The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/tmpfs/tmpfs_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $       */
    2 
    3 /*-
    4  * SPDX-License-Identifier: BSD-2-Clause-NetBSD
    5  *
    6  * Copyright (c) 2005 The NetBSD Foundation, Inc.
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to The NetBSD Foundation
   10  * by Julio M. Merino Vidal, developed as part of Google's Summer of Code
   11  * 2005 program.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   32  * POSSIBILITY OF SUCH DAMAGE.
   33  */
   34 
   35 /*
   36  * Efficient memory file system supporting functions.
   37  */
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/dirent.h>
   44 #include <sys/fnv_hash.h>
   45 #include <sys/lock.h>
   46 #include <sys/limits.h>
   47 #include <sys/mount.h>
   48 #include <sys/namei.h>
   49 #include <sys/priv.h>
   50 #include <sys/proc.h>
   51 #include <sys/random.h>
   52 #include <sys/refcount.h>
   53 #include <sys/rwlock.h>
   54 #include <sys/smr.h>
   55 #include <sys/stat.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/user.h>
   58 #include <sys/vnode.h>
   59 #include <sys/vmmeter.h>
   60 
   61 #include <vm/vm.h>
   62 #include <vm/vm_param.h>
   63 #include <vm/vm_object.h>
   64 #include <vm/vm_page.h>
   65 #include <vm/vm_pageout.h>
   66 #include <vm/vm_pager.h>
   67 #include <vm/vm_extern.h>
   68 #include <vm/swap_pager.h>
   69 
   70 #include <fs/tmpfs/tmpfs.h>
   71 #include <fs/tmpfs/tmpfs_fifoops.h>
   72 #include <fs/tmpfs/tmpfs_vnops.h>
   73 
   74 SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   75     "tmpfs file system");
   76 
   77 static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED;
   78 
   79 MALLOC_DEFINE(M_TMPFSDIR, "tmpfs dir", "tmpfs dirent structure");
   80 static uma_zone_t tmpfs_node_pool;
   81 VFS_SMR_DECLARE;
   82 
   83 int tmpfs_pager_type = -1;
   84 
   85 static vm_object_t
   86 tmpfs_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
   87     vm_ooffset_t offset, struct ucred *cred)
   88 {
   89         vm_object_t object;
   90 
   91         MPASS(handle == NULL);
   92         MPASS(offset == 0);
   93         object = vm_object_allocate_dyn(tmpfs_pager_type, size,
   94             OBJ_COLORED | OBJ_SWAP);
   95         if (!swap_pager_init_object(object, NULL, NULL, size, 0)) {
   96                 vm_object_deallocate(object);
   97                 object = NULL;
   98         }
   99         return (object);
  100 }
  101 
  102 /*
  103  * Make sure tmpfs vnodes with writable mappings can be found on the lazy list.
  104  *
  105  * This allows for periodic mtime updates while only scanning vnodes which are
  106  * plausibly dirty, see tmpfs_update_mtime_lazy.
  107  */
  108 static void
  109 tmpfs_pager_writecount_recalc(vm_object_t object, vm_offset_t old,
  110     vm_offset_t new)
  111 {
  112         struct vnode *vp;
  113 
  114         VM_OBJECT_ASSERT_WLOCKED(object);
  115 
  116         vp = VM_TO_TMPFS_VP(object);
  117 
  118         /*
  119          * Forced unmount?
  120          */
  121         if (vp == NULL) {
  122                 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
  123                     ("object %p with OBJ_TMPFS_VREF but without vnode",
  124                     object));
  125                 VM_OBJECT_WUNLOCK(object);
  126                 return;
  127         }
  128 
  129         if (old == 0) {
  130                 VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp,
  131                     ("object without writable mappings has a reference"));
  132                 VNPASS(vp->v_usecount > 0, vp);
  133         } else {
  134                 VNASSERT((object->flags & OBJ_TMPFS_VREF) != 0, vp,
  135                     ("object with writable mappings does not "
  136                     "have a reference"));
  137         }
  138 
  139         if (old == new) {
  140                 VM_OBJECT_WUNLOCK(object);
  141                 return;
  142         }
  143 
  144         if (new == 0) {
  145                 vm_object_clear_flag(object, OBJ_TMPFS_VREF);
  146                 VM_OBJECT_WUNLOCK(object);
  147                 vrele(vp);
  148         } else {
  149                 if ((object->flags & OBJ_TMPFS_VREF) == 0) {
  150                         vref(vp);
  151                         vlazy(vp);
  152                         vm_object_set_flag(object, OBJ_TMPFS_VREF);
  153                 }
  154                 VM_OBJECT_WUNLOCK(object);
  155         }
  156 }
  157 
  158 static void
  159 tmpfs_pager_update_writecount(vm_object_t object, vm_offset_t start,
  160     vm_offset_t end)
  161 {
  162         vm_offset_t new, old;
  163 
  164         VM_OBJECT_WLOCK(object);
  165         KASSERT((object->flags & OBJ_ANON) == 0,
  166             ("%s: object %p with OBJ_ANON", __func__, object));
  167         old = object->un_pager.swp.writemappings;
  168         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
  169         new = object->un_pager.swp.writemappings;
  170         tmpfs_pager_writecount_recalc(object, old, new);
  171         VM_OBJECT_ASSERT_UNLOCKED(object);
  172 }
  173 
  174 static void
  175 tmpfs_pager_release_writecount(vm_object_t object, vm_offset_t start,
  176     vm_offset_t end)
  177 {
  178         vm_offset_t new, old;
  179 
  180         VM_OBJECT_WLOCK(object);
  181         KASSERT((object->flags & OBJ_ANON) == 0,
  182             ("%s: object %p with OBJ_ANON", __func__, object));
  183         old = object->un_pager.swp.writemappings;
  184         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
  185         new = object->un_pager.swp.writemappings;
  186         tmpfs_pager_writecount_recalc(object, old, new);
  187         VM_OBJECT_ASSERT_UNLOCKED(object);
  188 }
  189 
  190 static void
  191 tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
  192 {
  193         struct vnode *vp;
  194 
  195         /*
  196          * Tmpfs VREG node, which was reclaimed, has tmpfs_pager_type
  197          * type.  In this case there is no v_writecount to adjust.
  198          */
  199         if (vp_heldp != NULL)
  200                 VM_OBJECT_RLOCK(object);
  201         else
  202                 VM_OBJECT_ASSERT_LOCKED(object);
  203         if ((object->flags & OBJ_TMPFS) != 0) {
  204                 vp = VM_TO_TMPFS_VP(object);
  205                 if (vp != NULL) {
  206                         *vpp = vp;
  207                         if (vp_heldp != NULL) {
  208                                 vhold(vp);
  209                                 *vp_heldp = true;
  210                         }
  211                 }
  212         }
  213         if (vp_heldp != NULL)
  214                 VM_OBJECT_RUNLOCK(object);
  215 }
  216 
  217 static void
  218 tmpfs_pager_freespace(vm_object_t obj, vm_pindex_t start, vm_size_t size)
  219 {
  220         struct tmpfs_node *node;
  221         struct tmpfs_mount *tm;
  222         vm_size_t c;
  223 
  224         swap_pager_freespace(obj, start, size, &c);
  225         if ((obj->flags & OBJ_TMPFS) == 0 || c == 0)
  226                 return;
  227 
  228         node = obj->un_pager.swp.swp_priv;
  229         MPASS(node->tn_type == VREG);
  230         tm = node->tn_reg.tn_tmp;
  231 
  232         KASSERT(tm->tm_pages_used >= c,
  233             ("tmpfs tm %p pages %jd free %jd", tm,
  234             (uintmax_t)tm->tm_pages_used, (uintmax_t)c));
  235         atomic_add_long(&tm->tm_pages_used, -c);
  236         KASSERT(node->tn_reg.tn_pages >= c,
  237             ("tmpfs node %p pages %jd free %jd", node,
  238             (uintmax_t)node->tn_reg.tn_pages, (uintmax_t)c));
  239         node->tn_reg.tn_pages -= c;
  240 }
  241 
  242 static void
  243 tmpfs_page_inserted(vm_object_t obj, vm_page_t m)
  244 {
  245         struct tmpfs_node *node;
  246         struct tmpfs_mount *tm;
  247 
  248         if ((obj->flags & OBJ_TMPFS) == 0)
  249                 return;
  250 
  251         node = obj->un_pager.swp.swp_priv;
  252         MPASS(node->tn_type == VREG);
  253         tm = node->tn_reg.tn_tmp;
  254 
  255         if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
  256                 atomic_add_long(&tm->tm_pages_used, 1);
  257                 node->tn_reg.tn_pages += 1;
  258         }
  259 }
  260 
  261 static void
  262 tmpfs_page_removed(vm_object_t obj, vm_page_t m)
  263 {
  264         struct tmpfs_node *node;
  265         struct tmpfs_mount *tm;
  266 
  267         if ((obj->flags & OBJ_TMPFS) == 0)
  268                 return;
  269 
  270         node = obj->un_pager.swp.swp_priv;
  271         MPASS(node->tn_type == VREG);
  272         tm = node->tn_reg.tn_tmp;
  273 
  274         if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
  275                 KASSERT(tm->tm_pages_used >= 1,
  276                     ("tmpfs tm %p pages %jd free 1", tm,
  277                     (uintmax_t)tm->tm_pages_used));
  278                 atomic_add_long(&tm->tm_pages_used, -1);
  279                 KASSERT(node->tn_reg.tn_pages >= 1,
  280                     ("tmpfs node %p pages %jd free 1", node,
  281                     (uintmax_t)node->tn_reg.tn_pages));
  282                 node->tn_reg.tn_pages -= 1;
  283         }
  284 }
  285 
  286 static boolean_t
  287 tmpfs_can_alloc_page(vm_object_t obj, vm_pindex_t pindex)
  288 {
  289         struct tmpfs_mount *tm;
  290 
  291         tm = VM_TO_TMPFS_MP(obj);
  292         if (tm == NULL || vm_pager_has_page(obj, pindex, NULL, NULL) ||
  293             tm->tm_pages_max == 0)
  294                 return (true);
  295         return (tm->tm_pages_max > atomic_load_long(&tm->tm_pages_used));
  296 }
  297 
  298 struct pagerops tmpfs_pager_ops = {
  299         .pgo_kvme_type = KVME_TYPE_VNODE,
  300         .pgo_alloc = tmpfs_pager_alloc,
  301         .pgo_set_writeable_dirty = vm_object_set_writeable_dirty_,
  302         .pgo_update_writecount = tmpfs_pager_update_writecount,
  303         .pgo_release_writecount = tmpfs_pager_release_writecount,
  304         .pgo_mightbedirty = vm_object_mightbedirty_,
  305         .pgo_getvp = tmpfs_pager_getvp,
  306         .pgo_freespace = tmpfs_pager_freespace,
  307         .pgo_page_inserted = tmpfs_page_inserted,
  308         .pgo_page_removed = tmpfs_page_removed,
  309         .pgo_can_alloc_page = tmpfs_can_alloc_page,
  310 };
  311 
  312 static int
  313 tmpfs_node_ctor(void *mem, int size, void *arg, int flags)
  314 {
  315         struct tmpfs_node *node;
  316 
  317         node = mem;
  318         node->tn_gen++;
  319         node->tn_size = 0;
  320         node->tn_status = 0;
  321         node->tn_accessed = false;
  322         node->tn_flags = 0;
  323         node->tn_links = 0;
  324         node->tn_vnode = NULL;
  325         node->tn_vpstate = 0;
  326         return (0);
  327 }
  328 
  329 static void
  330 tmpfs_node_dtor(void *mem, int size, void *arg)
  331 {
  332         struct tmpfs_node *node;
  333 
  334         node = mem;
  335         node->tn_type = VNON;
  336 }
  337 
  338 static int
  339 tmpfs_node_init(void *mem, int size, int flags)
  340 {
  341         struct tmpfs_node *node;
  342 
  343         node = mem;
  344         node->tn_id = 0;
  345         mtx_init(&node->tn_interlock, "tmpfsni", NULL, MTX_DEF);
  346         node->tn_gen = arc4random();
  347         return (0);
  348 }
  349 
  350 static void
  351 tmpfs_node_fini(void *mem, int size)
  352 {
  353         struct tmpfs_node *node;
  354 
  355         node = mem;
  356         mtx_destroy(&node->tn_interlock);
  357 }
  358 
  359 int
  360 tmpfs_subr_init(void)
  361 {
  362         tmpfs_pager_type = vm_pager_alloc_dyn_type(&tmpfs_pager_ops,
  363             OBJT_SWAP);
  364         if (tmpfs_pager_type == -1)
  365                 return (EINVAL);
  366         tmpfs_node_pool = uma_zcreate("TMPFS node",
  367             sizeof(struct tmpfs_node), tmpfs_node_ctor, tmpfs_node_dtor,
  368             tmpfs_node_init, tmpfs_node_fini, UMA_ALIGN_PTR, 0);
  369         VFS_SMR_ZONE_SET(tmpfs_node_pool);
  370         return (0);
  371 }
  372 
  373 void
  374 tmpfs_subr_uninit(void)
  375 {
  376         if (tmpfs_pager_type != -1)
  377                 vm_pager_free_dyn_type(tmpfs_pager_type);
  378         tmpfs_pager_type = -1;
  379         uma_zdestroy(tmpfs_node_pool);
  380 }
  381 
  382 static int
  383 sysctl_mem_reserved(SYSCTL_HANDLER_ARGS)
  384 {
  385         int error;
  386         long pages, bytes;
  387 
  388         pages = *(long *)arg1;
  389         bytes = pages * PAGE_SIZE;
  390 
  391         error = sysctl_handle_long(oidp, &bytes, 0, req);
  392         if (error || !req->newptr)
  393                 return (error);
  394 
  395         pages = bytes / PAGE_SIZE;
  396         if (pages < TMPFS_PAGES_MINRESERVED)
  397                 return (EINVAL);
  398 
  399         *(long *)arg1 = pages;
  400         return (0);
  401 }
  402 
  403 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved,
  404     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &tmpfs_pages_reserved, 0,
  405     sysctl_mem_reserved, "L",
  406     "Amount of available memory and swap below which tmpfs growth stops");
  407 
  408 static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a,
  409     struct tmpfs_dirent *b);
  410 RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
  411 
  412 size_t
  413 tmpfs_mem_avail(void)
  414 {
  415         size_t avail;
  416         long reserved;
  417 
  418         avail = swap_pager_avail + vm_free_count();
  419         reserved = atomic_load_long(&tmpfs_pages_reserved);
  420         if (__predict_false(avail < reserved))
  421                 return (0);
  422         return (avail - reserved);
  423 }
  424 
  425 size_t
  426 tmpfs_pages_used(struct tmpfs_mount *tmp)
  427 {
  428         const size_t node_size = sizeof(struct tmpfs_node) +
  429             sizeof(struct tmpfs_dirent);
  430         size_t meta_pages;
  431 
  432         meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size,
  433             PAGE_SIZE);
  434         return (meta_pages + tmp->tm_pages_used);
  435 }
  436 
  437 static bool
  438 tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages)
  439 {
  440         if (tmpfs_mem_avail() < req_pages)
  441                 return (false);
  442 
  443         if (tmp->tm_pages_max != ULONG_MAX &&
  444             tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp))
  445                 return (false);
  446 
  447         return (true);
  448 }
  449 
  450 static int
  451 tmpfs_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base,
  452     int end, boolean_t ignerr)
  453 {
  454         vm_page_t m;
  455         int rv, error;
  456 
  457         VM_OBJECT_ASSERT_WLOCKED(object);
  458         KASSERT(base >= 0, ("%s: base %d", __func__, base));
  459         KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
  460             end));
  461         error = 0;
  462 
  463 retry:
  464         m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT);
  465         if (m != NULL) {
  466                 MPASS(vm_page_all_valid(m));
  467         } else if (vm_pager_has_page(object, idx, NULL, NULL)) {
  468                 m = vm_page_alloc(object, idx, VM_ALLOC_NORMAL |
  469                     VM_ALLOC_WAITFAIL);
  470                 if (m == NULL)
  471                         goto retry;
  472                 vm_object_pip_add(object, 1);
  473                 VM_OBJECT_WUNLOCK(object);
  474                 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
  475                 VM_OBJECT_WLOCK(object);
  476                 vm_object_pip_wakeup(object);
  477                 if (rv == VM_PAGER_OK) {
  478                         /*
  479                          * Since the page was not resident, and therefore not
  480                          * recently accessed, immediately enqueue it for
  481                          * asynchronous laundering.  The current operation is
  482                          * not regarded as an access.
  483                          */
  484                         vm_page_launder(m);
  485                 } else {
  486                         vm_page_free(m);
  487                         m = NULL;
  488                         if (!ignerr)
  489                                 error = EIO;
  490                 }
  491         }
  492         if (m != NULL) {
  493                 pmap_zero_page_area(m, base, end - base);
  494                 vm_page_set_dirty(m);
  495                 vm_page_xunbusy(m);
  496         }
  497 
  498         return (error);
  499 }
  500 
  501 void
  502 tmpfs_ref_node(struct tmpfs_node *node)
  503 {
  504 #ifdef INVARIANTS
  505         u_int old;
  506 
  507         old =
  508 #endif
  509         refcount_acquire(&node->tn_refcount);
  510 #ifdef INVARIANTS
  511         KASSERT(old > 0, ("node %p zero refcount", node));
  512 #endif
  513 }
  514 
  515 /*
  516  * Allocates a new node of type 'type' inside the 'tmp' mount point, with
  517  * its owner set to 'uid', its group to 'gid' and its mode set to 'mode',
  518  * using the credentials of the process 'p'.
  519  *
  520  * If the node type is set to 'VDIR', then the parent parameter must point
  521  * to the parent directory of the node being created.  It may only be NULL
  522  * while allocating the root node.
  523  *
  524  * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter
  525  * specifies the device the node represents.
  526  *
  527  * If the node type is set to 'VLNK', then the parameter target specifies
  528  * the file name of the target file for the symbolic link that is being
  529  * created.
  530  *
  531  * Note that new nodes are retrieved from the available list if it has
  532  * items or, if it is empty, from the node pool as long as there is enough
  533  * space to create them.
  534  *
  535  * Returns zero on success or an appropriate error code on failure.
  536  */
  537 int
  538 tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, enum vtype type,
  539     uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent,
  540     const char *target, dev_t rdev, struct tmpfs_node **node)
  541 {
  542         struct tmpfs_node *nnode;
  543         char *symlink;
  544         char symlink_smr;
  545 
  546         /* If the root directory of the 'tmp' file system is not yet
  547          * allocated, this must be the request to do it. */
  548         MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR));
  549 
  550         MPASS(IFF(type == VLNK, target != NULL));
  551         MPASS(IFF(type == VBLK || type == VCHR, rdev != VNOVAL));
  552 
  553         if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max)
  554                 return (ENOSPC);
  555         if (!tmpfs_pages_check_avail(tmp, 1))
  556                 return (ENOSPC);
  557 
  558         if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
  559                 /*
  560                  * When a new tmpfs node is created for fully
  561                  * constructed mount point, there must be a parent
  562                  * node, which vnode is locked exclusively.  As
  563                  * consequence, if the unmount is executing in
  564                  * parallel, vflush() cannot reclaim the parent vnode.
  565                  * Due to this, the check for MNTK_UNMOUNT flag is not
  566                  * racy: if we did not see MNTK_UNMOUNT flag, then tmp
  567                  * cannot be destroyed until node construction is
  568                  * finished and the parent vnode unlocked.
  569                  *
  570                  * Tmpfs does not need to instantiate new nodes during
  571                  * unmount.
  572                  */
  573                 return (EBUSY);
  574         }
  575         if ((mp->mnt_kern_flag & MNT_RDONLY) != 0)
  576                 return (EROFS);
  577 
  578         nnode = uma_zalloc_smr(tmpfs_node_pool, M_WAITOK);
  579 
  580         /* Generic initialization. */
  581         nnode->tn_type = type;
  582         vfs_timestamp(&nnode->tn_atime);
  583         nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime =
  584             nnode->tn_atime;
  585         nnode->tn_uid = uid;
  586         nnode->tn_gid = gid;
  587         nnode->tn_mode = mode;
  588         nnode->tn_id = alloc_unr64(&tmp->tm_ino_unr);
  589         nnode->tn_refcount = 1;
  590 
  591         /* Type-specific initialization. */
  592         switch (nnode->tn_type) {
  593         case VBLK:
  594         case VCHR:
  595                 nnode->tn_rdev = rdev;
  596                 break;
  597 
  598         case VDIR:
  599                 RB_INIT(&nnode->tn_dir.tn_dirhead);
  600                 LIST_INIT(&nnode->tn_dir.tn_dupindex);
  601                 MPASS(parent != nnode);
  602                 MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL));
  603                 nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent;
  604                 nnode->tn_dir.tn_readdir_lastn = 0;
  605                 nnode->tn_dir.tn_readdir_lastp = NULL;
  606                 nnode->tn_links++;
  607                 TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent);
  608                 nnode->tn_dir.tn_parent->tn_links++;
  609                 TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent);
  610                 break;
  611 
  612         case VFIFO:
  613                 /* FALLTHROUGH */
  614         case VSOCK:
  615                 break;
  616 
  617         case VLNK:
  618                 MPASS(strlen(target) < MAXPATHLEN);
  619                 nnode->tn_size = strlen(target);
  620 
  621                 symlink = NULL;
  622                 if (!tmp->tm_nonc) {
  623                         symlink = cache_symlink_alloc(nnode->tn_size + 1,
  624                             M_WAITOK);
  625                         symlink_smr = true;
  626                 }
  627                 if (symlink == NULL) {
  628                         symlink = malloc(nnode->tn_size + 1, M_TMPFSNAME,
  629                             M_WAITOK);
  630                         symlink_smr = false;
  631                 }
  632                 memcpy(symlink, target, nnode->tn_size + 1);
  633 
  634                 /*
  635                  * Allow safe symlink resolving for lockless lookup.
  636                  * tmpfs_fplookup_symlink references this comment.
  637                  *
  638                  * 1. nnode is not yet visible to the world
  639                  * 2. both tn_link_target and tn_link_smr get populated
  640                  * 3. release fence publishes their content
  641                  * 4. tn_link_target content is immutable until node
  642                  *    destruction, where the pointer gets set to NULL
  643                  * 5. tn_link_smr is never changed once set
  644                  *
  645                  * As a result it is sufficient to issue load consume
  646                  * on the node pointer to also get the above content
  647                  * in a stable manner.  Worst case tn_link_smr flag
  648                  * may be set to true despite being stale, while the
  649                  * target buffer is already cleared out.
  650                  */
  651                 atomic_store_ptr(&nnode->tn_link_target, symlink);
  652                 atomic_store_char((char *)&nnode->tn_link_smr, symlink_smr);
  653                 atomic_thread_fence_rel();
  654                 break;
  655 
  656         case VREG:
  657                 nnode->tn_reg.tn_aobj =
  658                     vm_pager_allocate(tmpfs_pager_type, NULL, 0,
  659                     VM_PROT_DEFAULT, 0,
  660                     NULL /* XXXKIB - tmpfs needs swap reservation */);
  661                 nnode->tn_reg.tn_aobj->un_pager.swp.swp_priv = nnode;
  662                 vm_object_set_flag(nnode->tn_reg.tn_aobj, OBJ_TMPFS);
  663                 nnode->tn_reg.tn_tmp = tmp;
  664                 nnode->tn_reg.tn_pages = 0;
  665                 break;
  666 
  667         default:
  668                 panic("tmpfs_alloc_node: type %p %d", nnode,
  669                     (int)nnode->tn_type);
  670         }
  671 
  672         TMPFS_LOCK(tmp);
  673         LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries);
  674         nnode->tn_attached = true;
  675         tmp->tm_nodes_inuse++;
  676         tmp->tm_refcount++;
  677         TMPFS_UNLOCK(tmp);
  678 
  679         *node = nnode;
  680         return (0);
  681 }
  682 
  683 /*
  684  * Destroys the node pointed to by node from the file system 'tmp'.
  685  * If the node references a directory, no entries are allowed.
  686  */
  687 void
  688 tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node)
  689 {
  690         if (refcount_release_if_not_last(&node->tn_refcount))
  691                 return;
  692 
  693         TMPFS_LOCK(tmp);
  694         TMPFS_NODE_LOCK(node);
  695         if (!tmpfs_free_node_locked(tmp, node, false)) {
  696                 TMPFS_NODE_UNLOCK(node);
  697                 TMPFS_UNLOCK(tmp);
  698         }
  699 }
  700 
  701 bool
  702 tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node,
  703     bool detach)
  704 {
  705         vm_object_t uobj;
  706         char *symlink;
  707         bool last;
  708 
  709         TMPFS_MP_ASSERT_LOCKED(tmp);
  710         TMPFS_NODE_ASSERT_LOCKED(node);
  711 
  712         last = refcount_release(&node->tn_refcount);
  713         if (node->tn_attached && (detach || last)) {
  714                 MPASS(tmp->tm_nodes_inuse > 0);
  715                 tmp->tm_nodes_inuse--;
  716                 LIST_REMOVE(node, tn_entries);
  717                 node->tn_attached = false;
  718         }
  719         if (!last)
  720                 return (false);
  721 
  722         TMPFS_NODE_UNLOCK(node);
  723 
  724 #ifdef INVARIANTS
  725         MPASS(node->tn_vnode == NULL);
  726         MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0);
  727 
  728         /*
  729          * Make sure this is a node type we can deal with. Everything
  730          * is explicitly enumerated without the 'default' clause so
  731          * the compiler can throw an error in case a new type is
  732          * added.
  733          */
  734         switch (node->tn_type) {
  735         case VBLK:
  736         case VCHR:
  737         case VDIR:
  738         case VFIFO:
  739         case VSOCK:
  740         case VLNK:
  741         case VREG:
  742                 break;
  743         case VNON:
  744         case VBAD:
  745         case VMARKER:
  746                 panic("%s: bad type %d for node %p", __func__,
  747                     (int)node->tn_type, node);
  748         }
  749 #endif
  750 
  751         switch (node->tn_type) {
  752         case VREG:
  753                 uobj = node->tn_reg.tn_aobj;
  754                 node->tn_reg.tn_aobj = NULL;
  755                 if (uobj != NULL) {
  756                         VM_OBJECT_WLOCK(uobj);
  757                         KASSERT((uobj->flags & OBJ_TMPFS) != 0,
  758                             ("tmpfs node %p uobj %p not tmpfs", node, uobj));
  759                         vm_object_clear_flag(uobj, OBJ_TMPFS);
  760                         KASSERT(tmp->tm_pages_used >= node->tn_reg.tn_pages,
  761                             ("tmpfs tmp %p node %p pages %jd free %jd", tmp,
  762                             node, (uintmax_t)tmp->tm_pages_used,
  763                             (uintmax_t)node->tn_reg.tn_pages));
  764                         atomic_add_long(&tmp->tm_pages_used,
  765                             -node->tn_reg.tn_pages);
  766                         VM_OBJECT_WUNLOCK(uobj);
  767                 }
  768                 tmpfs_free_tmp(tmp);
  769 
  770                 /*
  771                  * vm_object_deallocate() must not be called while
  772                  * owning tm_allnode_lock, because deallocate might
  773                  * sleep.  Call it after tmpfs_free_tmp() does the
  774                  * unlock.
  775                  */
  776                 if (uobj != NULL)
  777                         vm_object_deallocate(uobj);
  778 
  779                 break;
  780         case VLNK:
  781                 tmpfs_free_tmp(tmp);
  782 
  783                 symlink = node->tn_link_target;
  784                 atomic_store_ptr(&node->tn_link_target, NULL);
  785                 if (atomic_load_char(&node->tn_link_smr)) {
  786                         cache_symlink_free(symlink, node->tn_size + 1);
  787                 } else {
  788                         free(symlink, M_TMPFSNAME);
  789                 }
  790                 break;
  791         default:
  792                 tmpfs_free_tmp(tmp);
  793                 break;
  794         }
  795 
  796         uma_zfree_smr(tmpfs_node_pool, node);
  797         return (true);
  798 }
  799 
  800 static __inline uint32_t
  801 tmpfs_dirent_hash(const char *name, u_int len)
  802 {
  803         uint32_t hash;
  804 
  805         hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK;
  806 #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP
  807         hash &= 0xf;
  808 #endif
  809         if (hash < TMPFS_DIRCOOKIE_MIN)
  810                 hash += TMPFS_DIRCOOKIE_MIN;
  811 
  812         return (hash);
  813 }
  814 
  815 static __inline off_t
  816 tmpfs_dirent_cookie(struct tmpfs_dirent *de)
  817 {
  818         if (de == NULL)
  819                 return (TMPFS_DIRCOOKIE_EOF);
  820 
  821         MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN);
  822 
  823         return (de->td_cookie);
  824 }
  825 
  826 static __inline boolean_t
  827 tmpfs_dirent_dup(struct tmpfs_dirent *de)
  828 {
  829         return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0);
  830 }
  831 
  832 static __inline boolean_t
  833 tmpfs_dirent_duphead(struct tmpfs_dirent *de)
  834 {
  835         return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0);
  836 }
  837 
  838 void
  839 tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen)
  840 {
  841         de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen);
  842         memcpy(de->ud.td_name, name, namelen);
  843         de->td_namelen = namelen;
  844 }
  845 
  846 /*
  847  * Allocates a new directory entry for the node node with a name of name.
  848  * The new directory entry is returned in *de.
  849  *
  850  * The link count of node is increased by one to reflect the new object
  851  * referencing it.
  852  *
  853  * Returns zero on success or an appropriate error code on failure.
  854  */
  855 int
  856 tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node,
  857     const char *name, u_int len, struct tmpfs_dirent **de)
  858 {
  859         struct tmpfs_dirent *nde;
  860 
  861         nde = malloc(sizeof(*nde), M_TMPFSDIR, M_WAITOK);
  862         nde->td_node = node;
  863         if (name != NULL) {
  864                 nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK);
  865                 tmpfs_dirent_init(nde, name, len);
  866         } else
  867                 nde->td_namelen = 0;
  868         if (node != NULL)
  869                 node->tn_links++;
  870 
  871         *de = nde;
  872 
  873         return (0);
  874 }
  875 
  876 /*
  877  * Frees a directory entry.  It is the caller's responsibility to destroy
  878  * the node referenced by it if needed.
  879  *
  880  * The link count of node is decreased by one to reflect the removal of an
  881  * object that referenced it.  This only happens if 'node_exists' is true;
  882  * otherwise the function will not access the node referred to by the
  883  * directory entry, as it may already have been released from the outside.
  884  */
  885 void
  886 tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de)
  887 {
  888         struct tmpfs_node *node;
  889 
  890         node = de->td_node;
  891         if (node != NULL) {
  892                 MPASS(node->tn_links > 0);
  893                 node->tn_links--;
  894         }
  895         if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL)
  896                 free(de->ud.td_name, M_TMPFSNAME);
  897         free(de, M_TMPFSDIR);
  898 }
  899 
  900 void
  901 tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj)
  902 {
  903         bool want_vrele;
  904 
  905         ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject");
  906         if (vp->v_type != VREG || obj == NULL)
  907                 return;
  908 
  909         VM_OBJECT_WLOCK(obj);
  910         VI_LOCK(vp);
  911         /*
  912          * May be going through forced unmount.
  913          */
  914         want_vrele = false;
  915         if ((obj->flags & OBJ_TMPFS_VREF) != 0) {
  916                 vm_object_clear_flag(obj, OBJ_TMPFS_VREF);
  917                 want_vrele = true;
  918         }
  919 
  920         if (vp->v_writecount < 0)
  921                 vp->v_writecount = 0;
  922         VI_UNLOCK(vp);
  923         VM_OBJECT_WUNLOCK(obj);
  924         if (want_vrele) {
  925                 vrele(vp);
  926         }
  927 }
  928 
  929 /*
  930  * Allocates a new vnode for the node node or returns a new reference to
  931  * an existing one if the node had already a vnode referencing it.  The
  932  * resulting locked vnode is returned in *vpp.
  933  *
  934  * Returns zero on success or an appropriate error code on failure.
  935  */
  936 int
  937 tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag,
  938     struct vnode **vpp)
  939 {
  940         struct vnode *vp;
  941         enum vgetstate vs;
  942         struct tmpfs_mount *tm;
  943         vm_object_t object;
  944         int error;
  945 
  946         error = 0;
  947         tm = VFS_TO_TMPFS(mp);
  948         TMPFS_NODE_LOCK(node);
  949         tmpfs_ref_node(node);
  950 loop:
  951         TMPFS_NODE_ASSERT_LOCKED(node);
  952         if ((vp = node->tn_vnode) != NULL) {
  953                 MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0);
  954                 if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) ||
  955                     (VN_IS_DOOMED(vp) &&
  956                      (lkflag & LK_NOWAIT) != 0)) {
  957                         TMPFS_NODE_UNLOCK(node);
  958                         error = ENOENT;
  959                         vp = NULL;
  960                         goto out;
  961                 }
  962                 if (VN_IS_DOOMED(vp)) {
  963                         node->tn_vpstate |= TMPFS_VNODE_WRECLAIM;
  964                         while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) {
  965                                 msleep(&node->tn_vnode, TMPFS_NODE_MTX(node),
  966                                     0, "tmpfsE", 0);
  967                         }
  968                         goto loop;
  969                 }
  970                 vs = vget_prep(vp);
  971                 TMPFS_NODE_UNLOCK(node);
  972                 error = vget_finish(vp, lkflag, vs);
  973                 if (error == ENOENT) {
  974                         TMPFS_NODE_LOCK(node);
  975                         goto loop;
  976                 }
  977                 if (error != 0) {
  978                         vp = NULL;
  979                         goto out;
  980                 }
  981 
  982                 /*
  983                  * Make sure the vnode is still there after
  984                  * getting the interlock to avoid racing a free.
  985                  */
  986                 if (node->tn_vnode != vp) {
  987                         vput(vp);
  988                         TMPFS_NODE_LOCK(node);
  989                         goto loop;
  990                 }
  991 
  992                 goto out;
  993         }
  994 
  995         if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) ||
  996             (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) {
  997                 TMPFS_NODE_UNLOCK(node);
  998                 error = ENOENT;
  999                 vp = NULL;
 1000                 goto out;
 1001         }
 1002 
 1003         /*
 1004          * otherwise lock the vp list while we call getnewvnode
 1005          * since that can block.
 1006          */
 1007         if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) {
 1008                 node->tn_vpstate |= TMPFS_VNODE_WANT;
 1009                 error = msleep((caddr_t) &node->tn_vpstate,
 1010                     TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0);
 1011                 if (error != 0)
 1012                         goto out;
 1013                 goto loop;
 1014         } else
 1015                 node->tn_vpstate |= TMPFS_VNODE_ALLOCATING;
 1016 
 1017         TMPFS_NODE_UNLOCK(node);
 1018 
 1019         /* Get a new vnode and associate it with our node. */
 1020         error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ?
 1021             &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp);
 1022         if (error != 0)
 1023                 goto unlock;
 1024         MPASS(vp != NULL);
 1025 
 1026         /* lkflag is ignored, the lock is exclusive */
 1027         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1028 
 1029         vp->v_data = node;
 1030         vp->v_type = node->tn_type;
 1031 
 1032         /* Type-specific initialization. */
 1033         switch (node->tn_type) {
 1034         case VBLK:
 1035                 /* FALLTHROUGH */
 1036         case VCHR:
 1037                 /* FALLTHROUGH */
 1038         case VLNK:
 1039                 /* FALLTHROUGH */
 1040         case VSOCK:
 1041                 break;
 1042         case VFIFO:
 1043                 vp->v_op = &tmpfs_fifoop_entries;
 1044                 break;
 1045         case VREG:
 1046                 object = node->tn_reg.tn_aobj;
 1047                 VM_OBJECT_WLOCK(object);
 1048                 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
 1049                     ("%s: object %p with OBJ_TMPFS_VREF but without vnode",
 1050                     __func__, object));
 1051                 KASSERT(object->un_pager.swp.writemappings == 0,
 1052                     ("%s: object %p has writemappings",
 1053                     __func__, object));
 1054                 VI_LOCK(vp);
 1055                 KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs"));
 1056                 vp->v_object = object;
 1057                 vn_irflag_set_locked(vp, VIRF_PGREAD | VIRF_TEXT_REF);
 1058                 VI_UNLOCK(vp);
 1059                 VM_OBJECT_WUNLOCK(object);
 1060                 break;
 1061         case VDIR:
 1062                 MPASS(node->tn_dir.tn_parent != NULL);
 1063                 if (node->tn_dir.tn_parent == node)
 1064                         vp->v_vflag |= VV_ROOT;
 1065                 break;
 1066 
 1067         default:
 1068                 panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type);
 1069         }
 1070         if (vp->v_type != VFIFO)
 1071                 VN_LOCK_ASHARE(vp);
 1072 
 1073         error = insmntque1(vp, mp);
 1074         if (error != 0) {
 1075                 /* Need to clear v_object for insmntque failure. */
 1076                 tmpfs_destroy_vobject(vp, vp->v_object);
 1077                 vp->v_object = NULL;
 1078                 vp->v_data = NULL;
 1079                 vp->v_op = &dead_vnodeops;
 1080                 vgone(vp);
 1081                 vput(vp);
 1082                 vp = NULL;
 1083         } else {
 1084                 vn_set_state(vp, VSTATE_CONSTRUCTED);
 1085         }
 1086 
 1087 unlock:
 1088         TMPFS_NODE_LOCK(node);
 1089 
 1090         MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING);
 1091         node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING;
 1092         node->tn_vnode = vp;
 1093 
 1094         if (node->tn_vpstate & TMPFS_VNODE_WANT) {
 1095                 node->tn_vpstate &= ~TMPFS_VNODE_WANT;
 1096                 TMPFS_NODE_UNLOCK(node);
 1097                 wakeup((caddr_t) &node->tn_vpstate);
 1098         } else
 1099                 TMPFS_NODE_UNLOCK(node);
 1100 
 1101 out:
 1102         if (error == 0) {
 1103                 *vpp = vp;
 1104 
 1105 #ifdef INVARIANTS
 1106                 MPASS(*vpp != NULL && VOP_ISLOCKED(*vpp));
 1107                 TMPFS_NODE_LOCK(node);
 1108                 MPASS(*vpp == node->tn_vnode);
 1109                 TMPFS_NODE_UNLOCK(node);
 1110 #endif
 1111         }
 1112         tmpfs_free_node(tm, node);
 1113 
 1114         return (error);
 1115 }
 1116 
 1117 /*
 1118  * Destroys the association between the vnode vp and the node it
 1119  * references.
 1120  */
 1121 void
 1122 tmpfs_free_vp(struct vnode *vp)
 1123 {
 1124         struct tmpfs_node *node;
 1125 
 1126         node = VP_TO_TMPFS_NODE(vp);
 1127 
 1128         TMPFS_NODE_ASSERT_LOCKED(node);
 1129         node->tn_vnode = NULL;
 1130         if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0)
 1131                 wakeup(&node->tn_vnode);
 1132         node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM;
 1133         vp->v_data = NULL;
 1134 }
 1135 
 1136 /*
 1137  * Allocates a new file of type 'type' and adds it to the parent directory
 1138  * 'dvp'; this addition is done using the component name given in 'cnp'.
 1139  * The ownership of the new file is automatically assigned based on the
 1140  * credentials of the caller (through 'cnp'), the group is set based on
 1141  * the parent directory and the mode is determined from the 'vap' argument.
 1142  * If successful, *vpp holds a vnode to the newly created file and zero
 1143  * is returned.  Otherwise *vpp is NULL and the function returns an
 1144  * appropriate error code.
 1145  */
 1146 int
 1147 tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
 1148     struct componentname *cnp, const char *target)
 1149 {
 1150         int error;
 1151         struct tmpfs_dirent *de;
 1152         struct tmpfs_mount *tmp;
 1153         struct tmpfs_node *dnode;
 1154         struct tmpfs_node *node;
 1155         struct tmpfs_node *parent;
 1156 
 1157         ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file");
 1158 
 1159         tmp = VFS_TO_TMPFS(dvp->v_mount);
 1160         dnode = VP_TO_TMPFS_DIR(dvp);
 1161         *vpp = NULL;
 1162 
 1163         /* If the entry we are creating is a directory, we cannot overflow
 1164          * the number of links of its parent, because it will get a new
 1165          * link. */
 1166         if (vap->va_type == VDIR) {
 1167                 /* Ensure that we do not overflow the maximum number of links
 1168                  * imposed by the system. */
 1169                 MPASS(dnode->tn_links <= TMPFS_LINK_MAX);
 1170                 if (dnode->tn_links == TMPFS_LINK_MAX) {
 1171                         return (EMLINK);
 1172                 }
 1173 
 1174                 parent = dnode;
 1175                 MPASS(parent != NULL);
 1176         } else
 1177                 parent = NULL;
 1178 
 1179         /* Allocate a node that represents the new file. */
 1180         error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type,
 1181             cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent,
 1182             target, vap->va_rdev, &node);
 1183         if (error != 0)
 1184                 return (error);
 1185 
 1186         /* Allocate a directory entry that points to the new file. */
 1187         error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen,
 1188             &de);
 1189         if (error != 0) {
 1190                 tmpfs_free_node(tmp, node);
 1191                 return (error);
 1192         }
 1193 
 1194         /* Allocate a vnode for the new file. */
 1195         error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp);
 1196         if (error != 0) {
 1197                 tmpfs_free_dirent(tmp, de);
 1198                 tmpfs_free_node(tmp, node);
 1199                 return (error);
 1200         }
 1201 
 1202         /* Now that all required items are allocated, we can proceed to
 1203          * insert the new node into the directory, an operation that
 1204          * cannot fail. */
 1205         if (cnp->cn_flags & ISWHITEOUT)
 1206                 tmpfs_dir_whiteout_remove(dvp, cnp);
 1207         tmpfs_dir_attach(dvp, de);
 1208         return (0);
 1209 }
 1210 
 1211 struct tmpfs_dirent *
 1212 tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
 1213 {
 1214         struct tmpfs_dirent *de;
 1215 
 1216         de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead);
 1217         dc->tdc_tree = de;
 1218         if (de != NULL && tmpfs_dirent_duphead(de))
 1219                 de = LIST_FIRST(&de->ud.td_duphead);
 1220         dc->tdc_current = de;
 1221 
 1222         return (dc->tdc_current);
 1223 }
 1224 
 1225 struct tmpfs_dirent *
 1226 tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
 1227 {
 1228         struct tmpfs_dirent *de;
 1229 
 1230         MPASS(dc->tdc_tree != NULL);
 1231         if (tmpfs_dirent_dup(dc->tdc_current)) {
 1232                 dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries);
 1233                 if (dc->tdc_current != NULL)
 1234                         return (dc->tdc_current);
 1235         }
 1236         dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir,
 1237             &dnode->tn_dir.tn_dirhead, dc->tdc_tree);
 1238         if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) {
 1239                 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
 1240                 MPASS(dc->tdc_current != NULL);
 1241         }
 1242 
 1243         return (dc->tdc_current);
 1244 }
 1245 
 1246 /* Lookup directory entry in RB-Tree. Function may return duphead entry. */
 1247 static struct tmpfs_dirent *
 1248 tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash)
 1249 {
 1250         struct tmpfs_dirent *de, dekey;
 1251 
 1252         dekey.td_hash = hash;
 1253         de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey);
 1254         return (de);
 1255 }
 1256 
 1257 /* Lookup directory entry by cookie, initialize directory cursor accordingly. */
 1258 static struct tmpfs_dirent *
 1259 tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie,
 1260     struct tmpfs_dir_cursor *dc)
 1261 {
 1262         struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead;
 1263         struct tmpfs_dirent *de, dekey;
 1264 
 1265         MPASS(cookie >= TMPFS_DIRCOOKIE_MIN);
 1266 
 1267         if (cookie == node->tn_dir.tn_readdir_lastn &&
 1268             (de = node->tn_dir.tn_readdir_lastp) != NULL) {
 1269                 /* Protect against possible race, tn_readdir_last[pn]
 1270                  * may be updated with only shared vnode lock held. */
 1271                 if (cookie == tmpfs_dirent_cookie(de))
 1272                         goto out;
 1273         }
 1274 
 1275         if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) {
 1276                 LIST_FOREACH(de, &node->tn_dir.tn_dupindex,
 1277                     uh.td_dup.index_entries) {
 1278                         MPASS(tmpfs_dirent_dup(de));
 1279                         if (de->td_cookie == cookie)
 1280                                 goto out;
 1281                         /* dupindex list is sorted. */
 1282                         if (de->td_cookie < cookie) {
 1283                                 de = NULL;
 1284                                 goto out;
 1285                         }
 1286                 }
 1287                 MPASS(de == NULL);
 1288                 goto out;
 1289         }
 1290 
 1291         if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) {
 1292                 de = NULL;
 1293         } else {
 1294                 dekey.td_hash = cookie;
 1295                 /* Recover if direntry for cookie was removed */
 1296                 de = RB_NFIND(tmpfs_dir, dirhead, &dekey);
 1297         }
 1298         dc->tdc_tree = de;
 1299         dc->tdc_current = de;
 1300         if (de != NULL && tmpfs_dirent_duphead(de)) {
 1301                 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
 1302                 MPASS(dc->tdc_current != NULL);
 1303         }
 1304         return (dc->tdc_current);
 1305 
 1306 out:
 1307         dc->tdc_tree = de;
 1308         dc->tdc_current = de;
 1309         if (de != NULL && tmpfs_dirent_dup(de))
 1310                 dc->tdc_tree = tmpfs_dir_xlookup_hash(node,
 1311                     de->td_hash);
 1312         return (dc->tdc_current);
 1313 }
 1314 
 1315 /*
 1316  * Looks for a directory entry in the directory represented by node.
 1317  * 'cnp' describes the name of the entry to look for.  Note that the .
 1318  * and .. components are not allowed as they do not physically exist
 1319  * within directories.
 1320  *
 1321  * Returns a pointer to the entry when found, otherwise NULL.
 1322  */
 1323 struct tmpfs_dirent *
 1324 tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f,
 1325     struct componentname *cnp)
 1326 {
 1327         struct tmpfs_dir_duphead *duphead;
 1328         struct tmpfs_dirent *de;
 1329         uint32_t hash;
 1330 
 1331         MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.'));
 1332         MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' &&
 1333             cnp->cn_nameptr[1] == '.')));
 1334         TMPFS_VALIDATE_DIR(node);
 1335 
 1336         hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen);
 1337         de = tmpfs_dir_xlookup_hash(node, hash);
 1338         if (de != NULL && tmpfs_dirent_duphead(de)) {
 1339                 duphead = &de->ud.td_duphead;
 1340                 LIST_FOREACH(de, duphead, uh.td_dup.entries) {
 1341                         if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
 1342                             cnp->cn_namelen))
 1343                                 break;
 1344                 }
 1345         } else if (de != NULL) {
 1346                 if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
 1347                     cnp->cn_namelen))
 1348                         de = NULL;
 1349         }
 1350         if (de != NULL && f != NULL && de->td_node != f)
 1351                 de = NULL;
 1352 
 1353         return (de);
 1354 }
 1355 
 1356 /*
 1357  * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex
 1358  * list, allocate new cookie value.
 1359  */
 1360 static void
 1361 tmpfs_dir_attach_dup(struct tmpfs_node *dnode,
 1362     struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde)
 1363 {
 1364         struct tmpfs_dir_duphead *dupindex;
 1365         struct tmpfs_dirent *de, *pde;
 1366 
 1367         dupindex = &dnode->tn_dir.tn_dupindex;
 1368         de = LIST_FIRST(dupindex);
 1369         if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) {
 1370                 if (de == NULL)
 1371                         nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
 1372                 else
 1373                         nde->td_cookie = de->td_cookie + 1;
 1374                 MPASS(tmpfs_dirent_dup(nde));
 1375                 LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries);
 1376                 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
 1377                 return;
 1378         }
 1379 
 1380         /*
 1381          * Cookie numbers are near exhaustion. Scan dupindex list for unused
 1382          * numbers. dupindex list is sorted in descending order. Keep it so
 1383          * after inserting nde.
 1384          */
 1385         while (1) {
 1386                 pde = de;
 1387                 de = LIST_NEXT(de, uh.td_dup.index_entries);
 1388                 if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) {
 1389                         /*
 1390                          * Last element of the index doesn't have minimal cookie
 1391                          * value, use it.
 1392                          */
 1393                         nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
 1394                         LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries);
 1395                         LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
 1396                         return;
 1397                 } else if (de == NULL) {
 1398                         /*
 1399                          * We are so lucky have 2^30 hash duplicates in single
 1400                          * directory :) Return largest possible cookie value.
 1401                          * It should be fine except possible issues with
 1402                          * VOP_READDIR restart.
 1403                          */
 1404                         nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX;
 1405                         LIST_INSERT_HEAD(dupindex, nde,
 1406                             uh.td_dup.index_entries);
 1407                         LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
 1408                         return;
 1409                 }
 1410                 if (de->td_cookie + 1 == pde->td_cookie ||
 1411                     de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX)
 1412                         continue;       /* No hole or invalid cookie. */
 1413                 nde->td_cookie = de->td_cookie + 1;
 1414                 MPASS(tmpfs_dirent_dup(nde));
 1415                 MPASS(pde->td_cookie > nde->td_cookie);
 1416                 MPASS(nde->td_cookie > de->td_cookie);
 1417                 LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries);
 1418                 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
 1419                 return;
 1420         }
 1421 }
 1422 
 1423 /*
 1424  * Attaches the directory entry de to the directory represented by vp.
 1425  * Note that this does not change the link count of the node pointed by
 1426  * the directory entry, as this is done by tmpfs_alloc_dirent.
 1427  */
 1428 void
 1429 tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de)
 1430 {
 1431         struct tmpfs_node *dnode;
 1432         struct tmpfs_dirent *xde, *nde;
 1433 
 1434         ASSERT_VOP_ELOCKED(vp, __func__);
 1435         MPASS(de->td_namelen > 0);
 1436         MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN);
 1437         MPASS(de->td_cookie == de->td_hash);
 1438 
 1439         dnode = VP_TO_TMPFS_DIR(vp);
 1440         dnode->tn_dir.tn_readdir_lastn = 0;
 1441         dnode->tn_dir.tn_readdir_lastp = NULL;
 1442 
 1443         MPASS(!tmpfs_dirent_dup(de));
 1444         xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
 1445         if (xde != NULL && tmpfs_dirent_duphead(xde))
 1446                 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
 1447         else if (xde != NULL) {
 1448                 /*
 1449                  * Allocate new duphead. Swap xde with duphead to avoid
 1450                  * adding/removing elements with the same hash.
 1451                  */
 1452                 MPASS(!tmpfs_dirent_dup(xde));
 1453                 tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0,
 1454                     &nde);
 1455                 /* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */
 1456                 memcpy(nde, xde, sizeof(*xde));
 1457                 xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD;
 1458                 LIST_INIT(&xde->ud.td_duphead);
 1459                 xde->td_namelen = 0;
 1460                 xde->td_node = NULL;
 1461                 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde);
 1462                 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
 1463         }
 1464         dnode->tn_size += sizeof(struct tmpfs_dirent);
 1465         dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
 1466         dnode->tn_accessed = true;
 1467         tmpfs_update(vp);
 1468 }
 1469 
 1470 /*
 1471  * Detaches the directory entry de from the directory represented by vp.
 1472  * Note that this does not change the link count of the node pointed by
 1473  * the directory entry, as this is done by tmpfs_free_dirent.
 1474  */
 1475 void
 1476 tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de)
 1477 {
 1478         struct tmpfs_mount *tmp;
 1479         struct tmpfs_dir *head;
 1480         struct tmpfs_node *dnode;
 1481         struct tmpfs_dirent *xde;
 1482 
 1483         ASSERT_VOP_ELOCKED(vp, __func__);
 1484 
 1485         dnode = VP_TO_TMPFS_DIR(vp);
 1486         head = &dnode->tn_dir.tn_dirhead;
 1487         dnode->tn_dir.tn_readdir_lastn = 0;
 1488         dnode->tn_dir.tn_readdir_lastp = NULL;
 1489 
 1490         if (tmpfs_dirent_dup(de)) {
 1491                 /* Remove duphead if de was last entry. */
 1492                 if (LIST_NEXT(de, uh.td_dup.entries) == NULL) {
 1493                         xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash);
 1494                         MPASS(tmpfs_dirent_duphead(xde));
 1495                 } else
 1496                         xde = NULL;
 1497                 LIST_REMOVE(de, uh.td_dup.entries);
 1498                 LIST_REMOVE(de, uh.td_dup.index_entries);
 1499                 if (xde != NULL) {
 1500                         if (LIST_EMPTY(&xde->ud.td_duphead)) {
 1501                                 RB_REMOVE(tmpfs_dir, head, xde);
 1502                                 tmp = VFS_TO_TMPFS(vp->v_mount);
 1503                                 MPASS(xde->td_node == NULL);
 1504                                 tmpfs_free_dirent(tmp, xde);
 1505                         }
 1506                 }
 1507                 de->td_cookie = de->td_hash;
 1508         } else
 1509                 RB_REMOVE(tmpfs_dir, head, de);
 1510 
 1511         dnode->tn_size -= sizeof(struct tmpfs_dirent);
 1512         dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
 1513         dnode->tn_accessed = true;
 1514         tmpfs_update(vp);
 1515 }
 1516 
 1517 void
 1518 tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode)
 1519 {
 1520         struct tmpfs_dirent *de, *dde, *nde;
 1521 
 1522         RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) {
 1523                 RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
 1524                 /* Node may already be destroyed. */
 1525                 de->td_node = NULL;
 1526                 if (tmpfs_dirent_duphead(de)) {
 1527                         while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) {
 1528                                 LIST_REMOVE(dde, uh.td_dup.entries);
 1529                                 dde->td_node = NULL;
 1530                                 tmpfs_free_dirent(tmp, dde);
 1531                         }
 1532                 }
 1533                 tmpfs_free_dirent(tmp, de);
 1534         }
 1535 }
 1536 
 1537 /*
 1538  * Helper function for tmpfs_readdir.  Creates a '.' entry for the given
 1539  * directory and returns it in the uio space.  The function returns 0
 1540  * on success, -1 if there was not enough space in the uio structure to
 1541  * hold the directory entry or an appropriate error code if another
 1542  * error happens.
 1543  */
 1544 static int
 1545 tmpfs_dir_getdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
 1546     struct uio *uio)
 1547 {
 1548         int error;
 1549         struct dirent dent;
 1550 
 1551         TMPFS_VALIDATE_DIR(node);
 1552         MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT);
 1553 
 1554         dent.d_fileno = node->tn_id;
 1555         dent.d_off = TMPFS_DIRCOOKIE_DOTDOT;
 1556         dent.d_type = DT_DIR;
 1557         dent.d_namlen = 1;
 1558         dent.d_name[0] = '.';
 1559         dent.d_reclen = GENERIC_DIRSIZ(&dent);
 1560         dirent_terminate(&dent);
 1561 
 1562         if (dent.d_reclen > uio->uio_resid)
 1563                 error = EJUSTRETURN;
 1564         else
 1565                 error = uiomove(&dent, dent.d_reclen, uio);
 1566 
 1567         tmpfs_set_accessed(tm, node);
 1568 
 1569         return (error);
 1570 }
 1571 
 1572 /*
 1573  * Helper function for tmpfs_readdir.  Creates a '..' entry for the given
 1574  * directory and returns it in the uio space.  The function returns 0
 1575  * on success, -1 if there was not enough space in the uio structure to
 1576  * hold the directory entry or an appropriate error code if another
 1577  * error happens.
 1578  */
 1579 static int
 1580 tmpfs_dir_getdotdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
 1581     struct uio *uio, off_t next)
 1582 {
 1583         struct tmpfs_node *parent;
 1584         struct dirent dent;
 1585         int error;
 1586 
 1587         TMPFS_VALIDATE_DIR(node);
 1588         MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT);
 1589 
 1590         /*
 1591          * Return ENOENT if the current node is already removed.
 1592          */
 1593         TMPFS_ASSERT_LOCKED(node);
 1594         parent = node->tn_dir.tn_parent;
 1595         if (parent == NULL)
 1596                 return (ENOENT);
 1597 
 1598         dent.d_fileno = parent->tn_id;
 1599         dent.d_off = next;
 1600         dent.d_type = DT_DIR;
 1601         dent.d_namlen = 2;
 1602         dent.d_name[0] = '.';
 1603         dent.d_name[1] = '.';
 1604         dent.d_reclen = GENERIC_DIRSIZ(&dent);
 1605         dirent_terminate(&dent);
 1606 
 1607         if (dent.d_reclen > uio->uio_resid)
 1608                 error = EJUSTRETURN;
 1609         else
 1610                 error = uiomove(&dent, dent.d_reclen, uio);
 1611 
 1612         tmpfs_set_accessed(tm, node);
 1613 
 1614         return (error);
 1615 }
 1616 
 1617 /*
 1618  * Helper function for tmpfs_readdir.  Returns as much directory entries
 1619  * as can fit in the uio space.  The read starts at uio->uio_offset.
 1620  * The function returns 0 on success, -1 if there was not enough space
 1621  * in the uio structure to hold the directory entry or an appropriate
 1622  * error code if another error happens.
 1623  */
 1624 int
 1625 tmpfs_dir_getdents(struct tmpfs_mount *tm, struct tmpfs_node *node,
 1626     struct uio *uio, int maxcookies, uint64_t *cookies, int *ncookies)
 1627 {
 1628         struct tmpfs_dir_cursor dc;
 1629         struct tmpfs_dirent *de, *nde;
 1630         off_t off;
 1631         int error;
 1632 
 1633         TMPFS_VALIDATE_DIR(node);
 1634 
 1635         off = 0;
 1636 
 1637         /*
 1638          * Lookup the node from the current offset.  The starting offset of
 1639          * 0 will lookup both '.' and '..', and then the first real entry,
 1640          * or EOF if there are none.  Then find all entries for the dir that
 1641          * fit into the buffer.  Once no more entries are found (de == NULL),
 1642          * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next
 1643          * call to return 0.
 1644          */
 1645         switch (uio->uio_offset) {
 1646         case TMPFS_DIRCOOKIE_DOT:
 1647                 error = tmpfs_dir_getdotdent(tm, node, uio);
 1648                 if (error != 0)
 1649                         return (error);
 1650                 uio->uio_offset = off = TMPFS_DIRCOOKIE_DOTDOT;
 1651                 if (cookies != NULL)
 1652                         cookies[(*ncookies)++] = off;
 1653                 /* FALLTHROUGH */
 1654         case TMPFS_DIRCOOKIE_DOTDOT:
 1655                 de = tmpfs_dir_first(node, &dc);
 1656                 off = tmpfs_dirent_cookie(de);
 1657                 error = tmpfs_dir_getdotdotdent(tm, node, uio, off);
 1658                 if (error != 0)
 1659                         return (error);
 1660                 uio->uio_offset = off;
 1661                 if (cookies != NULL)
 1662                         cookies[(*ncookies)++] = off;
 1663                 /* EOF. */
 1664                 if (de == NULL)
 1665                         return (0);
 1666                 break;
 1667         case TMPFS_DIRCOOKIE_EOF:
 1668                 return (0);
 1669         default:
 1670                 de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc);
 1671                 if (de == NULL)
 1672                         return (EINVAL);
 1673                 if (cookies != NULL)
 1674                         off = tmpfs_dirent_cookie(de);
 1675         }
 1676 
 1677         /*
 1678          * Read as much entries as possible; i.e., until we reach the end of the
 1679          * directory or we exhaust uio space.
 1680          */
 1681         do {
 1682                 struct dirent d;
 1683 
 1684                 /*
 1685                  * Create a dirent structure representing the current tmpfs_node
 1686                  * and fill it.
 1687                  */
 1688                 if (de->td_node == NULL) {
 1689                         d.d_fileno = 1;
 1690                         d.d_type = DT_WHT;
 1691                 } else {
 1692                         d.d_fileno = de->td_node->tn_id;
 1693                         switch (de->td_node->tn_type) {
 1694                         case VBLK:
 1695                                 d.d_type = DT_BLK;
 1696                                 break;
 1697 
 1698                         case VCHR:
 1699                                 d.d_type = DT_CHR;
 1700                                 break;
 1701 
 1702                         case VDIR:
 1703                                 d.d_type = DT_DIR;
 1704                                 break;
 1705 
 1706                         case VFIFO:
 1707                                 d.d_type = DT_FIFO;
 1708                                 break;
 1709 
 1710                         case VLNK:
 1711                                 d.d_type = DT_LNK;
 1712                                 break;
 1713 
 1714                         case VREG:
 1715                                 d.d_type = DT_REG;
 1716                                 break;
 1717 
 1718                         case VSOCK:
 1719                                 d.d_type = DT_SOCK;
 1720                                 break;
 1721 
 1722                         default:
 1723                                 panic("tmpfs_dir_getdents: type %p %d",
 1724                                     de->td_node, (int)de->td_node->tn_type);
 1725                         }
 1726                 }
 1727                 d.d_namlen = de->td_namelen;
 1728                 MPASS(de->td_namelen < sizeof(d.d_name));
 1729                 (void)memcpy(d.d_name, de->ud.td_name, de->td_namelen);
 1730                 d.d_reclen = GENERIC_DIRSIZ(&d);
 1731 
 1732                 /*
 1733                  * Stop reading if the directory entry we are treating is bigger
 1734                  * than the amount of data that can be returned.
 1735                  */
 1736                 if (d.d_reclen > uio->uio_resid) {
 1737                         error = EJUSTRETURN;
 1738                         break;
 1739                 }
 1740 
 1741                 nde = tmpfs_dir_next(node, &dc);
 1742                 d.d_off = tmpfs_dirent_cookie(nde);
 1743                 dirent_terminate(&d);
 1744 
 1745                 /*
 1746                  * Copy the new dirent structure into the output buffer and
 1747                  * advance pointers.
 1748                  */
 1749                 error = uiomove(&d, d.d_reclen, uio);
 1750                 if (error == 0) {
 1751                         de = nde;
 1752                         if (cookies != NULL) {
 1753                                 off = tmpfs_dirent_cookie(de);
 1754                                 MPASS(*ncookies < maxcookies);
 1755                                 cookies[(*ncookies)++] = off;
 1756                         }
 1757                 }
 1758         } while (error == 0 && uio->uio_resid > 0 && de != NULL);
 1759 
 1760         /* Skip setting off when using cookies as it is already done above. */
 1761         if (cookies == NULL)
 1762                 off = tmpfs_dirent_cookie(de);
 1763 
 1764         /* Update the offset and cache. */
 1765         uio->uio_offset = off;
 1766         node->tn_dir.tn_readdir_lastn = off;
 1767         node->tn_dir.tn_readdir_lastp = de;
 1768 
 1769         tmpfs_set_accessed(tm, node);
 1770         return (error);
 1771 }
 1772 
 1773 int
 1774 tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp)
 1775 {
 1776         struct tmpfs_dirent *de;
 1777         int error;
 1778 
 1779         error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL,
 1780             cnp->cn_nameptr, cnp->cn_namelen, &de);
 1781         if (error != 0)
 1782                 return (error);
 1783         tmpfs_dir_attach(dvp, de);
 1784         return (0);
 1785 }
 1786 
 1787 void
 1788 tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp)
 1789 {
 1790         struct tmpfs_dirent *de;
 1791 
 1792         de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp);
 1793         MPASS(de != NULL && de->td_node == NULL);
 1794         tmpfs_dir_detach(dvp, de);
 1795         tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de);
 1796 }
 1797 
 1798 /*
 1799  * Resizes the aobj associated with the regular file pointed to by 'vp' to the
 1800  * size 'newsize'.  'vp' must point to a vnode that represents a regular file.
 1801  * 'newsize' must be positive.
 1802  *
 1803  * Returns zero on success or an appropriate error code on failure.
 1804  */
 1805 int
 1806 tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr)
 1807 {
 1808         struct tmpfs_node *node;
 1809         vm_object_t uobj;
 1810         vm_pindex_t idx, newpages, oldpages;
 1811         off_t oldsize;
 1812         int base, error;
 1813 
 1814         MPASS(vp->v_type == VREG);
 1815         MPASS(newsize >= 0);
 1816 
 1817         node = VP_TO_TMPFS_NODE(vp);
 1818         uobj = node->tn_reg.tn_aobj;
 1819 
 1820         /*
 1821          * Convert the old and new sizes to the number of pages needed to
 1822          * store them.  It may happen that we do not need to do anything
 1823          * because the last allocated page can accommodate the change on
 1824          * its own.
 1825          */
 1826         oldsize = node->tn_size;
 1827         oldpages = OFF_TO_IDX(oldsize + PAGE_MASK);
 1828         MPASS(oldpages == uobj->size);
 1829         newpages = OFF_TO_IDX(newsize + PAGE_MASK);
 1830 
 1831         if (__predict_true(newpages == oldpages && newsize >= oldsize)) {
 1832                 node->tn_size = newsize;
 1833                 return (0);
 1834         }
 1835 
 1836         VM_OBJECT_WLOCK(uobj);
 1837         if (newsize < oldsize) {
 1838                 /*
 1839                  * Zero the truncated part of the last page.
 1840                  */
 1841                 base = newsize & PAGE_MASK;
 1842                 if (base != 0) {
 1843                         idx = OFF_TO_IDX(newsize);
 1844                         error = tmpfs_partial_page_invalidate(uobj, idx, base,
 1845                             PAGE_SIZE, ignerr);
 1846                         if (error != 0) {
 1847                                 VM_OBJECT_WUNLOCK(uobj);
 1848                                 return (error);
 1849                         }
 1850                 }
 1851 
 1852                 /*
 1853                  * Release any swap space and free any whole pages.
 1854                  */
 1855                 if (newpages < oldpages)
 1856                         vm_object_page_remove(uobj, newpages, 0, 0);
 1857         }
 1858         uobj->size = newpages;
 1859         VM_OBJECT_WUNLOCK(uobj);
 1860 
 1861         node->tn_size = newsize;
 1862         return (0);
 1863 }
 1864 
 1865 /*
 1866  * Punch hole in the aobj associated with the regular file pointed to by 'vp'.
 1867  * Requests completely beyond the end-of-file are converted to no-op.
 1868  *
 1869  * Returns 0 on success or error code from tmpfs_partial_page_invalidate() on
 1870  * failure.
 1871  */
 1872 int
 1873 tmpfs_reg_punch_hole(struct vnode *vp, off_t *offset, off_t *length)
 1874 {
 1875         struct tmpfs_node *node;
 1876         vm_object_t object;
 1877         vm_pindex_t pistart, pi, piend;
 1878         int startofs, endofs, end;
 1879         off_t off, len;
 1880         int error;
 1881 
 1882         KASSERT(*length <= OFF_MAX - *offset, ("%s: offset + length overflows",
 1883             __func__));
 1884         node = VP_TO_TMPFS_NODE(vp);
 1885         KASSERT(node->tn_type == VREG, ("%s: node is not regular file",
 1886             __func__));
 1887         object = node->tn_reg.tn_aobj;
 1888         off = *offset;
 1889         len = omin(node->tn_size - off, *length);
 1890         startofs = off & PAGE_MASK;
 1891         endofs = (off + len) & PAGE_MASK;
 1892         pistart = OFF_TO_IDX(off);
 1893         piend = OFF_TO_IDX(off + len);
 1894         pi = OFF_TO_IDX((vm_ooffset_t)off + PAGE_MASK);
 1895         error = 0;
 1896 
 1897         /* Handle the case when offset is on or beyond file size. */
 1898         if (len <= 0) {
 1899                 *length = 0;
 1900                 return (0);
 1901         }
 1902 
 1903         VM_OBJECT_WLOCK(object);
 1904 
 1905         /*
 1906          * If there is a partial page at the beginning of the hole-punching
 1907          * request, fill the partial page with zeroes.
 1908          */
 1909         if (startofs != 0) {
 1910                 end = pistart != piend ? PAGE_SIZE : endofs;
 1911                 error = tmpfs_partial_page_invalidate(object, pistart, startofs,
 1912                     end, FALSE);
 1913                 if (error != 0)
 1914                         goto out;
 1915                 off += end - startofs;
 1916                 len -= end - startofs;
 1917         }
 1918 
 1919         /*
 1920          * Toss away the full pages in the affected area.
 1921          */
 1922         if (pi < piend) {
 1923                 vm_object_page_remove(object, pi, piend, 0);
 1924                 off += IDX_TO_OFF(piend - pi);
 1925                 len -= IDX_TO_OFF(piend - pi);
 1926         }
 1927 
 1928         /*
 1929          * If there is a partial page at the end of the hole-punching request,
 1930          * fill the partial page with zeroes.
 1931          */
 1932         if (endofs != 0 && pistart != piend) {
 1933                 error = tmpfs_partial_page_invalidate(object, piend, 0, endofs,
 1934                     FALSE);
 1935                 if (error != 0)
 1936                         goto out;
 1937                 off += endofs;
 1938                 len -= endofs;
 1939         }
 1940 
 1941 out:
 1942         VM_OBJECT_WUNLOCK(object);
 1943         *offset = off;
 1944         *length = len;
 1945         return (error);
 1946 }
 1947 
 1948 void
 1949 tmpfs_check_mtime(struct vnode *vp)
 1950 {
 1951         struct tmpfs_node *node;
 1952         struct vm_object *obj;
 1953 
 1954         ASSERT_VOP_ELOCKED(vp, "check_mtime");
 1955         if (vp->v_type != VREG)
 1956                 return;
 1957         obj = vp->v_object;
 1958         KASSERT(obj->type == tmpfs_pager_type &&
 1959             (obj->flags & (OBJ_SWAP | OBJ_TMPFS)) ==
 1960             (OBJ_SWAP | OBJ_TMPFS), ("non-tmpfs obj"));
 1961         /* unlocked read */
 1962         if (obj->generation != obj->cleangeneration) {
 1963                 VM_OBJECT_WLOCK(obj);
 1964                 if (obj->generation != obj->cleangeneration) {
 1965                         obj->cleangeneration = obj->generation;
 1966                         node = VP_TO_TMPFS_NODE(vp);
 1967                         node->tn_status |= TMPFS_NODE_MODIFIED |
 1968                             TMPFS_NODE_CHANGED;
 1969                 }
 1970                 VM_OBJECT_WUNLOCK(obj);
 1971         }
 1972 }
 1973 
 1974 /*
 1975  * Change flags of the given vnode.
 1976  * Caller should execute tmpfs_update on vp after a successful execution.
 1977  * The vnode must be locked on entry and remain locked on exit.
 1978  */
 1979 int
 1980 tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred,
 1981     struct thread *td)
 1982 {
 1983         int error;
 1984         struct tmpfs_node *node;
 1985 
 1986         ASSERT_VOP_ELOCKED(vp, "chflags");
 1987 
 1988         node = VP_TO_TMPFS_NODE(vp);
 1989 
 1990         if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK |
 1991             UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP |
 1992             UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE |
 1993             UF_SPARSE | UF_SYSTEM)) != 0)
 1994                 return (EOPNOTSUPP);
 1995 
 1996         /* Disallow this operation if the file system is mounted read-only. */
 1997         if (vp->v_mount->mnt_flag & MNT_RDONLY)
 1998                 return (EROFS);
 1999 
 2000         /*
 2001          * Callers may only modify the file flags on objects they
 2002          * have VADMIN rights for.
 2003          */
 2004         if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
 2005                 return (error);
 2006         /*
 2007          * Unprivileged processes are not permitted to unset system
 2008          * flags, or modify flags if any system flags are set.
 2009          */
 2010         if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) {
 2011                 if (node->tn_flags &
 2012                     (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) {
 2013                         error = securelevel_gt(cred, 0);
 2014                         if (error)
 2015                                 return (error);
 2016                 }
 2017         } else {
 2018                 if (node->tn_flags &
 2019                     (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) ||
 2020                     ((flags ^ node->tn_flags) & SF_SETTABLE))
 2021                         return (EPERM);
 2022         }
 2023         node->tn_flags = flags;
 2024         node->tn_status |= TMPFS_NODE_CHANGED;
 2025 
 2026         ASSERT_VOP_ELOCKED(vp, "chflags2");
 2027 
 2028         return (0);
 2029 }
 2030 
 2031 /*
 2032  * Change access mode on the given vnode.
 2033  * Caller should execute tmpfs_update on vp after a successful execution.
 2034  * The vnode must be locked on entry and remain locked on exit.
 2035  */
 2036 int
 2037 tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred,
 2038     struct thread *td)
 2039 {
 2040         int error;
 2041         struct tmpfs_node *node;
 2042         mode_t newmode;
 2043 
 2044         ASSERT_VOP_ELOCKED(vp, "chmod");
 2045         ASSERT_VOP_IN_SEQC(vp);
 2046 
 2047         node = VP_TO_TMPFS_NODE(vp);
 2048 
 2049         /* Disallow this operation if the file system is mounted read-only. */
 2050         if (vp->v_mount->mnt_flag & MNT_RDONLY)
 2051                 return (EROFS);
 2052 
 2053         /* Immutable or append-only files cannot be modified, either. */
 2054         if (node->tn_flags & (IMMUTABLE | APPEND))
 2055                 return (EPERM);
 2056 
 2057         /*
 2058          * To modify the permissions on a file, must possess VADMIN
 2059          * for that file.
 2060          */
 2061         if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
 2062                 return (error);
 2063 
 2064         /*
 2065          * Privileged processes may set the sticky bit on non-directories,
 2066          * as well as set the setgid bit on a file with a group that the
 2067          * process is not a member of.
 2068          */
 2069         if (vp->v_type != VDIR && (mode & S_ISTXT)) {
 2070                 if (priv_check_cred(cred, PRIV_VFS_STICKYFILE))
 2071                         return (EFTYPE);
 2072         }
 2073         if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) {
 2074                 error = priv_check_cred(cred, PRIV_VFS_SETGID);
 2075                 if (error)
 2076                         return (error);
 2077         }
 2078 
 2079         newmode = node->tn_mode & ~ALLPERMS;
 2080         newmode |= mode & ALLPERMS;
 2081         atomic_store_short(&node->tn_mode, newmode);
 2082 
 2083         node->tn_status |= TMPFS_NODE_CHANGED;
 2084 
 2085         ASSERT_VOP_ELOCKED(vp, "chmod2");
 2086 
 2087         return (0);
 2088 }
 2089 
 2090 /*
 2091  * Change ownership of the given vnode.  At least one of uid or gid must
 2092  * be different than VNOVAL.  If one is set to that value, the attribute
 2093  * is unchanged.
 2094  * Caller should execute tmpfs_update on vp after a successful execution.
 2095  * The vnode must be locked on entry and remain locked on exit.
 2096  */
 2097 int
 2098 tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred,
 2099     struct thread *td)
 2100 {
 2101         int error;
 2102         struct tmpfs_node *node;
 2103         uid_t ouid;
 2104         gid_t ogid;
 2105         mode_t newmode;
 2106 
 2107         ASSERT_VOP_ELOCKED(vp, "chown");
 2108         ASSERT_VOP_IN_SEQC(vp);
 2109 
 2110         node = VP_TO_TMPFS_NODE(vp);
 2111 
 2112         /* Assign default values if they are unknown. */
 2113         MPASS(uid != VNOVAL || gid != VNOVAL);
 2114         if (uid == VNOVAL)
 2115                 uid = node->tn_uid;
 2116         if (gid == VNOVAL)
 2117                 gid = node->tn_gid;
 2118         MPASS(uid != VNOVAL && gid != VNOVAL);
 2119 
 2120         /* Disallow this operation if the file system is mounted read-only. */
 2121         if (vp->v_mount->mnt_flag & MNT_RDONLY)
 2122                 return (EROFS);
 2123 
 2124         /* Immutable or append-only files cannot be modified, either. */
 2125         if (node->tn_flags & (IMMUTABLE | APPEND))
 2126                 return (EPERM);
 2127 
 2128         /*
 2129          * To modify the ownership of a file, must possess VADMIN for that
 2130          * file.
 2131          */
 2132         if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
 2133                 return (error);
 2134 
 2135         /*
 2136          * To change the owner of a file, or change the group of a file to a
 2137          * group of which we are not a member, the caller must have
 2138          * privilege.
 2139          */
 2140         if ((uid != node->tn_uid ||
 2141             (gid != node->tn_gid && !groupmember(gid, cred))) &&
 2142             (error = priv_check_cred(cred, PRIV_VFS_CHOWN)))
 2143                 return (error);
 2144 
 2145         ogid = node->tn_gid;
 2146         ouid = node->tn_uid;
 2147 
 2148         node->tn_uid = uid;
 2149         node->tn_gid = gid;
 2150 
 2151         node->tn_status |= TMPFS_NODE_CHANGED;
 2152 
 2153         if ((node->tn_mode & (S_ISUID | S_ISGID)) != 0 &&
 2154             (ouid != uid || ogid != gid)) {
 2155                 if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) {
 2156                         newmode = node->tn_mode & ~(S_ISUID | S_ISGID);
 2157                         atomic_store_short(&node->tn_mode, newmode);
 2158                 }
 2159         }
 2160 
 2161         ASSERT_VOP_ELOCKED(vp, "chown2");
 2162 
 2163         return (0);
 2164 }
 2165 
 2166 /*
 2167  * Change size of the given vnode.
 2168  * Caller should execute tmpfs_update on vp after a successful execution.
 2169  * The vnode must be locked on entry and remain locked on exit.
 2170  */
 2171 int
 2172 tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred,
 2173     struct thread *td)
 2174 {
 2175         int error;
 2176         struct tmpfs_node *node;
 2177 
 2178         ASSERT_VOP_ELOCKED(vp, "chsize");
 2179 
 2180         node = VP_TO_TMPFS_NODE(vp);
 2181 
 2182         /* Decide whether this is a valid operation based on the file type. */
 2183         error = 0;
 2184         switch (vp->v_type) {
 2185         case VDIR:
 2186                 return (EISDIR);
 2187 
 2188         case VREG:
 2189                 if (vp->v_mount->mnt_flag & MNT_RDONLY)
 2190                         return (EROFS);
 2191                 break;
 2192 
 2193         case VBLK:
 2194                 /* FALLTHROUGH */
 2195         case VCHR:
 2196                 /* FALLTHROUGH */
 2197         case VFIFO:
 2198                 /*
 2199                  * Allow modifications of special files even if in the file
 2200                  * system is mounted read-only (we are not modifying the
 2201                  * files themselves, but the objects they represent).
 2202                  */
 2203                 return (0);
 2204 
 2205         default:
 2206                 /* Anything else is unsupported. */
 2207                 return (EOPNOTSUPP);
 2208         }
 2209 
 2210         /* Immutable or append-only files cannot be modified, either. */
 2211         if (node->tn_flags & (IMMUTABLE | APPEND))
 2212                 return (EPERM);
 2213 
 2214         error = vn_rlimit_trunc(size, td);
 2215         if (error != 0)
 2216                 return (error);
 2217 
 2218         error = tmpfs_truncate(vp, size);
 2219         /*
 2220          * tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents
 2221          * for us, as will update tn_status; no need to do that here.
 2222          */
 2223 
 2224         ASSERT_VOP_ELOCKED(vp, "chsize2");
 2225 
 2226         return (error);
 2227 }
 2228 
 2229 /*
 2230  * Change access and modification times of the given vnode.
 2231  * Caller should execute tmpfs_update on vp after a successful execution.
 2232  * The vnode must be locked on entry and remain locked on exit.
 2233  */
 2234 int
 2235 tmpfs_chtimes(struct vnode *vp, struct vattr *vap,
 2236     struct ucred *cred, struct thread *td)
 2237 {
 2238         int error;
 2239         struct tmpfs_node *node;
 2240 
 2241         ASSERT_VOP_ELOCKED(vp, "chtimes");
 2242 
 2243         node = VP_TO_TMPFS_NODE(vp);
 2244 
 2245         /* Disallow this operation if the file system is mounted read-only. */
 2246         if (vp->v_mount->mnt_flag & MNT_RDONLY)
 2247                 return (EROFS);
 2248 
 2249         /* Immutable or append-only files cannot be modified, either. */
 2250         if (node->tn_flags & (IMMUTABLE | APPEND))
 2251                 return (EPERM);
 2252 
 2253         error = vn_utimes_perm(vp, vap, cred, td);
 2254         if (error != 0)
 2255                 return (error);
 2256 
 2257         if (vap->va_atime.tv_sec != VNOVAL)
 2258                 node->tn_accessed = true;
 2259         if (vap->va_mtime.tv_sec != VNOVAL)
 2260                 node->tn_status |= TMPFS_NODE_MODIFIED;
 2261         if (vap->va_birthtime.tv_sec != VNOVAL)
 2262                 node->tn_status |= TMPFS_NODE_MODIFIED;
 2263         tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime);
 2264         if (vap->va_birthtime.tv_sec != VNOVAL)
 2265                 node->tn_birthtime = vap->va_birthtime;
 2266         ASSERT_VOP_ELOCKED(vp, "chtimes2");
 2267 
 2268         return (0);
 2269 }
 2270 
 2271 void
 2272 tmpfs_set_status(struct tmpfs_mount *tm, struct tmpfs_node *node, int status)
 2273 {
 2274 
 2275         if ((node->tn_status & status) == status || tm->tm_ronly)
 2276                 return;
 2277         TMPFS_NODE_LOCK(node);
 2278         node->tn_status |= status;
 2279         TMPFS_NODE_UNLOCK(node);
 2280 }
 2281 
 2282 void
 2283 tmpfs_set_accessed(struct tmpfs_mount *tm, struct tmpfs_node *node)
 2284 {
 2285         if (node->tn_accessed || tm->tm_ronly)
 2286                 return;
 2287         atomic_store_8(&node->tn_accessed, true);
 2288 }
 2289 
 2290 /* Sync timestamps */
 2291 void
 2292 tmpfs_itimes(struct vnode *vp, const struct timespec *acc,
 2293     const struct timespec *mod)
 2294 {
 2295         struct tmpfs_node *node;
 2296         struct timespec now;
 2297 
 2298         ASSERT_VOP_LOCKED(vp, "tmpfs_itimes");
 2299         node = VP_TO_TMPFS_NODE(vp);
 2300 
 2301         if (!node->tn_accessed &&
 2302             (node->tn_status & (TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0)
 2303                 return;
 2304 
 2305         vfs_timestamp(&now);
 2306         TMPFS_NODE_LOCK(node);
 2307         if (node->tn_accessed) {
 2308                 if (acc == NULL)
 2309                          acc = &now;
 2310                 node->tn_atime = *acc;
 2311         }
 2312         if (node->tn_status & TMPFS_NODE_MODIFIED) {
 2313                 if (mod == NULL)
 2314                         mod = &now;
 2315                 node->tn_mtime = *mod;
 2316         }
 2317         if (node->tn_status & TMPFS_NODE_CHANGED)
 2318                 node->tn_ctime = now;
 2319         node->tn_status &= ~(TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED);
 2320         node->tn_accessed = false;
 2321         TMPFS_NODE_UNLOCK(node);
 2322 
 2323         /* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */
 2324         random_harvest_queue(node, sizeof(*node), RANDOM_FS_ATIME);
 2325 }
 2326 
 2327 int
 2328 tmpfs_truncate(struct vnode *vp, off_t length)
 2329 {
 2330         struct tmpfs_node *node;
 2331         int error;
 2332 
 2333         if (length < 0)
 2334                 return (EINVAL);
 2335         if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize)
 2336                 return (EFBIG);
 2337 
 2338         node = VP_TO_TMPFS_NODE(vp);
 2339         error = node->tn_size == length ? 0 : tmpfs_reg_resize(vp, length,
 2340             FALSE);
 2341         if (error == 0)
 2342                 node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
 2343         tmpfs_update(vp);
 2344 
 2345         return (error);
 2346 }
 2347 
 2348 static __inline int
 2349 tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b)
 2350 {
 2351         if (a->td_hash > b->td_hash)
 2352                 return (1);
 2353         else if (a->td_hash < b->td_hash)
 2354                 return (-1);
 2355         return (0);
 2356 }
 2357 
 2358 RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);

Cache object: 555a36e1e8ba19b901ccc923a0abc688


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.