The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/eli/g_eli_integrity.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2005-2010 Pawel Jakub Dawidek <pjd@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/8.3/sys/geom/eli/g_eli_integrity.c 214405 2010-10-26 23:06:53Z pjd $");
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/kernel.h>
   33 #include <sys/linker.h>
   34 #include <sys/module.h>
   35 #include <sys/lock.h>
   36 #include <sys/mutex.h>
   37 #include <sys/bio.h>
   38 #include <sys/sysctl.h>
   39 #include <sys/malloc.h>
   40 #include <sys/kthread.h>
   41 #include <sys/proc.h>
   42 #include <sys/sched.h>
   43 #include <sys/smp.h>
   44 #include <sys/uio.h>
   45 #include <sys/vnode.h>
   46 
   47 #include <vm/uma.h>
   48 
   49 #include <geom/geom.h>
   50 #include <geom/eli/g_eli.h>
   51 #include <geom/eli/pkcs5v2.h>
   52 
   53 /*
   54  * The data layout description when integrity verification is configured.
   55  *
   56  * One of the most important assumption here is that authenticated data and its
   57  * HMAC has to be stored in the same place (namely in the same sector) to make
   58  * it work reliable.
   59  * The problem is that file systems work only with sectors that are multiple of
   60  * 512 bytes and a power of two number.
   61  * My idea to implement it is as follows.
   62  * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for
   63  * data. We can't use that directly (ie. we can't create provider with 480 bytes
   64  * sector size). We need another sector from where we take only 32 bytes of data
   65  * and we store HMAC of this data as well. This takes two sectors from the
   66  * original provider at the input and leaves us one sector of authenticated data
   67  * at the output. Not very efficient, but you got the idea.
   68  * Now, let's assume, we want to create provider with 4096 bytes sector.
   69  * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we
   70  * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the
   71  * output. That's better. With 4096 bytes sector we can use 89% of size of the
   72  * original provider. I find it as an acceptable cost.
   73  * The reliability comes from the fact, that every HMAC stored inside the sector
   74  * is calculated only for the data in the same sector, so its impossible to
   75  * write new data and leave old HMAC or vice versa.
   76  *
   77  * And here is the picture:
   78  *
   79  * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
   80  *      |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b |
   81  *      |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data |
   82  *      +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
   83  *      |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes |
   84  *      +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused|
   85  *                                                                                                      +----------+
   86  * da0.eli: +----+----+----+----+----+----+----+----+----+
   87  *          |480b|480b|480b|480b|480b|480b|480b|480b|256b|
   88  *          +----+----+----+----+----+----+----+----+----+
   89  *          |                 4096 bytes                 |
   90  *          +--------------------------------------------+
   91  *
   92  * PS. You can use any sector size with geli(8). My example is using 4kB,
   93  *     because it's most efficient. For 8kB sectors you need 2 extra sectors,
   94  *     so the cost is the same as for 4kB sectors.
   95  */
   96 
   97 /*
   98  * Code paths:
   99  * BIO_READ:
  100  *      g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver
  101  * BIO_WRITE:
  102  *      g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
  103  */
  104 
  105 MALLOC_DECLARE(M_ELI);
  106 
  107 /*
  108  * Here we generate key for HMAC. Every sector has its own HMAC key, so it is
  109  * not possible to copy sectors.
  110  * We cannot depend on fact, that every sector has its own IV, because different
  111  * IV doesn't change HMAC, when we use encrypt-then-authenticate method.
  112  */
  113 static void
  114 g_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key)
  115 {
  116         SHA256_CTX ctx;
  117 
  118         /* Copy precalculated SHA256 context. */
  119         bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx));
  120         SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset));
  121         SHA256_Final(key, &ctx);
  122 }
  123 
  124 /*
  125  * The function is called after we read and decrypt data.
  126  *
  127  * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver
  128  */
  129 static int
  130 g_eli_auth_read_done(struct cryptop *crp)
  131 {
  132         struct g_eli_softc *sc;
  133         struct bio *bp;
  134 
  135         if (crp->crp_etype == EAGAIN) {
  136                 if (g_eli_crypto_rerun(crp) == 0)
  137                         return (0);
  138         }
  139         bp = (struct bio *)crp->crp_opaque;
  140         bp->bio_inbed++;
  141         if (crp->crp_etype == 0) {
  142                 bp->bio_completed += crp->crp_olen;
  143                 G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).",
  144                     bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed);
  145         } else {
  146                 G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.",
  147                     bp->bio_inbed, bp->bio_children, crp->crp_etype);
  148                 if (bp->bio_error == 0)
  149                         bp->bio_error = crp->crp_etype;
  150         }
  151         /*
  152          * Do we have all sectors already?
  153          */
  154         if (bp->bio_inbed < bp->bio_children)
  155                 return (0);
  156         sc = bp->bio_to->geom->softc;
  157         if (bp->bio_error == 0) {
  158                 u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
  159                 u_char *srcdata, *dstdata, *auth;
  160                 off_t coroff, corsize;
  161 
  162                 /*
  163                  * Verify data integrity based on calculated and read HMACs.
  164                  */
  165                 /* Sectorsize of decrypted provider eg. 4096. */
  166                 decr_secsize = bp->bio_to->sectorsize;
  167                 /* The real sectorsize of encrypted provider, eg. 512. */
  168                 encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
  169                 /* Number of data bytes in one encrypted sector, eg. 480. */
  170                 data_secsize = sc->sc_data_per_sector;
  171                 /* Number of sectors from decrypted provider, eg. 2. */
  172                 nsec = bp->bio_length / decr_secsize;
  173                 /* Number of sectors from encrypted provider, eg. 18. */
  174                 nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
  175                 /* Last sector number in every big sector, eg. 9. */
  176                 lsec = sc->sc_bytes_per_sector / encr_secsize;
  177 
  178                 srcdata = bp->bio_driver2;
  179                 dstdata = bp->bio_data;
  180                 auth = srcdata + encr_secsize * nsec;
  181                 coroff = -1;
  182                 corsize = 0;
  183 
  184                 for (i = 1; i <= nsec; i++) {
  185                         data_secsize = sc->sc_data_per_sector;
  186                         if ((i % lsec) == 0)
  187                                 data_secsize = decr_secsize % data_secsize;
  188                         if (bcmp(srcdata, auth, sc->sc_alen) != 0) {
  189                                 /*
  190                                  * Curruption detected, remember the offset if
  191                                  * this is the first corrupted sector and
  192                                  * increase size.
  193                                  */
  194                                 if (bp->bio_error == 0)
  195                                         bp->bio_error = -1;
  196                                 if (coroff == -1) {
  197                                         coroff = bp->bio_offset +
  198                                             (dstdata - (u_char *)bp->bio_data);
  199                                 }
  200                                 corsize += data_secsize;
  201                         } else {
  202                                 /*
  203                                  * No curruption, good.
  204                                  * Report previous corruption if there was one.
  205                                  */
  206                                 if (coroff != -1) {
  207                                         G_ELI_DEBUG(0, "%s: %jd bytes "
  208                                             "corrupted at offset %jd.",
  209                                             sc->sc_name, (intmax_t)corsize,
  210                                             (intmax_t)coroff);
  211                                         coroff = -1;
  212                                         corsize = 0;
  213                                 }
  214                                 bcopy(srcdata + sc->sc_alen, dstdata,
  215                                     data_secsize);
  216                         }
  217                         srcdata += encr_secsize;
  218                         dstdata += data_secsize;
  219                         auth += sc->sc_alen;
  220                 }
  221                 /* Report previous corruption if there was one. */
  222                 if (coroff != -1) {
  223                         G_ELI_DEBUG(0, "%s: %jd bytes corrupted at offset %jd.",
  224                             sc->sc_name, (intmax_t)corsize, (intmax_t)coroff);
  225                 }
  226         }
  227         free(bp->bio_driver2, M_ELI);
  228         bp->bio_driver2 = NULL;
  229         if (bp->bio_error != 0) {
  230                 if (bp->bio_error == -1)
  231                         bp->bio_error = EINVAL;
  232                 else {
  233                         G_ELI_LOGREQ(0, bp,
  234                             "Crypto READ request failed (error=%d).",
  235                             bp->bio_error);
  236                 }
  237                 bp->bio_completed = 0;
  238         }
  239         /*
  240          * Read is finished, send it up.
  241          */
  242         g_io_deliver(bp, bp->bio_error);
  243         atomic_subtract_int(&sc->sc_inflight, 1);
  244         return (0);
  245 }
  246 
  247 /*
  248  * The function is called after data encryption.
  249  *
  250  * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver
  251  */
  252 static int
  253 g_eli_auth_write_done(struct cryptop *crp)
  254 {
  255         struct g_eli_softc *sc;
  256         struct g_consumer *cp;
  257         struct bio *bp, *cbp, *cbp2;
  258         u_int nsec;
  259 
  260         if (crp->crp_etype == EAGAIN) {
  261                 if (g_eli_crypto_rerun(crp) == 0)
  262                         return (0);
  263         }
  264         bp = (struct bio *)crp->crp_opaque;
  265         bp->bio_inbed++;
  266         if (crp->crp_etype == 0) {
  267                 G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).",
  268                     bp->bio_inbed, bp->bio_children);
  269         } else {
  270                 G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.",
  271                     bp->bio_inbed, bp->bio_children, crp->crp_etype);
  272                 if (bp->bio_error == 0)
  273                         bp->bio_error = crp->crp_etype;
  274         }
  275         /*
  276          * All sectors are already encrypted?
  277          */
  278         if (bp->bio_inbed < bp->bio_children)
  279                 return (0);
  280         sc = bp->bio_to->geom->softc;
  281         if (bp->bio_error != 0) {
  282                 G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).",
  283                     bp->bio_error);
  284                 free(bp->bio_driver2, M_ELI);
  285                 bp->bio_driver2 = NULL;
  286                 cbp = bp->bio_driver1;
  287                 bp->bio_driver1 = NULL;
  288                 g_destroy_bio(cbp);
  289                 g_io_deliver(bp, bp->bio_error);
  290                 atomic_subtract_int(&sc->sc_inflight, 1);
  291                 return (0);
  292         }
  293         cp = LIST_FIRST(&sc->sc_geom->consumer);
  294         cbp = bp->bio_driver1;
  295         bp->bio_driver1 = NULL;
  296         cbp->bio_to = cp->provider;
  297         cbp->bio_done = g_eli_write_done;
  298 
  299         /* Number of sectors from decrypted provider, eg. 1. */
  300         nsec = bp->bio_length / bp->bio_to->sectorsize;
  301         /* Number of sectors from encrypted provider, eg. 9. */
  302         nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
  303 
  304         cbp->bio_length = cp->provider->sectorsize * nsec;
  305         cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
  306         cbp->bio_data = bp->bio_driver2;
  307 
  308         /*
  309          * We write more than what is requested, so we have to be ready to write
  310          * more than MAXPHYS.
  311          */
  312         cbp2 = NULL;
  313         if (cbp->bio_length > MAXPHYS) {
  314                 cbp2 = g_duplicate_bio(bp);
  315                 cbp2->bio_length = cbp->bio_length - MAXPHYS;
  316                 cbp2->bio_data = cbp->bio_data + MAXPHYS;
  317                 cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
  318                 cbp2->bio_to = cp->provider;
  319                 cbp2->bio_done = g_eli_write_done;
  320                 cbp->bio_length = MAXPHYS;
  321         }
  322         /*
  323          * Send encrypted data to the provider.
  324          */
  325         G_ELI_LOGREQ(2, cbp, "Sending request.");
  326         bp->bio_inbed = 0;
  327         bp->bio_children = (cbp2 != NULL ? 2 : 1);
  328         g_io_request(cbp, cp);
  329         if (cbp2 != NULL) {
  330                 G_ELI_LOGREQ(2, cbp2, "Sending request.");
  331                 g_io_request(cbp2, cp);
  332         }
  333         return (0);
  334 }
  335 
  336 void
  337 g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp)
  338 {
  339         struct g_consumer *cp;
  340         struct bio *cbp, *cbp2;
  341         size_t size;
  342         off_t nsec;
  343 
  344         bp->bio_pflags = 0;
  345 
  346         cp = LIST_FIRST(&sc->sc_geom->consumer);
  347         cbp = bp->bio_driver1;
  348         bp->bio_driver1 = NULL;
  349         cbp->bio_to = cp->provider;
  350         cbp->bio_done = g_eli_read_done;
  351 
  352         /* Number of sectors from decrypted provider, eg. 1. */
  353         nsec = bp->bio_length / bp->bio_to->sectorsize;
  354         /* Number of sectors from encrypted provider, eg. 9. */
  355         nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
  356 
  357         cbp->bio_length = cp->provider->sectorsize * nsec;
  358         size = cbp->bio_length;
  359         size += sc->sc_alen * nsec;
  360         size += sizeof(struct cryptop) * nsec;
  361         size += sizeof(struct cryptodesc) * nsec * 2;
  362         size += G_ELI_AUTH_SECKEYLEN * nsec;
  363         size += sizeof(struct uio) * nsec;
  364         size += sizeof(struct iovec) * nsec;
  365         cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
  366         bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK);
  367         cbp->bio_data = bp->bio_driver2;
  368 
  369         /*
  370          * We read more than what is requested, so we have to be ready to read
  371          * more than MAXPHYS.
  372          */
  373         cbp2 = NULL;
  374         if (cbp->bio_length > MAXPHYS) {
  375                 cbp2 = g_duplicate_bio(bp);
  376                 cbp2->bio_length = cbp->bio_length - MAXPHYS;
  377                 cbp2->bio_data = cbp->bio_data + MAXPHYS;
  378                 cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
  379                 cbp2->bio_to = cp->provider;
  380                 cbp2->bio_done = g_eli_read_done;
  381                 cbp->bio_length = MAXPHYS;
  382         }
  383         /*
  384          * Read encrypted data from provider.
  385          */
  386         G_ELI_LOGREQ(2, cbp, "Sending request.");
  387         g_io_request(cbp, cp);
  388         if (cbp2 != NULL) {
  389                 G_ELI_LOGREQ(2, cbp2, "Sending request.");
  390                 g_io_request(cbp2, cp);
  391         }
  392 }
  393 
  394 /*
  395  * This is the main function responsible for cryptography (ie. communication
  396  * with crypto(9) subsystem).
  397  *
  398  * BIO_READ:
  399  *      g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> G_ELI_AUTH_RUN -> g_eli_auth_read_done -> g_io_deliver
  400  * BIO_WRITE:
  401  *      g_eli_start -> G_ELI_AUTH_RUN -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
  402  */
  403 void
  404 g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp)
  405 {
  406         struct g_eli_softc *sc;
  407         struct cryptop *crp;
  408         struct cryptodesc *crde, *crda;
  409         struct uio *uio;
  410         struct iovec *iov;
  411         u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
  412         off_t dstoff;
  413         int err, error;
  414         u_char *p, *data, *auth, *authkey, *plaindata;
  415 
  416         G_ELI_LOGREQ(3, bp, "%s", __func__);
  417 
  418         bp->bio_pflags = wr->w_number;
  419         sc = wr->w_softc;
  420         /* Sectorsize of decrypted provider eg. 4096. */
  421         decr_secsize = bp->bio_to->sectorsize;
  422         /* The real sectorsize of encrypted provider, eg. 512. */
  423         encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
  424         /* Number of data bytes in one encrypted sector, eg. 480. */
  425         data_secsize = sc->sc_data_per_sector;
  426         /* Number of sectors from decrypted provider, eg. 2. */
  427         nsec = bp->bio_length / decr_secsize;
  428         /* Number of sectors from encrypted provider, eg. 18. */
  429         nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
  430         /* Last sector number in every big sector, eg. 9. */
  431         lsec = sc->sc_bytes_per_sector / encr_secsize;
  432         /* Destination offset, used for IV generation. */
  433         dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
  434 
  435         auth = NULL;    /* Silence compiler warning. */
  436         plaindata = bp->bio_data;
  437         if (bp->bio_cmd == BIO_READ) {
  438                 data = bp->bio_driver2;
  439                 auth = data + encr_secsize * nsec;
  440                 p = auth + sc->sc_alen * nsec;
  441         } else {
  442                 size_t size;
  443 
  444                 size = encr_secsize * nsec;
  445                 size += sizeof(*crp) * nsec;
  446                 size += sizeof(*crde) * nsec;
  447                 size += sizeof(*crda) * nsec;
  448                 size += G_ELI_AUTH_SECKEYLEN * nsec;
  449                 size += sizeof(*uio) * nsec;
  450                 size += sizeof(*iov) * nsec;
  451                 data = malloc(size, M_ELI, M_WAITOK);
  452                 bp->bio_driver2 = data;
  453                 p = data + encr_secsize * nsec;
  454         }
  455         bp->bio_inbed = 0;
  456         bp->bio_children = nsec;
  457 
  458         error = 0;
  459         for (i = 1; i <= nsec; i++, dstoff += encr_secsize) {
  460                 crp = (struct cryptop *)p;      p += sizeof(*crp);
  461                 crde = (struct cryptodesc *)p;  p += sizeof(*crde);
  462                 crda = (struct cryptodesc *)p;  p += sizeof(*crda);
  463                 authkey = (u_char *)p;          p += G_ELI_AUTH_SECKEYLEN;
  464                 uio = (struct uio *)p;          p += sizeof(*uio);
  465                 iov = (struct iovec *)p;        p += sizeof(*iov);
  466 
  467                 data_secsize = sc->sc_data_per_sector;
  468                 if ((i % lsec) == 0)
  469                         data_secsize = decr_secsize % data_secsize;
  470 
  471                 if (bp->bio_cmd == BIO_READ) {
  472                         /* Remember read HMAC. */
  473                         bcopy(data, auth, sc->sc_alen);
  474                         auth += sc->sc_alen;
  475                         /* TODO: bzero(9) can be commented out later. */
  476                         bzero(data, sc->sc_alen);
  477                 } else {
  478                         bcopy(plaindata, data + sc->sc_alen, data_secsize);
  479                         plaindata += data_secsize;
  480                 }
  481 
  482                 iov->iov_len = sc->sc_alen + data_secsize;
  483                 iov->iov_base = data;
  484                 data += encr_secsize;
  485 
  486                 uio->uio_iov = iov;
  487                 uio->uio_iovcnt = 1;
  488                 uio->uio_segflg = UIO_SYSSPACE;
  489                 uio->uio_resid = iov->iov_len;
  490 
  491                 crp->crp_sid = wr->w_sid;
  492                 crp->crp_ilen = uio->uio_resid;
  493                 crp->crp_olen = data_secsize;
  494                 crp->crp_opaque = (void *)bp;
  495                 crp->crp_buf = (void *)uio;
  496                 crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_CBIFSYNC | CRYPTO_F_REL;
  497                 if (g_eli_batch)
  498                         crp->crp_flags |= CRYPTO_F_BATCH;
  499                 if (bp->bio_cmd == BIO_WRITE) {
  500                         crp->crp_callback = g_eli_auth_write_done;
  501                         crp->crp_desc = crde;
  502                         crde->crd_next = crda;
  503                         crda->crd_next = NULL;
  504                 } else {
  505                         crp->crp_callback = g_eli_auth_read_done;
  506                         crp->crp_desc = crda;
  507                         crda->crd_next = crde;
  508                         crde->crd_next = NULL;
  509                 }
  510 
  511                 crde->crd_skip = sc->sc_alen;
  512                 crde->crd_len = data_secsize;
  513                 crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
  514                 if (bp->bio_cmd == BIO_WRITE)
  515                         crde->crd_flags |= CRD_F_ENCRYPT;
  516                 crde->crd_alg = sc->sc_ealgo;
  517                 crde->crd_key = g_eli_crypto_key(sc, dstoff, encr_secsize);
  518                 crde->crd_klen = sc->sc_ekeylen;
  519                 if (sc->sc_ealgo == CRYPTO_AES_XTS)
  520                         crde->crd_klen <<= 1;
  521                 g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv,
  522                     sizeof(crde->crd_iv));
  523 
  524                 crda->crd_skip = sc->sc_alen;
  525                 crda->crd_len = data_secsize;
  526                 crda->crd_inject = 0;
  527                 crda->crd_flags = CRD_F_KEY_EXPLICIT;
  528                 crda->crd_alg = sc->sc_aalgo;
  529                 g_eli_auth_keygen(sc, dstoff, authkey);
  530                 crda->crd_key = authkey;
  531                 crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8;
  532 
  533                 crp->crp_etype = 0;
  534                 err = crypto_dispatch(crp);
  535                 if (err != 0 && error == 0)
  536                         error = err;
  537         }
  538         if (bp->bio_error == 0)
  539                 bp->bio_error = error;
  540 }

Cache object: 55f04de00bd90deb95ac72eacfe8e686


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.