node.  This operation would bypass through
  131  * to the lower layer which would return a vnode representing
  132  * the UFS "sys".  Null_bypass then builds a null-node
  133  * aliasing the UFS "sys" and returns this to the caller.
  134  * Later operations on the null-node "sys" will repeat this
  135  * process when constructing other vnode stacks.
  136  *
  137  *
  138  * CREATING OTHER FILE SYSTEM LAYERS
  139  *
  140  * One of the easiest ways to construct new filesystem layers is to make
  141  * a copy of the null layer, rename all files and variables, and
  142  * then begin modifing the copy.  Sed can be used to easily rename
  143  * all variables.
  144  *
  145  * The umap layer is an example of a layer descended from the
  146  * null layer.
  147  *
  148  *
  149  * INVOKING OPERATIONS ON LOWER LAYERS
  150  *
  151  * There are two techniques to invoke operations on a lower layer
  152  * when the operation cannot be completely bypassed.  Each method
  153  * is appropriate in different situations.  In both cases,
  154  * it is the responsibility of the aliasing layer to make
  155  * the operation arguments "correct" for the lower layer
  156  * by mapping a vnode arguments to the lower layer.
  157  *
  158  * The first approach is to call the aliasing layer's bypass routine.
  159  * This method is most suitable when you wish to invoke the operation
  160  * currently being handled on the lower layer.  It has the advantage
  161  * that the bypass routine already must do argument mapping.
  162  * An example of this is null_getattrs in the null layer.
  163  *
  164  * A second approach is to directly invoke vnode operations on
  165  * the lower layer with the VOP_OPERATIONNAME interface.
  166  * The advantage of this method is that it is easy to invoke
  167  * arbitrary operations on the lower layer.  The disadvantage
  168  * is that vnode arguments must be manualy mapped.
  169  *
  170  */
  171 
  172 #include <sys/param.h>
  173 #include <sys/systm.h>
  174 #include <sys/conf.h>
  175 #include <sys/kernel.h>
  176 #include <sys/lock.h>
  177 #include <sys/malloc.h>
  178 #include <sys/mount.h>
  179 #include <sys/mutex.h>
  180 #include <sys/namei.h>
  181 #include <sys/sysctl.h>
  182 #include <sys/vnode.h>
  183 
  184 #include <fs/nullfs/null.h>
  185 
  186 #include <vm/vm.h>
  187 #include <vm/vm_extern.h>
  188 #include <vm/vm_object.h>
  189 #include <vm/vnode_pager.h>
  190 
  191 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
  192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 
  193         &null_bug_bypass, 0, "");
  194 
  195 /*
  196  * This is the 10-Apr-92 bypass routine.
  197  *    This version has been optimized for speed, throwing away some
  198  * safety checks.  It should still always work, but it's not as
  199  * robust to programmer errors.
  200  *
  201  * In general, we map all vnodes going down and unmap them on the way back.
  202  * As an exception to this, vnodes can be marked "unmapped" by setting
  203  * the Nth bit in operation's vdesc_flags.
  204  *
  205  * Also, some BSD vnode operations have the side effect of vrele'ing
  206  * their arguments.  With stacking, the reference counts are held
  207  * by the upper node, not the lower one, so we must handle these
  208  * side-effects here.  This is not of concern in Sun-derived systems
  209  * since there are no such side-effects.
  210  *
  211  * This makes the following assumptions:
  212  * - only one returned vpp
  213  * - no INOUT vpp's (Sun's vop_open has one of these)
  214  * - the vnode operation vector of the first vnode should be used
  215  *   to determine what implementation of the op should be invoked
  216  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
  217  *   problems on rmdir'ing mount points and renaming?)
  218  */
  219 int
  220 null_bypass(struct vop_generic_args *ap)
  221 {
  222         struct vnode **this_vp_p;
  223         int error;
  224         struct vnode *old_vps[VDESC_MAX_VPS];
  225         struct vnode **vps_p[VDESC_MAX_VPS];
  226         struct vnode ***vppp;
  227         struct vnodeop_desc *descp = ap->a_desc;
  228         int reles, i;
  229 
  230         if (null_bug_bypass)
  231                 printf ("null_bypass: %s\n", descp->vdesc_name);
  232 
  233 #ifdef DIAGNOSTIC
  234         /*
  235          * We require at least one vp.
  236          */
  237         if (descp->vdesc_vp_offsets == NULL ||
  238             descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
  239                 panic ("null_bypass: no vp's in map");
  240 #endif
  241 
  242         /*
  243          * Map the vnodes going in.
  244          * Later, we'll invoke the operation based on
  245          * the first mapped vnode's operation vector.
  246          */
  247         reles = descp->vdesc_flags;
  248         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  249                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  250                         break;   /* bail out at end of list */
  251                 vps_p[i] = this_vp_p =
  252                         VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
  253                 /*
  254                  * We're not guaranteed that any but the first vnode
  255                  * are of our type.  Check for and don't map any
  256                  * that aren't.  (We must always map first vp or vclean fails.)
  257                  */
  258                 if (i && (*this_vp_p == NULLVP ||
  259                     (*this_vp_p)->v_op != &null_vnodeops)) {
  260                         old_vps[i] = NULLVP;
  261                 } else {
  262                         old_vps[i] = *this_vp_p;
  263                         *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
  264                         /*
  265                          * XXX - Several operations have the side effect
  266                          * of vrele'ing their vp's.  We must account for
  267                          * that.  (This should go away in the future.)
  268                          */
  269                         if (reles & VDESC_VP0_WILLRELE)
  270                                 VREF(*this_vp_p);
  271                 }
  272 
  273         }
  274 
  275         /*
  276          * Call the operation on the lower layer
  277          * with the modified argument structure.
  278          */
  279         if (vps_p[0] && *vps_p[0])
  280                 error = VCALL(ap);
  281         else {
  282                 printf("null_bypass: no map for %s\n", descp->vdesc_name);
  283                 error = EINVAL;
  284         }
  285 
  286         /*
  287          * Maintain the illusion of call-by-value
  288          * by restoring vnodes in the argument structure
  289          * to their original value.
  290          */
  291         reles = descp->vdesc_flags;
  292         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  293                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  294                         break;   /* bail out at end of list */
  295                 if (old_vps[i]) {
  296                         *(vps_p[i]) = old_vps[i];
  297 #if 0
  298                         if (reles & VDESC_VP0_WILLUNLOCK)
  299                                 VOP_UNLOCK(*(vps_p[i]), 0, curthread);
  300 #endif
  301                         if (reles & VDESC_VP0_WILLRELE)
  302                                 vrele(*(vps_p[i]));
  303                 }
  304         }
  305 
  306         /*
  307          * Map the possible out-going vpp
  308          * (Assumes that the lower layer always returns
  309          * a VREF'ed vpp unless it gets an error.)
  310          */
  311         if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
  312             !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
  313             !error) {
  314                 /*
  315                  * XXX - even though some ops have vpp returned vp's,
  316                  * several ops actually vrele this before returning.
  317                  * We must avoid these ops.
  318                  * (This should go away when these ops are regularized.)
  319                  */
  320                 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
  321                         goto out;
  322                 vppp = VOPARG_OFFSETTO(struct vnode***,
  323                                  descp->vdesc_vpp_offset,ap);
  324                 if (*vppp)
  325                         error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
  326         }
  327 
  328  out:
  329         return (error);
  330 }
  331 
  332 /*
  333  * We have to carry on the locking protocol on the null layer vnodes
  334  * as we progress through the tree. We also have to enforce read-only
  335  * if this layer is mounted read-only.
  336  */
  337 static int
  338 null_lookup(struct vop_lookup_args *ap)
  339 {
  340         struct componentname *cnp = ap->a_cnp;
  341         struct vnode *dvp = ap->a_dvp;
  342         int flags = cnp->cn_flags;
  343         struct vnode *vp, *ldvp, *lvp;
  344         int error;
  345 
  346         if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
  347             (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
  348                 return (EROFS);
  349         /*
  350          * Although it is possible to call null_bypass(), we'll do
  351          * a direct call to reduce overhead
  352          */
  353         ldvp = NULLVPTOLOWERVP(dvp);
  354         vp = lvp = NULL;
  355         error = VOP_LOOKUP(ldvp, &lvp, cnp);
  356         if (error == EJUSTRETURN && (flags & ISLASTCN) &&
  357             (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
  358             (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
  359                 error = EROFS;
  360 
  361         if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
  362                 if (ldvp == lvp) {
  363                         *ap->a_vpp = dvp;
  364                         VREF(dvp);
  365                         vrele(lvp);
  366                 } else {
  367                         error = null_nodeget(dvp->v_mount, lvp, &vp);
  368                         if (error) {
  369                                 /* XXX Cleanup needed... */
  370                                 panic("null_nodeget failed");
  371                         }
  372                         *ap->a_vpp = vp;
  373                 }
  374         }
  375         return (error);
  376 }
  377 
  378 static int
  379 null_open(struct vop_open_args *ap)
  380 {
  381         int retval;
  382         struct vnode *vp, *ldvp;
  383 
  384         vp = ap->a_vp;
  385         ldvp = NULLVPTOLOWERVP(vp);
  386         retval = null_bypass(&ap->a_gen);
  387         if (retval == 0)
  388                 vp->v_object = ldvp->v_object;
  389         return (retval);
  390 }
  391 
  392 /*
  393  * Setattr call. Disallow write attempts if the layer is mounted read-only.
  394  */
  395 static int
  396 null_setattr(struct vop_setattr_args *ap)
  397 {
  398         struct vnode *vp = ap->a_vp;
  399         struct vattr *vap = ap->a_vap;
  400 
  401         if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
  402             vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
  403             vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
  404             (vp->v_mount->mnt_flag & MNT_RDONLY))
  405                 return (EROFS);
  406         if (vap->va_size != VNOVAL) {
  407                 switch (vp->v_type) {
  408                 case VDIR:
  409                         return (EISDIR);
  410                 case VCHR:
  411                 case VBLK:
  412                 case VSOCK:
  413                 case VFIFO:
  414                         if (vap->va_flags != VNOVAL)
  415                                 return (EOPNOTSUPP);
  416                         return (0);
  417                 case VREG:
  418                 case VLNK:
  419                 default:
  420                         /*
  421                          * Disallow write attempts if the filesystem is
  422                          * mounted read-only.
  423                          */
  424                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  425                                 return (EROFS);
  426                 }
  427         }
  428 
  429         return (null_bypass((struct vop_generic_args *)ap));
  430 }
  431 
  432 /*
  433  *  We handle getattr only to change the fsid.
  434  */
  435 static int
  436 null_getattr(struct vop_getattr_args *ap)
  437 {
  438         int error;
  439 
  440         if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
  441                 return (error);
  442 
  443         ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
  444         return (0);
  445 }
  446 
  447 /*
  448  * Handle to disallow write access if mounted read-only.
  449  */
  450 static int
  451 null_access(struct vop_access_args *ap)
  452 {
  453         struct vnode *vp = ap->a_vp;
  454         mode_t mode = ap->a_mode;
  455 
  456         /*
  457          * Disallow write attempts on read-only layers;
  458          * unless the file is a socket, fifo, or a block or
  459          * character device resident on the filesystem.
  460          */
  461         if (mode & VWRITE) {
  462                 switch (vp->v_type) {
  463                 case VDIR:
  464                 case VLNK:
  465                 case VREG:
  466                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  467                                 return (EROFS);
  468                         break;
  469                 default:
  470                         break;
  471                 }
  472         }
  473         return (null_bypass((struct vop_generic_args *)ap));
  474 }
  475 
  476 /*
  477  * We handle this to eliminate null FS to lower FS
  478  * file moving. Don't know why we don't allow this,
  479  * possibly we should.
  480  */
  481 static int
  482 null_rename(struct vop_rename_args *ap)
  483 {
  484         struct vnode *tdvp = ap->a_tdvp;
  485         struct vnode *fvp = ap->a_fvp;
  486         struct vnode *fdvp = ap->a_fdvp;
  487         struct vnode *tvp = ap->a_tvp;
  488 
  489         /* Check for cross-device rename. */
  490         if ((fvp->v_mount != tdvp->v_mount) ||
  491             (tvp && (fvp->v_mount != tvp->v_mount))) {
  492                 if (tdvp == tvp)
  493                         vrele(tdvp);
  494                 else
  495                         vput(tdvp);
  496                 if (tvp)
  497                         vput(tvp);
  498                 vrele(fdvp);
  499                 vrele(fvp);
  500                 return (EXDEV);
  501         }
  502         
  503         return (null_bypass((struct vop_generic_args *)ap));
  504 }
  505 
  506 /*
  507  * We need to process our own vnode lock and then clear the
  508  * interlock flag as it applies only to our vnode, not the
  509  * vnodes below us on the stack.
  510  */
  511 static int
  512 null_lock(struct vop_lock1_args *ap)
  513 {
  514         struct vnode *vp = ap->a_vp;
  515         int flags = ap->a_flags;
  516         struct thread *td = ap->a_td;
  517         struct null_node *nn;
  518         struct vnode *lvp;
  519         int error;
  520 
  521 
  522         if ((flags & LK_INTERLOCK) == 0) {
  523                 VI_LOCK(vp);
  524                 ap->a_flags = flags |= LK_INTERLOCK;
  525         }
  526         nn = VTONULL(vp);
  527         /*
  528          * If we're still active we must ask the lower layer to
  529          * lock as ffs has special lock considerations in it's
  530          * vop lock.
  531          */
  532         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  533                 VI_LOCK_FLAGS(lvp, MTX_DUPOK);
  534                 VI_UNLOCK(vp);
  535                 /*
  536                  * We have to hold the vnode here to solve a potential
  537                  * reclaim race.  If we're forcibly vgone'd while we
  538                  * still have refs, a thread could be sleeping inside
  539                  * the lowervp's vop_lock routine.  When we vgone we will
  540                  * drop our last ref to the lowervp, which would allow it
  541                  * to be reclaimed.  The lowervp could then be recycled,
  542                  * in which case it is not legal to be sleeping in it's VOP.
  543                  * We prevent it from being recycled by holding the vnode
  544                  * here.
  545                  */
  546                 vholdl(lvp);
  547                 error = VOP_LOCK(lvp, flags, td);
  548 
  549                 /*
  550                  * We might have slept to get the lock and someone might have
  551                  * clean our vnode already, switching vnode lock from one in
  552                  * lowervp to v_lock in our own vnode structure.  Handle this
  553                  * case by reacquiring correct lock in requested mode.
  554                  */
  555                 if (VTONULL(vp) == NULL && error == 0) {
  556                         ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
  557                         switch (flags & LK_TYPE_MASK) {
  558                         case LK_SHARED:
  559                                 ap->a_flags |= LK_SHARED;
  560                                 break;
  561                         case LK_UPGRADE:
  562                         case LK_EXCLUSIVE:
  563                                 ap->a_flags |= LK_EXCLUSIVE;
  564                                 break;
  565                         default:
  566                                 panic("Unsupported lock request %d\n",
  567                                     ap->a_flags);
  568                         }
  569                         VOP_UNLOCK(lvp, 0, td);
  570                         error = vop_stdlock(ap);
  571                 }
  572                 vdrop(lvp);
  573         } else
  574                 error = vop_stdlock(ap);
  575 
  576         return (error);
  577 }
  578 
  579 /*
  580  * We need to process our own vnode unlock and then clear the
  581  * interlock flag as it applies only to our vnode, not the
  582  * vnodes below us on the stack.
  583  */
  584 static int
  585 null_unlock(struct vop_unlock_args *ap)
  586 {
  587         struct vnode *vp = ap->a_vp;
  588         int flags = ap->a_flags;
  589         int mtxlkflag = 0;
  590         struct thread *td = ap->a_td;
  591         struct null_node *nn;
  592         struct vnode *lvp;
  593         int error;
  594 
  595         if ((flags & LK_INTERLOCK) != 0)
  596                 mtxlkflag = 1;
  597         else if (mtx_owned(VI_MTX(vp)) == 0) {
  598                 VI_LOCK(vp);
  599                 mtxlkflag = 2;
  600         }
  601         nn = VTONULL(vp);
  602         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  603                 VI_LOCK_FLAGS(lvp, MTX_DUPOK);
  604                 flags |= LK_INTERLOCK;
  605                 vholdl(lvp);
  606                 VI_UNLOCK(vp);
  607                 error = VOP_UNLOCK(lvp, flags, td);
  608                 vdrop(lvp);
  609                 if (mtxlkflag == 0)
  610                         VI_LOCK(vp);
  611         } else {
  612                 if (mtxlkflag == 2)
  613                         VI_UNLOCK(vp);
  614                 error = vop_stdunlock(ap);
  615         }
  616 
  617         return (error);
  618 }
  619 
  620 static int
  621 null_islocked(struct vop_islocked_args *ap)
  622 {
  623         struct vnode *vp = ap->a_vp;
  624         struct thread *td = ap->a_td;
  625 
  626         return (lockstatus(vp->v_vnlock, td));
  627 }
  628 
  629 /*
  630  * There is no way to tell that someone issued remove/rmdir operation
  631  * on the underlying filesystem. For now we just have to release lowevrp
  632  * as soon as possible.
  633  *
  634  * Note, we can't release any resources nor remove vnode from hash before 
  635  * appropriate VXLOCK stuff is is done because other process can find this
  636  * vnode in hash during inactivation and may be sitting in vget() and waiting
  637  * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
  638  */
  639 static int
  640 null_inactive(struct vop_inactive_args *ap)
  641 {
  642         struct vnode *vp = ap->a_vp;
  643         struct thread *td = ap->a_td;
  644 
  645         vp->v_object = NULL;
  646 
  647         /*
  648          * If this is the last reference, then free up the vnode
  649          * so as not to tie up the lower vnodes.
  650          */
  651         vrecycle(vp, td);
  652 
  653         return (0);
  654 }
  655 
  656 /*
  657  * Now, the VXLOCK is in force and we're free to destroy the null vnode.
  658  */
  659 static int
  660 null_reclaim(struct vop_reclaim_args *ap)
  661 {
  662         struct vnode *vp = ap->a_vp;
  663         struct null_node *xp = VTONULL(vp);
  664         struct vnode *lowervp = xp->null_lowervp;
  665         struct lock *vnlock;
  666 
  667         if (lowervp)
  668                 null_hashrem(xp);
  669         /*
  670          * Use the interlock to protect the clearing of v_data to
  671          * prevent faults in null_lock().
  672          */
  673         VI_LOCK(vp);
  674         vp->v_data = NULL;
  675         vp->v_object = NULL;
  676         vnlock = vp->v_vnlock;
  677         vp->v_vnlock = &vp->v_lock;
  678         if (lowervp) {
  679                 lockmgr(vp->v_vnlock,
  680                     LK_EXCLUSIVE|LK_INTERLOCK, VI_MTX(vp), curthread);
  681                 vput(lowervp);
  682         } else
  683                 panic("null_reclaim: reclaiming an node with now lowervp");
  684         FREE(xp, M_NULLFSNODE);
  685 
  686         return (0);
  687 }
  688 
  689 static int
  690 null_print(struct vop_print_args *ap)
  691 {
  692         struct vnode *vp = ap->a_vp;
  693 
  694         printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
  695         return (0);
  696 }
  697 
  698 /* ARGSUSED */
  699 static int
  700 null_getwritemount(struct vop_getwritemount_args *ap)
  701 {
  702         struct null_node *xp;
  703         struct vnode *lowervp;
  704         struct vnode *vp;
  705 
  706         vp = ap->a_vp;
  707         VI_LOCK(vp);
  708         xp = VTONULL(vp);
  709         if (xp && (lowervp = xp->null_lowervp)) {
  710                 VI_LOCK_FLAGS(lowervp, MTX_DUPOK);
  711                 VI_UNLOCK(vp);
  712                 vholdl(lowervp);
  713                 VI_UNLOCK(lowervp);
  714                 VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
  715                 vdrop(lowervp);
  716         } else {
  717                 VI_UNLOCK(vp);
  718                 *(ap->a_mpp) = NULL;
  719         }
  720         return (0);
  721 }
  722 
  723 static int
  724 null_vptofh(struct vop_vptofh_args *ap)
  725 {
  726         struct vnode *lvp;
  727 
  728         lvp = NULLVPTOLOWERVP(ap->a_vp);
  729         return VOP_VPTOFH(lvp, ap->a_fhp);
  730 }
  731 
  732 /*
  733  * Global vfs data structures
  734  */
  735 struct vop_vector null_vnodeops = {
  736         .vop_bypass =           null_bypass,
  737         .vop_access =           null_access,
  738         .vop_bmap =             VOP_EOPNOTSUPP,
  739         .vop_getattr =          null_getattr,
  740         .vop_getwritemount =    null_getwritemount,
  741         .vop_inactive =         null_inactive,
  742         .vop_islocked =         null_islocked,
  743         .vop_lock1 =            null_lock,
  744         .vop_lookup =           null_lookup,
  745         .vop_open =             null_open,
  746         .vop_print =            null_print,
  747         .vop_reclaim =          null_reclaim,
  748         .vop_rename =           null_rename,
  749         .vop_setattr =          null_setattr,
  750         .vop_strategy =         VOP_EOPNOTSUPP,
  751         .vop_unlock =           null_unlock,
  752         .vop_vptofh =           null_vptofh,
  753 };

Cache object: 9831fa02ed92c1f1ca94d3d82090ea0e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.