The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/nullfs/null_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * John Heidemann of the UCLA Ficus project.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)null_vnops.c        8.6 (Berkeley) 5/27/95
   33  *
   34  * Ancestors:
   35  *      @(#)lofs_vnops.c        1.2 (Berkeley) 6/18/92
   36  *      ...and...
   37  *      @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
   38  *
   39  * $FreeBSD$
   40  */
   41 
   42 /*
   43  * Null Layer
   44  *
   45  * (See mount_nullfs(8) for more information.)
   46  *
   47  * The null layer duplicates a portion of the filesystem
   48  * name space under a new name.  In this respect, it is
   49  * similar to the loopback filesystem.  It differs from
   50  * the loopback fs in two respects:  it is implemented using
   51  * a stackable layers techniques, and its "null-node"s stack above
   52  * all lower-layer vnodes, not just over directory vnodes.
   53  *
   54  * The null layer has two purposes.  First, it serves as a demonstration
   55  * of layering by proving a layer which does nothing.  (It actually
   56  * does everything the loopback filesystem does, which is slightly
   57  * more than nothing.)  Second, the null layer can serve as a prototype
   58  * layer.  Since it provides all necessary layer framework,
   59  * new filesystem layers can be created very easily be starting
   60  * with a null layer.
   61  *
   62  * The remainder of this man page examines the null layer as a basis
   63  * for constructing new layers.
   64  *
   65  *
   66  * INSTANTIATING NEW NULL LAYERS
   67  *
   68  * New null layers are created with mount_nullfs(8).
   69  * Mount_nullfs(8) takes two arguments, the pathname
   70  * of the lower vfs (target-pn) and the pathname where the null
   71  * layer will appear in the namespace (alias-pn).  After
   72  * the null layer is put into place, the contents
   73  * of target-pn subtree will be aliased under alias-pn.
   74  *
   75  *
   76  * OPERATION OF A NULL LAYER
   77  *
   78  * The null layer is the minimum filesystem layer,
   79  * simply bypassing all possible operations to the lower layer
   80  * for processing there.  The majority of its activity centers
   81  * on the bypass routine, through which nearly all vnode operations
   82  * pass.
   83  *
   84  * The bypass routine accepts arbitrary vnode operations for
   85  * handling by the lower layer.  It begins by examing vnode
   86  * operation arguments and replacing any null-nodes by their
   87  * lower-layer equivlants.  It then invokes the operation
   88  * on the lower layer.  Finally, it replaces the null-nodes
   89  * in the arguments and, if a vnode is return by the operation,
   90  * stacks a null-node on top of the returned vnode.
   91  *
   92  * Although bypass handles most operations, vop_getattr, vop_lock,
   93  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
   94  * bypassed. Vop_getattr must change the fsid being returned.
   95  * Vop_lock and vop_unlock must handle any locking for the
   96  * current vnode as well as pass the lock request down.
   97  * Vop_inactive and vop_reclaim are not bypassed so that
   98  * they can handle freeing null-layer specific data. Vop_print
   99  * is not bypassed to avoid excessive debugging information.
  100  * Also, certain vnode operations change the locking state within
  101  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
  102  * and symlink). Ideally these operations should not change the
  103  * lock state, but should be changed to let the caller of the
  104  * function unlock them. Otherwise all intermediate vnode layers
  105  * (such as union, umapfs, etc) must catch these functions to do
  106  * the necessary locking at their layer.
  107  *
  108  *
  109  * INSTANTIATING VNODE STACKS
  110  *
  111  * Mounting associates the null layer with a lower layer,
  112  * effect stacking two VFSes.  Vnode stacks are instead
  113  * created on demand as files are accessed.
  114  *
  115  * The initial mount creates a single vnode stack for the
  116  * root of the new null layer.  All other vnode stacks
  117  * are created as a result of vnode operations on
  118  * this or other null vnode stacks.
  119  *
  120  * New vnode stacks come into existance as a result of
  121  * an operation which returns a vnode.
  122  * The bypass routine stacks a null-node above the new
  123  * vnode before returning it to the caller.
  124  *
  125  * For example, imagine mounting a null layer with
  126  * "mount_nullfs /usr/include /dev/layer/null".
  127  * Changing directory to /dev/layer/null will assign
  128  * the root null-node (which was created when the null layer was mounted).
  129  * Now consider opening "sys".  A vop_lookup would be
  130  * done on the root null-node.  This operation would bypass through
  131  * to the lower layer which would return a vnode representing
  132  * the UFS "sys".  Null_bypass then builds a null-node
  133  * aliasing the UFS "sys" and returns this to the caller.
  134  * Later operations on the null-node "sys" will repeat this
  135  * process when constructing other vnode stacks.
  136  *
  137  *
  138  * CREATING OTHER FILE SYSTEM LAYERS
  139  *
  140  * One of the easiest ways to construct new filesystem layers is to make
  141  * a copy of the null layer, rename all files and variables, and
  142  * then begin modifing the copy.  Sed can be used to easily rename
  143  * all variables.
  144  *
  145  * The umap layer is an example of a layer descended from the
  146  * null layer.
  147  *
  148  *
  149  * INVOKING OPERATIONS ON LOWER LAYERS
  150  *
  151  * There are two techniques to invoke operations on a lower layer
  152  * when the operation cannot be completely bypassed.  Each method
  153  * is appropriate in different situations.  In both cases,
  154  * it is the responsibility of the aliasing layer to make
  155  * the operation arguments "correct" for the lower layer
  156  * by mapping a vnode arguments to the lower layer.
  157  *
  158  * The first approach is to call the aliasing layer's bypass routine.
  159  * This method is most suitable when you wish to invoke the operation
  160  * currently being handled on the lower layer.  It has the advantage
  161  * that the bypass routine already must do argument mapping.
  162  * An example of this is null_getattrs in the null layer.
  163  *
  164  * A second approach is to directly invoke vnode operations on
  165  * the lower layer with the VOP_OPERATIONNAME interface.
  166  * The advantage of this method is that it is easy to invoke
  167  * arbitrary operations on the lower layer.  The disadvantage
  168  * is that vnode arguments must be manualy mapped.
  169  *
  170  */
  171 
  172 #include <sys/param.h>
  173 #include <sys/systm.h>
  174 #include <sys/conf.h>
  175 #include <sys/kernel.h>
  176 #include <sys/lock.h>
  177 #include <sys/malloc.h>
  178 #include <sys/mount.h>
  179 #include <sys/mutex.h>
  180 #include <sys/namei.h>
  181 #include <sys/sysctl.h>
  182 #include <sys/vnode.h>
  183 
  184 #include <fs/nullfs/null.h>
  185 
  186 #include <vm/vm.h>
  187 #include <vm/vm_extern.h>
  188 #include <vm/vm_object.h>
  189 #include <vm/vnode_pager.h>
  190 
  191 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
  192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 
  193         &null_bug_bypass, 0, "");
  194 
  195 /*
  196  * This is the 10-Apr-92 bypass routine.
  197  *    This version has been optimized for speed, throwing away some
  198  * safety checks.  It should still always work, but it's not as
  199  * robust to programmer errors.
  200  *
  201  * In general, we map all vnodes going down and unmap them on the way back.
  202  * As an exception to this, vnodes can be marked "unmapped" by setting
  203  * the Nth bit in operation's vdesc_flags.
  204  *
  205  * Also, some BSD vnode operations have the side effect of vrele'ing
  206  * their arguments.  With stacking, the reference counts are held
  207  * by the upper node, not the lower one, so we must handle these
  208  * side-effects here.  This is not of concern in Sun-derived systems
  209  * since there are no such side-effects.
  210  *
  211  * This makes the following assumptions:
  212  * - only one returned vpp
  213  * - no INOUT vpp's (Sun's vop_open has one of these)
  214  * - the vnode operation vector of the first vnode should be used
  215  *   to determine what implementation of the op should be invoked
  216  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
  217  *   problems on rmdir'ing mount points and renaming?)
  218  */
  219 int
  220 null_bypass(struct vop_generic_args *ap)
  221 {
  222         struct vnode **this_vp_p;
  223         int error;
  224         struct vnode *old_vps[VDESC_MAX_VPS];
  225         struct vnode **vps_p[VDESC_MAX_VPS];
  226         struct vnode ***vppp;
  227         struct vnodeop_desc *descp = ap->a_desc;
  228         int reles, i;
  229 
  230         if (null_bug_bypass)
  231                 printf ("null_bypass: %s\n", descp->vdesc_name);
  232 
  233 #ifdef DIAGNOSTIC
  234         /*
  235          * We require at least one vp.
  236          */
  237         if (descp->vdesc_vp_offsets == NULL ||
  238             descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
  239                 panic ("null_bypass: no vp's in map");
  240 #endif
  241 
  242         /*
  243          * Map the vnodes going in.
  244          * Later, we'll invoke the operation based on
  245          * the first mapped vnode's operation vector.
  246          */
  247         reles = descp->vdesc_flags;
  248         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  249                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  250                         break;   /* bail out at end of list */
  251                 vps_p[i] = this_vp_p =
  252                         VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
  253                 /*
  254                  * We're not guaranteed that any but the first vnode
  255                  * are of our type.  Check for and don't map any
  256                  * that aren't.  (We must always map first vp or vclean fails.)
  257                  */
  258                 if (i && (*this_vp_p == NULLVP ||
  259                     (*this_vp_p)->v_op != &null_vnodeops)) {
  260                         old_vps[i] = NULLVP;
  261                 } else {
  262                         old_vps[i] = *this_vp_p;
  263                         *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
  264                         /*
  265                          * XXX - Several operations have the side effect
  266                          * of vrele'ing their vp's.  We must account for
  267                          * that.  (This should go away in the future.)
  268                          */
  269                         if (reles & VDESC_VP0_WILLRELE)
  270                                 VREF(*this_vp_p);
  271                 }
  272 
  273         }
  274 
  275         /*
  276          * Call the operation on the lower layer
  277          * with the modified argument structure.
  278          */
  279         if (vps_p[0] && *vps_p[0])
  280                 error = VCALL(ap);
  281         else {
  282                 printf("null_bypass: no map for %s\n", descp->vdesc_name);
  283                 error = EINVAL;
  284         }
  285 
  286         /*
  287          * Maintain the illusion of call-by-value
  288          * by restoring vnodes in the argument structure
  289          * to their original value.
  290          */
  291         reles = descp->vdesc_flags;
  292         for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
  293                 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
  294                         break;   /* bail out at end of list */
  295                 if (old_vps[i]) {
  296                         *(vps_p[i]) = old_vps[i];
  297 #if 0
  298                         if (reles & VDESC_VP0_WILLUNLOCK)
  299                                 VOP_UNLOCK(*(vps_p[i]), 0);
  300 #endif
  301                         if (reles & VDESC_VP0_WILLRELE)
  302                                 vrele(*(vps_p[i]));
  303                 }
  304         }
  305 
  306         /*
  307          * Map the possible out-going vpp
  308          * (Assumes that the lower layer always returns
  309          * a VREF'ed vpp unless it gets an error.)
  310          */
  311         if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
  312             !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
  313             !error) {
  314                 /*
  315                  * XXX - even though some ops have vpp returned vp's,
  316                  * several ops actually vrele this before returning.
  317                  * We must avoid these ops.
  318                  * (This should go away when these ops are regularized.)
  319                  */
  320                 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
  321                         goto out;
  322                 vppp = VOPARG_OFFSETTO(struct vnode***,
  323                                  descp->vdesc_vpp_offset,ap);
  324                 if (*vppp)
  325                         error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
  326         }
  327 
  328  out:
  329         return (error);
  330 }
  331 
  332 /*
  333  * We have to carry on the locking protocol on the null layer vnodes
  334  * as we progress through the tree. We also have to enforce read-only
  335  * if this layer is mounted read-only.
  336  */
  337 static int
  338 null_lookup(struct vop_lookup_args *ap)
  339 {
  340         struct componentname *cnp = ap->a_cnp;
  341         struct vnode *dvp = ap->a_dvp;
  342         int flags = cnp->cn_flags;
  343         struct vnode *vp, *ldvp, *lvp;
  344         int error;
  345 
  346         if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
  347             (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
  348                 return (EROFS);
  349         /*
  350          * Although it is possible to call null_bypass(), we'll do
  351          * a direct call to reduce overhead
  352          */
  353         ldvp = NULLVPTOLOWERVP(dvp);
  354         vp = lvp = NULL;
  355         error = VOP_LOOKUP(ldvp, &lvp, cnp);
  356         if (error == EJUSTRETURN && (flags & ISLASTCN) &&
  357             (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
  358             (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
  359                 error = EROFS;
  360 
  361         if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
  362                 if (ldvp == lvp) {
  363                         *ap->a_vpp = dvp;
  364                         VREF(dvp);
  365                         vrele(lvp);
  366                 } else {
  367                         error = null_nodeget(dvp->v_mount, lvp, &vp);
  368                         if (error == 0)
  369                                 *ap->a_vpp = vp;
  370                 }
  371         }
  372         return (error);
  373 }
  374 
  375 static int
  376 null_open(struct vop_open_args *ap)
  377 {
  378         int retval;
  379         struct vnode *vp, *ldvp;
  380 
  381         vp = ap->a_vp;
  382         ldvp = NULLVPTOLOWERVP(vp);
  383         retval = null_bypass(&ap->a_gen);
  384         if (retval == 0)
  385                 vp->v_object = ldvp->v_object;
  386         return (retval);
  387 }
  388 
  389 /*
  390  * Setattr call. Disallow write attempts if the layer is mounted read-only.
  391  */
  392 static int
  393 null_setattr(struct vop_setattr_args *ap)
  394 {
  395         struct vnode *vp = ap->a_vp;
  396         struct vattr *vap = ap->a_vap;
  397 
  398         if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
  399             vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
  400             vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
  401             (vp->v_mount->mnt_flag & MNT_RDONLY))
  402                 return (EROFS);
  403         if (vap->va_size != VNOVAL) {
  404                 switch (vp->v_type) {
  405                 case VDIR:
  406                         return (EISDIR);
  407                 case VCHR:
  408                 case VBLK:
  409                 case VSOCK:
  410                 case VFIFO:
  411                         if (vap->va_flags != VNOVAL)
  412                                 return (EOPNOTSUPP);
  413                         return (0);
  414                 case VREG:
  415                 case VLNK:
  416                 default:
  417                         /*
  418                          * Disallow write attempts if the filesystem is
  419                          * mounted read-only.
  420                          */
  421                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  422                                 return (EROFS);
  423                 }
  424         }
  425 
  426         return (null_bypass((struct vop_generic_args *)ap));
  427 }
  428 
  429 /*
  430  *  We handle getattr only to change the fsid.
  431  */
  432 static int
  433 null_getattr(struct vop_getattr_args *ap)
  434 {
  435         int error;
  436 
  437         if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
  438                 return (error);
  439 
  440         ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
  441         return (0);
  442 }
  443 
  444 /*
  445  * Handle to disallow write access if mounted read-only.
  446  */
  447 static int
  448 null_access(struct vop_access_args *ap)
  449 {
  450         struct vnode *vp = ap->a_vp;
  451         accmode_t accmode = ap->a_accmode;
  452 
  453         /*
  454          * Disallow write attempts on read-only layers;
  455          * unless the file is a socket, fifo, or a block or
  456          * character device resident on the filesystem.
  457          */
  458         if (accmode & VWRITE) {
  459                 switch (vp->v_type) {
  460                 case VDIR:
  461                 case VLNK:
  462                 case VREG:
  463                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  464                                 return (EROFS);
  465                         break;
  466                 default:
  467                         break;
  468                 }
  469         }
  470         return (null_bypass((struct vop_generic_args *)ap));
  471 }
  472 
  473 static int
  474 null_accessx(struct vop_accessx_args *ap)
  475 {
  476         struct vnode *vp = ap->a_vp;
  477         accmode_t accmode = ap->a_accmode;
  478 
  479         /*
  480          * Disallow write attempts on read-only layers;
  481          * unless the file is a socket, fifo, or a block or
  482          * character device resident on the filesystem.
  483          */
  484         if (accmode & VWRITE) {
  485                 switch (vp->v_type) {
  486                 case VDIR:
  487                 case VLNK:
  488                 case VREG:
  489                         if (vp->v_mount->mnt_flag & MNT_RDONLY)
  490                                 return (EROFS);
  491                         break;
  492                 default:
  493                         break;
  494                 }
  495         }
  496         return (null_bypass((struct vop_generic_args *)ap));
  497 }
  498 
  499 /*
  500  * Increasing refcount of lower vnode is needed at least for the case
  501  * when lower FS is NFS to do sillyrename if the file is in use.
  502  * Unfortunately v_usecount is incremented in many places in
  503  * the kernel and, as such, there may be races that result in
  504  * the NFS client doing an extraneous silly rename, but that seems
  505  * preferable to not doing a silly rename when it is needed.
  506  */
  507 static int
  508 null_remove(struct vop_remove_args *ap)
  509 {
  510         int retval, vreleit;
  511         struct vnode *lvp;
  512 
  513         if (vrefcnt(ap->a_vp) > 1) {
  514                 lvp = NULLVPTOLOWERVP(ap->a_vp);
  515                 VREF(lvp);
  516                 vreleit = 1;
  517         } else
  518                 vreleit = 0;
  519         retval = null_bypass(&ap->a_gen);
  520         if (vreleit != 0)
  521                 vrele(lvp);
  522         return (retval);
  523 }
  524 
  525 /*
  526  * We handle this to eliminate null FS to lower FS
  527  * file moving. Don't know why we don't allow this,
  528  * possibly we should.
  529  */
  530 static int
  531 null_rename(struct vop_rename_args *ap)
  532 {
  533         struct vnode *tdvp = ap->a_tdvp;
  534         struct vnode *fvp = ap->a_fvp;
  535         struct vnode *fdvp = ap->a_fdvp;
  536         struct vnode *tvp = ap->a_tvp;
  537 
  538         /* Check for cross-device rename. */
  539         if ((fvp->v_mount != tdvp->v_mount) ||
  540             (tvp && (fvp->v_mount != tvp->v_mount))) {
  541                 if (tdvp == tvp)
  542                         vrele(tdvp);
  543                 else
  544                         vput(tdvp);
  545                 if (tvp)
  546                         vput(tvp);
  547                 vrele(fdvp);
  548                 vrele(fvp);
  549                 return (EXDEV);
  550         }
  551         
  552         return (null_bypass((struct vop_generic_args *)ap));
  553 }
  554 
  555 /*
  556  * We need to process our own vnode lock and then clear the
  557  * interlock flag as it applies only to our vnode, not the
  558  * vnodes below us on the stack.
  559  */
  560 static int
  561 null_lock(struct vop_lock1_args *ap)
  562 {
  563         struct vnode *vp = ap->a_vp;
  564         int flags = ap->a_flags;
  565         struct null_node *nn;
  566         struct vnode *lvp;
  567         int error;
  568 
  569 
  570         if ((flags & LK_INTERLOCK) == 0) {
  571                 VI_LOCK(vp);
  572                 ap->a_flags = flags |= LK_INTERLOCK;
  573         }
  574         nn = VTONULL(vp);
  575         /*
  576          * If we're still active we must ask the lower layer to
  577          * lock as ffs has special lock considerations in it's
  578          * vop lock.
  579          */
  580         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  581                 VI_LOCK_FLAGS(lvp, MTX_DUPOK);
  582                 VI_UNLOCK(vp);
  583                 /*
  584                  * We have to hold the vnode here to solve a potential
  585                  * reclaim race.  If we're forcibly vgone'd while we
  586                  * still have refs, a thread could be sleeping inside
  587                  * the lowervp's vop_lock routine.  When we vgone we will
  588                  * drop our last ref to the lowervp, which would allow it
  589                  * to be reclaimed.  The lowervp could then be recycled,
  590                  * in which case it is not legal to be sleeping in it's VOP.
  591                  * We prevent it from being recycled by holding the vnode
  592                  * here.
  593                  */
  594                 vholdl(lvp);
  595                 error = VOP_LOCK(lvp, flags);
  596 
  597                 /*
  598                  * We might have slept to get the lock and someone might have
  599                  * clean our vnode already, switching vnode lock from one in
  600                  * lowervp to v_lock in our own vnode structure.  Handle this
  601                  * case by reacquiring correct lock in requested mode.
  602                  */
  603                 if (VTONULL(vp) == NULL && error == 0) {
  604                         ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
  605                         switch (flags & LK_TYPE_MASK) {
  606                         case LK_SHARED:
  607                                 ap->a_flags |= LK_SHARED;
  608                                 break;
  609                         case LK_UPGRADE:
  610                         case LK_EXCLUSIVE:
  611                                 ap->a_flags |= LK_EXCLUSIVE;
  612                                 break;
  613                         default:
  614                                 panic("Unsupported lock request %d\n",
  615                                     ap->a_flags);
  616                         }
  617                         VOP_UNLOCK(lvp, 0);
  618                         error = vop_stdlock(ap);
  619                 }
  620                 vdrop(lvp);
  621         } else
  622                 error = vop_stdlock(ap);
  623 
  624         return (error);
  625 }
  626 
  627 /*
  628  * We need to process our own vnode unlock and then clear the
  629  * interlock flag as it applies only to our vnode, not the
  630  * vnodes below us on the stack.
  631  */
  632 static int
  633 null_unlock(struct vop_unlock_args *ap)
  634 {
  635         struct vnode *vp = ap->a_vp;
  636         int flags = ap->a_flags;
  637         int mtxlkflag = 0;
  638         struct null_node *nn;
  639         struct vnode *lvp;
  640         int error;
  641 
  642         if ((flags & LK_INTERLOCK) != 0)
  643                 mtxlkflag = 1;
  644         else if (mtx_owned(VI_MTX(vp)) == 0) {
  645                 VI_LOCK(vp);
  646                 mtxlkflag = 2;
  647         }
  648         nn = VTONULL(vp);
  649         if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
  650                 VI_LOCK_FLAGS(lvp, MTX_DUPOK);
  651                 flags |= LK_INTERLOCK;
  652                 vholdl(lvp);
  653                 VI_UNLOCK(vp);
  654                 error = VOP_UNLOCK(lvp, flags);
  655                 vdrop(lvp);
  656                 if (mtxlkflag == 0)
  657                         VI_LOCK(vp);
  658         } else {
  659                 if (mtxlkflag == 2)
  660                         VI_UNLOCK(vp);
  661                 error = vop_stdunlock(ap);
  662         }
  663 
  664         return (error);
  665 }
  666 
  667 /*
  668  * There is no way to tell that someone issued remove/rmdir operation
  669  * on the underlying filesystem. For now we just have to release lowervp
  670  * as soon as possible.
  671  *
  672  * Note, we can't release any resources nor remove vnode from hash before 
  673  * appropriate VXLOCK stuff is done because other process can find this
  674  * vnode in hash during inactivation and may be sitting in vget() and waiting
  675  * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
  676  */
  677 static int
  678 null_inactive(struct vop_inactive_args *ap)
  679 {
  680         struct vnode *vp = ap->a_vp;
  681         struct thread *td = ap->a_td;
  682 
  683         vp->v_object = NULL;
  684 
  685         /*
  686          * If this is the last reference, then free up the vnode
  687          * so as not to tie up the lower vnodes.
  688          */
  689         vrecycle(vp, td);
  690 
  691         return (0);
  692 }
  693 
  694 /*
  695  * Now, the VXLOCK is in force and we're free to destroy the null vnode.
  696  */
  697 static int
  698 null_reclaim(struct vop_reclaim_args *ap)
  699 {
  700         struct vnode *vp;
  701         struct null_node *xp;
  702         struct vnode *lowervp;
  703 
  704         vp = ap->a_vp;
  705         xp = VTONULL(vp);
  706         lowervp = xp->null_lowervp;
  707 
  708         KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
  709             ("Reclaiming inclomplete null vnode %p", vp));
  710 
  711         null_hashrem(xp);
  712         /*
  713          * Use the interlock to protect the clearing of v_data to
  714          * prevent faults in null_lock().
  715          */
  716         lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
  717         VI_LOCK(vp);
  718         vp->v_data = NULL;
  719         vp->v_object = NULL;
  720         vp->v_vnlock = &vp->v_lock;
  721         VI_UNLOCK(vp);
  722         vput(lowervp);
  723         free(xp, M_NULLFSNODE);
  724 
  725         return (0);
  726 }
  727 
  728 static int
  729 null_print(struct vop_print_args *ap)
  730 {
  731         struct vnode *vp = ap->a_vp;
  732 
  733         printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
  734         return (0);
  735 }
  736 
  737 /* ARGSUSED */
  738 static int
  739 null_getwritemount(struct vop_getwritemount_args *ap)
  740 {
  741         struct null_node *xp;
  742         struct vnode *lowervp;
  743         struct vnode *vp;
  744 
  745         vp = ap->a_vp;
  746         VI_LOCK(vp);
  747         xp = VTONULL(vp);
  748         if (xp && (lowervp = xp->null_lowervp)) {
  749                 VI_LOCK_FLAGS(lowervp, MTX_DUPOK);
  750                 VI_UNLOCK(vp);
  751                 vholdl(lowervp);
  752                 VI_UNLOCK(lowervp);
  753                 VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
  754                 vdrop(lowervp);
  755         } else {
  756                 VI_UNLOCK(vp);
  757                 *(ap->a_mpp) = NULL;
  758         }
  759         return (0);
  760 }
  761 
  762 static int
  763 null_vptofh(struct vop_vptofh_args *ap)
  764 {
  765         struct vnode *lvp;
  766 
  767         lvp = NULLVPTOLOWERVP(ap->a_vp);
  768         return VOP_VPTOFH(lvp, ap->a_fhp);
  769 }
  770 
  771 static int
  772 null_vptocnp(struct vop_vptocnp_args *ap)
  773 {
  774         struct vnode *vp = ap->a_vp;
  775         struct vnode **dvp = ap->a_vpp;
  776         struct vnode *lvp, *ldvp;
  777         struct ucred *cred = ap->a_cred;
  778         int error, locked;
  779 
  780         if (vp->v_type == VDIR)
  781                 return (vop_stdvptocnp(ap));
  782 
  783         locked = VOP_ISLOCKED(vp);
  784         lvp = NULLVPTOLOWERVP(vp);
  785         vhold(lvp);
  786         VOP_UNLOCK(vp, 0); /* vp is held by vn_vptocnp_locked that called us */
  787         ldvp = lvp;
  788         error = vn_vptocnp(&ldvp, cred, ap->a_buf, ap->a_buflen);
  789         vdrop(lvp);
  790         if (error != 0) {
  791                 vn_lock(vp, locked | LK_RETRY);
  792                 return (ENOENT);
  793         }
  794 
  795         /*
  796          * Exclusive lock is required by insmntque1 call in
  797          * null_nodeget()
  798          */
  799         error = vn_lock(ldvp, LK_EXCLUSIVE);
  800         if (error != 0) {
  801                 vn_lock(vp, locked | LK_RETRY);
  802                 vdrop(ldvp);
  803                 return (ENOENT);
  804         }
  805         vref(ldvp);
  806         vdrop(ldvp);
  807         error = null_nodeget(vp->v_mount, ldvp, dvp);
  808         if (error == 0) {
  809 #ifdef DIAGNOSTIC
  810                 NULLVPTOLOWERVP(*dvp);
  811 #endif
  812                 vhold(*dvp);
  813                 vput(*dvp);
  814         }
  815         vn_lock(vp, locked | LK_RETRY);
  816         return (error);
  817 }
  818 
  819 static int
  820 null_link(struct vop_link_args *ap)
  821 {
  822 
  823         if (ap->a_tdvp->v_mount != ap->a_vp->v_mount)
  824                 return (EXDEV);
  825         return (null_bypass((struct vop_generic_args *)ap));
  826 }
  827 
  828 /*
  829  * Global vfs data structures
  830  */
  831 struct vop_vector null_vnodeops = {
  832         .vop_bypass =           null_bypass,
  833         .vop_access =           null_access,
  834         .vop_accessx =          null_accessx,
  835         .vop_bmap =             VOP_EOPNOTSUPP,
  836         .vop_getattr =          null_getattr,
  837         .vop_getwritemount =    null_getwritemount,
  838         .vop_inactive =         null_inactive,
  839         .vop_islocked =         vop_stdislocked,
  840         .vop_link =             null_link,
  841         .vop_lock1 =            null_lock,
  842         .vop_lookup =           null_lookup,
  843         .vop_open =             null_open,
  844         .vop_print =            null_print,
  845         .vop_reclaim =          null_reclaim,
  846         .vop_remove =           null_remove,
  847         .vop_rename =           null_rename,
  848         .vop_setattr =          null_setattr,
  849         .vop_strategy =         VOP_EOPNOTSUPP,
  850         .vop_unlock =           null_unlock,
  851         .vop_vptocnp =          null_vptocnp,
  852         .vop_vptofh =           null_vptofh,
  853 };

Cache object: 21cc8a69d6902bf54123a4e0f43171e0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.