1 /*-
2 * Copyright (c) 2005-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD: releng/11.2/sys/geom/eli/g_eli_integrity.c 332522 2018-04-16 00:42:45Z kevans $");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/linker.h>
34 #include <sys/module.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/vnode.h>
45
46 #include <vm/uma.h>
47
48 #include <geom/geom.h>
49 #include <geom/eli/g_eli.h>
50 #include <geom/eli/pkcs5v2.h>
51
52 /*
53 * The data layout description when integrity verification is configured.
54 *
55 * One of the most important assumption here is that authenticated data and its
56 * HMAC has to be stored in the same place (namely in the same sector) to make
57 * it work reliable.
58 * The problem is that file systems work only with sectors that are multiple of
59 * 512 bytes and a power of two number.
60 * My idea to implement it is as follows.
61 * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for
62 * data. We can't use that directly (ie. we can't create provider with 480 bytes
63 * sector size). We need another sector from where we take only 32 bytes of data
64 * and we store HMAC of this data as well. This takes two sectors from the
65 * original provider at the input and leaves us one sector of authenticated data
66 * at the output. Not very efficient, but you got the idea.
67 * Now, let's assume, we want to create provider with 4096 bytes sector.
68 * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we
69 * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the
70 * output. That's better. With 4096 bytes sector we can use 89% of size of the
71 * original provider. I find it as an acceptable cost.
72 * The reliability comes from the fact, that every HMAC stored inside the sector
73 * is calculated only for the data in the same sector, so its impossible to
74 * write new data and leave old HMAC or vice versa.
75 *
76 * And here is the picture:
77 *
78 * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
79 * |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b |
80 * |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data |
81 * +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
82 * |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes |
83 * +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused|
84 * +----------+
85 * da0.eli: +----+----+----+----+----+----+----+----+----+
86 * |480b|480b|480b|480b|480b|480b|480b|480b|256b|
87 * +----+----+----+----+----+----+----+----+----+
88 * | 4096 bytes |
89 * +--------------------------------------------+
90 *
91 * PS. You can use any sector size with geli(8). My example is using 4kB,
92 * because it's most efficient. For 8kB sectors you need 2 extra sectors,
93 * so the cost is the same as for 4kB sectors.
94 */
95
96 /*
97 * Code paths:
98 * BIO_READ:
99 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver
100 * BIO_WRITE:
101 * g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
102 */
103
104 MALLOC_DECLARE(M_ELI);
105
106 /*
107 * Here we generate key for HMAC. Every sector has its own HMAC key, so it is
108 * not possible to copy sectors.
109 * We cannot depend on fact, that every sector has its own IV, because different
110 * IV doesn't change HMAC, when we use encrypt-then-authenticate method.
111 */
112 static void
113 g_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key)
114 {
115 SHA256_CTX ctx;
116
117 /* Copy precalculated SHA256 context. */
118 bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx));
119 SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset));
120 SHA256_Final(key, &ctx);
121 }
122
123 /*
124 * The function is called after we read and decrypt data.
125 *
126 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver
127 */
128 static int
129 g_eli_auth_read_done(struct cryptop *crp)
130 {
131 struct g_eli_softc *sc;
132 struct bio *bp;
133
134 if (crp->crp_etype == EAGAIN) {
135 if (g_eli_crypto_rerun(crp) == 0)
136 return (0);
137 }
138 bp = (struct bio *)crp->crp_opaque;
139 bp->bio_inbed++;
140 if (crp->crp_etype == 0) {
141 bp->bio_completed += crp->crp_olen;
142 G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).",
143 bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed);
144 } else {
145 G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.",
146 bp->bio_inbed, bp->bio_children, crp->crp_etype);
147 if (bp->bio_error == 0)
148 bp->bio_error = crp->crp_etype;
149 }
150 sc = bp->bio_to->geom->softc;
151 g_eli_key_drop(sc, crp->crp_desc->crd_next->crd_key);
152 /*
153 * Do we have all sectors already?
154 */
155 if (bp->bio_inbed < bp->bio_children)
156 return (0);
157 if (bp->bio_error == 0) {
158 u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
159 u_char *srcdata, *dstdata, *auth;
160 off_t coroff, corsize;
161
162 /*
163 * Verify data integrity based on calculated and read HMACs.
164 */
165 /* Sectorsize of decrypted provider eg. 4096. */
166 decr_secsize = bp->bio_to->sectorsize;
167 /* The real sectorsize of encrypted provider, eg. 512. */
168 encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
169 /* Number of data bytes in one encrypted sector, eg. 480. */
170 data_secsize = sc->sc_data_per_sector;
171 /* Number of sectors from decrypted provider, eg. 2. */
172 nsec = bp->bio_length / decr_secsize;
173 /* Number of sectors from encrypted provider, eg. 18. */
174 nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
175 /* Last sector number in every big sector, eg. 9. */
176 lsec = sc->sc_bytes_per_sector / encr_secsize;
177
178 srcdata = bp->bio_driver2;
179 dstdata = bp->bio_data;
180 auth = srcdata + encr_secsize * nsec;
181 coroff = -1;
182 corsize = 0;
183
184 for (i = 1; i <= nsec; i++) {
185 data_secsize = sc->sc_data_per_sector;
186 if ((i % lsec) == 0)
187 data_secsize = decr_secsize % data_secsize;
188 if (bcmp(srcdata, auth, sc->sc_alen) != 0) {
189 /*
190 * Curruption detected, remember the offset if
191 * this is the first corrupted sector and
192 * increase size.
193 */
194 if (bp->bio_error == 0)
195 bp->bio_error = -1;
196 if (coroff == -1) {
197 coroff = bp->bio_offset +
198 (dstdata - (u_char *)bp->bio_data);
199 }
200 corsize += data_secsize;
201 } else {
202 /*
203 * No curruption, good.
204 * Report previous corruption if there was one.
205 */
206 if (coroff != -1) {
207 G_ELI_DEBUG(0, "%s: Failed to authenticate %jd "
208 "bytes of data at offset %jd.",
209 sc->sc_name, (intmax_t)corsize,
210 (intmax_t)coroff);
211 coroff = -1;
212 corsize = 0;
213 }
214 bcopy(srcdata + sc->sc_alen, dstdata,
215 data_secsize);
216 }
217 srcdata += encr_secsize;
218 dstdata += data_secsize;
219 auth += sc->sc_alen;
220 }
221 /* Report previous corruption if there was one. */
222 if (coroff != -1) {
223 G_ELI_DEBUG(0, "%s: Failed to authenticate %jd "
224 "bytes of data at offset %jd.",
225 sc->sc_name, (intmax_t)corsize, (intmax_t)coroff);
226 }
227 }
228 free(bp->bio_driver2, M_ELI);
229 bp->bio_driver2 = NULL;
230 if (bp->bio_error != 0) {
231 if (bp->bio_error == -1)
232 bp->bio_error = EINVAL;
233 else {
234 G_ELI_LOGREQ(0, bp,
235 "Crypto READ request failed (error=%d).",
236 bp->bio_error);
237 }
238 bp->bio_completed = 0;
239 }
240 /*
241 * Read is finished, send it up.
242 */
243 g_io_deliver(bp, bp->bio_error);
244 atomic_subtract_int(&sc->sc_inflight, 1);
245 return (0);
246 }
247
248 /*
249 * The function is called after data encryption.
250 *
251 * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver
252 */
253 static int
254 g_eli_auth_write_done(struct cryptop *crp)
255 {
256 struct g_eli_softc *sc;
257 struct g_consumer *cp;
258 struct bio *bp, *cbp, *cbp2;
259 u_int nsec;
260
261 if (crp->crp_etype == EAGAIN) {
262 if (g_eli_crypto_rerun(crp) == 0)
263 return (0);
264 }
265 bp = (struct bio *)crp->crp_opaque;
266 bp->bio_inbed++;
267 if (crp->crp_etype == 0) {
268 G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).",
269 bp->bio_inbed, bp->bio_children);
270 } else {
271 G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.",
272 bp->bio_inbed, bp->bio_children, crp->crp_etype);
273 if (bp->bio_error == 0)
274 bp->bio_error = crp->crp_etype;
275 }
276 sc = bp->bio_to->geom->softc;
277 g_eli_key_drop(sc, crp->crp_desc->crd_key);
278 /*
279 * All sectors are already encrypted?
280 */
281 if (bp->bio_inbed < bp->bio_children)
282 return (0);
283 if (bp->bio_error != 0) {
284 G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).",
285 bp->bio_error);
286 free(bp->bio_driver2, M_ELI);
287 bp->bio_driver2 = NULL;
288 cbp = bp->bio_driver1;
289 bp->bio_driver1 = NULL;
290 g_destroy_bio(cbp);
291 g_io_deliver(bp, bp->bio_error);
292 atomic_subtract_int(&sc->sc_inflight, 1);
293 return (0);
294 }
295 cp = LIST_FIRST(&sc->sc_geom->consumer);
296 cbp = bp->bio_driver1;
297 bp->bio_driver1 = NULL;
298 cbp->bio_to = cp->provider;
299 cbp->bio_done = g_eli_write_done;
300
301 /* Number of sectors from decrypted provider, eg. 1. */
302 nsec = bp->bio_length / bp->bio_to->sectorsize;
303 /* Number of sectors from encrypted provider, eg. 9. */
304 nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
305
306 cbp->bio_length = cp->provider->sectorsize * nsec;
307 cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
308 cbp->bio_data = bp->bio_driver2;
309
310 /*
311 * We write more than what is requested, so we have to be ready to write
312 * more than MAXPHYS.
313 */
314 cbp2 = NULL;
315 if (cbp->bio_length > MAXPHYS) {
316 cbp2 = g_duplicate_bio(bp);
317 cbp2->bio_length = cbp->bio_length - MAXPHYS;
318 cbp2->bio_data = cbp->bio_data + MAXPHYS;
319 cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
320 cbp2->bio_to = cp->provider;
321 cbp2->bio_done = g_eli_write_done;
322 cbp->bio_length = MAXPHYS;
323 }
324 /*
325 * Send encrypted data to the provider.
326 */
327 G_ELI_LOGREQ(2, cbp, "Sending request.");
328 bp->bio_inbed = 0;
329 bp->bio_children = (cbp2 != NULL ? 2 : 1);
330 g_io_request(cbp, cp);
331 if (cbp2 != NULL) {
332 G_ELI_LOGREQ(2, cbp2, "Sending request.");
333 g_io_request(cbp2, cp);
334 }
335 return (0);
336 }
337
338 void
339 g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp)
340 {
341 struct g_consumer *cp;
342 struct bio *cbp, *cbp2;
343 size_t size;
344 off_t nsec;
345
346 bp->bio_pflags = 0;
347
348 cp = LIST_FIRST(&sc->sc_geom->consumer);
349 cbp = bp->bio_driver1;
350 bp->bio_driver1 = NULL;
351 cbp->bio_to = cp->provider;
352 cbp->bio_done = g_eli_read_done;
353
354 /* Number of sectors from decrypted provider, eg. 1. */
355 nsec = bp->bio_length / bp->bio_to->sectorsize;
356 /* Number of sectors from encrypted provider, eg. 9. */
357 nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
358
359 cbp->bio_length = cp->provider->sectorsize * nsec;
360 size = cbp->bio_length;
361 size += sc->sc_alen * nsec;
362 size += sizeof(struct cryptop) * nsec;
363 size += sizeof(struct cryptodesc) * nsec * 2;
364 size += G_ELI_AUTH_SECKEYLEN * nsec;
365 cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
366 bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK);
367 cbp->bio_data = bp->bio_driver2;
368
369 /*
370 * We read more than what is requested, so we have to be ready to read
371 * more than MAXPHYS.
372 */
373 cbp2 = NULL;
374 if (cbp->bio_length > MAXPHYS) {
375 cbp2 = g_duplicate_bio(bp);
376 cbp2->bio_length = cbp->bio_length - MAXPHYS;
377 cbp2->bio_data = cbp->bio_data + MAXPHYS;
378 cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
379 cbp2->bio_to = cp->provider;
380 cbp2->bio_done = g_eli_read_done;
381 cbp->bio_length = MAXPHYS;
382 }
383 /*
384 * Read encrypted data from provider.
385 */
386 G_ELI_LOGREQ(2, cbp, "Sending request.");
387 g_io_request(cbp, cp);
388 if (cbp2 != NULL) {
389 G_ELI_LOGREQ(2, cbp2, "Sending request.");
390 g_io_request(cbp2, cp);
391 }
392 }
393
394 /*
395 * This is the main function responsible for cryptography (ie. communication
396 * with crypto(9) subsystem).
397 *
398 * BIO_READ:
399 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> G_ELI_AUTH_RUN -> g_eli_auth_read_done -> g_io_deliver
400 * BIO_WRITE:
401 * g_eli_start -> G_ELI_AUTH_RUN -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
402 */
403 void
404 g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp)
405 {
406 struct g_eli_softc *sc;
407 struct cryptop *crp;
408 struct cryptodesc *crde, *crda;
409 u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
410 off_t dstoff;
411 u_char *p, *data, *auth, *authkey, *plaindata;
412 int error;
413
414 G_ELI_LOGREQ(3, bp, "%s", __func__);
415
416 bp->bio_pflags = wr->w_number;
417 sc = wr->w_softc;
418 /* Sectorsize of decrypted provider eg. 4096. */
419 decr_secsize = bp->bio_to->sectorsize;
420 /* The real sectorsize of encrypted provider, eg. 512. */
421 encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
422 /* Number of data bytes in one encrypted sector, eg. 480. */
423 data_secsize = sc->sc_data_per_sector;
424 /* Number of sectors from decrypted provider, eg. 2. */
425 nsec = bp->bio_length / decr_secsize;
426 /* Number of sectors from encrypted provider, eg. 18. */
427 nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
428 /* Last sector number in every big sector, eg. 9. */
429 lsec = sc->sc_bytes_per_sector / encr_secsize;
430 /* Destination offset, used for IV generation. */
431 dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
432
433 auth = NULL; /* Silence compiler warning. */
434 plaindata = bp->bio_data;
435 if (bp->bio_cmd == BIO_READ) {
436 data = bp->bio_driver2;
437 auth = data + encr_secsize * nsec;
438 p = auth + sc->sc_alen * nsec;
439 } else {
440 size_t size;
441
442 size = encr_secsize * nsec;
443 size += sizeof(*crp) * nsec;
444 size += sizeof(*crde) * nsec;
445 size += sizeof(*crda) * nsec;
446 size += G_ELI_AUTH_SECKEYLEN * nsec;
447 size += sizeof(uintptr_t); /* Space for alignment. */
448 data = malloc(size, M_ELI, M_WAITOK);
449 bp->bio_driver2 = data;
450 p = data + encr_secsize * nsec;
451 }
452 bp->bio_inbed = 0;
453 bp->bio_children = nsec;
454
455 #if defined(__mips_n64) || defined(__mips_o64)
456 p = (char *)roundup((uintptr_t)p, sizeof(uintptr_t));
457 #endif
458
459 for (i = 1; i <= nsec; i++, dstoff += encr_secsize) {
460 crp = (struct cryptop *)p; p += sizeof(*crp);
461 crde = (struct cryptodesc *)p; p += sizeof(*crde);
462 crda = (struct cryptodesc *)p; p += sizeof(*crda);
463 authkey = (u_char *)p; p += G_ELI_AUTH_SECKEYLEN;
464
465 data_secsize = sc->sc_data_per_sector;
466 if ((i % lsec) == 0) {
467 data_secsize = decr_secsize % data_secsize;
468 /*
469 * Last encrypted sector of each decrypted sector is
470 * only partially filled.
471 */
472 if (bp->bio_cmd == BIO_WRITE)
473 memset(data + sc->sc_alen + data_secsize, 0,
474 encr_secsize - sc->sc_alen - data_secsize);
475 }
476
477 if (bp->bio_cmd == BIO_READ) {
478 /* Remember read HMAC. */
479 bcopy(data, auth, sc->sc_alen);
480 auth += sc->sc_alen;
481 /* TODO: bzero(9) can be commented out later. */
482 bzero(data, sc->sc_alen);
483 } else {
484 bcopy(plaindata, data + sc->sc_alen, data_secsize);
485 plaindata += data_secsize;
486 }
487
488 crp->crp_sid = wr->w_sid;
489 crp->crp_ilen = sc->sc_alen + data_secsize;
490 crp->crp_olen = data_secsize;
491 crp->crp_opaque = (void *)bp;
492 crp->crp_buf = (void *)data;
493 data += encr_secsize;
494 crp->crp_flags = CRYPTO_F_CBIFSYNC;
495 if (g_eli_batch)
496 crp->crp_flags |= CRYPTO_F_BATCH;
497 if (bp->bio_cmd == BIO_WRITE) {
498 crp->crp_callback = g_eli_auth_write_done;
499 crp->crp_desc = crde;
500 crde->crd_next = crda;
501 crda->crd_next = NULL;
502 } else {
503 crp->crp_callback = g_eli_auth_read_done;
504 crp->crp_desc = crda;
505 crda->crd_next = crde;
506 crde->crd_next = NULL;
507 }
508
509 crde->crd_skip = sc->sc_alen;
510 crde->crd_len = data_secsize;
511 crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
512 if ((sc->sc_flags & G_ELI_FLAG_FIRST_KEY) == 0)
513 crde->crd_flags |= CRD_F_KEY_EXPLICIT;
514 if (bp->bio_cmd == BIO_WRITE)
515 crde->crd_flags |= CRD_F_ENCRYPT;
516 crde->crd_alg = sc->sc_ealgo;
517 crde->crd_key = g_eli_key_hold(sc, dstoff, encr_secsize);
518 crde->crd_klen = sc->sc_ekeylen;
519 if (sc->sc_ealgo == CRYPTO_AES_XTS)
520 crde->crd_klen <<= 1;
521 g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv,
522 sizeof(crde->crd_iv));
523
524 crda->crd_skip = sc->sc_alen;
525 crda->crd_len = data_secsize;
526 crda->crd_inject = 0;
527 crda->crd_flags = CRD_F_KEY_EXPLICIT;
528 crda->crd_alg = sc->sc_aalgo;
529 g_eli_auth_keygen(sc, dstoff, authkey);
530 crda->crd_key = authkey;
531 crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8;
532
533 crp->crp_etype = 0;
534 error = crypto_dispatch(crp);
535 KASSERT(error == 0, ("crypto_dispatch() failed (error=%d)",
536 error));
537 }
538 }
Cache object: bfd423602fb9061edc2cdbd890f19db2
|