The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/fs/udf/udf_vfsops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001, 2002 Scott Long <scottl@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  * $FreeBSD$
   27  */
   28 
   29 /* udf_vfsops.c */
   30 /* Implement the VFS side of things */
   31 
   32 /*
   33  * Ok, here's how it goes.  The UDF specs are pretty clear on how each data
   34  * structure is made up, but not very clear on how they relate to each other.
   35  * Here is the skinny... This demostrates a filesystem with one file in the
   36  * root directory.  Subdirectories are treated just as normal files, but they
   37  * have File Id Descriptors of their children as their file data.  As for the
   38  * Anchor Volume Descriptor Pointer, it can exist in two of the following three
   39  * places: sector 256, sector n (the max sector of the disk), or sector
   40  * n - 256.  It's a pretty good bet that one will exist at sector 256 though.
   41  * One caveat is unclosed CD media.  For that, sector 256 cannot be written,
   42  * so the Anchor Volume Descriptor Pointer can exist at sector 512 until the
   43  * media is closed.
   44  *
   45  *  Sector:
   46  *     256:
   47  *       n: Anchor Volume Descriptor Pointer
   48  * n - 256:     |
   49  *              |
   50  *              |-->Main Volume Descriptor Sequence
   51  *                      |       |
   52  *                      |       |
   53  *                      |       |-->Logical Volume Descriptor
   54  *                      |                         |
   55  *                      |-->Partition Descriptor  |
   56  *                              |                 |
   57  *                              |                 |
   58  *                              |-->Fileset Descriptor
   59  *                                      |
   60  *                                      |
   61  *                                      |-->Root Dir File Entry
   62  *                                              |
   63  *                                              |
   64  *                                              |-->File data:
   65  *                                                  File Id Descriptor
   66  *                                                      |
   67  *                                                      |
   68  *                                                      |-->File Entry
   69  *                                                              |
   70  *                                                              |
   71  *                                                              |-->File data
   72  */
   73 #include <sys/types.h>
   74 #include <sys/param.h>
   75 #include <sys/systm.h>
   76 #include <sys/uio.h>
   77 #include <sys/bio.h>
   78 #include <sys/buf.h>
   79 #include <sys/conf.h>
   80 #include <sys/dirent.h>
   81 #include <sys/fcntl.h>
   82 #include <sys/iconv.h>
   83 #include <sys/kernel.h>
   84 #include <sys/malloc.h>
   85 #include <sys/mount.h>
   86 #include <sys/namei.h>
   87 #include <sys/priv.h>
   88 #include <sys/proc.h>
   89 #include <sys/queue.h>
   90 #include <sys/vnode.h>
   91 #include <sys/endian.h>
   92 
   93 #include <geom/geom.h>
   94 #include <geom/geom_vfs.h>
   95 
   96 #include <vm/uma.h>
   97 
   98 #include <fs/udf/ecma167-udf.h>
   99 #include <fs/udf/osta.h>
  100 #include <fs/udf/udf.h>
  101 #include <fs/udf/udf_mount.h>
  102 
  103 static MALLOC_DEFINE(M_UDFMOUNT, "udf_mount", "UDF mount structure");
  104 MALLOC_DEFINE(M_UDFFENTRY, "udf_fentry", "UDF file entry structure");
  105 
  106 struct iconv_functions *udf_iconv = NULL;
  107 
  108 /* Zones */
  109 uma_zone_t udf_zone_trans = NULL;
  110 uma_zone_t udf_zone_node = NULL;
  111 uma_zone_t udf_zone_ds = NULL;
  112 
  113 static vfs_init_t      udf_init;
  114 static vfs_uninit_t    udf_uninit;
  115 static vfs_mount_t     udf_mount;
  116 static vfs_root_t      udf_root;
  117 static vfs_statfs_t    udf_statfs;
  118 static vfs_unmount_t   udf_unmount;
  119 static vfs_fhtovp_t     udf_fhtovp;
  120 
  121 static int udf_find_partmaps(struct udf_mnt *, struct logvol_desc *);
  122 
  123 static struct vfsops udf_vfsops = {
  124         .vfs_fhtovp =           udf_fhtovp,
  125         .vfs_init =             udf_init,
  126         .vfs_mount =            udf_mount,
  127         .vfs_root =             udf_root,
  128         .vfs_statfs =           udf_statfs,
  129         .vfs_uninit =           udf_uninit,
  130         .vfs_unmount =          udf_unmount,
  131         .vfs_vget =             udf_vget,
  132 };
  133 VFS_SET(udf_vfsops, udf, VFCF_READONLY);
  134 
  135 MODULE_VERSION(udf, 1);
  136 
  137 static int udf_mountfs(struct vnode *, struct mount *);
  138 
  139 static int
  140 udf_init(struct vfsconf *foo)
  141 {
  142 
  143         /*
  144          * This code used to pre-allocate a certain number of pages for each
  145          * pool, reducing the need to grow the zones later on.  UMA doesn't
  146          * advertise any such functionality, unfortunately =-<
  147          */
  148         udf_zone_trans = uma_zcreate("UDF translation buffer, zone", MAXNAMLEN *
  149             sizeof(unicode_t), NULL, NULL, NULL, NULL, 0, 0);
  150 
  151         udf_zone_node = uma_zcreate("UDF Node zone", sizeof(struct udf_node),
  152             NULL, NULL, NULL, NULL, 0, 0);
  153 
  154         udf_zone_ds = uma_zcreate("UDF Dirstream zone",
  155             sizeof(struct udf_dirstream), NULL, NULL, NULL, NULL, 0, 0);
  156 
  157         if ((udf_zone_node == NULL) || (udf_zone_trans == NULL) ||
  158             (udf_zone_ds == NULL)) {
  159                 printf("Cannot create allocation zones.\n");
  160                 return (ENOMEM);
  161         }
  162 
  163         return 0;
  164 }
  165 
  166 static int
  167 udf_uninit(struct vfsconf *foo)
  168 {
  169 
  170         if (udf_zone_trans != NULL) {
  171                 uma_zdestroy(udf_zone_trans);
  172                 udf_zone_trans = NULL;
  173         }
  174 
  175         if (udf_zone_node != NULL) {
  176                 uma_zdestroy(udf_zone_node);
  177                 udf_zone_node = NULL;
  178         }
  179 
  180         if (udf_zone_ds != NULL) {
  181                 uma_zdestroy(udf_zone_ds);
  182                 udf_zone_ds = NULL;
  183         }
  184 
  185         return (0);
  186 }
  187 
  188 static int
  189 udf_mount(struct mount *mp)
  190 {
  191         struct vnode *devvp;    /* vnode of the mount device */
  192         struct thread *td;
  193         struct udf_mnt *imp = NULL;
  194         struct vfsoptlist *opts;
  195         char *fspec, *cs_disk, *cs_local;
  196         int error, len, *udf_flags;
  197         struct nameidata nd, *ndp = &nd;
  198 
  199         td = curthread;
  200         opts = mp->mnt_optnew;
  201 
  202         /*
  203          * Unconditionally mount as read-only.
  204          */
  205         MNT_ILOCK(mp);
  206         mp->mnt_flag |= MNT_RDONLY;
  207         MNT_IUNLOCK(mp);
  208 
  209         /*
  210          * No root filesystem support.  Probably not a big deal, since the
  211          * bootloader doesn't understand UDF.
  212          */
  213         if (mp->mnt_flag & MNT_ROOTFS)
  214                 return (ENOTSUP);
  215 
  216         fspec = NULL;
  217         error = vfs_getopt(opts, "from", (void **)&fspec, &len);
  218         if (!error && fspec[len - 1] != '\0')
  219                 return (EINVAL);
  220 
  221         if (mp->mnt_flag & MNT_UPDATE) {
  222                 return (0);
  223         }
  224 
  225         /* Check that the mount device exists */
  226         if (fspec == NULL)
  227                 return (EINVAL);
  228         NDINIT(ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td);
  229         if ((error = namei(ndp)))
  230                 return (error);
  231         NDFREE(ndp, NDF_ONLY_PNBUF);
  232         devvp = ndp->ni_vp;
  233 
  234         if (vn_isdisk(devvp, &error) == 0) {
  235                 vput(devvp);
  236                 return (error);
  237         }
  238 
  239         /* Check the access rights on the mount device */
  240         error = VOP_ACCESS(devvp, VREAD, td->td_ucred, td);
  241         if (error)
  242                 error = priv_check(td, PRIV_VFS_MOUNT_PERM);
  243         if (error) {
  244                 vput(devvp);
  245                 return (error);
  246         }
  247 
  248         if ((error = udf_mountfs(devvp, mp))) {
  249                 vrele(devvp);
  250                 return (error);
  251         }
  252 
  253         imp = VFSTOUDFFS(mp);
  254 
  255         udf_flags = NULL;
  256         error = vfs_getopt(opts, "flags", (void **)&udf_flags, &len);
  257         if (error || len != sizeof(int))
  258                 return (EINVAL);
  259         imp->im_flags = *udf_flags;
  260 
  261         if (imp->im_flags & UDFMNT_KICONV && udf_iconv) {
  262                 cs_disk = NULL;
  263                 error = vfs_getopt(opts, "cs_disk", (void **)&cs_disk, &len);
  264                 if (!error && cs_disk[len - 1] != '\0')
  265                         return (EINVAL);
  266                 cs_local = NULL;
  267                 error = vfs_getopt(opts, "cs_local", (void **)&cs_local, &len);
  268                 if (!error && cs_local[len - 1] != '\0')
  269                         return (EINVAL);
  270                 udf_iconv->open(cs_local, cs_disk, &imp->im_d2l);
  271 #if 0
  272                 udf_iconv->open(cs_disk, cs_local, &imp->im_l2d);
  273 #endif
  274         }
  275 
  276         vfs_mountedfrom(mp, fspec);
  277         return 0;
  278 };
  279 
  280 /*
  281  * Check the descriptor tag for both the correct id and correct checksum.
  282  * Return zero if all is good, EINVAL if not.
  283  */
  284 int
  285 udf_checktag(struct desc_tag *tag, uint16_t id)
  286 {
  287         uint8_t *itag;
  288         uint8_t i, cksum = 0;
  289 
  290         itag = (uint8_t *)tag;
  291 
  292         if (le16toh(tag->id) != id)
  293                 return (EINVAL);
  294 
  295         for (i = 0; i < 16; i++)
  296                 cksum = cksum + itag[i];
  297         cksum = cksum - itag[4];
  298 
  299         if (cksum == tag->cksum)
  300                 return (0);
  301 
  302         return (EINVAL);
  303 }
  304 
  305 static int
  306 udf_mountfs(struct vnode *devvp, struct mount *mp)
  307 {
  308         struct buf *bp = NULL;
  309         struct cdev *dev;
  310         struct anchor_vdp avdp;
  311         struct udf_mnt *udfmp = NULL;
  312         struct part_desc *pd;
  313         struct logvol_desc *lvd;
  314         struct fileset_desc *fsd;
  315         struct file_entry *root_fentry;
  316         uint32_t sector, size, mvds_start, mvds_end;
  317         uint32_t logical_secsize;
  318         uint32_t fsd_offset = 0;
  319         uint16_t part_num = 0, fsd_part = 0;
  320         int error = EINVAL;
  321         int logvol_found = 0, part_found = 0, fsd_found = 0;
  322         int bsize;
  323         struct g_consumer *cp;
  324         struct bufobj *bo;
  325 
  326         dev = devvp->v_rdev;
  327         dev_ref(dev);
  328         g_topology_lock();
  329         error = g_vfs_open(devvp, &cp, "udf", 0);
  330         g_topology_unlock();
  331         VOP_UNLOCK(devvp, 0);
  332         if (error)
  333                 goto bail;
  334 
  335         bo = &devvp->v_bufobj;
  336 
  337         if (devvp->v_rdev->si_iosize_max != 0)
  338                 mp->mnt_iosize_max = devvp->v_rdev->si_iosize_max;
  339         if (mp->mnt_iosize_max > MAXPHYS)
  340                 mp->mnt_iosize_max = MAXPHYS;
  341 
  342         /* XXX: should be M_WAITOK */
  343         udfmp = malloc(sizeof(struct udf_mnt), M_UDFMOUNT,
  344             M_NOWAIT | M_ZERO);
  345         if (udfmp == NULL) {
  346                 printf("Cannot allocate UDF mount struct\n");
  347                 error = ENOMEM;
  348                 goto bail;
  349         }
  350 
  351         mp->mnt_data = udfmp;
  352         mp->mnt_stat.f_fsid.val[0] = dev2udev(devvp->v_rdev);
  353         mp->mnt_stat.f_fsid.val[1] = mp->mnt_vfc->vfc_typenum;
  354         MNT_ILOCK(mp);
  355         mp->mnt_flag |= MNT_LOCAL;
  356         mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED;
  357         MNT_IUNLOCK(mp);
  358         udfmp->im_mountp = mp;
  359         udfmp->im_dev = dev;
  360         udfmp->im_devvp = devvp;
  361         udfmp->im_d2l = NULL;
  362         udfmp->im_cp = cp;
  363         udfmp->im_bo = bo;
  364 
  365 #if 0
  366         udfmp->im_l2d = NULL;
  367 #endif
  368         /*
  369          * The UDF specification defines a logical sectorsize of 2048
  370          * for DVD media.
  371          */
  372         logical_secsize = 2048;
  373 
  374         if (((logical_secsize % cp->provider->sectorsize) != 0) ||
  375             (logical_secsize < cp->provider->sectorsize)) {
  376                 error = EINVAL;
  377                 goto bail;
  378         }
  379 
  380         bsize = cp->provider->sectorsize;
  381 
  382         /* 
  383          * Get the Anchor Volume Descriptor Pointer from sector 256.
  384          * XXX Should also check sector n - 256, n, and 512.
  385          */
  386         sector = 256;
  387         if ((error = bread(devvp, sector * btodb(logical_secsize), bsize,
  388                            NOCRED, &bp)) != 0)
  389                 goto bail;
  390         if ((error = udf_checktag((struct desc_tag *)bp->b_data, TAGID_ANCHOR)))
  391                 goto bail;
  392 
  393         bcopy(bp->b_data, &avdp, sizeof(struct anchor_vdp));
  394         brelse(bp);
  395         bp = NULL;
  396 
  397         /*
  398          * Extract the Partition Descriptor and Logical Volume Descriptor
  399          * from the Volume Descriptor Sequence.
  400          * XXX Should we care about the partition type right now?
  401          * XXX What about multiple partitions?
  402          */
  403         mvds_start = le32toh(avdp.main_vds_ex.loc);
  404         mvds_end = mvds_start + (le32toh(avdp.main_vds_ex.len) - 1) / bsize;
  405         for (sector = mvds_start; sector < mvds_end; sector++) {
  406                 if ((error = bread(devvp, sector * btodb(logical_secsize),
  407                                    bsize, NOCRED, &bp)) != 0) {
  408                         printf("Can't read sector %d of VDS\n", sector);
  409                         goto bail;
  410                 }
  411                 lvd = (struct logvol_desc *)bp->b_data;
  412                 if (!udf_checktag(&lvd->tag, TAGID_LOGVOL)) {
  413                         udfmp->bsize = le32toh(lvd->lb_size);
  414                         udfmp->bmask = udfmp->bsize - 1;
  415                         udfmp->bshift = ffs(udfmp->bsize) - 1;
  416                         fsd_part = le16toh(lvd->_lvd_use.fsd_loc.loc.part_num);
  417                         fsd_offset = le32toh(lvd->_lvd_use.fsd_loc.loc.lb_num);
  418                         if (udf_find_partmaps(udfmp, lvd))
  419                                 break;
  420                         logvol_found = 1;
  421                 }
  422                 pd = (struct part_desc *)bp->b_data;
  423                 if (!udf_checktag(&pd->tag, TAGID_PARTITION)) {
  424                         part_found = 1;
  425                         part_num = le16toh(pd->part_num);
  426                         udfmp->part_len = le32toh(pd->part_len);
  427                         udfmp->part_start = le32toh(pd->start_loc);
  428                 }
  429 
  430                 brelse(bp); 
  431                 bp = NULL;
  432                 if ((part_found) && (logvol_found))
  433                         break;
  434         }
  435 
  436         if (!part_found || !logvol_found) {
  437                 error = EINVAL;
  438                 goto bail;
  439         }
  440 
  441         if (fsd_part != part_num) {
  442                 printf("FSD does not lie within the partition!\n");
  443                 error = EINVAL;
  444                 goto bail;
  445         }
  446 
  447 
  448         /*
  449          * Grab the Fileset Descriptor
  450          * Thanks to Chuck McCrobie <mccrobie@cablespeed.com> for pointing
  451          * me in the right direction here.
  452          */
  453         sector = udfmp->part_start + fsd_offset;
  454         if ((error = RDSECTOR(devvp, sector, udfmp->bsize, &bp)) != 0) {
  455                 printf("Cannot read sector %d of FSD\n", sector);
  456                 goto bail;
  457         }
  458         fsd = (struct fileset_desc *)bp->b_data;
  459         if (!udf_checktag(&fsd->tag, TAGID_FSD)) {
  460                 fsd_found = 1;
  461                 bcopy(&fsd->rootdir_icb, &udfmp->root_icb,
  462                     sizeof(struct long_ad));
  463         }
  464 
  465         brelse(bp);
  466         bp = NULL;
  467 
  468         if (!fsd_found) {
  469                 printf("Couldn't find the fsd\n");
  470                 error = EINVAL;
  471                 goto bail;
  472         }
  473 
  474         /*
  475          * Find the file entry for the root directory.
  476          */
  477         sector = le32toh(udfmp->root_icb.loc.lb_num) + udfmp->part_start;
  478         size = le32toh(udfmp->root_icb.len);
  479         if ((error = udf_readdevblks(udfmp, sector, size, &bp)) != 0) {
  480                 printf("Cannot read sector %d\n", sector);
  481                 goto bail;
  482         }
  483 
  484         root_fentry = (struct file_entry *)bp->b_data;
  485         if ((error = udf_checktag(&root_fentry->tag, TAGID_FENTRY))) {
  486                 printf("Invalid root file entry!\n");
  487                 goto bail;
  488         }
  489 
  490         brelse(bp);
  491         bp = NULL;
  492 
  493         return 0;
  494 
  495 bail:
  496         if (udfmp != NULL)
  497                 free(udfmp, M_UDFMOUNT);
  498         if (bp != NULL)
  499                 brelse(bp);
  500         if (cp != NULL) {
  501                 g_topology_lock();
  502                 g_vfs_close(cp);
  503                 g_topology_unlock();
  504         }
  505         dev_rel(dev);
  506         return error;
  507 };
  508 
  509 static int
  510 udf_unmount(struct mount *mp, int mntflags)
  511 {
  512         struct udf_mnt *udfmp;
  513         int error, flags = 0;
  514 
  515         udfmp = VFSTOUDFFS(mp);
  516 
  517         if (mntflags & MNT_FORCE)
  518                 flags |= FORCECLOSE;
  519 
  520         if ((error = vflush(mp, 0, flags, curthread)))
  521                 return (error);
  522 
  523         if (udfmp->im_flags & UDFMNT_KICONV && udf_iconv) {
  524                 if (udfmp->im_d2l)
  525                         udf_iconv->close(udfmp->im_d2l);
  526 #if 0
  527                 if (udfmp->im_l2d)
  528                         udf_iconv->close(udfmp->im_l2d);
  529 #endif
  530         }
  531 
  532         g_topology_lock();
  533         g_vfs_close(udfmp->im_cp);
  534         g_topology_unlock();
  535         vrele(udfmp->im_devvp);
  536         dev_rel(udfmp->im_dev);
  537 
  538         if (udfmp->s_table != NULL)
  539                 free(udfmp->s_table, M_UDFMOUNT);
  540 
  541         free(udfmp, M_UDFMOUNT);
  542 
  543         mp->mnt_data = NULL;
  544         MNT_ILOCK(mp);
  545         mp->mnt_flag &= ~MNT_LOCAL;
  546         MNT_IUNLOCK(mp);
  547 
  548         return (0);
  549 }
  550 
  551 static int
  552 udf_root(struct mount *mp, int flags, struct vnode **vpp)
  553 {
  554         struct udf_mnt *udfmp;
  555         ino_t id;
  556 
  557         udfmp = VFSTOUDFFS(mp);
  558 
  559         id = udf_getid(&udfmp->root_icb);
  560 
  561         return (udf_vget(mp, id, flags, vpp));
  562 }
  563 
  564 static int
  565 udf_statfs(struct mount *mp, struct statfs *sbp)
  566 {
  567         struct udf_mnt *udfmp;
  568 
  569         udfmp = VFSTOUDFFS(mp);
  570 
  571         sbp->f_bsize = udfmp->bsize;
  572         sbp->f_iosize = udfmp->bsize;
  573         sbp->f_blocks = udfmp->part_len;
  574         sbp->f_bfree = 0;
  575         sbp->f_bavail = 0;
  576         sbp->f_files = 0;
  577         sbp->f_ffree = 0;
  578         return 0;
  579 }
  580 
  581 int
  582 udf_vget(struct mount *mp, ino_t ino, int flags, struct vnode **vpp)
  583 {
  584         struct buf *bp;
  585         struct vnode *devvp;
  586         struct udf_mnt *udfmp;
  587         struct thread *td;
  588         struct vnode *vp;
  589         struct udf_node *unode;
  590         struct file_entry *fe;
  591         uint32_t lea, lad;
  592         int error, sector, size;
  593 
  594         error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL);
  595         if (error || *vpp != NULL)
  596                 return (error);
  597 
  598         /*
  599          * We must promote to an exclusive lock for vnode creation.  This
  600          * can happen if lookup is passed LOCKSHARED.
  601          */
  602         if ((flags & LK_TYPE_MASK) == LK_SHARED) {
  603                 flags &= ~LK_TYPE_MASK;
  604                 flags |= LK_EXCLUSIVE;
  605         }
  606 
  607         /*
  608          * We do not lock vnode creation as it is believed to be too
  609          * expensive for such rare case as simultaneous creation of vnode
  610          * for same ino by different processes. We just allow them to race
  611          * and check later to decide who wins. Let the race begin!
  612          */
  613 
  614         td = curthread;
  615         udfmp = VFSTOUDFFS(mp);
  616 
  617         unode = uma_zalloc(udf_zone_node, M_WAITOK | M_ZERO);
  618 
  619         if ((error = udf_allocv(mp, &vp, td))) {
  620                 printf("Error from udf_allocv\n");
  621                 uma_zfree(udf_zone_node, unode);
  622                 return (error);
  623         }
  624 
  625         unode->i_vnode = vp;
  626         unode->hash_id = ino;
  627         unode->udfmp = udfmp;
  628         vp->v_data = unode;
  629 
  630         lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
  631         error = insmntque(vp, mp);
  632         if (error != 0) {
  633                 uma_zfree(udf_zone_node, unode);
  634                 return (error);
  635         }
  636         error = vfs_hash_insert(vp, ino, flags, td, vpp, NULL, NULL);
  637         if (error || *vpp != NULL)
  638                 return (error);
  639 
  640         /*
  641          * Copy in the file entry.  Per the spec, the size can only be 1 block.
  642          */
  643         sector = ino + udfmp->part_start;
  644         devvp = udfmp->im_devvp;
  645         if ((error = RDSECTOR(devvp, sector, udfmp->bsize, &bp)) != 0) {
  646                 printf("Cannot read sector %d\n", sector);
  647                 goto error;
  648         }
  649 
  650         /*
  651          * File entry length validation.
  652          */
  653         fe = (struct file_entry *)bp->b_data;
  654         if (udf_checktag(&fe->tag, TAGID_FENTRY)) {
  655                 printf("Invalid file entry!\n");
  656                 error = ENOMEM;
  657                 goto error;
  658         }
  659         lea = le32toh(fe->l_ea);
  660         lad = le32toh(fe->l_ad);
  661         if (lea > udfmp->bsize || lad > udfmp->bsize) {
  662                 printf("Invalid EA and AD lengths %u, %u\n", lea, lad);
  663                 error = EIO;
  664                 goto error;
  665         }
  666         size = UDF_FENTRY_SIZE + lea + lad;
  667         if (size > udfmp->bsize) {
  668                 printf("Invalid file entry size %u\n", size);
  669                 error = EIO;
  670                 goto error;
  671         }
  672 
  673         unode->fentry = malloc(size, M_UDFFENTRY, M_NOWAIT | M_ZERO);
  674         if (unode->fentry == NULL) {
  675                 printf("Cannot allocate file entry block\n");
  676                 error = ENOMEM;
  677                 goto error;
  678         }
  679 
  680         bcopy(bp->b_data, unode->fentry, size);
  681         
  682         brelse(bp);
  683         bp = NULL;
  684 
  685         switch (unode->fentry->icbtag.file_type) {
  686         default:
  687                 vp->v_type = VBAD;
  688                 break;
  689         case 4:
  690                 vp->v_type = VDIR;
  691                 break;
  692         case 5:
  693                 vp->v_type = VREG;
  694                 break;
  695         case 6:
  696                 vp->v_type = VBLK;
  697                 break;
  698         case 7:
  699                 vp->v_type = VCHR;
  700                 break;
  701         case 9:
  702                 vp->v_type = VFIFO;
  703                 vp->v_op = &udf_fifoops;
  704                 break;
  705         case 10:
  706                 vp->v_type = VSOCK;
  707                 break;
  708         case 12:
  709                 vp->v_type = VLNK;
  710                 break;
  711         }
  712 
  713         if (vp->v_type != VFIFO)
  714                 VN_LOCK_ASHARE(vp);
  715 
  716         if (ino == udf_getid(&udfmp->root_icb))
  717                 vp->v_vflag |= VV_ROOT;
  718 
  719         *vpp = vp;
  720 
  721         return (0);
  722 
  723 error:
  724         vgone(vp);
  725         vput(vp);
  726         brelse(bp);
  727         *vpp = NULL;
  728         return (error);
  729 }
  730 
  731 static int
  732 udf_fhtovp(struct mount *mp, struct fid *fhp, int flags, struct vnode **vpp)
  733 {
  734         struct ifid *ifhp;
  735         struct vnode *nvp;
  736         struct udf_node *np;
  737         off_t fsize;
  738         int error;
  739 
  740         ifhp = (struct ifid *)fhp;
  741 
  742         if ((error = VFS_VGET(mp, ifhp->ifid_ino, LK_EXCLUSIVE, &nvp)) != 0) {
  743                 *vpp = NULLVP;
  744                 return (error);
  745         }
  746 
  747         np = VTON(nvp);
  748         fsize = le64toh(np->fentry->inf_len);
  749 
  750         *vpp = nvp;
  751         vnode_create_vobject(*vpp, fsize, curthread);
  752         return (0);
  753 }
  754 
  755 static int
  756 udf_find_partmaps(struct udf_mnt *udfmp, struct logvol_desc *lvd)
  757 {
  758         struct part_map_spare *pms;
  759         struct regid *pmap_id;
  760         struct buf *bp;
  761         unsigned char regid_id[UDF_REGID_ID_SIZE + 1];
  762         int i, k, ptype, psize, error;
  763         uint8_t *pmap = (uint8_t *) &lvd->maps[0];
  764 
  765         for (i = 0; i < le32toh(lvd->n_pm); i++) {
  766                 ptype = pmap[0];
  767                 psize = pmap[1];
  768                 if (((ptype != 1) && (ptype != 2)) ||
  769                     ((psize != UDF_PMAP_TYPE1_SIZE) &&
  770                      (psize != UDF_PMAP_TYPE2_SIZE))) {
  771                         printf("Invalid partition map found\n");
  772                         return (1);
  773                 }
  774 
  775                 if (ptype == 1) {
  776                         /* Type 1 map.  We don't care */
  777                         pmap += UDF_PMAP_TYPE1_SIZE;
  778                         continue;
  779                 }
  780 
  781                 /* Type 2 map.  Gotta find out the details */
  782                 pmap_id = (struct regid *)&pmap[4];
  783                 bzero(&regid_id[0], UDF_REGID_ID_SIZE);
  784                 bcopy(&pmap_id->id[0], &regid_id[0], UDF_REGID_ID_SIZE);
  785 
  786                 if (bcmp(&regid_id[0], "*UDF Sparable Partition",
  787                     UDF_REGID_ID_SIZE)) {
  788                         printf("Unsupported partition map: %s\n", &regid_id[0]);
  789                         return (1);
  790                 }
  791 
  792                 pms = (struct part_map_spare *)pmap;
  793                 pmap += UDF_PMAP_TYPE2_SIZE;
  794                 udfmp->s_table = malloc(le32toh(pms->st_size),
  795                     M_UDFMOUNT, M_NOWAIT | M_ZERO);
  796                 if (udfmp->s_table == NULL)
  797                         return (ENOMEM);
  798 
  799                 /* Calculate the number of sectors per packet. */
  800                 /* XXX Logical or physical? */
  801                 udfmp->p_sectors = le16toh(pms->packet_len) / udfmp->bsize;
  802 
  803                 /*
  804                  * XXX If reading the first Sparing Table fails, should look
  805                  * for another table.
  806                  */
  807                 if ((error = udf_readdevblks(udfmp, le32toh(pms->st_loc[0]),
  808                                            le32toh(pms->st_size), &bp)) != 0) {
  809                         if (bp != NULL)
  810                                 brelse(bp);
  811                         printf("Failed to read Sparing Table at sector %d\n",
  812                             le32toh(pms->st_loc[0]));
  813                         free(udfmp->s_table, M_UDFMOUNT);
  814                         return (error);
  815                 }
  816                 bcopy(bp->b_data, udfmp->s_table, le32toh(pms->st_size));
  817                 brelse(bp);
  818 
  819                 if (udf_checktag(&udfmp->s_table->tag, 0)) {
  820                         printf("Invalid sparing table found\n");
  821                         free(udfmp->s_table, M_UDFMOUNT);
  822                         return (EINVAL);
  823                 }
  824 
  825                 /* See how many valid entries there are here.  The list is
  826                  * supposed to be sorted. 0xfffffff0 and higher are not valid
  827                  */
  828                 for (k = 0; k < le16toh(udfmp->s_table->rt_l); k++) {
  829                         udfmp->s_table_entries = k;
  830                         if (le32toh(udfmp->s_table->entries[k].org) >=
  831                             0xfffffff0)
  832                                 break;
  833                 }
  834         }
  835 
  836         return (0);
  837 }

Cache object: 83b5fcad7ca8890f91cec1d4a5c94d08


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.