The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/reiserfs/ibalance.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright 2000-2002 by Hans Reiser, licensing governed by reiserfs/README
    3  */
    4 
    5 #include <linux/config.h>
    6 #include <asm/uaccess.h>
    7 #include <linux/string.h>
    8 #include <linux/sched.h>
    9 #include <linux/reiserfs_fs.h>
   10 
   11 /* this is one and only function that is used outside (do_balance.c) */
   12 int     balance_internal (
   13                           struct tree_balance * ,
   14                           int,
   15                           int,
   16                           struct item_head * ,
   17                           struct buffer_head ** 
   18                           );
   19 
   20 /* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
   21 #define INTERNAL_SHIFT_FROM_S_TO_L 0
   22 #define INTERNAL_SHIFT_FROM_R_TO_S 1
   23 #define INTERNAL_SHIFT_FROM_L_TO_S 2
   24 #define INTERNAL_SHIFT_FROM_S_TO_R 3
   25 #define INTERNAL_INSERT_TO_S 4
   26 #define INTERNAL_INSERT_TO_L 5
   27 #define INTERNAL_INSERT_TO_R 6
   28 
   29 static void     internal_define_dest_src_infos (
   30                                                 int shift_mode,
   31                                                 struct tree_balance * tb,
   32                                                 int h,
   33                                                 struct buffer_info * dest_bi,
   34                                                 struct buffer_info * src_bi,
   35                                                 int * d_key,
   36                                                 struct buffer_head ** cf
   37                                                 )
   38 {
   39     memset (dest_bi, 0, sizeof (struct buffer_info));
   40     memset (src_bi, 0, sizeof (struct buffer_info));
   41     /* define dest, src, dest parent, dest position */
   42     switch (shift_mode) {
   43     case INTERNAL_SHIFT_FROM_S_TO_L:    /* used in internal_shift_left */
   44         src_bi->tb = tb;
   45         src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
   46         src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
   47         src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
   48         dest_bi->tb = tb;
   49         dest_bi->bi_bh = tb->L[h];
   50         dest_bi->bi_parent = tb->FL[h];
   51         dest_bi->bi_position = get_left_neighbor_position (tb, h);
   52         *d_key = tb->lkey[h];
   53         *cf = tb->CFL[h];
   54         break;
   55     case INTERNAL_SHIFT_FROM_L_TO_S:
   56         src_bi->tb = tb;
   57         src_bi->bi_bh = tb->L[h];
   58         src_bi->bi_parent = tb->FL[h];
   59         src_bi->bi_position = get_left_neighbor_position (tb, h);
   60         dest_bi->tb = tb;
   61         dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
   62         dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
   63         dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */
   64         *d_key = tb->lkey[h];
   65         *cf = tb->CFL[h];
   66         break;
   67       
   68     case INTERNAL_SHIFT_FROM_R_TO_S:    /* used in internal_shift_left */
   69         src_bi->tb = tb;
   70         src_bi->bi_bh = tb->R[h];
   71         src_bi->bi_parent = tb->FR[h];
   72         src_bi->bi_position = get_right_neighbor_position (tb, h);
   73         dest_bi->tb = tb;
   74         dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
   75         dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
   76         dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
   77         *d_key = tb->rkey[h];
   78         *cf = tb->CFR[h];
   79         break;
   80 
   81     case INTERNAL_SHIFT_FROM_S_TO_R:
   82         src_bi->tb = tb;
   83         src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
   84         src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
   85         src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
   86         dest_bi->tb = tb;
   87         dest_bi->bi_bh = tb->R[h];
   88         dest_bi->bi_parent = tb->FR[h];
   89         dest_bi->bi_position = get_right_neighbor_position (tb, h);
   90         *d_key = tb->rkey[h];
   91         *cf = tb->CFR[h];
   92         break;
   93 
   94     case INTERNAL_INSERT_TO_L:
   95         dest_bi->tb = tb;
   96         dest_bi->bi_bh = tb->L[h];
   97         dest_bi->bi_parent = tb->FL[h];
   98         dest_bi->bi_position = get_left_neighbor_position (tb, h);
   99         break;
  100         
  101     case INTERNAL_INSERT_TO_S:
  102         dest_bi->tb = tb;
  103         dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
  104         dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
  105         dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
  106         break;
  107 
  108     case INTERNAL_INSERT_TO_R:
  109         dest_bi->tb = tb;
  110         dest_bi->bi_bh = tb->R[h];
  111         dest_bi->bi_parent = tb->FR[h];
  112         dest_bi->bi_position = get_right_neighbor_position (tb, h);
  113         break;
  114 
  115     default:
  116         reiserfs_panic (tb->tb_sb, "internal_define_dest_src_infos: shift type is unknown (%d)", shift_mode);
  117     }
  118 }
  119 
  120 
  121 
  122 /* Insert count node pointers into buffer cur before position to + 1.
  123  * Insert count items into buffer cur before position to.
  124  * Items and node pointers are specified by inserted and bh respectively.
  125  */ 
  126 static void internal_insert_childs (struct buffer_info * cur_bi,
  127                                     int to, int count,
  128                                     struct item_head * inserted,
  129                                     struct buffer_head ** bh
  130     )
  131 {
  132     struct buffer_head * cur = cur_bi->bi_bh;
  133     struct block_head * blkh;
  134     int nr;
  135     struct key * ih;
  136     struct disk_child new_dc[2];
  137     struct disk_child * dc;
  138     int i;
  139 
  140     if (count <= 0)
  141         return;
  142 
  143     blkh = B_BLK_HEAD(cur);
  144     nr = blkh_nr_item(blkh);
  145 
  146     RFALSE( count > 2,
  147             "too many children (%d) are to be inserted", count);
  148     RFALSE( B_FREE_SPACE (cur) < count * (KEY_SIZE + DC_SIZE),
  149             "no enough free space (%d), needed %d bytes", 
  150             B_FREE_SPACE (cur), count * (KEY_SIZE + DC_SIZE));
  151 
  152     /* prepare space for count disk_child */
  153     dc = B_N_CHILD(cur,to+1);
  154 
  155     memmove (dc + count, dc, (nr+1-(to+1)) * DC_SIZE);
  156 
  157     /* copy to_be_insert disk children */
  158     for (i = 0; i < count; i ++) {
  159         put_dc_size( &(new_dc[i]), MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
  160         put_dc_block_number( &(new_dc[i]), bh[i]->b_blocknr );
  161     }
  162     memcpy (dc, new_dc, DC_SIZE * count);
  163 
  164   
  165     /* prepare space for count items  */
  166     ih = B_N_PDELIM_KEY (cur, ((to == -1) ? 0 : to));
  167 
  168     memmove (ih + count, ih, (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
  169 
  170     /* copy item headers (keys) */
  171     memcpy (ih, inserted, KEY_SIZE);
  172     if ( count > 1 )
  173         memcpy (ih + 1, inserted + 1, KEY_SIZE);
  174 
  175     /* sizes, item number */
  176     set_blkh_nr_item( blkh, blkh_nr_item(blkh) + count );
  177     set_blkh_free_space( blkh,
  178                         blkh_free_space(blkh) - count * (DC_SIZE + KEY_SIZE ) );
  179 
  180     do_balance_mark_internal_dirty (cur_bi->tb, cur,0);
  181 
  182     /*&&&&&&&&&&&&&&&&&&&&&&&&*/
  183     check_internal (cur);
  184     /*&&&&&&&&&&&&&&&&&&&&&&&&*/
  185 
  186     if (cur_bi->bi_parent) {
  187         struct disk_child *t_dc = B_N_CHILD (cur_bi->bi_parent,cur_bi->bi_position);
  188         put_dc_size( t_dc, dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
  189         do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 0);
  190 
  191         /*&&&&&&&&&&&&&&&&&&&&&&&&*/
  192         check_internal (cur_bi->bi_parent);
  193         /*&&&&&&&&&&&&&&&&&&&&&&&&*/   
  194     }
  195 
  196 }
  197 
  198 
  199 /* Delete del_num items and node pointers from buffer cur starting from *
  200  * the first_i'th item and first_p'th pointers respectively.            */
  201 static void     internal_delete_pointers_items (
  202                                                 struct buffer_info * cur_bi,
  203                                                 int first_p, 
  204                                                 int first_i, 
  205                                                 int del_num
  206                                                 )
  207 {
  208   struct buffer_head * cur = cur_bi->bi_bh;
  209   int nr;
  210   struct block_head * blkh;
  211   struct key * key;
  212   struct disk_child * dc;
  213 
  214   RFALSE( cur == NULL, "buffer is 0");
  215   RFALSE( del_num < 0,
  216           "negative number of items (%d) can not be deleted", del_num);
  217   RFALSE( first_p < 0 || first_p + del_num > B_NR_ITEMS (cur) + 1 || first_i < 0,
  218           "first pointer order (%d) < 0 or "
  219           "no so many pointers (%d), only (%d) or "
  220           "first key order %d < 0", first_p, 
  221           first_p + del_num, B_NR_ITEMS (cur) + 1, first_i);
  222   if ( del_num == 0 )
  223     return;
  224 
  225   blkh = B_BLK_HEAD(cur);
  226   nr = blkh_nr_item(blkh);
  227 
  228   if ( first_p == 0 && del_num == nr + 1 ) {
  229     RFALSE( first_i != 0, "1st deleted key must have order 0, not %d", first_i);
  230     make_empty_node (cur_bi);
  231     return;
  232   }
  233 
  234   RFALSE( first_i + del_num > B_NR_ITEMS (cur),
  235           "first_i = %d del_num = %d "
  236           "no so many keys (%d) in the node (%b)(%z)",
  237           first_i, del_num, first_i + del_num, cur, cur);
  238 
  239 
  240   /* deleting */
  241   dc = B_N_CHILD (cur, first_p);
  242 
  243   memmove (dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
  244   key = B_N_PDELIM_KEY (cur, first_i);
  245   memmove (key, key + del_num, (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - del_num) * DC_SIZE);
  246 
  247 
  248   /* sizes, item number */
  249   set_blkh_nr_item( blkh, blkh_nr_item(blkh) - del_num );
  250   set_blkh_free_space( blkh,
  251                     blkh_free_space(blkh) + (del_num * (KEY_SIZE + DC_SIZE) ) );
  252 
  253   do_balance_mark_internal_dirty (cur_bi->tb, cur, 0);
  254   /*&&&&&&&&&&&&&&&&&&&&&&&*/
  255   check_internal (cur);
  256   /*&&&&&&&&&&&&&&&&&&&&&&&*/
  257  
  258   if (cur_bi->bi_parent) {
  259     struct disk_child *t_dc;
  260     t_dc = B_N_CHILD (cur_bi->bi_parent, cur_bi->bi_position);
  261     put_dc_size( t_dc, dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE) ) );
  262 
  263     do_balance_mark_internal_dirty (cur_bi->tb, cur_bi->bi_parent,0);
  264     /*&&&&&&&&&&&&&&&&&&&&&&&&*/
  265     check_internal (cur_bi->bi_parent);
  266     /*&&&&&&&&&&&&&&&&&&&&&&&&*/   
  267   }
  268 }
  269 
  270 
  271 /* delete n node pointers and items starting from given position */
  272 static void  internal_delete_childs (struct buffer_info * cur_bi, 
  273                                      int from, int n)
  274 {
  275   int i_from;
  276 
  277   i_from = (from == 0) ? from : from - 1;
  278 
  279   /* delete n pointers starting from `from' position in CUR;
  280      delete n keys starting from 'i_from' position in CUR;
  281      */
  282   internal_delete_pointers_items (cur_bi, from, i_from, n);
  283 }
  284 
  285 
  286 /* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
  287 * last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
  288  * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest 
  289  */
  290 static void internal_copy_pointers_items (
  291                                           struct buffer_info * dest_bi,
  292                                           struct buffer_head * src,
  293                                           int last_first, int cpy_num
  294                                           )
  295 {
  296   /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
  297    * as delimiting key have already inserted to buffer dest.*/
  298   struct buffer_head * dest = dest_bi->bi_bh;
  299   int nr_dest, nr_src;
  300   int dest_order, src_order;
  301   struct block_head * blkh;
  302   struct key * key;
  303   struct disk_child * dc;
  304 
  305   nr_src = B_NR_ITEMS (src);
  306 
  307   RFALSE( dest == NULL || src == NULL, 
  308           "src (%p) or dest (%p) buffer is 0", src, dest);
  309   RFALSE( last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
  310           "invalid last_first parameter (%d)", last_first);
  311   RFALSE( nr_src < cpy_num - 1, 
  312           "no so many items (%d) in src (%d)", cpy_num, nr_src);
  313   RFALSE( cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
  314   RFALSE( cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
  315           "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
  316           cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
  317 
  318   if ( cpy_num == 0 )
  319     return;
  320 
  321         /* coping */
  322   blkh = B_BLK_HEAD(dest);
  323   nr_dest = blkh_nr_item(blkh);
  324 
  325   /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest;*/
  326   /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0;*/
  327   (last_first == LAST_TO_FIRST) ?       (dest_order = 0, src_order = nr_src - cpy_num + 1) :
  328     (dest_order = nr_dest, src_order = 0);
  329 
  330   /* prepare space for cpy_num pointers */
  331   dc = B_N_CHILD (dest, dest_order);
  332 
  333   memmove (dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
  334 
  335         /* insert pointers */
  336   memcpy (dc, B_N_CHILD (src, src_order), DC_SIZE * cpy_num);
  337 
  338 
  339   /* prepare space for cpy_num - 1 item headers */
  340   key = B_N_PDELIM_KEY(dest, dest_order);
  341   memmove (key + cpy_num - 1, key,
  342            KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + cpy_num));
  343 
  344 
  345   /* insert headers */
  346   memcpy (key, B_N_PDELIM_KEY (src, src_order), KEY_SIZE * (cpy_num - 1));
  347 
  348   /* sizes, item number */
  349   set_blkh_nr_item( blkh, blkh_nr_item(blkh) + (cpy_num - 1 ) );
  350   set_blkh_free_space( blkh,
  351       blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num ) );
  352 
  353   do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);
  354 
  355   /*&&&&&&&&&&&&&&&&&&&&&&&&*/
  356   check_internal (dest);
  357   /*&&&&&&&&&&&&&&&&&&&&&&&&*/
  358 
  359   if (dest_bi->bi_parent) {
  360     struct disk_child *t_dc;
  361     t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
  362     put_dc_size( t_dc, dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num) );
  363 
  364     do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
  365     /*&&&&&&&&&&&&&&&&&&&&&&&&*/
  366     check_internal (dest_bi->bi_parent);
  367     /*&&&&&&&&&&&&&&&&&&&&&&&&*/   
  368   }
  369 
  370 }
  371 
  372 
  373 /* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
  374  * Delete cpy_num - del_par items and node pointers from buffer src.
  375  * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
  376  * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
  377  */
  378 static void internal_move_pointers_items (struct buffer_info * dest_bi, 
  379                                           struct buffer_info * src_bi, 
  380                                           int last_first, int cpy_num, int del_par)
  381 {
  382     int first_pointer;
  383     int first_item;
  384     
  385     internal_copy_pointers_items (dest_bi, src_bi->bi_bh, last_first, cpy_num);
  386 
  387     if (last_first == FIRST_TO_LAST) {  /* shift_left occurs */
  388         first_pointer = 0;
  389         first_item = 0;
  390         /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer, 
  391            for key - with first_item */
  392         internal_delete_pointers_items (src_bi, first_pointer, first_item, cpy_num - del_par);
  393     } else {                    /* shift_right occurs */
  394         int i, j;
  395 
  396         i = ( cpy_num - del_par == ( j = B_NR_ITEMS(src_bi->bi_bh)) + 1 ) ? 0 : j - cpy_num + del_par;
  397 
  398         internal_delete_pointers_items (src_bi, j + 1 - cpy_num + del_par, i, cpy_num - del_par);
  399     }
  400 }
  401 
  402 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
  403 static void internal_insert_key (struct buffer_info * dest_bi, 
  404                                  int dest_position_before,                 /* insert key before key with n_dest number */
  405                                  struct buffer_head * src, 
  406                                  int src_position)
  407 {
  408     struct buffer_head * dest = dest_bi->bi_bh;
  409     int nr;
  410     struct block_head * blkh;
  411     struct key * key;
  412 
  413     RFALSE( dest == NULL || src == NULL,
  414             "source(%p) or dest(%p) buffer is 0", src, dest);
  415     RFALSE( dest_position_before < 0 || src_position < 0,
  416             "source(%d) or dest(%d) key number less than 0", 
  417             src_position, dest_position_before);
  418     RFALSE( dest_position_before > B_NR_ITEMS (dest) || 
  419             src_position >= B_NR_ITEMS(src),
  420             "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
  421             dest_position_before, B_NR_ITEMS (dest), 
  422             src_position, B_NR_ITEMS(src));
  423     RFALSE( B_FREE_SPACE (dest) < KEY_SIZE,
  424             "no enough free space (%d) in dest buffer", B_FREE_SPACE (dest));
  425 
  426     blkh = B_BLK_HEAD(dest);
  427     nr = blkh_nr_item(blkh);
  428 
  429     /* prepare space for inserting key */
  430     key = B_N_PDELIM_KEY (dest, dest_position_before);
  431     memmove (key + 1, key, (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
  432 
  433     /* insert key */
  434     memcpy (key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
  435 
  436     /* Change dirt, free space, item number fields. */
  437 
  438     set_blkh_nr_item( blkh, blkh_nr_item(blkh) + 1 );
  439     set_blkh_free_space( blkh, blkh_free_space(blkh) - KEY_SIZE );
  440 
  441     do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);
  442 
  443     if (dest_bi->bi_parent) {
  444         struct disk_child *t_dc;
  445         t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
  446         put_dc_size( t_dc, dc_size(t_dc) + KEY_SIZE );
  447 
  448         do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
  449     }
  450 }
  451 
  452 
  453 
  454 /* Insert d_key'th (delimiting) key from buffer cfl to tail of dest. 
  455  * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
  456  * Replace  d_key'th key in buffer cfl.
  457  * Delete pointer_amount items and node pointers from buffer src.
  458  */
  459 /* this can be invoked both to shift from S to L and from R to S */
  460 static void     internal_shift_left (
  461                                      int mode,  /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
  462                                      struct tree_balance * tb,
  463                                      int h,
  464                                      int pointer_amount
  465                                      )
  466 {
  467   struct buffer_info dest_bi, src_bi;
  468   struct buffer_head * cf;
  469   int d_key_position;
  470 
  471   internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
  472 
  473   /*printk("pointer_amount = %d\n",pointer_amount);*/
  474 
  475   if (pointer_amount) {
  476     /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
  477     internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
  478 
  479     if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
  480       if (src_bi.bi_position/*src->b_item_order*/ == 0)
  481         replace_key (tb, cf, d_key_position, src_bi.bi_parent/*src->b_parent*/, 0);
  482     } else
  483       replace_key (tb, cf, d_key_position, src_bi.bi_bh, pointer_amount - 1);
  484   }
  485   /* last parameter is del_parameter */
  486   internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 0);
  487 
  488 }
  489 
  490 /* Insert delimiting key to L[h].
  491  * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
  492  * Delete n - 1 items and node pointers from buffer S[h].
  493  */
  494 /* it always shifts from S[h] to L[h] */
  495 static void     internal_shift1_left (
  496                                       struct tree_balance * tb, 
  497                                       int h, 
  498                                       int pointer_amount
  499                                       )
  500 {
  501   struct buffer_info dest_bi, src_bi;
  502   struct buffer_head * cf;
  503   int d_key_position;
  504 
  505   internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
  506 
  507   if ( pointer_amount > 0 ) /* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
  508     internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
  509   /*            internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]);*/
  510 
  511   /* last parameter is del_parameter */
  512   internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 1);
  513   /*    internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1);*/
  514 }
  515 
  516 
  517 /* Insert d_key'th (delimiting) key from buffer cfr to head of dest. 
  518  * Copy n node pointers and n - 1 items from buffer src to buffer dest.
  519  * Replace  d_key'th key in buffer cfr.
  520  * Delete n items and node pointers from buffer src.
  521  */
  522 static void internal_shift_right (
  523                                   int mode,     /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
  524                                   struct tree_balance * tb,
  525                                   int h,
  526                                   int pointer_amount
  527                                   )
  528 {
  529   struct buffer_info dest_bi, src_bi;
  530   struct buffer_head * cf;
  531   int d_key_position;
  532   int nr;
  533 
  534 
  535   internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
  536 
  537   nr = B_NR_ITEMS (src_bi.bi_bh);
  538 
  539   if (pointer_amount > 0) {
  540     /* insert delimiting key from common father of dest and src to dest node into position 0 */
  541     internal_insert_key (&dest_bi, 0, cf, d_key_position);
  542     if (nr == pointer_amount - 1) {
  543          RFALSE( src_bi.bi_bh != PATH_H_PBUFFER (tb->tb_path, h)/*tb->S[h]*/ || 
  544                  dest_bi.bi_bh != tb->R[h],
  545                  "src (%p) must be == tb->S[h](%p) when it disappears",
  546                  src_bi.bi_bh, PATH_H_PBUFFER (tb->tb_path, h));
  547       /* when S[h] disappers replace left delemiting key as well */
  548       if (tb->CFL[h])
  549         replace_key (tb, cf, d_key_position, tb->CFL[h], tb->lkey[h]);
  550     } else
  551       replace_key (tb, cf, d_key_position, src_bi.bi_bh, nr - pointer_amount);
  552   }      
  553 
  554   /* last parameter is del_parameter */
  555   internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 0);
  556 }
  557 
  558 /* Insert delimiting key to R[h].
  559  * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
  560  * Delete n - 1 items and node pointers from buffer S[h].
  561  */
  562 /* it always shift from S[h] to R[h] */
  563 static void     internal_shift1_right (
  564                                        struct tree_balance * tb, 
  565                                        int h, 
  566                                        int pointer_amount
  567                                        )
  568 {
  569   struct buffer_info dest_bi, src_bi;
  570   struct buffer_head * cf;
  571   int d_key_position;
  572 
  573   internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
  574 
  575   if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
  576     internal_insert_key (&dest_bi, 0, cf, d_key_position);
  577   /*            internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]);*/
  578         
  579   /* last parameter is del_parameter */
  580   internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 1);
  581   /*    internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1);*/
  582 }
  583 
  584 
  585 /* Delete insert_num node pointers together with their left items
  586  * and balance current node.*/
  587 static void balance_internal_when_delete (struct tree_balance * tb, 
  588                                           int h, int child_pos)
  589 {
  590     int insert_num;
  591     int n;
  592     struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
  593     struct buffer_info bi;
  594 
  595     insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
  596   
  597     /* delete child-node-pointer(s) together with their left item(s) */
  598     bi.tb = tb;
  599     bi.bi_bh = tbSh;
  600     bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
  601     bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
  602 
  603     internal_delete_childs (&bi, child_pos, -insert_num);
  604 
  605     RFALSE( tb->blknum[h] > 1,
  606             "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
  607 
  608     n = B_NR_ITEMS(tbSh);
  609 
  610     if ( tb->lnum[h] == 0 && tb->rnum[h] == 0 ) {
  611         if ( tb->blknum[h] == 0 ) {
  612             /* node S[h] (root of the tree) is empty now */
  613             struct buffer_head *new_root;
  614 
  615             RFALSE( n || B_FREE_SPACE (tbSh) != MAX_CHILD_SIZE(tbSh) - DC_SIZE,
  616                     "buffer must have only 0 keys (%d)", n);
  617             RFALSE( bi.bi_parent, "root has parent (%p)", bi.bi_parent);
  618                 
  619             /* choose a new root */
  620             if ( ! tb->L[h-1] || ! B_NR_ITEMS(tb->L[h-1]) )
  621                 new_root = tb->R[h-1];
  622             else
  623                 new_root = tb->L[h-1];
  624             /* switch super block's tree root block number to the new value */
  625             PUT_SB_ROOT_BLOCK( tb->tb_sb, new_root->b_blocknr );
  626             //tb->tb_sb->u.reiserfs_sb.s_rs->s_tree_height --;
  627             PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) - 1 );
  628 
  629             do_balance_mark_sb_dirty (tb, tb->tb_sb->u.reiserfs_sb.s_sbh, 1);
  630             /*&&&&&&&&&&&&&&&&&&&&&&*/
  631             if (h > 1)
  632                 /* use check_internal if new root is an internal node */
  633                 check_internal (new_root);
  634             /*&&&&&&&&&&&&&&&&&&&&&&*/
  635             tb->tb_sb->s_dirt = 1;
  636 
  637             /* do what is needed for buffer thrown from tree */
  638             reiserfs_invalidate_buffer(tb, tbSh);
  639             return;
  640         }
  641         return;
  642     }
  643 
  644     if ( tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1 ) { /* join S[h] with L[h] */
  645 
  646         RFALSE( tb->rnum[h] != 0,
  647                 "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
  648                 h, tb->rnum[h]);
  649 
  650         internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
  651         reiserfs_invalidate_buffer(tb, tbSh);
  652 
  653         return;
  654     }
  655 
  656     if ( tb->R[h] &&  tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1 ) { /* join S[h] with R[h] */
  657         RFALSE( tb->lnum[h] != 0,
  658                 "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
  659                 h, tb->lnum[h]);
  660 
  661         internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
  662 
  663         reiserfs_invalidate_buffer(tb,tbSh);
  664         return;
  665     }
  666 
  667     if ( tb->lnum[h] < 0 ) { /* borrow from left neighbor L[h] */
  668         RFALSE( tb->rnum[h] != 0,
  669                 "wrong tb->rnum[%d]==%d when borrow from L[h]", h, tb->rnum[h]);
  670         /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]);*/
  671         internal_shift_right (INTERNAL_SHIFT_FROM_L_TO_S, tb, h, -tb->lnum[h]);
  672         return;
  673     }
  674 
  675     if ( tb->rnum[h] < 0 ) { /* borrow from right neighbor R[h] */
  676          RFALSE( tb->lnum[h] != 0,
  677                  "invalid tb->lnum[%d]==%d when borrow from R[h]", 
  678                  h, tb->lnum[h]);
  679         internal_shift_left (INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]);*/
  680         return;
  681     }
  682 
  683     if ( tb->lnum[h] > 0 ) { /* split S[h] into two parts and put them into neighbors */
  684         RFALSE( tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
  685                 "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
  686                 h, tb->lnum[h], h, tb->rnum[h], n);
  687 
  688         internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]);*/
  689         internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
  690 
  691         reiserfs_invalidate_buffer (tb, tbSh);
  692 
  693         return;
  694     }
  695     reiserfs_panic (tb->tb_sb, "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
  696                     h, tb->lnum[h], h, tb->rnum[h]);
  697 }
  698 
  699 
  700 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
  701 void    replace_lkey (
  702                       struct tree_balance * tb,
  703                       int h,
  704                       struct item_head * key
  705                       )
  706 {
  707    RFALSE( tb->L[h] == NULL || tb->CFL[h] == NULL,
  708            "L[h](%p) and CFL[h](%p) must exist in replace_lkey", 
  709            tb->L[h], tb->CFL[h]);
  710 
  711   if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
  712     return;
  713 
  714   memcpy (B_N_PDELIM_KEY(tb->CFL[h],tb->lkey[h]), key, KEY_SIZE);
  715 
  716   do_balance_mark_internal_dirty (tb, tb->CFL[h],0);
  717 }
  718 
  719 
  720 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
  721 void    replace_rkey (
  722                       struct tree_balance * tb,
  723                       int h,
  724                       struct item_head * key
  725                       )
  726 {
  727   RFALSE( tb->R[h] == NULL || tb->CFR[h] == NULL,
  728           "R[h](%p) and CFR[h](%p) must exist in replace_rkey", 
  729           tb->R[h], tb->CFR[h]);
  730   RFALSE( B_NR_ITEMS(tb->R[h]) == 0,
  731           "R[h] can not be empty if it exists (item number=%d)", 
  732           B_NR_ITEMS(tb->R[h]));
  733 
  734   memcpy (B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]), key, KEY_SIZE);
  735 
  736   do_balance_mark_internal_dirty (tb, tb->CFR[h], 0);
  737 }
  738 
  739 
  740 int balance_internal (struct tree_balance * tb,                 /* tree_balance structure               */
  741                       int h,                                    /* level of the tree                    */
  742                       int child_pos,
  743                       struct item_head * insert_key,            /* key for insertion on higher level    */
  744                       struct buffer_head ** insert_ptr  /* node for insertion on higher level*/
  745     )
  746     /* if inserting/pasting
  747        {
  748        child_pos is the position of the node-pointer in S[h] that        *
  749        pointed to S[h-1] before balancing of the h-1 level;              *
  750        this means that new pointers and items must be inserted AFTER *
  751        child_pos
  752        }
  753        else 
  754        {
  755    it is the position of the leftmost pointer that must be deleted (together with
  756    its corresponding key to the left of the pointer)
  757    as a result of the previous level's balancing.
  758    }
  759 */
  760 {
  761     struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
  762     struct buffer_info bi;
  763     int order;          /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
  764     int insert_num, n, k;
  765     struct buffer_head * S_new;
  766     struct item_head new_insert_key;
  767     struct buffer_head * new_insert_ptr = NULL;
  768     struct item_head * new_insert_key_addr = insert_key;
  769 
  770     RFALSE( h < 1, "h (%d) can not be < 1 on internal level", h);
  771 
  772     PROC_INFO_INC( tb -> tb_sb, balance_at[ h ] );
  773 
  774     order = ( tbSh ) ? PATH_H_POSITION (tb->tb_path, h + 1)/*tb->S[h]->b_item_order*/ : 0;
  775 
  776   /* Using insert_size[h] calculate the number insert_num of items
  777      that must be inserted to or deleted from S[h]. */
  778     insert_num = tb->insert_size[h]/((int)(KEY_SIZE + DC_SIZE));
  779 
  780     /* Check whether insert_num is proper **/
  781     RFALSE( insert_num < -2  ||  insert_num > 2,
  782             "incorrect number of items inserted to the internal node (%d)", 
  783             insert_num);
  784     RFALSE( h > 1  && (insert_num > 1 || insert_num < -1),
  785             "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level", 
  786             insert_num, h);
  787 
  788     /* Make balance in case insert_num < 0 */
  789     if ( insert_num < 0 ) {
  790         balance_internal_when_delete (tb, h, child_pos);
  791         return order;
  792     }
  793  
  794     k = 0;
  795     if ( tb->lnum[h] > 0 ) {
  796         /* shift lnum[h] items from S[h] to the left neighbor L[h].
  797            check how many of new items fall into L[h] or CFL[h] after
  798            shifting */
  799         n = B_NR_ITEMS (tb->L[h]); /* number of items in L[h] */
  800         if ( tb->lnum[h] <= child_pos ) {
  801             /* new items don't fall into L[h] or CFL[h] */
  802             internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);
  803             /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]);*/
  804             child_pos -= tb->lnum[h];
  805         } else if ( tb->lnum[h] > child_pos + insert_num ) {
  806             /* all new items fall into L[h] */
  807             internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h] - insert_num);
  808             /*                  internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
  809                                 tb->lnum[h]-insert_num);
  810             */
  811             /* insert insert_num keys and node-pointers into L[h] */
  812             bi.tb = tb;
  813             bi.bi_bh = tb->L[h];
  814             bi.bi_parent = tb->FL[h];
  815             bi.bi_position = get_left_neighbor_position (tb, h);
  816             internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next*/ n + child_pos + 1,
  817                                     insert_num,insert_key,insert_ptr);
  818 
  819             insert_num = 0; 
  820         } else {
  821             struct disk_child * dc;
  822 
  823             /* some items fall into L[h] or CFL[h], but some don't fall */
  824             internal_shift1_left(tb,h,child_pos+1);
  825             /* calculate number of new items that fall into L[h] */
  826             k = tb->lnum[h] - child_pos - 1;
  827             bi.tb = tb;
  828             bi.bi_bh = tb->L[h];
  829             bi.bi_parent = tb->FL[h];
  830             bi.bi_position = get_left_neighbor_position (tb, h);
  831             internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next,*/ n + child_pos + 1,k,
  832                                     insert_key,insert_ptr);
  833 
  834             replace_lkey(tb,h,insert_key + k);
  835 
  836             /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
  837             dc = B_N_CHILD(tbSh, 0);
  838             put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[k]) - B_FREE_SPACE (insert_ptr[k]));
  839             put_dc_block_number( dc, insert_ptr[k]->b_blocknr );
  840 
  841             do_balance_mark_internal_dirty (tb, tbSh, 0);
  842 
  843             k++;
  844             insert_key += k;
  845             insert_ptr += k;
  846             insert_num -= k;
  847             child_pos = 0;
  848         }
  849     }   /* tb->lnum[h] > 0 */
  850 
  851     if ( tb->rnum[h] > 0 ) {
  852         /*shift rnum[h] items from S[h] to the right neighbor R[h]*/
  853         /* check how many of new items fall into R or CFR after shifting */
  854         n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
  855         if ( n - tb->rnum[h] >= child_pos )
  856             /* new items fall into S[h] */
  857             /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]);*/
  858             internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
  859         else
  860             if ( n + insert_num - tb->rnum[h] < child_pos )
  861             {
  862                 /* all new items fall into R[h] */
  863                 /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
  864             tb->rnum[h] - insert_num);*/
  865                 internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h] - insert_num);
  866 
  867                 /* insert insert_num keys and node-pointers into R[h] */
  868                 bi.tb = tb;
  869                 bi.bi_bh = tb->R[h];
  870                 bi.bi_parent = tb->FR[h];
  871                 bi.bi_position = get_right_neighbor_position (tb, h);
  872                 internal_insert_childs (&bi, /*tb->R[h],tb->S[h-1]->b_next*/ child_pos - n - insert_num + tb->rnum[h] - 1,
  873                                         insert_num,insert_key,insert_ptr);
  874                 insert_num = 0;
  875             }
  876             else
  877             {
  878                 struct disk_child * dc;
  879 
  880                 /* one of the items falls into CFR[h] */
  881                 internal_shift1_right(tb,h,n - child_pos + 1);
  882                 /* calculate number of new items that fall into R[h] */
  883                 k = tb->rnum[h] - n + child_pos - 1;
  884                 bi.tb = tb;
  885                 bi.bi_bh = tb->R[h];
  886                 bi.bi_parent = tb->FR[h];
  887                 bi.bi_position = get_right_neighbor_position (tb, h);
  888                 internal_insert_childs (&bi, /*tb->R[h], tb->R[h]->b_child,*/ 0, k, insert_key + 1, insert_ptr + 1);
  889 
  890                 replace_rkey(tb,h,insert_key + insert_num - k - 1);
  891 
  892                 /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1]*/
  893                 dc = B_N_CHILD(tb->R[h], 0);
  894                 put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
  895                                     B_FREE_SPACE (insert_ptr[insert_num-k-1]));
  896                 put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );
  897 
  898                 do_balance_mark_internal_dirty (tb, tb->R[h],0);
  899 
  900                 insert_num -= (k + 1);
  901             }
  902     }
  903 
  904     /** Fill new node that appears instead of S[h] **/
  905     RFALSE( tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
  906     RFALSE( tb->blknum[h] < 0, "blknum can not be < 0");
  907 
  908     if ( ! tb->blknum[h] )
  909     { /* node S[h] is empty now */
  910         RFALSE( ! tbSh, "S[h] is equal NULL");
  911 
  912         /* do what is needed for buffer thrown from tree */
  913         reiserfs_invalidate_buffer(tb,tbSh);
  914         return order;
  915     }
  916 
  917     if ( ! tbSh ) {
  918         /* create new root */
  919         struct disk_child  * dc;
  920         struct buffer_head * tbSh_1 = PATH_H_PBUFFER (tb->tb_path, h - 1);
  921         struct block_head *  blkh;
  922 
  923 
  924         if ( tb->blknum[h] != 1 )
  925             reiserfs_panic(0, "balance_internal: One new node required for creating the new root");
  926         /* S[h] = empty buffer from the list FEB. */
  927         tbSh = get_FEB (tb);
  928         blkh = B_BLK_HEAD(tbSh);
  929         set_blkh_level( blkh, h + 1 );
  930 
  931         /* Put the unique node-pointer to S[h] that points to S[h-1]. */
  932 
  933         dc = B_N_CHILD(tbSh, 0);
  934         put_dc_block_number( dc, tbSh_1->b_blocknr );
  935         put_dc_size( dc, (MAX_CHILD_SIZE (tbSh_1) - B_FREE_SPACE (tbSh_1)));
  936 
  937         tb->insert_size[h] -= DC_SIZE;
  938         set_blkh_free_space( blkh, blkh_free_space(blkh) - DC_SIZE );
  939 
  940         do_balance_mark_internal_dirty (tb, tbSh, 0);
  941 
  942         /*&&&&&&&&&&&&&&&&&&&&&&&&*/
  943         check_internal (tbSh);
  944         /*&&&&&&&&&&&&&&&&&&&&&&&&*/
  945     
  946     /* put new root into path structure */
  947         PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = tbSh;
  948 
  949         /* Change root in structure super block. */
  950         PUT_SB_ROOT_BLOCK( tb->tb_sb, tbSh->b_blocknr );
  951         PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1 );
  952         do_balance_mark_sb_dirty (tb, tb->tb_sb->u.reiserfs_sb.s_sbh, 1);
  953         tb->tb_sb->s_dirt = 1;
  954     }
  955         
  956     if ( tb->blknum[h] == 2 ) {
  957         int snum;
  958         struct buffer_info dest_bi, src_bi;
  959 
  960 
  961         /* S_new = free buffer from list FEB */
  962         S_new = get_FEB(tb);
  963 
  964         set_blkh_level( B_BLK_HEAD(S_new), h + 1 );
  965 
  966         dest_bi.tb = tb;
  967         dest_bi.bi_bh = S_new;
  968         dest_bi.bi_parent = 0;
  969         dest_bi.bi_position = 0;
  970         src_bi.tb = tb;
  971         src_bi.bi_bh = tbSh;
  972         src_bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
  973         src_bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
  974                 
  975         n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
  976         snum = (insert_num + n + 1)/2;
  977         if ( n - snum >= child_pos ) {
  978             /* new items don't fall into S_new */
  979             /*  store the delimiting key for the next level */
  980             /* new_insert_key = (n - snum)'th key in S[h] */
  981             memcpy (&new_insert_key,B_N_PDELIM_KEY(tbSh,n - snum),
  982                     KEY_SIZE);
  983             /* last parameter is del_par */
  984             internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum, 0);
  985             /*            internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0);*/
  986         } else if ( n + insert_num - snum < child_pos ) {
  987             /* all new items fall into S_new */
  988             /*  store the delimiting key for the next level */
  989             /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
  990             memcpy(&new_insert_key,B_N_PDELIM_KEY(tbSh,n + insert_num - snum),
  991                    KEY_SIZE);
  992             /* last parameter is del_par */
  993             internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum - insert_num, 0);
  994             /*                  internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0);*/
  995 
  996             /* insert insert_num keys and node-pointers into S_new */
  997             internal_insert_childs (&dest_bi, /*S_new,tb->S[h-1]->b_next,*/child_pos - n - insert_num + snum - 1,
  998                                     insert_num,insert_key,insert_ptr);
  999 
 1000             insert_num = 0;
 1001         } else {
 1002             struct disk_child * dc;
 1003 
 1004             /* some items fall into S_new, but some don't fall */
 1005             /* last parameter is del_par */
 1006             internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, n - child_pos + 1, 1);
 1007             /*                  internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1);*/
 1008             /* calculate number of new items that fall into S_new */
 1009             k = snum - n + child_pos - 1;
 1010 
 1011             internal_insert_childs (&dest_bi, /*S_new,*/ 0, k, insert_key + 1, insert_ptr+1);
 1012 
 1013             /* new_insert_key = insert_key[insert_num - k - 1] */
 1014             memcpy(&new_insert_key,insert_key + insert_num - k - 1,
 1015                    KEY_SIZE);
 1016             /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
 1017 
 1018             dc = B_N_CHILD(S_new,0);
 1019             put_dc_size( dc, (MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
 1020                                 B_FREE_SPACE(insert_ptr[insert_num-k-1])) );
 1021             put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );
 1022 
 1023             do_balance_mark_internal_dirty (tb, S_new,0);
 1024                         
 1025             insert_num -= (k + 1);
 1026         }
 1027         /* new_insert_ptr = node_pointer to S_new */
 1028         new_insert_ptr = S_new;
 1029 
 1030         RFALSE(( buffer_locked(S_new) || atomic_read (&(S_new->b_count)) != 1) &&
 1031                (buffer_locked(S_new) || atomic_read(&(S_new->b_count)) > 2 ||
 1032                 !(buffer_journaled(S_new) || buffer_journal_dirty(S_new))),
 1033                "cm-00001: bad S_new (%b)", S_new);
 1034 
 1035         // S_new is released in unfix_nodes
 1036     }
 1037 
 1038     n = B_NR_ITEMS (tbSh); /*number of items in S[h] */
 1039 
 1040         if ( 0 <= child_pos && child_pos <= n && insert_num > 0 ) {
 1041             bi.tb = tb;
 1042             bi.bi_bh = tbSh;
 1043             bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
 1044             bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
 1045                 internal_insert_childs (
 1046                     &bi,/*tbSh,*/
 1047                     /*          ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next,*/
 1048                     child_pos,insert_num,insert_key,insert_ptr
 1049                     );
 1050         }
 1051 
 1052 
 1053         memcpy (new_insert_key_addr,&new_insert_key,KEY_SIZE);
 1054         insert_ptr[0] = new_insert_ptr;
 1055 
 1056         return order;
 1057     }
 1058 
 1059   
 1060     

Cache object: ecf59ec47cd5dcc40871e01409ef3773


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.