1 /* $NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $ */
2
3 /*-
4 * SPDX-License-Identifier: BSD-2-Clause-NetBSD
5 *
6 * Copyright (c) 2005 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Julio M. Merino Vidal, developed as part of Google's Summer of Code
11 * 2005 program.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Efficient memory file system supporting functions.
37 */
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/dirent.h>
44 #include <sys/fnv_hash.h>
45 #include <sys/lock.h>
46 #include <sys/limits.h>
47 #include <sys/mount.h>
48 #include <sys/namei.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/random.h>
52 #include <sys/refcount.h>
53 #include <sys/rwlock.h>
54 #include <sys/smr.h>
55 #include <sys/stat.h>
56 #include <sys/sysctl.h>
57 #include <sys/user.h>
58 #include <sys/vnode.h>
59 #include <sys/vmmeter.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_pager.h>
67 #include <vm/vm_extern.h>
68 #include <vm/swap_pager.h>
69
70 #include <fs/tmpfs/tmpfs.h>
71 #include <fs/tmpfs/tmpfs_fifoops.h>
72 #include <fs/tmpfs/tmpfs_vnops.h>
73
74 SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
75 "tmpfs file system");
76
77 static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED;
78
79 MALLOC_DEFINE(M_TMPFSDIR, "tmpfs dir", "tmpfs dirent structure");
80 static uma_zone_t tmpfs_node_pool;
81 VFS_SMR_DECLARE;
82
83 int tmpfs_pager_type = -1;
84
85 static vm_object_t
86 tmpfs_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
87 vm_ooffset_t offset, struct ucred *cred)
88 {
89 vm_object_t object;
90
91 MPASS(handle == NULL);
92 MPASS(offset == 0);
93 object = vm_object_allocate_dyn(tmpfs_pager_type, size,
94 OBJ_COLORED | OBJ_SWAP);
95 if (!swap_pager_init_object(object, NULL, NULL, size, 0)) {
96 vm_object_deallocate(object);
97 object = NULL;
98 }
99 return (object);
100 }
101
102 /*
103 * Make sure tmpfs vnodes with writable mappings can be found on the lazy list.
104 *
105 * This allows for periodic mtime updates while only scanning vnodes which are
106 * plausibly dirty, see tmpfs_update_mtime_lazy.
107 */
108 static void
109 tmpfs_pager_writecount_recalc(vm_object_t object, vm_offset_t old,
110 vm_offset_t new)
111 {
112 struct vnode *vp;
113
114 VM_OBJECT_ASSERT_WLOCKED(object);
115
116 vp = VM_TO_TMPFS_VP(object);
117
118 /*
119 * Forced unmount?
120 */
121 if (vp == NULL) {
122 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
123 ("object %p with OBJ_TMPFS_VREF but without vnode",
124 object));
125 VM_OBJECT_WUNLOCK(object);
126 return;
127 }
128
129 if (old == 0) {
130 VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp,
131 ("object without writable mappings has a reference"));
132 VNPASS(vp->v_usecount > 0, vp);
133 } else {
134 VNASSERT((object->flags & OBJ_TMPFS_VREF) != 0, vp,
135 ("object with writable mappings does not "
136 "have a reference"));
137 }
138
139 if (old == new) {
140 VM_OBJECT_WUNLOCK(object);
141 return;
142 }
143
144 if (new == 0) {
145 vm_object_clear_flag(object, OBJ_TMPFS_VREF);
146 VM_OBJECT_WUNLOCK(object);
147 vrele(vp);
148 } else {
149 if ((object->flags & OBJ_TMPFS_VREF) == 0) {
150 vref(vp);
151 vlazy(vp);
152 vm_object_set_flag(object, OBJ_TMPFS_VREF);
153 }
154 VM_OBJECT_WUNLOCK(object);
155 }
156 }
157
158 static void
159 tmpfs_pager_update_writecount(vm_object_t object, vm_offset_t start,
160 vm_offset_t end)
161 {
162 vm_offset_t new, old;
163
164 VM_OBJECT_WLOCK(object);
165 KASSERT((object->flags & OBJ_ANON) == 0,
166 ("%s: object %p with OBJ_ANON", __func__, object));
167 old = object->un_pager.swp.writemappings;
168 object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
169 new = object->un_pager.swp.writemappings;
170 tmpfs_pager_writecount_recalc(object, old, new);
171 VM_OBJECT_ASSERT_UNLOCKED(object);
172 }
173
174 static void
175 tmpfs_pager_release_writecount(vm_object_t object, vm_offset_t start,
176 vm_offset_t end)
177 {
178 vm_offset_t new, old;
179
180 VM_OBJECT_WLOCK(object);
181 KASSERT((object->flags & OBJ_ANON) == 0,
182 ("%s: object %p with OBJ_ANON", __func__, object));
183 old = object->un_pager.swp.writemappings;
184 object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
185 new = object->un_pager.swp.writemappings;
186 tmpfs_pager_writecount_recalc(object, old, new);
187 VM_OBJECT_ASSERT_UNLOCKED(object);
188 }
189
190 static void
191 tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
192 {
193 struct vnode *vp;
194
195 /*
196 * Tmpfs VREG node, which was reclaimed, has tmpfs_pager_type
197 * type. In this case there is no v_writecount to adjust.
198 */
199 if (vp_heldp != NULL)
200 VM_OBJECT_RLOCK(object);
201 else
202 VM_OBJECT_ASSERT_LOCKED(object);
203 if ((object->flags & OBJ_TMPFS) != 0) {
204 vp = VM_TO_TMPFS_VP(object);
205 if (vp != NULL) {
206 *vpp = vp;
207 if (vp_heldp != NULL) {
208 vhold(vp);
209 *vp_heldp = true;
210 }
211 }
212 }
213 if (vp_heldp != NULL)
214 VM_OBJECT_RUNLOCK(object);
215 }
216
217 static void
218 tmpfs_pager_freespace(vm_object_t obj, vm_pindex_t start, vm_size_t size)
219 {
220 struct tmpfs_node *node;
221 struct tmpfs_mount *tm;
222 vm_size_t c;
223
224 swap_pager_freespace(obj, start, size, &c);
225 if ((obj->flags & OBJ_TMPFS) == 0 || c == 0)
226 return;
227
228 node = obj->un_pager.swp.swp_priv;
229 MPASS(node->tn_type == VREG);
230 tm = node->tn_reg.tn_tmp;
231
232 KASSERT(tm->tm_pages_used >= c,
233 ("tmpfs tm %p pages %jd free %jd", tm,
234 (uintmax_t)tm->tm_pages_used, (uintmax_t)c));
235 atomic_add_long(&tm->tm_pages_used, -c);
236 KASSERT(node->tn_reg.tn_pages >= c,
237 ("tmpfs node %p pages %jd free %jd", node,
238 (uintmax_t)node->tn_reg.tn_pages, (uintmax_t)c));
239 node->tn_reg.tn_pages -= c;
240 }
241
242 static void
243 tmpfs_page_inserted(vm_object_t obj, vm_page_t m)
244 {
245 struct tmpfs_node *node;
246 struct tmpfs_mount *tm;
247
248 if ((obj->flags & OBJ_TMPFS) == 0)
249 return;
250
251 node = obj->un_pager.swp.swp_priv;
252 MPASS(node->tn_type == VREG);
253 tm = node->tn_reg.tn_tmp;
254
255 if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
256 atomic_add_long(&tm->tm_pages_used, 1);
257 node->tn_reg.tn_pages += 1;
258 }
259 }
260
261 static void
262 tmpfs_page_removed(vm_object_t obj, vm_page_t m)
263 {
264 struct tmpfs_node *node;
265 struct tmpfs_mount *tm;
266
267 if ((obj->flags & OBJ_TMPFS) == 0)
268 return;
269
270 node = obj->un_pager.swp.swp_priv;
271 MPASS(node->tn_type == VREG);
272 tm = node->tn_reg.tn_tmp;
273
274 if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
275 KASSERT(tm->tm_pages_used >= 1,
276 ("tmpfs tm %p pages %jd free 1", tm,
277 (uintmax_t)tm->tm_pages_used));
278 atomic_add_long(&tm->tm_pages_used, -1);
279 KASSERT(node->tn_reg.tn_pages >= 1,
280 ("tmpfs node %p pages %jd free 1", node,
281 (uintmax_t)node->tn_reg.tn_pages));
282 node->tn_reg.tn_pages -= 1;
283 }
284 }
285
286 static boolean_t
287 tmpfs_can_alloc_page(vm_object_t obj, vm_pindex_t pindex)
288 {
289 struct tmpfs_mount *tm;
290
291 tm = VM_TO_TMPFS_MP(obj);
292 if (tm == NULL || vm_pager_has_page(obj, pindex, NULL, NULL) ||
293 tm->tm_pages_max == 0)
294 return (true);
295 return (tm->tm_pages_max > atomic_load_long(&tm->tm_pages_used));
296 }
297
298 struct pagerops tmpfs_pager_ops = {
299 .pgo_kvme_type = KVME_TYPE_VNODE,
300 .pgo_alloc = tmpfs_pager_alloc,
301 .pgo_set_writeable_dirty = vm_object_set_writeable_dirty_,
302 .pgo_update_writecount = tmpfs_pager_update_writecount,
303 .pgo_release_writecount = tmpfs_pager_release_writecount,
304 .pgo_mightbedirty = vm_object_mightbedirty_,
305 .pgo_getvp = tmpfs_pager_getvp,
306 .pgo_freespace = tmpfs_pager_freespace,
307 .pgo_page_inserted = tmpfs_page_inserted,
308 .pgo_page_removed = tmpfs_page_removed,
309 .pgo_can_alloc_page = tmpfs_can_alloc_page,
310 };
311
312 static int
313 tmpfs_node_ctor(void *mem, int size, void *arg, int flags)
314 {
315 struct tmpfs_node *node;
316
317 node = mem;
318 node->tn_gen++;
319 node->tn_size = 0;
320 node->tn_status = 0;
321 node->tn_accessed = false;
322 node->tn_flags = 0;
323 node->tn_links = 0;
324 node->tn_vnode = NULL;
325 node->tn_vpstate = 0;
326 return (0);
327 }
328
329 static void
330 tmpfs_node_dtor(void *mem, int size, void *arg)
331 {
332 struct tmpfs_node *node;
333
334 node = mem;
335 node->tn_type = VNON;
336 }
337
338 static int
339 tmpfs_node_init(void *mem, int size, int flags)
340 {
341 struct tmpfs_node *node;
342
343 node = mem;
344 node->tn_id = 0;
345 mtx_init(&node->tn_interlock, "tmpfsni", NULL, MTX_DEF);
346 node->tn_gen = arc4random();
347 return (0);
348 }
349
350 static void
351 tmpfs_node_fini(void *mem, int size)
352 {
353 struct tmpfs_node *node;
354
355 node = mem;
356 mtx_destroy(&node->tn_interlock);
357 }
358
359 int
360 tmpfs_subr_init(void)
361 {
362 tmpfs_pager_type = vm_pager_alloc_dyn_type(&tmpfs_pager_ops,
363 OBJT_SWAP);
364 if (tmpfs_pager_type == -1)
365 return (EINVAL);
366 tmpfs_node_pool = uma_zcreate("TMPFS node",
367 sizeof(struct tmpfs_node), tmpfs_node_ctor, tmpfs_node_dtor,
368 tmpfs_node_init, tmpfs_node_fini, UMA_ALIGN_PTR, 0);
369 VFS_SMR_ZONE_SET(tmpfs_node_pool);
370 return (0);
371 }
372
373 void
374 tmpfs_subr_uninit(void)
375 {
376 if (tmpfs_pager_type != -1)
377 vm_pager_free_dyn_type(tmpfs_pager_type);
378 tmpfs_pager_type = -1;
379 uma_zdestroy(tmpfs_node_pool);
380 }
381
382 static int
383 sysctl_mem_reserved(SYSCTL_HANDLER_ARGS)
384 {
385 int error;
386 long pages, bytes;
387
388 pages = *(long *)arg1;
389 bytes = pages * PAGE_SIZE;
390
391 error = sysctl_handle_long(oidp, &bytes, 0, req);
392 if (error || !req->newptr)
393 return (error);
394
395 pages = bytes / PAGE_SIZE;
396 if (pages < TMPFS_PAGES_MINRESERVED)
397 return (EINVAL);
398
399 *(long *)arg1 = pages;
400 return (0);
401 }
402
403 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved,
404 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &tmpfs_pages_reserved, 0,
405 sysctl_mem_reserved, "L",
406 "Amount of available memory and swap below which tmpfs growth stops");
407
408 static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a,
409 struct tmpfs_dirent *b);
410 RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
411
412 size_t
413 tmpfs_mem_avail(void)
414 {
415 size_t avail;
416 long reserved;
417
418 avail = swap_pager_avail + vm_free_count();
419 reserved = atomic_load_long(&tmpfs_pages_reserved);
420 if (__predict_false(avail < reserved))
421 return (0);
422 return (avail - reserved);
423 }
424
425 size_t
426 tmpfs_pages_used(struct tmpfs_mount *tmp)
427 {
428 const size_t node_size = sizeof(struct tmpfs_node) +
429 sizeof(struct tmpfs_dirent);
430 size_t meta_pages;
431
432 meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size,
433 PAGE_SIZE);
434 return (meta_pages + tmp->tm_pages_used);
435 }
436
437 static bool
438 tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages)
439 {
440 if (tmpfs_mem_avail() < req_pages)
441 return (false);
442
443 if (tmp->tm_pages_max != ULONG_MAX &&
444 tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp))
445 return (false);
446
447 return (true);
448 }
449
450 static int
451 tmpfs_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base,
452 int end, boolean_t ignerr)
453 {
454 vm_page_t m;
455 int rv, error;
456
457 VM_OBJECT_ASSERT_WLOCKED(object);
458 KASSERT(base >= 0, ("%s: base %d", __func__, base));
459 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
460 end));
461 error = 0;
462
463 retry:
464 m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT);
465 if (m != NULL) {
466 MPASS(vm_page_all_valid(m));
467 } else if (vm_pager_has_page(object, idx, NULL, NULL)) {
468 m = vm_page_alloc(object, idx, VM_ALLOC_NORMAL |
469 VM_ALLOC_WAITFAIL);
470 if (m == NULL)
471 goto retry;
472 vm_object_pip_add(object, 1);
473 VM_OBJECT_WUNLOCK(object);
474 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
475 VM_OBJECT_WLOCK(object);
476 vm_object_pip_wakeup(object);
477 if (rv == VM_PAGER_OK) {
478 /*
479 * Since the page was not resident, and therefore not
480 * recently accessed, immediately enqueue it for
481 * asynchronous laundering. The current operation is
482 * not regarded as an access.
483 */
484 vm_page_launder(m);
485 } else {
486 vm_page_free(m);
487 m = NULL;
488 if (!ignerr)
489 error = EIO;
490 }
491 }
492 if (m != NULL) {
493 pmap_zero_page_area(m, base, end - base);
494 vm_page_set_dirty(m);
495 vm_page_xunbusy(m);
496 }
497
498 return (error);
499 }
500
501 void
502 tmpfs_ref_node(struct tmpfs_node *node)
503 {
504 #ifdef INVARIANTS
505 u_int old;
506
507 old =
508 #endif
509 refcount_acquire(&node->tn_refcount);
510 #ifdef INVARIANTS
511 KASSERT(old > 0, ("node %p zero refcount", node));
512 #endif
513 }
514
515 /*
516 * Allocates a new node of type 'type' inside the 'tmp' mount point, with
517 * its owner set to 'uid', its group to 'gid' and its mode set to 'mode',
518 * using the credentials of the process 'p'.
519 *
520 * If the node type is set to 'VDIR', then the parent parameter must point
521 * to the parent directory of the node being created. It may only be NULL
522 * while allocating the root node.
523 *
524 * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter
525 * specifies the device the node represents.
526 *
527 * If the node type is set to 'VLNK', then the parameter target specifies
528 * the file name of the target file for the symbolic link that is being
529 * created.
530 *
531 * Note that new nodes are retrieved from the available list if it has
532 * items or, if it is empty, from the node pool as long as there is enough
533 * space to create them.
534 *
535 * Returns zero on success or an appropriate error code on failure.
536 */
537 int
538 tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, enum vtype type,
539 uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent,
540 const char *target, dev_t rdev, struct tmpfs_node **node)
541 {
542 struct tmpfs_node *nnode;
543 char *symlink;
544 char symlink_smr;
545
546 /* If the root directory of the 'tmp' file system is not yet
547 * allocated, this must be the request to do it. */
548 MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR));
549
550 MPASS(IFF(type == VLNK, target != NULL));
551 MPASS(IFF(type == VBLK || type == VCHR, rdev != VNOVAL));
552
553 if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max)
554 return (ENOSPC);
555 if (!tmpfs_pages_check_avail(tmp, 1))
556 return (ENOSPC);
557
558 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
559 /*
560 * When a new tmpfs node is created for fully
561 * constructed mount point, there must be a parent
562 * node, which vnode is locked exclusively. As
563 * consequence, if the unmount is executing in
564 * parallel, vflush() cannot reclaim the parent vnode.
565 * Due to this, the check for MNTK_UNMOUNT flag is not
566 * racy: if we did not see MNTK_UNMOUNT flag, then tmp
567 * cannot be destroyed until node construction is
568 * finished and the parent vnode unlocked.
569 *
570 * Tmpfs does not need to instantiate new nodes during
571 * unmount.
572 */
573 return (EBUSY);
574 }
575 if ((mp->mnt_kern_flag & MNT_RDONLY) != 0)
576 return (EROFS);
577
578 nnode = uma_zalloc_smr(tmpfs_node_pool, M_WAITOK);
579
580 /* Generic initialization. */
581 nnode->tn_type = type;
582 vfs_timestamp(&nnode->tn_atime);
583 nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime =
584 nnode->tn_atime;
585 nnode->tn_uid = uid;
586 nnode->tn_gid = gid;
587 nnode->tn_mode = mode;
588 nnode->tn_id = alloc_unr64(&tmp->tm_ino_unr);
589 nnode->tn_refcount = 1;
590
591 /* Type-specific initialization. */
592 switch (nnode->tn_type) {
593 case VBLK:
594 case VCHR:
595 nnode->tn_rdev = rdev;
596 break;
597
598 case VDIR:
599 RB_INIT(&nnode->tn_dir.tn_dirhead);
600 LIST_INIT(&nnode->tn_dir.tn_dupindex);
601 MPASS(parent != nnode);
602 MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL));
603 nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent;
604 nnode->tn_dir.tn_readdir_lastn = 0;
605 nnode->tn_dir.tn_readdir_lastp = NULL;
606 nnode->tn_links++;
607 TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent);
608 nnode->tn_dir.tn_parent->tn_links++;
609 TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent);
610 break;
611
612 case VFIFO:
613 /* FALLTHROUGH */
614 case VSOCK:
615 break;
616
617 case VLNK:
618 MPASS(strlen(target) < MAXPATHLEN);
619 nnode->tn_size = strlen(target);
620
621 symlink = NULL;
622 if (!tmp->tm_nonc) {
623 symlink = cache_symlink_alloc(nnode->tn_size + 1,
624 M_WAITOK);
625 symlink_smr = true;
626 }
627 if (symlink == NULL) {
628 symlink = malloc(nnode->tn_size + 1, M_TMPFSNAME,
629 M_WAITOK);
630 symlink_smr = false;
631 }
632 memcpy(symlink, target, nnode->tn_size + 1);
633
634 /*
635 * Allow safe symlink resolving for lockless lookup.
636 * tmpfs_fplookup_symlink references this comment.
637 *
638 * 1. nnode is not yet visible to the world
639 * 2. both tn_link_target and tn_link_smr get populated
640 * 3. release fence publishes their content
641 * 4. tn_link_target content is immutable until node
642 * destruction, where the pointer gets set to NULL
643 * 5. tn_link_smr is never changed once set
644 *
645 * As a result it is sufficient to issue load consume
646 * on the node pointer to also get the above content
647 * in a stable manner. Worst case tn_link_smr flag
648 * may be set to true despite being stale, while the
649 * target buffer is already cleared out.
650 */
651 atomic_store_ptr(&nnode->tn_link_target, symlink);
652 atomic_store_char((char *)&nnode->tn_link_smr, symlink_smr);
653 atomic_thread_fence_rel();
654 break;
655
656 case VREG:
657 nnode->tn_reg.tn_aobj =
658 vm_pager_allocate(tmpfs_pager_type, NULL, 0,
659 VM_PROT_DEFAULT, 0,
660 NULL /* XXXKIB - tmpfs needs swap reservation */);
661 nnode->tn_reg.tn_aobj->un_pager.swp.swp_priv = nnode;
662 vm_object_set_flag(nnode->tn_reg.tn_aobj, OBJ_TMPFS);
663 nnode->tn_reg.tn_tmp = tmp;
664 nnode->tn_reg.tn_pages = 0;
665 break;
666
667 default:
668 panic("tmpfs_alloc_node: type %p %d", nnode,
669 (int)nnode->tn_type);
670 }
671
672 TMPFS_LOCK(tmp);
673 LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries);
674 nnode->tn_attached = true;
675 tmp->tm_nodes_inuse++;
676 tmp->tm_refcount++;
677 TMPFS_UNLOCK(tmp);
678
679 *node = nnode;
680 return (0);
681 }
682
683 /*
684 * Destroys the node pointed to by node from the file system 'tmp'.
685 * If the node references a directory, no entries are allowed.
686 */
687 void
688 tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node)
689 {
690 if (refcount_release_if_not_last(&node->tn_refcount))
691 return;
692
693 TMPFS_LOCK(tmp);
694 TMPFS_NODE_LOCK(node);
695 if (!tmpfs_free_node_locked(tmp, node, false)) {
696 TMPFS_NODE_UNLOCK(node);
697 TMPFS_UNLOCK(tmp);
698 }
699 }
700
701 bool
702 tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node,
703 bool detach)
704 {
705 vm_object_t uobj;
706 char *symlink;
707 bool last;
708
709 TMPFS_MP_ASSERT_LOCKED(tmp);
710 TMPFS_NODE_ASSERT_LOCKED(node);
711
712 last = refcount_release(&node->tn_refcount);
713 if (node->tn_attached && (detach || last)) {
714 MPASS(tmp->tm_nodes_inuse > 0);
715 tmp->tm_nodes_inuse--;
716 LIST_REMOVE(node, tn_entries);
717 node->tn_attached = false;
718 }
719 if (!last)
720 return (false);
721
722 TMPFS_NODE_UNLOCK(node);
723
724 #ifdef INVARIANTS
725 MPASS(node->tn_vnode == NULL);
726 MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0);
727
728 /*
729 * Make sure this is a node type we can deal with. Everything
730 * is explicitly enumerated without the 'default' clause so
731 * the compiler can throw an error in case a new type is
732 * added.
733 */
734 switch (node->tn_type) {
735 case VBLK:
736 case VCHR:
737 case VDIR:
738 case VFIFO:
739 case VSOCK:
740 case VLNK:
741 case VREG:
742 break;
743 case VNON:
744 case VBAD:
745 case VMARKER:
746 panic("%s: bad type %d for node %p", __func__,
747 (int)node->tn_type, node);
748 }
749 #endif
750
751 switch (node->tn_type) {
752 case VREG:
753 uobj = node->tn_reg.tn_aobj;
754 node->tn_reg.tn_aobj = NULL;
755 if (uobj != NULL) {
756 VM_OBJECT_WLOCK(uobj);
757 KASSERT((uobj->flags & OBJ_TMPFS) != 0,
758 ("tmpfs node %p uobj %p not tmpfs", node, uobj));
759 vm_object_clear_flag(uobj, OBJ_TMPFS);
760 KASSERT(tmp->tm_pages_used >= node->tn_reg.tn_pages,
761 ("tmpfs tmp %p node %p pages %jd free %jd", tmp,
762 node, (uintmax_t)tmp->tm_pages_used,
763 (uintmax_t)node->tn_reg.tn_pages));
764 atomic_add_long(&tmp->tm_pages_used,
765 -node->tn_reg.tn_pages);
766 VM_OBJECT_WUNLOCK(uobj);
767 }
768 tmpfs_free_tmp(tmp);
769
770 /*
771 * vm_object_deallocate() must not be called while
772 * owning tm_allnode_lock, because deallocate might
773 * sleep. Call it after tmpfs_free_tmp() does the
774 * unlock.
775 */
776 if (uobj != NULL)
777 vm_object_deallocate(uobj);
778
779 break;
780 case VLNK:
781 tmpfs_free_tmp(tmp);
782
783 symlink = node->tn_link_target;
784 atomic_store_ptr(&node->tn_link_target, NULL);
785 if (atomic_load_char(&node->tn_link_smr)) {
786 cache_symlink_free(symlink, node->tn_size + 1);
787 } else {
788 free(symlink, M_TMPFSNAME);
789 }
790 break;
791 default:
792 tmpfs_free_tmp(tmp);
793 break;
794 }
795
796 uma_zfree_smr(tmpfs_node_pool, node);
797 return (true);
798 }
799
800 static __inline uint32_t
801 tmpfs_dirent_hash(const char *name, u_int len)
802 {
803 uint32_t hash;
804
805 hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK;
806 #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP
807 hash &= 0xf;
808 #endif
809 if (hash < TMPFS_DIRCOOKIE_MIN)
810 hash += TMPFS_DIRCOOKIE_MIN;
811
812 return (hash);
813 }
814
815 static __inline off_t
816 tmpfs_dirent_cookie(struct tmpfs_dirent *de)
817 {
818 if (de == NULL)
819 return (TMPFS_DIRCOOKIE_EOF);
820
821 MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN);
822
823 return (de->td_cookie);
824 }
825
826 static __inline boolean_t
827 tmpfs_dirent_dup(struct tmpfs_dirent *de)
828 {
829 return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0);
830 }
831
832 static __inline boolean_t
833 tmpfs_dirent_duphead(struct tmpfs_dirent *de)
834 {
835 return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0);
836 }
837
838 void
839 tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen)
840 {
841 de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen);
842 memcpy(de->ud.td_name, name, namelen);
843 de->td_namelen = namelen;
844 }
845
846 /*
847 * Allocates a new directory entry for the node node with a name of name.
848 * The new directory entry is returned in *de.
849 *
850 * The link count of node is increased by one to reflect the new object
851 * referencing it.
852 *
853 * Returns zero on success or an appropriate error code on failure.
854 */
855 int
856 tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node,
857 const char *name, u_int len, struct tmpfs_dirent **de)
858 {
859 struct tmpfs_dirent *nde;
860
861 nde = malloc(sizeof(*nde), M_TMPFSDIR, M_WAITOK);
862 nde->td_node = node;
863 if (name != NULL) {
864 nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK);
865 tmpfs_dirent_init(nde, name, len);
866 } else
867 nde->td_namelen = 0;
868 if (node != NULL)
869 node->tn_links++;
870
871 *de = nde;
872
873 return (0);
874 }
875
876 /*
877 * Frees a directory entry. It is the caller's responsibility to destroy
878 * the node referenced by it if needed.
879 *
880 * The link count of node is decreased by one to reflect the removal of an
881 * object that referenced it. This only happens if 'node_exists' is true;
882 * otherwise the function will not access the node referred to by the
883 * directory entry, as it may already have been released from the outside.
884 */
885 void
886 tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de)
887 {
888 struct tmpfs_node *node;
889
890 node = de->td_node;
891 if (node != NULL) {
892 MPASS(node->tn_links > 0);
893 node->tn_links--;
894 }
895 if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL)
896 free(de->ud.td_name, M_TMPFSNAME);
897 free(de, M_TMPFSDIR);
898 }
899
900 void
901 tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj)
902 {
903 bool want_vrele;
904
905 ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject");
906 if (vp->v_type != VREG || obj == NULL)
907 return;
908
909 VM_OBJECT_WLOCK(obj);
910 VI_LOCK(vp);
911 /*
912 * May be going through forced unmount.
913 */
914 want_vrele = false;
915 if ((obj->flags & OBJ_TMPFS_VREF) != 0) {
916 vm_object_clear_flag(obj, OBJ_TMPFS_VREF);
917 want_vrele = true;
918 }
919
920 if (vp->v_writecount < 0)
921 vp->v_writecount = 0;
922 VI_UNLOCK(vp);
923 VM_OBJECT_WUNLOCK(obj);
924 if (want_vrele) {
925 vrele(vp);
926 }
927 }
928
929 /*
930 * Need to clear v_object for insmntque failure.
931 */
932 static void
933 tmpfs_insmntque_dtr(struct vnode *vp, void *dtr_arg)
934 {
935
936 tmpfs_destroy_vobject(vp, vp->v_object);
937 vp->v_object = NULL;
938 vp->v_data = NULL;
939 vp->v_op = &dead_vnodeops;
940 vgone(vp);
941 vput(vp);
942 }
943
944 /*
945 * Allocates a new vnode for the node node or returns a new reference to
946 * an existing one if the node had already a vnode referencing it. The
947 * resulting locked vnode is returned in *vpp.
948 *
949 * Returns zero on success or an appropriate error code on failure.
950 */
951 int
952 tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag,
953 struct vnode **vpp)
954 {
955 struct vnode *vp;
956 enum vgetstate vs;
957 struct tmpfs_mount *tm;
958 vm_object_t object;
959 int error;
960
961 error = 0;
962 tm = VFS_TO_TMPFS(mp);
963 TMPFS_NODE_LOCK(node);
964 tmpfs_ref_node(node);
965 loop:
966 TMPFS_NODE_ASSERT_LOCKED(node);
967 if ((vp = node->tn_vnode) != NULL) {
968 MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0);
969 if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) ||
970 (VN_IS_DOOMED(vp) &&
971 (lkflag & LK_NOWAIT) != 0)) {
972 TMPFS_NODE_UNLOCK(node);
973 error = ENOENT;
974 vp = NULL;
975 goto out;
976 }
977 if (VN_IS_DOOMED(vp)) {
978 node->tn_vpstate |= TMPFS_VNODE_WRECLAIM;
979 while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) {
980 msleep(&node->tn_vnode, TMPFS_NODE_MTX(node),
981 0, "tmpfsE", 0);
982 }
983 goto loop;
984 }
985 vs = vget_prep(vp);
986 TMPFS_NODE_UNLOCK(node);
987 error = vget_finish(vp, lkflag, vs);
988 if (error == ENOENT) {
989 TMPFS_NODE_LOCK(node);
990 goto loop;
991 }
992 if (error != 0) {
993 vp = NULL;
994 goto out;
995 }
996
997 /*
998 * Make sure the vnode is still there after
999 * getting the interlock to avoid racing a free.
1000 */
1001 if (node->tn_vnode != vp) {
1002 vput(vp);
1003 TMPFS_NODE_LOCK(node);
1004 goto loop;
1005 }
1006
1007 goto out;
1008 }
1009
1010 if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) ||
1011 (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) {
1012 TMPFS_NODE_UNLOCK(node);
1013 error = ENOENT;
1014 vp = NULL;
1015 goto out;
1016 }
1017
1018 /*
1019 * otherwise lock the vp list while we call getnewvnode
1020 * since that can block.
1021 */
1022 if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) {
1023 node->tn_vpstate |= TMPFS_VNODE_WANT;
1024 error = msleep((caddr_t) &node->tn_vpstate,
1025 TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0);
1026 if (error != 0)
1027 goto out;
1028 goto loop;
1029 } else
1030 node->tn_vpstate |= TMPFS_VNODE_ALLOCATING;
1031
1032 TMPFS_NODE_UNLOCK(node);
1033
1034 /* Get a new vnode and associate it with our node. */
1035 error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ?
1036 &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp);
1037 if (error != 0)
1038 goto unlock;
1039 MPASS(vp != NULL);
1040
1041 /* lkflag is ignored, the lock is exclusive */
1042 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1043
1044 vp->v_data = node;
1045 vp->v_type = node->tn_type;
1046
1047 /* Type-specific initialization. */
1048 switch (node->tn_type) {
1049 case VBLK:
1050 /* FALLTHROUGH */
1051 case VCHR:
1052 /* FALLTHROUGH */
1053 case VLNK:
1054 /* FALLTHROUGH */
1055 case VSOCK:
1056 break;
1057 case VFIFO:
1058 vp->v_op = &tmpfs_fifoop_entries;
1059 break;
1060 case VREG:
1061 object = node->tn_reg.tn_aobj;
1062 VM_OBJECT_WLOCK(object);
1063 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
1064 ("%s: object %p with OBJ_TMPFS_VREF but without vnode",
1065 __func__, object));
1066 KASSERT(object->un_pager.swp.writemappings == 0,
1067 ("%s: object %p has writemappings",
1068 __func__, object));
1069 VI_LOCK(vp);
1070 KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs"));
1071 vp->v_object = object;
1072 vn_irflag_set_locked(vp, VIRF_PGREAD);
1073 VI_UNLOCK(vp);
1074 VM_OBJECT_WUNLOCK(object);
1075 break;
1076 case VDIR:
1077 MPASS(node->tn_dir.tn_parent != NULL);
1078 if (node->tn_dir.tn_parent == node)
1079 vp->v_vflag |= VV_ROOT;
1080 break;
1081
1082 default:
1083 panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type);
1084 }
1085 if (vp->v_type != VFIFO)
1086 VN_LOCK_ASHARE(vp);
1087
1088 error = insmntque1(vp, mp, tmpfs_insmntque_dtr, NULL);
1089 if (error != 0)
1090 vp = NULL;
1091
1092 unlock:
1093 TMPFS_NODE_LOCK(node);
1094
1095 MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING);
1096 node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING;
1097 node->tn_vnode = vp;
1098
1099 if (node->tn_vpstate & TMPFS_VNODE_WANT) {
1100 node->tn_vpstate &= ~TMPFS_VNODE_WANT;
1101 TMPFS_NODE_UNLOCK(node);
1102 wakeup((caddr_t) &node->tn_vpstate);
1103 } else
1104 TMPFS_NODE_UNLOCK(node);
1105
1106 out:
1107 if (error == 0) {
1108 *vpp = vp;
1109
1110 #ifdef INVARIANTS
1111 MPASS(*vpp != NULL && VOP_ISLOCKED(*vpp));
1112 TMPFS_NODE_LOCK(node);
1113 MPASS(*vpp == node->tn_vnode);
1114 TMPFS_NODE_UNLOCK(node);
1115 #endif
1116 }
1117 tmpfs_free_node(tm, node);
1118
1119 return (error);
1120 }
1121
1122 /*
1123 * Destroys the association between the vnode vp and the node it
1124 * references.
1125 */
1126 void
1127 tmpfs_free_vp(struct vnode *vp)
1128 {
1129 struct tmpfs_node *node;
1130
1131 node = VP_TO_TMPFS_NODE(vp);
1132
1133 TMPFS_NODE_ASSERT_LOCKED(node);
1134 node->tn_vnode = NULL;
1135 if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0)
1136 wakeup(&node->tn_vnode);
1137 node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM;
1138 vp->v_data = NULL;
1139 }
1140
1141 /*
1142 * Allocates a new file of type 'type' and adds it to the parent directory
1143 * 'dvp'; this addition is done using the component name given in 'cnp'.
1144 * The ownership of the new file is automatically assigned based on the
1145 * credentials of the caller (through 'cnp'), the group is set based on
1146 * the parent directory and the mode is determined from the 'vap' argument.
1147 * If successful, *vpp holds a vnode to the newly created file and zero
1148 * is returned. Otherwise *vpp is NULL and the function returns an
1149 * appropriate error code.
1150 */
1151 int
1152 tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
1153 struct componentname *cnp, const char *target)
1154 {
1155 int error;
1156 struct tmpfs_dirent *de;
1157 struct tmpfs_mount *tmp;
1158 struct tmpfs_node *dnode;
1159 struct tmpfs_node *node;
1160 struct tmpfs_node *parent;
1161
1162 ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file");
1163 MPASS(cnp->cn_flags & HASBUF);
1164
1165 tmp = VFS_TO_TMPFS(dvp->v_mount);
1166 dnode = VP_TO_TMPFS_DIR(dvp);
1167 *vpp = NULL;
1168
1169 /* If the entry we are creating is a directory, we cannot overflow
1170 * the number of links of its parent, because it will get a new
1171 * link. */
1172 if (vap->va_type == VDIR) {
1173 /* Ensure that we do not overflow the maximum number of links
1174 * imposed by the system. */
1175 MPASS(dnode->tn_links <= TMPFS_LINK_MAX);
1176 if (dnode->tn_links == TMPFS_LINK_MAX) {
1177 return (EMLINK);
1178 }
1179
1180 parent = dnode;
1181 MPASS(parent != NULL);
1182 } else
1183 parent = NULL;
1184
1185 /* Allocate a node that represents the new file. */
1186 error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type,
1187 cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent,
1188 target, vap->va_rdev, &node);
1189 if (error != 0)
1190 return (error);
1191
1192 /* Allocate a directory entry that points to the new file. */
1193 error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen,
1194 &de);
1195 if (error != 0) {
1196 tmpfs_free_node(tmp, node);
1197 return (error);
1198 }
1199
1200 /* Allocate a vnode for the new file. */
1201 error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp);
1202 if (error != 0) {
1203 tmpfs_free_dirent(tmp, de);
1204 tmpfs_free_node(tmp, node);
1205 return (error);
1206 }
1207
1208 /* Now that all required items are allocated, we can proceed to
1209 * insert the new node into the directory, an operation that
1210 * cannot fail. */
1211 if (cnp->cn_flags & ISWHITEOUT)
1212 tmpfs_dir_whiteout_remove(dvp, cnp);
1213 tmpfs_dir_attach(dvp, de);
1214 return (0);
1215 }
1216
1217 struct tmpfs_dirent *
1218 tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
1219 {
1220 struct tmpfs_dirent *de;
1221
1222 de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead);
1223 dc->tdc_tree = de;
1224 if (de != NULL && tmpfs_dirent_duphead(de))
1225 de = LIST_FIRST(&de->ud.td_duphead);
1226 dc->tdc_current = de;
1227
1228 return (dc->tdc_current);
1229 }
1230
1231 struct tmpfs_dirent *
1232 tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
1233 {
1234 struct tmpfs_dirent *de;
1235
1236 MPASS(dc->tdc_tree != NULL);
1237 if (tmpfs_dirent_dup(dc->tdc_current)) {
1238 dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries);
1239 if (dc->tdc_current != NULL)
1240 return (dc->tdc_current);
1241 }
1242 dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir,
1243 &dnode->tn_dir.tn_dirhead, dc->tdc_tree);
1244 if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) {
1245 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
1246 MPASS(dc->tdc_current != NULL);
1247 }
1248
1249 return (dc->tdc_current);
1250 }
1251
1252 /* Lookup directory entry in RB-Tree. Function may return duphead entry. */
1253 static struct tmpfs_dirent *
1254 tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash)
1255 {
1256 struct tmpfs_dirent *de, dekey;
1257
1258 dekey.td_hash = hash;
1259 de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey);
1260 return (de);
1261 }
1262
1263 /* Lookup directory entry by cookie, initialize directory cursor accordingly. */
1264 static struct tmpfs_dirent *
1265 tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie,
1266 struct tmpfs_dir_cursor *dc)
1267 {
1268 struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead;
1269 struct tmpfs_dirent *de, dekey;
1270
1271 MPASS(cookie >= TMPFS_DIRCOOKIE_MIN);
1272
1273 if (cookie == node->tn_dir.tn_readdir_lastn &&
1274 (de = node->tn_dir.tn_readdir_lastp) != NULL) {
1275 /* Protect against possible race, tn_readdir_last[pn]
1276 * may be updated with only shared vnode lock held. */
1277 if (cookie == tmpfs_dirent_cookie(de))
1278 goto out;
1279 }
1280
1281 if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) {
1282 LIST_FOREACH(de, &node->tn_dir.tn_dupindex,
1283 uh.td_dup.index_entries) {
1284 MPASS(tmpfs_dirent_dup(de));
1285 if (de->td_cookie == cookie)
1286 goto out;
1287 /* dupindex list is sorted. */
1288 if (de->td_cookie < cookie) {
1289 de = NULL;
1290 goto out;
1291 }
1292 }
1293 MPASS(de == NULL);
1294 goto out;
1295 }
1296
1297 if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) {
1298 de = NULL;
1299 } else {
1300 dekey.td_hash = cookie;
1301 /* Recover if direntry for cookie was removed */
1302 de = RB_NFIND(tmpfs_dir, dirhead, &dekey);
1303 }
1304 dc->tdc_tree = de;
1305 dc->tdc_current = de;
1306 if (de != NULL && tmpfs_dirent_duphead(de)) {
1307 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
1308 MPASS(dc->tdc_current != NULL);
1309 }
1310 return (dc->tdc_current);
1311
1312 out:
1313 dc->tdc_tree = de;
1314 dc->tdc_current = de;
1315 if (de != NULL && tmpfs_dirent_dup(de))
1316 dc->tdc_tree = tmpfs_dir_xlookup_hash(node,
1317 de->td_hash);
1318 return (dc->tdc_current);
1319 }
1320
1321 /*
1322 * Looks for a directory entry in the directory represented by node.
1323 * 'cnp' describes the name of the entry to look for. Note that the .
1324 * and .. components are not allowed as they do not physically exist
1325 * within directories.
1326 *
1327 * Returns a pointer to the entry when found, otherwise NULL.
1328 */
1329 struct tmpfs_dirent *
1330 tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f,
1331 struct componentname *cnp)
1332 {
1333 struct tmpfs_dir_duphead *duphead;
1334 struct tmpfs_dirent *de;
1335 uint32_t hash;
1336
1337 MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.'));
1338 MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' &&
1339 cnp->cn_nameptr[1] == '.')));
1340 TMPFS_VALIDATE_DIR(node);
1341
1342 hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen);
1343 de = tmpfs_dir_xlookup_hash(node, hash);
1344 if (de != NULL && tmpfs_dirent_duphead(de)) {
1345 duphead = &de->ud.td_duphead;
1346 LIST_FOREACH(de, duphead, uh.td_dup.entries) {
1347 if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
1348 cnp->cn_namelen))
1349 break;
1350 }
1351 } else if (de != NULL) {
1352 if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
1353 cnp->cn_namelen))
1354 de = NULL;
1355 }
1356 if (de != NULL && f != NULL && de->td_node != f)
1357 de = NULL;
1358
1359 return (de);
1360 }
1361
1362 /*
1363 * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex
1364 * list, allocate new cookie value.
1365 */
1366 static void
1367 tmpfs_dir_attach_dup(struct tmpfs_node *dnode,
1368 struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde)
1369 {
1370 struct tmpfs_dir_duphead *dupindex;
1371 struct tmpfs_dirent *de, *pde;
1372
1373 dupindex = &dnode->tn_dir.tn_dupindex;
1374 de = LIST_FIRST(dupindex);
1375 if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) {
1376 if (de == NULL)
1377 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
1378 else
1379 nde->td_cookie = de->td_cookie + 1;
1380 MPASS(tmpfs_dirent_dup(nde));
1381 LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries);
1382 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1383 return;
1384 }
1385
1386 /*
1387 * Cookie numbers are near exhaustion. Scan dupindex list for unused
1388 * numbers. dupindex list is sorted in descending order. Keep it so
1389 * after inserting nde.
1390 */
1391 while (1) {
1392 pde = de;
1393 de = LIST_NEXT(de, uh.td_dup.index_entries);
1394 if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) {
1395 /*
1396 * Last element of the index doesn't have minimal cookie
1397 * value, use it.
1398 */
1399 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
1400 LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries);
1401 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1402 return;
1403 } else if (de == NULL) {
1404 /*
1405 * We are so lucky have 2^30 hash duplicates in single
1406 * directory :) Return largest possible cookie value.
1407 * It should be fine except possible issues with
1408 * VOP_READDIR restart.
1409 */
1410 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX;
1411 LIST_INSERT_HEAD(dupindex, nde,
1412 uh.td_dup.index_entries);
1413 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1414 return;
1415 }
1416 if (de->td_cookie + 1 == pde->td_cookie ||
1417 de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX)
1418 continue; /* No hole or invalid cookie. */
1419 nde->td_cookie = de->td_cookie + 1;
1420 MPASS(tmpfs_dirent_dup(nde));
1421 MPASS(pde->td_cookie > nde->td_cookie);
1422 MPASS(nde->td_cookie > de->td_cookie);
1423 LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries);
1424 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1425 return;
1426 }
1427 }
1428
1429 /*
1430 * Attaches the directory entry de to the directory represented by vp.
1431 * Note that this does not change the link count of the node pointed by
1432 * the directory entry, as this is done by tmpfs_alloc_dirent.
1433 */
1434 void
1435 tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de)
1436 {
1437 struct tmpfs_node *dnode;
1438 struct tmpfs_dirent *xde, *nde;
1439
1440 ASSERT_VOP_ELOCKED(vp, __func__);
1441 MPASS(de->td_namelen > 0);
1442 MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN);
1443 MPASS(de->td_cookie == de->td_hash);
1444
1445 dnode = VP_TO_TMPFS_DIR(vp);
1446 dnode->tn_dir.tn_readdir_lastn = 0;
1447 dnode->tn_dir.tn_readdir_lastp = NULL;
1448
1449 MPASS(!tmpfs_dirent_dup(de));
1450 xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
1451 if (xde != NULL && tmpfs_dirent_duphead(xde))
1452 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
1453 else if (xde != NULL) {
1454 /*
1455 * Allocate new duphead. Swap xde with duphead to avoid
1456 * adding/removing elements with the same hash.
1457 */
1458 MPASS(!tmpfs_dirent_dup(xde));
1459 tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0,
1460 &nde);
1461 /* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */
1462 memcpy(nde, xde, sizeof(*xde));
1463 xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD;
1464 LIST_INIT(&xde->ud.td_duphead);
1465 xde->td_namelen = 0;
1466 xde->td_node = NULL;
1467 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde);
1468 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
1469 }
1470 dnode->tn_size += sizeof(struct tmpfs_dirent);
1471 dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
1472 dnode->tn_accessed = true;
1473 tmpfs_update(vp);
1474 }
1475
1476 /*
1477 * Detaches the directory entry de from the directory represented by vp.
1478 * Note that this does not change the link count of the node pointed by
1479 * the directory entry, as this is done by tmpfs_free_dirent.
1480 */
1481 void
1482 tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de)
1483 {
1484 struct tmpfs_mount *tmp;
1485 struct tmpfs_dir *head;
1486 struct tmpfs_node *dnode;
1487 struct tmpfs_dirent *xde;
1488
1489 ASSERT_VOP_ELOCKED(vp, __func__);
1490
1491 dnode = VP_TO_TMPFS_DIR(vp);
1492 head = &dnode->tn_dir.tn_dirhead;
1493 dnode->tn_dir.tn_readdir_lastn = 0;
1494 dnode->tn_dir.tn_readdir_lastp = NULL;
1495
1496 if (tmpfs_dirent_dup(de)) {
1497 /* Remove duphead if de was last entry. */
1498 if (LIST_NEXT(de, uh.td_dup.entries) == NULL) {
1499 xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash);
1500 MPASS(tmpfs_dirent_duphead(xde));
1501 } else
1502 xde = NULL;
1503 LIST_REMOVE(de, uh.td_dup.entries);
1504 LIST_REMOVE(de, uh.td_dup.index_entries);
1505 if (xde != NULL) {
1506 if (LIST_EMPTY(&xde->ud.td_duphead)) {
1507 RB_REMOVE(tmpfs_dir, head, xde);
1508 tmp = VFS_TO_TMPFS(vp->v_mount);
1509 MPASS(xde->td_node == NULL);
1510 tmpfs_free_dirent(tmp, xde);
1511 }
1512 }
1513 de->td_cookie = de->td_hash;
1514 } else
1515 RB_REMOVE(tmpfs_dir, head, de);
1516
1517 dnode->tn_size -= sizeof(struct tmpfs_dirent);
1518 dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
1519 dnode->tn_accessed = true;
1520 tmpfs_update(vp);
1521 }
1522
1523 void
1524 tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode)
1525 {
1526 struct tmpfs_dirent *de, *dde, *nde;
1527
1528 RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) {
1529 RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
1530 /* Node may already be destroyed. */
1531 de->td_node = NULL;
1532 if (tmpfs_dirent_duphead(de)) {
1533 while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) {
1534 LIST_REMOVE(dde, uh.td_dup.entries);
1535 dde->td_node = NULL;
1536 tmpfs_free_dirent(tmp, dde);
1537 }
1538 }
1539 tmpfs_free_dirent(tmp, de);
1540 }
1541 }
1542
1543 /*
1544 * Helper function for tmpfs_readdir. Creates a '.' entry for the given
1545 * directory and returns it in the uio space. The function returns 0
1546 * on success, -1 if there was not enough space in the uio structure to
1547 * hold the directory entry or an appropriate error code if another
1548 * error happens.
1549 */
1550 static int
1551 tmpfs_dir_getdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
1552 struct uio *uio)
1553 {
1554 int error;
1555 struct dirent dent;
1556
1557 TMPFS_VALIDATE_DIR(node);
1558 MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT);
1559
1560 dent.d_fileno = node->tn_id;
1561 dent.d_off = TMPFS_DIRCOOKIE_DOTDOT;
1562 dent.d_type = DT_DIR;
1563 dent.d_namlen = 1;
1564 dent.d_name[0] = '.';
1565 dent.d_reclen = GENERIC_DIRSIZ(&dent);
1566 dirent_terminate(&dent);
1567
1568 if (dent.d_reclen > uio->uio_resid)
1569 error = EJUSTRETURN;
1570 else
1571 error = uiomove(&dent, dent.d_reclen, uio);
1572
1573 tmpfs_set_accessed(tm, node);
1574
1575 return (error);
1576 }
1577
1578 /*
1579 * Helper function for tmpfs_readdir. Creates a '..' entry for the given
1580 * directory and returns it in the uio space. The function returns 0
1581 * on success, -1 if there was not enough space in the uio structure to
1582 * hold the directory entry or an appropriate error code if another
1583 * error happens.
1584 */
1585 static int
1586 tmpfs_dir_getdotdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
1587 struct uio *uio, off_t next)
1588 {
1589 struct tmpfs_node *parent;
1590 struct dirent dent;
1591 int error;
1592
1593 TMPFS_VALIDATE_DIR(node);
1594 MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT);
1595
1596 /*
1597 * Return ENOENT if the current node is already removed.
1598 */
1599 TMPFS_ASSERT_LOCKED(node);
1600 parent = node->tn_dir.tn_parent;
1601 if (parent == NULL)
1602 return (ENOENT);
1603
1604 dent.d_fileno = parent->tn_id;
1605 dent.d_off = next;
1606 dent.d_type = DT_DIR;
1607 dent.d_namlen = 2;
1608 dent.d_name[0] = '.';
1609 dent.d_name[1] = '.';
1610 dent.d_reclen = GENERIC_DIRSIZ(&dent);
1611 dirent_terminate(&dent);
1612
1613 if (dent.d_reclen > uio->uio_resid)
1614 error = EJUSTRETURN;
1615 else
1616 error = uiomove(&dent, dent.d_reclen, uio);
1617
1618 tmpfs_set_accessed(tm, node);
1619
1620 return (error);
1621 }
1622
1623 /*
1624 * Helper function for tmpfs_readdir. Returns as much directory entries
1625 * as can fit in the uio space. The read starts at uio->uio_offset.
1626 * The function returns 0 on success, -1 if there was not enough space
1627 * in the uio structure to hold the directory entry or an appropriate
1628 * error code if another error happens.
1629 */
1630 int
1631 tmpfs_dir_getdents(struct tmpfs_mount *tm, struct tmpfs_node *node,
1632 struct uio *uio, int maxcookies, u_long *cookies, int *ncookies)
1633 {
1634 struct tmpfs_dir_cursor dc;
1635 struct tmpfs_dirent *de, *nde;
1636 off_t off;
1637 int error;
1638
1639 TMPFS_VALIDATE_DIR(node);
1640
1641 off = 0;
1642
1643 /*
1644 * Lookup the node from the current offset. The starting offset of
1645 * 0 will lookup both '.' and '..', and then the first real entry,
1646 * or EOF if there are none. Then find all entries for the dir that
1647 * fit into the buffer. Once no more entries are found (de == NULL),
1648 * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next
1649 * call to return 0.
1650 */
1651 switch (uio->uio_offset) {
1652 case TMPFS_DIRCOOKIE_DOT:
1653 error = tmpfs_dir_getdotdent(tm, node, uio);
1654 if (error != 0)
1655 return (error);
1656 uio->uio_offset = off = TMPFS_DIRCOOKIE_DOTDOT;
1657 if (cookies != NULL)
1658 cookies[(*ncookies)++] = off;
1659 /* FALLTHROUGH */
1660 case TMPFS_DIRCOOKIE_DOTDOT:
1661 de = tmpfs_dir_first(node, &dc);
1662 off = tmpfs_dirent_cookie(de);
1663 error = tmpfs_dir_getdotdotdent(tm, node, uio, off);
1664 if (error != 0)
1665 return (error);
1666 uio->uio_offset = off;
1667 if (cookies != NULL)
1668 cookies[(*ncookies)++] = off;
1669 /* EOF. */
1670 if (de == NULL)
1671 return (0);
1672 break;
1673 case TMPFS_DIRCOOKIE_EOF:
1674 return (0);
1675 default:
1676 de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc);
1677 if (de == NULL)
1678 return (EINVAL);
1679 if (cookies != NULL)
1680 off = tmpfs_dirent_cookie(de);
1681 }
1682
1683 /*
1684 * Read as much entries as possible; i.e., until we reach the end of the
1685 * directory or we exhaust uio space.
1686 */
1687 do {
1688 struct dirent d;
1689
1690 /*
1691 * Create a dirent structure representing the current tmpfs_node
1692 * and fill it.
1693 */
1694 if (de->td_node == NULL) {
1695 d.d_fileno = 1;
1696 d.d_type = DT_WHT;
1697 } else {
1698 d.d_fileno = de->td_node->tn_id;
1699 switch (de->td_node->tn_type) {
1700 case VBLK:
1701 d.d_type = DT_BLK;
1702 break;
1703
1704 case VCHR:
1705 d.d_type = DT_CHR;
1706 break;
1707
1708 case VDIR:
1709 d.d_type = DT_DIR;
1710 break;
1711
1712 case VFIFO:
1713 d.d_type = DT_FIFO;
1714 break;
1715
1716 case VLNK:
1717 d.d_type = DT_LNK;
1718 break;
1719
1720 case VREG:
1721 d.d_type = DT_REG;
1722 break;
1723
1724 case VSOCK:
1725 d.d_type = DT_SOCK;
1726 break;
1727
1728 default:
1729 panic("tmpfs_dir_getdents: type %p %d",
1730 de->td_node, (int)de->td_node->tn_type);
1731 }
1732 }
1733 d.d_namlen = de->td_namelen;
1734 MPASS(de->td_namelen < sizeof(d.d_name));
1735 (void)memcpy(d.d_name, de->ud.td_name, de->td_namelen);
1736 d.d_reclen = GENERIC_DIRSIZ(&d);
1737
1738 /*
1739 * Stop reading if the directory entry we are treating is bigger
1740 * than the amount of data that can be returned.
1741 */
1742 if (d.d_reclen > uio->uio_resid) {
1743 error = EJUSTRETURN;
1744 break;
1745 }
1746
1747 nde = tmpfs_dir_next(node, &dc);
1748 d.d_off = tmpfs_dirent_cookie(nde);
1749 dirent_terminate(&d);
1750
1751 /*
1752 * Copy the new dirent structure into the output buffer and
1753 * advance pointers.
1754 */
1755 error = uiomove(&d, d.d_reclen, uio);
1756 if (error == 0) {
1757 de = nde;
1758 if (cookies != NULL) {
1759 off = tmpfs_dirent_cookie(de);
1760 MPASS(*ncookies < maxcookies);
1761 cookies[(*ncookies)++] = off;
1762 }
1763 }
1764 } while (error == 0 && uio->uio_resid > 0 && de != NULL);
1765
1766 /* Skip setting off when using cookies as it is already done above. */
1767 if (cookies == NULL)
1768 off = tmpfs_dirent_cookie(de);
1769
1770 /* Update the offset and cache. */
1771 uio->uio_offset = off;
1772 node->tn_dir.tn_readdir_lastn = off;
1773 node->tn_dir.tn_readdir_lastp = de;
1774
1775 tmpfs_set_accessed(tm, node);
1776 return (error);
1777 }
1778
1779 int
1780 tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp)
1781 {
1782 struct tmpfs_dirent *de;
1783 int error;
1784
1785 error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL,
1786 cnp->cn_nameptr, cnp->cn_namelen, &de);
1787 if (error != 0)
1788 return (error);
1789 tmpfs_dir_attach(dvp, de);
1790 return (0);
1791 }
1792
1793 void
1794 tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp)
1795 {
1796 struct tmpfs_dirent *de;
1797
1798 de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp);
1799 MPASS(de != NULL && de->td_node == NULL);
1800 tmpfs_dir_detach(dvp, de);
1801 tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de);
1802 }
1803
1804 /*
1805 * Resizes the aobj associated with the regular file pointed to by 'vp' to the
1806 * size 'newsize'. 'vp' must point to a vnode that represents a regular file.
1807 * 'newsize' must be positive.
1808 *
1809 * Returns zero on success or an appropriate error code on failure.
1810 */
1811 int
1812 tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr)
1813 {
1814 struct tmpfs_node *node;
1815 vm_object_t uobj;
1816 vm_pindex_t idx, newpages, oldpages;
1817 off_t oldsize;
1818 int base, error;
1819
1820 MPASS(vp->v_type == VREG);
1821 MPASS(newsize >= 0);
1822
1823 node = VP_TO_TMPFS_NODE(vp);
1824 uobj = node->tn_reg.tn_aobj;
1825
1826 /*
1827 * Convert the old and new sizes to the number of pages needed to
1828 * store them. It may happen that we do not need to do anything
1829 * because the last allocated page can accommodate the change on
1830 * its own.
1831 */
1832 oldsize = node->tn_size;
1833 oldpages = OFF_TO_IDX(oldsize + PAGE_MASK);
1834 MPASS(oldpages == uobj->size);
1835 newpages = OFF_TO_IDX(newsize + PAGE_MASK);
1836
1837 if (__predict_true(newpages == oldpages && newsize >= oldsize)) {
1838 node->tn_size = newsize;
1839 return (0);
1840 }
1841
1842 VM_OBJECT_WLOCK(uobj);
1843 if (newsize < oldsize) {
1844 /*
1845 * Zero the truncated part of the last page.
1846 */
1847 base = newsize & PAGE_MASK;
1848 if (base != 0) {
1849 idx = OFF_TO_IDX(newsize);
1850 error = tmpfs_partial_page_invalidate(uobj, idx, base,
1851 PAGE_SIZE, ignerr);
1852 if (error != 0) {
1853 VM_OBJECT_WUNLOCK(uobj);
1854 return (error);
1855 }
1856 }
1857
1858 /*
1859 * Release any swap space and free any whole pages.
1860 */
1861 if (newpages < oldpages)
1862 vm_object_page_remove(uobj, newpages, 0, 0);
1863 }
1864 uobj->size = newpages;
1865 VM_OBJECT_WUNLOCK(uobj);
1866
1867 node->tn_size = newsize;
1868 return (0);
1869 }
1870
1871 void
1872 tmpfs_check_mtime(struct vnode *vp)
1873 {
1874 struct tmpfs_node *node;
1875 struct vm_object *obj;
1876
1877 ASSERT_VOP_ELOCKED(vp, "check_mtime");
1878 if (vp->v_type != VREG)
1879 return;
1880 obj = vp->v_object;
1881 KASSERT(obj->type == tmpfs_pager_type &&
1882 (obj->flags & (OBJ_SWAP | OBJ_TMPFS)) ==
1883 (OBJ_SWAP | OBJ_TMPFS), ("non-tmpfs obj"));
1884 /* unlocked read */
1885 if (obj->generation != obj->cleangeneration) {
1886 VM_OBJECT_WLOCK(obj);
1887 if (obj->generation != obj->cleangeneration) {
1888 obj->cleangeneration = obj->generation;
1889 node = VP_TO_TMPFS_NODE(vp);
1890 node->tn_status |= TMPFS_NODE_MODIFIED |
1891 TMPFS_NODE_CHANGED;
1892 }
1893 VM_OBJECT_WUNLOCK(obj);
1894 }
1895 }
1896
1897 /*
1898 * Change flags of the given vnode.
1899 * Caller should execute tmpfs_update on vp after a successful execution.
1900 * The vnode must be locked on entry and remain locked on exit.
1901 */
1902 int
1903 tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred,
1904 struct thread *td)
1905 {
1906 int error;
1907 struct tmpfs_node *node;
1908
1909 ASSERT_VOP_ELOCKED(vp, "chflags");
1910
1911 node = VP_TO_TMPFS_NODE(vp);
1912
1913 if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK |
1914 UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP |
1915 UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE |
1916 UF_SPARSE | UF_SYSTEM)) != 0)
1917 return (EOPNOTSUPP);
1918
1919 /* Disallow this operation if the file system is mounted read-only. */
1920 if (vp->v_mount->mnt_flag & MNT_RDONLY)
1921 return (EROFS);
1922
1923 /*
1924 * Callers may only modify the file flags on objects they
1925 * have VADMIN rights for.
1926 */
1927 if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
1928 return (error);
1929 /*
1930 * Unprivileged processes are not permitted to unset system
1931 * flags, or modify flags if any system flags are set.
1932 */
1933 if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) {
1934 if (node->tn_flags &
1935 (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) {
1936 error = securelevel_gt(cred, 0);
1937 if (error)
1938 return (error);
1939 }
1940 } else {
1941 if (node->tn_flags &
1942 (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) ||
1943 ((flags ^ node->tn_flags) & SF_SETTABLE))
1944 return (EPERM);
1945 }
1946 node->tn_flags = flags;
1947 node->tn_status |= TMPFS_NODE_CHANGED;
1948
1949 ASSERT_VOP_ELOCKED(vp, "chflags2");
1950
1951 return (0);
1952 }
1953
1954 /*
1955 * Change access mode on the given vnode.
1956 * Caller should execute tmpfs_update on vp after a successful execution.
1957 * The vnode must be locked on entry and remain locked on exit.
1958 */
1959 int
1960 tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred,
1961 struct thread *td)
1962 {
1963 int error;
1964 struct tmpfs_node *node;
1965 mode_t newmode;
1966
1967 ASSERT_VOP_ELOCKED(vp, "chmod");
1968 ASSERT_VOP_IN_SEQC(vp);
1969
1970 node = VP_TO_TMPFS_NODE(vp);
1971
1972 /* Disallow this operation if the file system is mounted read-only. */
1973 if (vp->v_mount->mnt_flag & MNT_RDONLY)
1974 return (EROFS);
1975
1976 /* Immutable or append-only files cannot be modified, either. */
1977 if (node->tn_flags & (IMMUTABLE | APPEND))
1978 return (EPERM);
1979
1980 /*
1981 * To modify the permissions on a file, must possess VADMIN
1982 * for that file.
1983 */
1984 if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
1985 return (error);
1986
1987 /*
1988 * Privileged processes may set the sticky bit on non-directories,
1989 * as well as set the setgid bit on a file with a group that the
1990 * process is not a member of.
1991 */
1992 if (vp->v_type != VDIR && (mode & S_ISTXT)) {
1993 if (priv_check_cred(cred, PRIV_VFS_STICKYFILE))
1994 return (EFTYPE);
1995 }
1996 if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) {
1997 error = priv_check_cred(cred, PRIV_VFS_SETGID);
1998 if (error)
1999 return (error);
2000 }
2001
2002 newmode = node->tn_mode & ~ALLPERMS;
2003 newmode |= mode & ALLPERMS;
2004 atomic_store_short(&node->tn_mode, newmode);
2005
2006 node->tn_status |= TMPFS_NODE_CHANGED;
2007
2008 ASSERT_VOP_ELOCKED(vp, "chmod2");
2009
2010 return (0);
2011 }
2012
2013 /*
2014 * Change ownership of the given vnode. At least one of uid or gid must
2015 * be different than VNOVAL. If one is set to that value, the attribute
2016 * is unchanged.
2017 * Caller should execute tmpfs_update on vp after a successful execution.
2018 * The vnode must be locked on entry and remain locked on exit.
2019 */
2020 int
2021 tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred,
2022 struct thread *td)
2023 {
2024 int error;
2025 struct tmpfs_node *node;
2026 uid_t ouid;
2027 gid_t ogid;
2028 mode_t newmode;
2029
2030 ASSERT_VOP_ELOCKED(vp, "chown");
2031 ASSERT_VOP_IN_SEQC(vp);
2032
2033 node = VP_TO_TMPFS_NODE(vp);
2034
2035 /* Assign default values if they are unknown. */
2036 MPASS(uid != VNOVAL || gid != VNOVAL);
2037 if (uid == VNOVAL)
2038 uid = node->tn_uid;
2039 if (gid == VNOVAL)
2040 gid = node->tn_gid;
2041 MPASS(uid != VNOVAL && gid != VNOVAL);
2042
2043 /* Disallow this operation if the file system is mounted read-only. */
2044 if (vp->v_mount->mnt_flag & MNT_RDONLY)
2045 return (EROFS);
2046
2047 /* Immutable or append-only files cannot be modified, either. */
2048 if (node->tn_flags & (IMMUTABLE | APPEND))
2049 return (EPERM);
2050
2051 /*
2052 * To modify the ownership of a file, must possess VADMIN for that
2053 * file.
2054 */
2055 if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2056 return (error);
2057
2058 /*
2059 * To change the owner of a file, or change the group of a file to a
2060 * group of which we are not a member, the caller must have
2061 * privilege.
2062 */
2063 if ((uid != node->tn_uid ||
2064 (gid != node->tn_gid && !groupmember(gid, cred))) &&
2065 (error = priv_check_cred(cred, PRIV_VFS_CHOWN)))
2066 return (error);
2067
2068 ogid = node->tn_gid;
2069 ouid = node->tn_uid;
2070
2071 node->tn_uid = uid;
2072 node->tn_gid = gid;
2073
2074 node->tn_status |= TMPFS_NODE_CHANGED;
2075
2076 if ((node->tn_mode & (S_ISUID | S_ISGID)) != 0 &&
2077 (ouid != uid || ogid != gid)) {
2078 if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) {
2079 newmode = node->tn_mode & ~(S_ISUID | S_ISGID);
2080 atomic_store_short(&node->tn_mode, newmode);
2081 }
2082 }
2083
2084 ASSERT_VOP_ELOCKED(vp, "chown2");
2085
2086 return (0);
2087 }
2088
2089 /*
2090 * Change size of the given vnode.
2091 * Caller should execute tmpfs_update on vp after a successful execution.
2092 * The vnode must be locked on entry and remain locked on exit.
2093 */
2094 int
2095 tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred,
2096 struct thread *td)
2097 {
2098 int error;
2099 struct tmpfs_node *node;
2100
2101 ASSERT_VOP_ELOCKED(vp, "chsize");
2102
2103 node = VP_TO_TMPFS_NODE(vp);
2104
2105 /* Decide whether this is a valid operation based on the file type. */
2106 error = 0;
2107 switch (vp->v_type) {
2108 case VDIR:
2109 return (EISDIR);
2110
2111 case VREG:
2112 if (vp->v_mount->mnt_flag & MNT_RDONLY)
2113 return (EROFS);
2114 break;
2115
2116 case VBLK:
2117 /* FALLTHROUGH */
2118 case VCHR:
2119 /* FALLTHROUGH */
2120 case VFIFO:
2121 /*
2122 * Allow modifications of special files even if in the file
2123 * system is mounted read-only (we are not modifying the
2124 * files themselves, but the objects they represent).
2125 */
2126 return (0);
2127
2128 default:
2129 /* Anything else is unsupported. */
2130 return (EOPNOTSUPP);
2131 }
2132
2133 /* Immutable or append-only files cannot be modified, either. */
2134 if (node->tn_flags & (IMMUTABLE | APPEND))
2135 return (EPERM);
2136
2137 error = vn_rlimit_trunc(size, td);
2138 if (error != 0)
2139 return (error);
2140
2141 error = tmpfs_truncate(vp, size);
2142 /*
2143 * tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents
2144 * for us, as will update tn_status; no need to do that here.
2145 */
2146
2147 ASSERT_VOP_ELOCKED(vp, "chsize2");
2148
2149 return (error);
2150 }
2151
2152 /*
2153 * Change access and modification times of the given vnode.
2154 * Caller should execute tmpfs_update on vp after a successful execution.
2155 * The vnode must be locked on entry and remain locked on exit.
2156 */
2157 int
2158 tmpfs_chtimes(struct vnode *vp, struct vattr *vap,
2159 struct ucred *cred, struct thread *td)
2160 {
2161 int error;
2162 struct tmpfs_node *node;
2163
2164 ASSERT_VOP_ELOCKED(vp, "chtimes");
2165
2166 node = VP_TO_TMPFS_NODE(vp);
2167
2168 /* Disallow this operation if the file system is mounted read-only. */
2169 if (vp->v_mount->mnt_flag & MNT_RDONLY)
2170 return (EROFS);
2171
2172 /* Immutable or append-only files cannot be modified, either. */
2173 if (node->tn_flags & (IMMUTABLE | APPEND))
2174 return (EPERM);
2175
2176 error = vn_utimes_perm(vp, vap, cred, td);
2177 if (error != 0)
2178 return (error);
2179
2180 if (vap->va_atime.tv_sec != VNOVAL)
2181 node->tn_accessed = true;
2182 if (vap->va_mtime.tv_sec != VNOVAL)
2183 node->tn_status |= TMPFS_NODE_MODIFIED;
2184 if (vap->va_birthtime.tv_sec != VNOVAL)
2185 node->tn_status |= TMPFS_NODE_MODIFIED;
2186 tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime);
2187 if (vap->va_birthtime.tv_sec != VNOVAL)
2188 node->tn_birthtime = vap->va_birthtime;
2189 ASSERT_VOP_ELOCKED(vp, "chtimes2");
2190
2191 return (0);
2192 }
2193
2194 void
2195 tmpfs_set_status(struct tmpfs_mount *tm, struct tmpfs_node *node, int status)
2196 {
2197
2198 if ((node->tn_status & status) == status || tm->tm_ronly)
2199 return;
2200 TMPFS_NODE_LOCK(node);
2201 node->tn_status |= status;
2202 TMPFS_NODE_UNLOCK(node);
2203 }
2204
2205 void
2206 tmpfs_set_accessed(struct tmpfs_mount *tm, struct tmpfs_node *node)
2207 {
2208 if (node->tn_accessed || tm->tm_ronly)
2209 return;
2210 atomic_store_8(&node->tn_accessed, true);
2211 }
2212
2213 /* Sync timestamps */
2214 void
2215 tmpfs_itimes(struct vnode *vp, const struct timespec *acc,
2216 const struct timespec *mod)
2217 {
2218 struct tmpfs_node *node;
2219 struct timespec now;
2220
2221 ASSERT_VOP_LOCKED(vp, "tmpfs_itimes");
2222 node = VP_TO_TMPFS_NODE(vp);
2223
2224 if (!node->tn_accessed &&
2225 (node->tn_status & (TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0)
2226 return;
2227
2228 vfs_timestamp(&now);
2229 TMPFS_NODE_LOCK(node);
2230 if (node->tn_accessed) {
2231 if (acc == NULL)
2232 acc = &now;
2233 node->tn_atime = *acc;
2234 }
2235 if (node->tn_status & TMPFS_NODE_MODIFIED) {
2236 if (mod == NULL)
2237 mod = &now;
2238 node->tn_mtime = *mod;
2239 }
2240 if (node->tn_status & TMPFS_NODE_CHANGED)
2241 node->tn_ctime = now;
2242 node->tn_status &= ~(TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED);
2243 node->tn_accessed = false;
2244 TMPFS_NODE_UNLOCK(node);
2245
2246 /* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */
2247 random_harvest_queue(node, sizeof(*node), RANDOM_FS_ATIME);
2248 }
2249
2250 int
2251 tmpfs_truncate(struct vnode *vp, off_t length)
2252 {
2253 struct tmpfs_node *node;
2254 int error;
2255
2256 if (length < 0)
2257 return (EINVAL);
2258 if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize)
2259 return (EFBIG);
2260
2261 node = VP_TO_TMPFS_NODE(vp);
2262 error = node->tn_size == length ? 0 : tmpfs_reg_resize(vp, length,
2263 FALSE);
2264 if (error == 0)
2265 node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
2266 tmpfs_update(vp);
2267
2268 return (error);
2269 }
2270
2271 static __inline int
2272 tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b)
2273 {
2274 if (a->td_hash > b->td_hash)
2275 return (1);
2276 else if (a->td_hash < b->td_hash)
2277 return (-1);
2278 return (0);
2279 }
2280
2281 RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
Cache object: cdf341cd7885c6259d1676928994ec25
|