The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/super.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  linux/fs/super.c
    3  *
    4  *  Copyright (C) 1991, 1992  Linus Torvalds
    5  *
    6  *  super.c contains code to handle: - mount structures
    7  *                                   - super-block tables
    8  *                                   - filesystem drivers list
    9  *                                   - mount system call
   10  *                                   - umount system call
   11  *                                   - ustat system call
   12  *
   13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
   14  *
   15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
   16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
   17  *  Added options to /proc/mounts:
   18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
   19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
   20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
   21  */
   22 
   23 #include <linux/export.h>
   24 #include <linux/slab.h>
   25 #include <linux/acct.h>
   26 #include <linux/blkdev.h>
   27 #include <linux/mount.h>
   28 #include <linux/security.h>
   29 #include <linux/writeback.h>            /* for the emergency remount stuff */
   30 #include <linux/idr.h>
   31 #include <linux/mutex.h>
   32 #include <linux/backing-dev.h>
   33 #include <linux/rculist_bl.h>
   34 #include <linux/cleancache.h>
   35 #include <linux/fsnotify.h>
   36 #include <linux/lockdep.h>
   37 #include "internal.h"
   38 
   39 
   40 LIST_HEAD(super_blocks);
   41 DEFINE_SPINLOCK(sb_lock);
   42 
   43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
   44         "sb_writers",
   45         "sb_pagefaults",
   46         "sb_internal",
   47 };
   48 
   49 /*
   50  * One thing we have to be careful of with a per-sb shrinker is that we don't
   51  * drop the last active reference to the superblock from within the shrinker.
   52  * If that happens we could trigger unregistering the shrinker from within the
   53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
   54  * take a passive reference to the superblock to avoid this from occurring.
   55  */
   56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
   57 {
   58         struct super_block *sb;
   59         int     fs_objects = 0;
   60         int     total_objects;
   61 
   62         sb = container_of(shrink, struct super_block, s_shrink);
   63 
   64         /*
   65          * Deadlock avoidance.  We may hold various FS locks, and we don't want
   66          * to recurse into the FS that called us in clear_inode() and friends..
   67          */
   68         if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
   69                 return -1;
   70 
   71         if (!grab_super_passive(sb))
   72                 return -1;
   73 
   74         if (sb->s_op && sb->s_op->nr_cached_objects)
   75                 fs_objects = sb->s_op->nr_cached_objects(sb);
   76 
   77         total_objects = sb->s_nr_dentry_unused +
   78                         sb->s_nr_inodes_unused + fs_objects + 1;
   79 
   80         if (sc->nr_to_scan) {
   81                 int     dentries;
   82                 int     inodes;
   83 
   84                 /* proportion the scan between the caches */
   85                 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
   86                                                         total_objects;
   87                 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
   88                                                         total_objects;
   89                 if (fs_objects)
   90                         fs_objects = (sc->nr_to_scan * fs_objects) /
   91                                                         total_objects;
   92                 /*
   93                  * prune the dcache first as the icache is pinned by it, then
   94                  * prune the icache, followed by the filesystem specific caches
   95                  */
   96                 prune_dcache_sb(sb, dentries);
   97                 prune_icache_sb(sb, inodes);
   98 
   99                 if (fs_objects && sb->s_op->free_cached_objects) {
  100                         sb->s_op->free_cached_objects(sb, fs_objects);
  101                         fs_objects = sb->s_op->nr_cached_objects(sb);
  102                 }
  103                 total_objects = sb->s_nr_dentry_unused +
  104                                 sb->s_nr_inodes_unused + fs_objects;
  105         }
  106 
  107         total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
  108         drop_super(sb);
  109         return total_objects;
  110 }
  111 
  112 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
  113 {
  114         int err;
  115         int i;
  116 
  117         for (i = 0; i < SB_FREEZE_LEVELS; i++) {
  118                 err = percpu_counter_init(&s->s_writers.counter[i], 0);
  119                 if (err < 0)
  120                         goto err_out;
  121                 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
  122                                  &type->s_writers_key[i], 0);
  123         }
  124         init_waitqueue_head(&s->s_writers.wait);
  125         init_waitqueue_head(&s->s_writers.wait_unfrozen);
  126         return 0;
  127 err_out:
  128         while (--i >= 0)
  129                 percpu_counter_destroy(&s->s_writers.counter[i]);
  130         return err;
  131 }
  132 
  133 static void destroy_sb_writers(struct super_block *s)
  134 {
  135         int i;
  136 
  137         for (i = 0; i < SB_FREEZE_LEVELS; i++)
  138                 percpu_counter_destroy(&s->s_writers.counter[i]);
  139 }
  140 
  141 /**
  142  *      alloc_super     -       create new superblock
  143  *      @type:  filesystem type superblock should belong to
  144  *      @flags: the mount flags
  145  *
  146  *      Allocates and initializes a new &struct super_block.  alloc_super()
  147  *      returns a pointer new superblock or %NULL if allocation had failed.
  148  */
  149 static struct super_block *alloc_super(struct file_system_type *type, int flags)
  150 {
  151         struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
  152         static const struct super_operations default_op;
  153 
  154         if (s) {
  155                 if (security_sb_alloc(s)) {
  156                         /*
  157                          * We cannot call security_sb_free() without
  158                          * security_sb_alloc() succeeding. So bail out manually
  159                          */
  160                         kfree(s);
  161                         s = NULL;
  162                         goto out;
  163                 }
  164 #ifdef CONFIG_SMP
  165                 s->s_files = alloc_percpu(struct list_head);
  166                 if (!s->s_files)
  167                         goto err_out;
  168                 else {
  169                         int i;
  170 
  171                         for_each_possible_cpu(i)
  172                                 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
  173                 }
  174 #else
  175                 INIT_LIST_HEAD(&s->s_files);
  176 #endif
  177                 if (init_sb_writers(s, type))
  178                         goto err_out;
  179                 s->s_flags = flags;
  180                 s->s_bdi = &default_backing_dev_info;
  181                 INIT_HLIST_NODE(&s->s_instances);
  182                 INIT_HLIST_BL_HEAD(&s->s_anon);
  183                 INIT_LIST_HEAD(&s->s_inodes);
  184                 INIT_LIST_HEAD(&s->s_dentry_lru);
  185                 INIT_LIST_HEAD(&s->s_inode_lru);
  186                 spin_lock_init(&s->s_inode_lru_lock);
  187                 INIT_LIST_HEAD(&s->s_mounts);
  188                 init_rwsem(&s->s_umount);
  189                 lockdep_set_class(&s->s_umount, &type->s_umount_key);
  190                 /*
  191                  * sget() can have s_umount recursion.
  192                  *
  193                  * When it cannot find a suitable sb, it allocates a new
  194                  * one (this one), and tries again to find a suitable old
  195                  * one.
  196                  *
  197                  * In case that succeeds, it will acquire the s_umount
  198                  * lock of the old one. Since these are clearly distrinct
  199                  * locks, and this object isn't exposed yet, there's no
  200                  * risk of deadlocks.
  201                  *
  202                  * Annotate this by putting this lock in a different
  203                  * subclass.
  204                  */
  205                 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
  206                 s->s_count = 1;
  207                 atomic_set(&s->s_active, 1);
  208                 mutex_init(&s->s_vfs_rename_mutex);
  209                 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
  210                 mutex_init(&s->s_dquot.dqio_mutex);
  211                 mutex_init(&s->s_dquot.dqonoff_mutex);
  212                 init_rwsem(&s->s_dquot.dqptr_sem);
  213                 s->s_maxbytes = MAX_NON_LFS;
  214                 s->s_op = &default_op;
  215                 s->s_time_gran = 1000000000;
  216                 s->cleancache_poolid = -1;
  217 
  218                 s->s_shrink.seeks = DEFAULT_SEEKS;
  219                 s->s_shrink.shrink = prune_super;
  220                 s->s_shrink.batch = 1024;
  221         }
  222 out:
  223         return s;
  224 err_out:
  225         security_sb_free(s);
  226 #ifdef CONFIG_SMP
  227         if (s->s_files)
  228                 free_percpu(s->s_files);
  229 #endif
  230         destroy_sb_writers(s);
  231         kfree(s);
  232         s = NULL;
  233         goto out;
  234 }
  235 
  236 /**
  237  *      destroy_super   -       frees a superblock
  238  *      @s: superblock to free
  239  *
  240  *      Frees a superblock.
  241  */
  242 static inline void destroy_super(struct super_block *s)
  243 {
  244 #ifdef CONFIG_SMP
  245         free_percpu(s->s_files);
  246 #endif
  247         destroy_sb_writers(s);
  248         security_sb_free(s);
  249         WARN_ON(!list_empty(&s->s_mounts));
  250         kfree(s->s_subtype);
  251         kfree(s->s_options);
  252         kfree(s);
  253 }
  254 
  255 /* Superblock refcounting  */
  256 
  257 /*
  258  * Drop a superblock's refcount.  The caller must hold sb_lock.
  259  */
  260 static void __put_super(struct super_block *sb)
  261 {
  262         if (!--sb->s_count) {
  263                 list_del_init(&sb->s_list);
  264                 destroy_super(sb);
  265         }
  266 }
  267 
  268 /**
  269  *      put_super       -       drop a temporary reference to superblock
  270  *      @sb: superblock in question
  271  *
  272  *      Drops a temporary reference, frees superblock if there's no
  273  *      references left.
  274  */
  275 static void put_super(struct super_block *sb)
  276 {
  277         spin_lock(&sb_lock);
  278         __put_super(sb);
  279         spin_unlock(&sb_lock);
  280 }
  281 
  282 
  283 /**
  284  *      deactivate_locked_super -       drop an active reference to superblock
  285  *      @s: superblock to deactivate
  286  *
  287  *      Drops an active reference to superblock, converting it into a temprory
  288  *      one if there is no other active references left.  In that case we
  289  *      tell fs driver to shut it down and drop the temporary reference we
  290  *      had just acquired.
  291  *
  292  *      Caller holds exclusive lock on superblock; that lock is released.
  293  */
  294 void deactivate_locked_super(struct super_block *s)
  295 {
  296         struct file_system_type *fs = s->s_type;
  297         if (atomic_dec_and_test(&s->s_active)) {
  298                 cleancache_invalidate_fs(s);
  299                 fs->kill_sb(s);
  300 
  301                 /* caches are now gone, we can safely kill the shrinker now */
  302                 unregister_shrinker(&s->s_shrink);
  303                 put_filesystem(fs);
  304                 put_super(s);
  305         } else {
  306                 up_write(&s->s_umount);
  307         }
  308 }
  309 
  310 EXPORT_SYMBOL(deactivate_locked_super);
  311 
  312 /**
  313  *      deactivate_super        -       drop an active reference to superblock
  314  *      @s: superblock to deactivate
  315  *
  316  *      Variant of deactivate_locked_super(), except that superblock is *not*
  317  *      locked by caller.  If we are going to drop the final active reference,
  318  *      lock will be acquired prior to that.
  319  */
  320 void deactivate_super(struct super_block *s)
  321 {
  322         if (!atomic_add_unless(&s->s_active, -1, 1)) {
  323                 down_write(&s->s_umount);
  324                 deactivate_locked_super(s);
  325         }
  326 }
  327 
  328 EXPORT_SYMBOL(deactivate_super);
  329 
  330 /**
  331  *      grab_super - acquire an active reference
  332  *      @s: reference we are trying to make active
  333  *
  334  *      Tries to acquire an active reference.  grab_super() is used when we
  335  *      had just found a superblock in super_blocks or fs_type->fs_supers
  336  *      and want to turn it into a full-blown active reference.  grab_super()
  337  *      is called with sb_lock held and drops it.  Returns 1 in case of
  338  *      success, 0 if we had failed (superblock contents was already dead or
  339  *      dying when grab_super() had been called).
  340  */
  341 static int grab_super(struct super_block *s) __releases(sb_lock)
  342 {
  343         if (atomic_inc_not_zero(&s->s_active)) {
  344                 spin_unlock(&sb_lock);
  345                 return 1;
  346         }
  347         /* it's going away */
  348         s->s_count++;
  349         spin_unlock(&sb_lock);
  350         /* wait for it to die */
  351         down_write(&s->s_umount);
  352         up_write(&s->s_umount);
  353         put_super(s);
  354         return 0;
  355 }
  356 
  357 /*
  358  *      grab_super_passive - acquire a passive reference
  359  *      @sb: reference we are trying to grab
  360  *
  361  *      Tries to acquire a passive reference. This is used in places where we
  362  *      cannot take an active reference but we need to ensure that the
  363  *      superblock does not go away while we are working on it. It returns
  364  *      false if a reference was not gained, and returns true with the s_umount
  365  *      lock held in read mode if a reference is gained. On successful return,
  366  *      the caller must drop the s_umount lock and the passive reference when
  367  *      done.
  368  */
  369 bool grab_super_passive(struct super_block *sb)
  370 {
  371         spin_lock(&sb_lock);
  372         if (hlist_unhashed(&sb->s_instances)) {
  373                 spin_unlock(&sb_lock);
  374                 return false;
  375         }
  376 
  377         sb->s_count++;
  378         spin_unlock(&sb_lock);
  379 
  380         if (down_read_trylock(&sb->s_umount)) {
  381                 if (sb->s_root && (sb->s_flags & MS_BORN))
  382                         return true;
  383                 up_read(&sb->s_umount);
  384         }
  385 
  386         put_super(sb);
  387         return false;
  388 }
  389 
  390 /**
  391  *      generic_shutdown_super  -       common helper for ->kill_sb()
  392  *      @sb: superblock to kill
  393  *
  394  *      generic_shutdown_super() does all fs-independent work on superblock
  395  *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
  396  *      that need destruction out of superblock, call generic_shutdown_super()
  397  *      and release aforementioned objects.  Note: dentries and inodes _are_
  398  *      taken care of and do not need specific handling.
  399  *
  400  *      Upon calling this function, the filesystem may no longer alter or
  401  *      rearrange the set of dentries belonging to this super_block, nor may it
  402  *      change the attachments of dentries to inodes.
  403  */
  404 void generic_shutdown_super(struct super_block *sb)
  405 {
  406         const struct super_operations *sop = sb->s_op;
  407 
  408         if (sb->s_root) {
  409                 shrink_dcache_for_umount(sb);
  410                 sync_filesystem(sb);
  411                 sb->s_flags &= ~MS_ACTIVE;
  412 
  413                 fsnotify_unmount_inodes(&sb->s_inodes);
  414 
  415                 evict_inodes(sb);
  416 
  417                 if (sop->put_super)
  418                         sop->put_super(sb);
  419 
  420                 if (!list_empty(&sb->s_inodes)) {
  421                         printk("VFS: Busy inodes after unmount of %s. "
  422                            "Self-destruct in 5 seconds.  Have a nice day...\n",
  423                            sb->s_id);
  424                 }
  425         }
  426         spin_lock(&sb_lock);
  427         /* should be initialized for __put_super_and_need_restart() */
  428         hlist_del_init(&sb->s_instances);
  429         spin_unlock(&sb_lock);
  430         up_write(&sb->s_umount);
  431 }
  432 
  433 EXPORT_SYMBOL(generic_shutdown_super);
  434 
  435 /**
  436  *      sget    -       find or create a superblock
  437  *      @type:  filesystem type superblock should belong to
  438  *      @test:  comparison callback
  439  *      @set:   setup callback
  440  *      @flags: mount flags
  441  *      @data:  argument to each of them
  442  */
  443 struct super_block *sget(struct file_system_type *type,
  444                         int (*test)(struct super_block *,void *),
  445                         int (*set)(struct super_block *,void *),
  446                         int flags,
  447                         void *data)
  448 {
  449         struct super_block *s = NULL;
  450         struct hlist_node *node;
  451         struct super_block *old;
  452         int err;
  453 
  454 retry:
  455         spin_lock(&sb_lock);
  456         if (test) {
  457                 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
  458                         if (!test(old, data))
  459                                 continue;
  460                         if (!grab_super(old))
  461                                 goto retry;
  462                         if (s) {
  463                                 up_write(&s->s_umount);
  464                                 destroy_super(s);
  465                                 s = NULL;
  466                         }
  467                         down_write(&old->s_umount);
  468                         if (unlikely(!(old->s_flags & MS_BORN))) {
  469                                 deactivate_locked_super(old);
  470                                 goto retry;
  471                         }
  472                         return old;
  473                 }
  474         }
  475         if (!s) {
  476                 spin_unlock(&sb_lock);
  477                 s = alloc_super(type, flags);
  478                 if (!s)
  479                         return ERR_PTR(-ENOMEM);
  480                 goto retry;
  481         }
  482                 
  483         err = set(s, data);
  484         if (err) {
  485                 spin_unlock(&sb_lock);
  486                 up_write(&s->s_umount);
  487                 destroy_super(s);
  488                 return ERR_PTR(err);
  489         }
  490         s->s_type = type;
  491         strlcpy(s->s_id, type->name, sizeof(s->s_id));
  492         list_add_tail(&s->s_list, &super_blocks);
  493         hlist_add_head(&s->s_instances, &type->fs_supers);
  494         spin_unlock(&sb_lock);
  495         get_filesystem(type);
  496         register_shrinker(&s->s_shrink);
  497         return s;
  498 }
  499 
  500 EXPORT_SYMBOL(sget);
  501 
  502 void drop_super(struct super_block *sb)
  503 {
  504         up_read(&sb->s_umount);
  505         put_super(sb);
  506 }
  507 
  508 EXPORT_SYMBOL(drop_super);
  509 
  510 /**
  511  *      iterate_supers - call function for all active superblocks
  512  *      @f: function to call
  513  *      @arg: argument to pass to it
  514  *
  515  *      Scans the superblock list and calls given function, passing it
  516  *      locked superblock and given argument.
  517  */
  518 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
  519 {
  520         struct super_block *sb, *p = NULL;
  521 
  522         spin_lock(&sb_lock);
  523         list_for_each_entry(sb, &super_blocks, s_list) {
  524                 if (hlist_unhashed(&sb->s_instances))
  525                         continue;
  526                 sb->s_count++;
  527                 spin_unlock(&sb_lock);
  528 
  529                 down_read(&sb->s_umount);
  530                 if (sb->s_root && (sb->s_flags & MS_BORN))
  531                         f(sb, arg);
  532                 up_read(&sb->s_umount);
  533 
  534                 spin_lock(&sb_lock);
  535                 if (p)
  536                         __put_super(p);
  537                 p = sb;
  538         }
  539         if (p)
  540                 __put_super(p);
  541         spin_unlock(&sb_lock);
  542 }
  543 
  544 /**
  545  *      iterate_supers_type - call function for superblocks of given type
  546  *      @type: fs type
  547  *      @f: function to call
  548  *      @arg: argument to pass to it
  549  *
  550  *      Scans the superblock list and calls given function, passing it
  551  *      locked superblock and given argument.
  552  */
  553 void iterate_supers_type(struct file_system_type *type,
  554         void (*f)(struct super_block *, void *), void *arg)
  555 {
  556         struct super_block *sb, *p = NULL;
  557         struct hlist_node *node;
  558 
  559         spin_lock(&sb_lock);
  560         hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
  561                 sb->s_count++;
  562                 spin_unlock(&sb_lock);
  563 
  564                 down_read(&sb->s_umount);
  565                 if (sb->s_root && (sb->s_flags & MS_BORN))
  566                         f(sb, arg);
  567                 up_read(&sb->s_umount);
  568 
  569                 spin_lock(&sb_lock);
  570                 if (p)
  571                         __put_super(p);
  572                 p = sb;
  573         }
  574         if (p)
  575                 __put_super(p);
  576         spin_unlock(&sb_lock);
  577 }
  578 
  579 EXPORT_SYMBOL(iterate_supers_type);
  580 
  581 /**
  582  *      get_super - get the superblock of a device
  583  *      @bdev: device to get the superblock for
  584  *      
  585  *      Scans the superblock list and finds the superblock of the file system
  586  *      mounted on the device given. %NULL is returned if no match is found.
  587  */
  588 
  589 struct super_block *get_super(struct block_device *bdev)
  590 {
  591         struct super_block *sb;
  592 
  593         if (!bdev)
  594                 return NULL;
  595 
  596         spin_lock(&sb_lock);
  597 rescan:
  598         list_for_each_entry(sb, &super_blocks, s_list) {
  599                 if (hlist_unhashed(&sb->s_instances))
  600                         continue;
  601                 if (sb->s_bdev == bdev) {
  602                         sb->s_count++;
  603                         spin_unlock(&sb_lock);
  604                         down_read(&sb->s_umount);
  605                         /* still alive? */
  606                         if (sb->s_root && (sb->s_flags & MS_BORN))
  607                                 return sb;
  608                         up_read(&sb->s_umount);
  609                         /* nope, got unmounted */
  610                         spin_lock(&sb_lock);
  611                         __put_super(sb);
  612                         goto rescan;
  613                 }
  614         }
  615         spin_unlock(&sb_lock);
  616         return NULL;
  617 }
  618 
  619 EXPORT_SYMBOL(get_super);
  620 
  621 /**
  622  *      get_super_thawed - get thawed superblock of a device
  623  *      @bdev: device to get the superblock for
  624  *
  625  *      Scans the superblock list and finds the superblock of the file system
  626  *      mounted on the device. The superblock is returned once it is thawed
  627  *      (or immediately if it was not frozen). %NULL is returned if no match
  628  *      is found.
  629  */
  630 struct super_block *get_super_thawed(struct block_device *bdev)
  631 {
  632         while (1) {
  633                 struct super_block *s = get_super(bdev);
  634                 if (!s || s->s_writers.frozen == SB_UNFROZEN)
  635                         return s;
  636                 up_read(&s->s_umount);
  637                 wait_event(s->s_writers.wait_unfrozen,
  638                            s->s_writers.frozen == SB_UNFROZEN);
  639                 put_super(s);
  640         }
  641 }
  642 EXPORT_SYMBOL(get_super_thawed);
  643 
  644 /**
  645  * get_active_super - get an active reference to the superblock of a device
  646  * @bdev: device to get the superblock for
  647  *
  648  * Scans the superblock list and finds the superblock of the file system
  649  * mounted on the device given.  Returns the superblock with an active
  650  * reference or %NULL if none was found.
  651  */
  652 struct super_block *get_active_super(struct block_device *bdev)
  653 {
  654         struct super_block *sb;
  655 
  656         if (!bdev)
  657                 return NULL;
  658 
  659 restart:
  660         spin_lock(&sb_lock);
  661         list_for_each_entry(sb, &super_blocks, s_list) {
  662                 if (hlist_unhashed(&sb->s_instances))
  663                         continue;
  664                 if (sb->s_bdev == bdev) {
  665                         if (grab_super(sb)) /* drops sb_lock */
  666                                 return sb;
  667                         else
  668                                 goto restart;
  669                 }
  670         }
  671         spin_unlock(&sb_lock);
  672         return NULL;
  673 }
  674  
  675 struct super_block *user_get_super(dev_t dev)
  676 {
  677         struct super_block *sb;
  678 
  679         spin_lock(&sb_lock);
  680 rescan:
  681         list_for_each_entry(sb, &super_blocks, s_list) {
  682                 if (hlist_unhashed(&sb->s_instances))
  683                         continue;
  684                 if (sb->s_dev ==  dev) {
  685                         sb->s_count++;
  686                         spin_unlock(&sb_lock);
  687                         down_read(&sb->s_umount);
  688                         /* still alive? */
  689                         if (sb->s_root && (sb->s_flags & MS_BORN))
  690                                 return sb;
  691                         up_read(&sb->s_umount);
  692                         /* nope, got unmounted */
  693                         spin_lock(&sb_lock);
  694                         __put_super(sb);
  695                         goto rescan;
  696                 }
  697         }
  698         spin_unlock(&sb_lock);
  699         return NULL;
  700 }
  701 
  702 /**
  703  *      do_remount_sb - asks filesystem to change mount options.
  704  *      @sb:    superblock in question
  705  *      @flags: numeric part of options
  706  *      @data:  the rest of options
  707  *      @force: whether or not to force the change
  708  *
  709  *      Alters the mount options of a mounted file system.
  710  */
  711 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
  712 {
  713         int retval;
  714         int remount_ro;
  715 
  716         if (sb->s_writers.frozen != SB_UNFROZEN)
  717                 return -EBUSY;
  718 
  719 #ifdef CONFIG_BLOCK
  720         if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
  721                 return -EACCES;
  722 #endif
  723 
  724         if (flags & MS_RDONLY)
  725                 acct_auto_close(sb);
  726         shrink_dcache_sb(sb);
  727         sync_filesystem(sb);
  728 
  729         remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
  730 
  731         /* If we are remounting RDONLY and current sb is read/write,
  732            make sure there are no rw files opened */
  733         if (remount_ro) {
  734                 if (force) {
  735                         mark_files_ro(sb);
  736                 } else {
  737                         retval = sb_prepare_remount_readonly(sb);
  738                         if (retval)
  739                                 return retval;
  740                 }
  741         }
  742 
  743         if (sb->s_op->remount_fs) {
  744                 retval = sb->s_op->remount_fs(sb, &flags, data);
  745                 if (retval) {
  746                         if (!force)
  747                                 goto cancel_readonly;
  748                         /* If forced remount, go ahead despite any errors */
  749                         WARN(1, "forced remount of a %s fs returned %i\n",
  750                              sb->s_type->name, retval);
  751                 }
  752         }
  753         sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
  754         /* Needs to be ordered wrt mnt_is_readonly() */
  755         smp_wmb();
  756         sb->s_readonly_remount = 0;
  757 
  758         /*
  759          * Some filesystems modify their metadata via some other path than the
  760          * bdev buffer cache (eg. use a private mapping, or directories in
  761          * pagecache, etc). Also file data modifications go via their own
  762          * mappings. So If we try to mount readonly then copy the filesystem
  763          * from bdev, we could get stale data, so invalidate it to give a best
  764          * effort at coherency.
  765          */
  766         if (remount_ro && sb->s_bdev)
  767                 invalidate_bdev(sb->s_bdev);
  768         return 0;
  769 
  770 cancel_readonly:
  771         sb->s_readonly_remount = 0;
  772         return retval;
  773 }
  774 
  775 static void do_emergency_remount(struct work_struct *work)
  776 {
  777         struct super_block *sb, *p = NULL;
  778 
  779         spin_lock(&sb_lock);
  780         list_for_each_entry(sb, &super_blocks, s_list) {
  781                 if (hlist_unhashed(&sb->s_instances))
  782                         continue;
  783                 sb->s_count++;
  784                 spin_unlock(&sb_lock);
  785                 down_write(&sb->s_umount);
  786                 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
  787                     !(sb->s_flags & MS_RDONLY)) {
  788                         /*
  789                          * What lock protects sb->s_flags??
  790                          */
  791                         do_remount_sb(sb, MS_RDONLY, NULL, 1);
  792                 }
  793                 up_write(&sb->s_umount);
  794                 spin_lock(&sb_lock);
  795                 if (p)
  796                         __put_super(p);
  797                 p = sb;
  798         }
  799         if (p)
  800                 __put_super(p);
  801         spin_unlock(&sb_lock);
  802         kfree(work);
  803         printk("Emergency Remount complete\n");
  804 }
  805 
  806 void emergency_remount(void)
  807 {
  808         struct work_struct *work;
  809 
  810         work = kmalloc(sizeof(*work), GFP_ATOMIC);
  811         if (work) {
  812                 INIT_WORK(work, do_emergency_remount);
  813                 schedule_work(work);
  814         }
  815 }
  816 
  817 /*
  818  * Unnamed block devices are dummy devices used by virtual
  819  * filesystems which don't use real block-devices.  -- jrs
  820  */
  821 
  822 static DEFINE_IDA(unnamed_dev_ida);
  823 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
  824 static int unnamed_dev_start = 0; /* don't bother trying below it */
  825 
  826 int get_anon_bdev(dev_t *p)
  827 {
  828         int dev;
  829         int error;
  830 
  831  retry:
  832         if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
  833                 return -ENOMEM;
  834         spin_lock(&unnamed_dev_lock);
  835         error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
  836         if (!error)
  837                 unnamed_dev_start = dev + 1;
  838         spin_unlock(&unnamed_dev_lock);
  839         if (error == -EAGAIN)
  840                 /* We raced and lost with another CPU. */
  841                 goto retry;
  842         else if (error)
  843                 return -EAGAIN;
  844 
  845         if ((dev & MAX_IDR_MASK) == (1 << MINORBITS)) {
  846                 spin_lock(&unnamed_dev_lock);
  847                 ida_remove(&unnamed_dev_ida, dev);
  848                 if (unnamed_dev_start > dev)
  849                         unnamed_dev_start = dev;
  850                 spin_unlock(&unnamed_dev_lock);
  851                 return -EMFILE;
  852         }
  853         *p = MKDEV(0, dev & MINORMASK);
  854         return 0;
  855 }
  856 EXPORT_SYMBOL(get_anon_bdev);
  857 
  858 void free_anon_bdev(dev_t dev)
  859 {
  860         int slot = MINOR(dev);
  861         spin_lock(&unnamed_dev_lock);
  862         ida_remove(&unnamed_dev_ida, slot);
  863         if (slot < unnamed_dev_start)
  864                 unnamed_dev_start = slot;
  865         spin_unlock(&unnamed_dev_lock);
  866 }
  867 EXPORT_SYMBOL(free_anon_bdev);
  868 
  869 int set_anon_super(struct super_block *s, void *data)
  870 {
  871         int error = get_anon_bdev(&s->s_dev);
  872         if (!error)
  873                 s->s_bdi = &noop_backing_dev_info;
  874         return error;
  875 }
  876 
  877 EXPORT_SYMBOL(set_anon_super);
  878 
  879 void kill_anon_super(struct super_block *sb)
  880 {
  881         dev_t dev = sb->s_dev;
  882         generic_shutdown_super(sb);
  883         free_anon_bdev(dev);
  884 }
  885 
  886 EXPORT_SYMBOL(kill_anon_super);
  887 
  888 void kill_litter_super(struct super_block *sb)
  889 {
  890         if (sb->s_root)
  891                 d_genocide(sb->s_root);
  892         kill_anon_super(sb);
  893 }
  894 
  895 EXPORT_SYMBOL(kill_litter_super);
  896 
  897 static int ns_test_super(struct super_block *sb, void *data)
  898 {
  899         return sb->s_fs_info == data;
  900 }
  901 
  902 static int ns_set_super(struct super_block *sb, void *data)
  903 {
  904         sb->s_fs_info = data;
  905         return set_anon_super(sb, NULL);
  906 }
  907 
  908 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
  909         void *data, int (*fill_super)(struct super_block *, void *, int))
  910 {
  911         struct super_block *sb;
  912 
  913         sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
  914         if (IS_ERR(sb))
  915                 return ERR_CAST(sb);
  916 
  917         if (!sb->s_root) {
  918                 int err;
  919                 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
  920                 if (err) {
  921                         deactivate_locked_super(sb);
  922                         return ERR_PTR(err);
  923                 }
  924 
  925                 sb->s_flags |= MS_ACTIVE;
  926         }
  927 
  928         return dget(sb->s_root);
  929 }
  930 
  931 EXPORT_SYMBOL(mount_ns);
  932 
  933 #ifdef CONFIG_BLOCK
  934 static int set_bdev_super(struct super_block *s, void *data)
  935 {
  936         s->s_bdev = data;
  937         s->s_dev = s->s_bdev->bd_dev;
  938 
  939         /*
  940          * We set the bdi here to the queue backing, file systems can
  941          * overwrite this in ->fill_super()
  942          */
  943         s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
  944         return 0;
  945 }
  946 
  947 static int test_bdev_super(struct super_block *s, void *data)
  948 {
  949         return (void *)s->s_bdev == data;
  950 }
  951 
  952 struct dentry *mount_bdev(struct file_system_type *fs_type,
  953         int flags, const char *dev_name, void *data,
  954         int (*fill_super)(struct super_block *, void *, int))
  955 {
  956         struct block_device *bdev;
  957         struct super_block *s;
  958         fmode_t mode = FMODE_READ | FMODE_EXCL;
  959         int error = 0;
  960 
  961         if (!(flags & MS_RDONLY))
  962                 mode |= FMODE_WRITE;
  963 
  964         bdev = blkdev_get_by_path(dev_name, mode, fs_type);
  965         if (IS_ERR(bdev))
  966                 return ERR_CAST(bdev);
  967 
  968         /*
  969          * once the super is inserted into the list by sget, s_umount
  970          * will protect the lockfs code from trying to start a snapshot
  971          * while we are mounting
  972          */
  973         mutex_lock(&bdev->bd_fsfreeze_mutex);
  974         if (bdev->bd_fsfreeze_count > 0) {
  975                 mutex_unlock(&bdev->bd_fsfreeze_mutex);
  976                 error = -EBUSY;
  977                 goto error_bdev;
  978         }
  979         s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
  980                  bdev);
  981         mutex_unlock(&bdev->bd_fsfreeze_mutex);
  982         if (IS_ERR(s))
  983                 goto error_s;
  984 
  985         if (s->s_root) {
  986                 if ((flags ^ s->s_flags) & MS_RDONLY) {
  987                         deactivate_locked_super(s);
  988                         error = -EBUSY;
  989                         goto error_bdev;
  990                 }
  991 
  992                 /*
  993                  * s_umount nests inside bd_mutex during
  994                  * __invalidate_device().  blkdev_put() acquires
  995                  * bd_mutex and can't be called under s_umount.  Drop
  996                  * s_umount temporarily.  This is safe as we're
  997                  * holding an active reference.
  998                  */
  999                 up_write(&s->s_umount);
 1000                 blkdev_put(bdev, mode);
 1001                 down_write(&s->s_umount);
 1002         } else {
 1003                 char b[BDEVNAME_SIZE];
 1004 
 1005                 s->s_mode = mode;
 1006                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 1007                 sb_set_blocksize(s, block_size(bdev));
 1008                 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 1009                 if (error) {
 1010                         deactivate_locked_super(s);
 1011                         goto error;
 1012                 }
 1013 
 1014                 s->s_flags |= MS_ACTIVE;
 1015                 bdev->bd_super = s;
 1016         }
 1017 
 1018         return dget(s->s_root);
 1019 
 1020 error_s:
 1021         error = PTR_ERR(s);
 1022 error_bdev:
 1023         blkdev_put(bdev, mode);
 1024 error:
 1025         return ERR_PTR(error);
 1026 }
 1027 EXPORT_SYMBOL(mount_bdev);
 1028 
 1029 void kill_block_super(struct super_block *sb)
 1030 {
 1031         struct block_device *bdev = sb->s_bdev;
 1032         fmode_t mode = sb->s_mode;
 1033 
 1034         bdev->bd_super = NULL;
 1035         generic_shutdown_super(sb);
 1036         sync_blockdev(bdev);
 1037         WARN_ON_ONCE(!(mode & FMODE_EXCL));
 1038         blkdev_put(bdev, mode | FMODE_EXCL);
 1039 }
 1040 
 1041 EXPORT_SYMBOL(kill_block_super);
 1042 #endif
 1043 
 1044 struct dentry *mount_nodev(struct file_system_type *fs_type,
 1045         int flags, void *data,
 1046         int (*fill_super)(struct super_block *, void *, int))
 1047 {
 1048         int error;
 1049         struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
 1050 
 1051         if (IS_ERR(s))
 1052                 return ERR_CAST(s);
 1053 
 1054         error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 1055         if (error) {
 1056                 deactivate_locked_super(s);
 1057                 return ERR_PTR(error);
 1058         }
 1059         s->s_flags |= MS_ACTIVE;
 1060         return dget(s->s_root);
 1061 }
 1062 EXPORT_SYMBOL(mount_nodev);
 1063 
 1064 static int compare_single(struct super_block *s, void *p)
 1065 {
 1066         return 1;
 1067 }
 1068 
 1069 struct dentry *mount_single(struct file_system_type *fs_type,
 1070         int flags, void *data,
 1071         int (*fill_super)(struct super_block *, void *, int))
 1072 {
 1073         struct super_block *s;
 1074         int error;
 1075 
 1076         s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
 1077         if (IS_ERR(s))
 1078                 return ERR_CAST(s);
 1079         if (!s->s_root) {
 1080                 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 1081                 if (error) {
 1082                         deactivate_locked_super(s);
 1083                         return ERR_PTR(error);
 1084                 }
 1085                 s->s_flags |= MS_ACTIVE;
 1086         } else {
 1087                 do_remount_sb(s, flags, data, 0);
 1088         }
 1089         return dget(s->s_root);
 1090 }
 1091 EXPORT_SYMBOL(mount_single);
 1092 
 1093 struct dentry *
 1094 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
 1095 {
 1096         struct dentry *root;
 1097         struct super_block *sb;
 1098         char *secdata = NULL;
 1099         int error = -ENOMEM;
 1100 
 1101         if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
 1102                 secdata = alloc_secdata();
 1103                 if (!secdata)
 1104                         goto out;
 1105 
 1106                 error = security_sb_copy_data(data, secdata);
 1107                 if (error)
 1108                         goto out_free_secdata;
 1109         }
 1110 
 1111         root = type->mount(type, flags, name, data);
 1112         if (IS_ERR(root)) {
 1113                 error = PTR_ERR(root);
 1114                 goto out_free_secdata;
 1115         }
 1116         sb = root->d_sb;
 1117         BUG_ON(!sb);
 1118         WARN_ON(!sb->s_bdi);
 1119         WARN_ON(sb->s_bdi == &default_backing_dev_info);
 1120         sb->s_flags |= MS_BORN;
 1121 
 1122         error = security_sb_kern_mount(sb, flags, secdata);
 1123         if (error)
 1124                 goto out_sb;
 1125 
 1126         /*
 1127          * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
 1128          * but s_maxbytes was an unsigned long long for many releases. Throw
 1129          * this warning for a little while to try and catch filesystems that
 1130          * violate this rule.
 1131          */
 1132         WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
 1133                 "negative value (%lld)\n", type->name, sb->s_maxbytes);
 1134 
 1135         up_write(&sb->s_umount);
 1136         free_secdata(secdata);
 1137         return root;
 1138 out_sb:
 1139         dput(root);
 1140         deactivate_locked_super(sb);
 1141 out_free_secdata:
 1142         free_secdata(secdata);
 1143 out:
 1144         return ERR_PTR(error);
 1145 }
 1146 
 1147 /*
 1148  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
 1149  * instead.
 1150  */
 1151 void __sb_end_write(struct super_block *sb, int level)
 1152 {
 1153         percpu_counter_dec(&sb->s_writers.counter[level-1]);
 1154         /*
 1155          * Make sure s_writers are updated before we wake up waiters in
 1156          * freeze_super().
 1157          */
 1158         smp_mb();
 1159         if (waitqueue_active(&sb->s_writers.wait))
 1160                 wake_up(&sb->s_writers.wait);
 1161         rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
 1162 }
 1163 EXPORT_SYMBOL(__sb_end_write);
 1164 
 1165 #ifdef CONFIG_LOCKDEP
 1166 /*
 1167  * We want lockdep to tell us about possible deadlocks with freezing but
 1168  * it's it bit tricky to properly instrument it. Getting a freeze protection
 1169  * works as getting a read lock but there are subtle problems. XFS for example
 1170  * gets freeze protection on internal level twice in some cases, which is OK
 1171  * only because we already hold a freeze protection also on higher level. Due
 1172  * to these cases we have to tell lockdep we are doing trylock when we
 1173  * already hold a freeze protection for a higher freeze level.
 1174  */
 1175 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
 1176                                 unsigned long ip)
 1177 {
 1178         int i;
 1179 
 1180         if (!trylock) {
 1181                 for (i = 0; i < level - 1; i++)
 1182                         if (lock_is_held(&sb->s_writers.lock_map[i])) {
 1183                                 trylock = true;
 1184                                 break;
 1185                         }
 1186         }
 1187         rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
 1188 }
 1189 #endif
 1190 
 1191 /*
 1192  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
 1193  * instead.
 1194  */
 1195 int __sb_start_write(struct super_block *sb, int level, bool wait)
 1196 {
 1197 retry:
 1198         if (unlikely(sb->s_writers.frozen >= level)) {
 1199                 if (!wait)
 1200                         return 0;
 1201                 wait_event(sb->s_writers.wait_unfrozen,
 1202                            sb->s_writers.frozen < level);
 1203         }
 1204 
 1205 #ifdef CONFIG_LOCKDEP
 1206         acquire_freeze_lock(sb, level, !wait, _RET_IP_);
 1207 #endif
 1208         percpu_counter_inc(&sb->s_writers.counter[level-1]);
 1209         /*
 1210          * Make sure counter is updated before we check for frozen.
 1211          * freeze_super() first sets frozen and then checks the counter.
 1212          */
 1213         smp_mb();
 1214         if (unlikely(sb->s_writers.frozen >= level)) {
 1215                 __sb_end_write(sb, level);
 1216                 goto retry;
 1217         }
 1218         return 1;
 1219 }
 1220 EXPORT_SYMBOL(__sb_start_write);
 1221 
 1222 /**
 1223  * sb_wait_write - wait until all writers to given file system finish
 1224  * @sb: the super for which we wait
 1225  * @level: type of writers we wait for (normal vs page fault)
 1226  *
 1227  * This function waits until there are no writers of given type to given file
 1228  * system. Caller of this function should make sure there can be no new writers
 1229  * of type @level before calling this function. Otherwise this function can
 1230  * livelock.
 1231  */
 1232 static void sb_wait_write(struct super_block *sb, int level)
 1233 {
 1234         s64 writers;
 1235 
 1236         /*
 1237          * We just cycle-through lockdep here so that it does not complain
 1238          * about returning with lock to userspace
 1239          */
 1240         rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
 1241         rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
 1242 
 1243         do {
 1244                 DEFINE_WAIT(wait);
 1245 
 1246                 /*
 1247                  * We use a barrier in prepare_to_wait() to separate setting
 1248                  * of frozen and checking of the counter
 1249                  */
 1250                 prepare_to_wait(&sb->s_writers.wait, &wait,
 1251                                 TASK_UNINTERRUPTIBLE);
 1252 
 1253                 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
 1254                 if (writers)
 1255                         schedule();
 1256 
 1257                 finish_wait(&sb->s_writers.wait, &wait);
 1258         } while (writers);
 1259 }
 1260 
 1261 /**
 1262  * freeze_super - lock the filesystem and force it into a consistent state
 1263  * @sb: the super to lock
 1264  *
 1265  * Syncs the super to make sure the filesystem is consistent and calls the fs's
 1266  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
 1267  * -EBUSY.
 1268  *
 1269  * During this function, sb->s_writers.frozen goes through these values:
 1270  *
 1271  * SB_UNFROZEN: File system is normal, all writes progress as usual.
 1272  *
 1273  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
 1274  * writes should be blocked, though page faults are still allowed. We wait for
 1275  * all writes to complete and then proceed to the next stage.
 1276  *
 1277  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
 1278  * but internal fs threads can still modify the filesystem (although they
 1279  * should not dirty new pages or inodes), writeback can run etc. After waiting
 1280  * for all running page faults we sync the filesystem which will clean all
 1281  * dirty pages and inodes (no new dirty pages or inodes can be created when
 1282  * sync is running).
 1283  *
 1284  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
 1285  * modification are blocked (e.g. XFS preallocation truncation on inode
 1286  * reclaim). This is usually implemented by blocking new transactions for
 1287  * filesystems that have them and need this additional guard. After all
 1288  * internal writers are finished we call ->freeze_fs() to finish filesystem
 1289  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
 1290  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
 1291  *
 1292  * sb->s_writers.frozen is protected by sb->s_umount.
 1293  */
 1294 int freeze_super(struct super_block *sb)
 1295 {
 1296         int ret;
 1297 
 1298         atomic_inc(&sb->s_active);
 1299         down_write(&sb->s_umount);
 1300         if (sb->s_writers.frozen != SB_UNFROZEN) {
 1301                 deactivate_locked_super(sb);
 1302                 return -EBUSY;
 1303         }
 1304 
 1305         if (!(sb->s_flags & MS_BORN)) {
 1306                 up_write(&sb->s_umount);
 1307                 return 0;       /* sic - it's "nothing to do" */
 1308         }
 1309 
 1310         if (sb->s_flags & MS_RDONLY) {
 1311                 /* Nothing to do really... */
 1312                 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
 1313                 up_write(&sb->s_umount);
 1314                 return 0;
 1315         }
 1316 
 1317         /* From now on, no new normal writers can start */
 1318         sb->s_writers.frozen = SB_FREEZE_WRITE;
 1319         smp_wmb();
 1320 
 1321         /* Release s_umount to preserve sb_start_write -> s_umount ordering */
 1322         up_write(&sb->s_umount);
 1323 
 1324         sb_wait_write(sb, SB_FREEZE_WRITE);
 1325 
 1326         /* Now we go and block page faults... */
 1327         down_write(&sb->s_umount);
 1328         sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
 1329         smp_wmb();
 1330 
 1331         sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
 1332 
 1333         /* All writers are done so after syncing there won't be dirty data */
 1334         sync_filesystem(sb);
 1335 
 1336         /* Now wait for internal filesystem counter */
 1337         sb->s_writers.frozen = SB_FREEZE_FS;
 1338         smp_wmb();
 1339         sb_wait_write(sb, SB_FREEZE_FS);
 1340 
 1341         if (sb->s_op->freeze_fs) {
 1342                 ret = sb->s_op->freeze_fs(sb);
 1343                 if (ret) {
 1344                         printk(KERN_ERR
 1345                                 "VFS:Filesystem freeze failed\n");
 1346                         sb->s_writers.frozen = SB_UNFROZEN;
 1347                         smp_wmb();
 1348                         wake_up(&sb->s_writers.wait_unfrozen);
 1349                         deactivate_locked_super(sb);
 1350                         return ret;
 1351                 }
 1352         }
 1353         /*
 1354          * This is just for debugging purposes so that fs can warn if it
 1355          * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
 1356          */
 1357         sb->s_writers.frozen = SB_FREEZE_COMPLETE;
 1358         up_write(&sb->s_umount);
 1359         return 0;
 1360 }
 1361 EXPORT_SYMBOL(freeze_super);
 1362 
 1363 /**
 1364  * thaw_super -- unlock filesystem
 1365  * @sb: the super to thaw
 1366  *
 1367  * Unlocks the filesystem and marks it writeable again after freeze_super().
 1368  */
 1369 int thaw_super(struct super_block *sb)
 1370 {
 1371         int error;
 1372 
 1373         down_write(&sb->s_umount);
 1374         if (sb->s_writers.frozen == SB_UNFROZEN) {
 1375                 up_write(&sb->s_umount);
 1376                 return -EINVAL;
 1377         }
 1378 
 1379         if (sb->s_flags & MS_RDONLY)
 1380                 goto out;
 1381 
 1382         if (sb->s_op->unfreeze_fs) {
 1383                 error = sb->s_op->unfreeze_fs(sb);
 1384                 if (error) {
 1385                         printk(KERN_ERR
 1386                                 "VFS:Filesystem thaw failed\n");
 1387                         up_write(&sb->s_umount);
 1388                         return error;
 1389                 }
 1390         }
 1391 
 1392 out:
 1393         sb->s_writers.frozen = SB_UNFROZEN;
 1394         smp_wmb();
 1395         wake_up(&sb->s_writers.wait_unfrozen);
 1396         deactivate_locked_super(sb);
 1397 
 1398         return 0;
 1399 }
 1400 EXPORT_SYMBOL(thaw_super);

Cache object: f30d20d66a8ed84f516b20ba79bfc32d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.