FreeBSD/Linux Kernel Cross Reference
sys/geom/geom_ccd.c
1 /*-
2 * Copyright (c) 2003 Poul-Henning Kamp.
3 * Copyright (c) 1995 Jason R. Thorpe.
4 * Copyright (c) 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 * All rights reserved.
7 * Copyright (c) 1988 University of Utah.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed for the NetBSD Project
24 * by Jason R. Thorpe.
25 * 4. The names of the authors may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
35 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
36 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * Dynamic configuration and disklabel support by:
41 * Jason R. Thorpe <thorpej@nas.nasa.gov>
42 * Numerical Aerodynamic Simulation Facility
43 * Mail Stop 258-6
44 * NASA Ames Research Center
45 * Moffett Field, CA 94035
46 *
47 * from: Utah $Hdr: cd.c 1.6 90/11/28$
48 * @(#)cd.c 8.2 (Berkeley) 11/16/93
49 * $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $
50 */
51
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD: releng/11.2/sys/geom/geom_ccd.c 332640 2018-04-17 02:18:04Z kevans $");
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/module.h>
59 #include <sys/bio.h>
60 #include <sys/malloc.h>
61 #include <sys/sbuf.h>
62 #include <geom/geom.h>
63
64 /*
65 * Number of blocks to untouched in front of a component partition.
66 * This is to avoid violating its disklabel area when it starts at the
67 * beginning of the slice.
68 */
69 #if !defined(CCD_OFFSET)
70 #define CCD_OFFSET 16
71 #endif
72
73 /* sc_flags */
74 #define CCDF_UNIFORM 0x02 /* use LCCD of sizes for uniform interleave */
75 #define CCDF_MIRROR 0x04 /* use mirroring */
76 #define CCDF_NO_OFFSET 0x08 /* do not leave space in front */
77 #define CCDF_LINUX 0x10 /* use Linux compatibility mode */
78
79 /* Mask of user-settable ccd flags. */
80 #define CCDF_USERMASK (CCDF_UNIFORM|CCDF_MIRROR)
81
82 /*
83 * Interleave description table.
84 * Computed at boot time to speed irregular-interleave lookups.
85 * The idea is that we interleave in "groups". First we interleave
86 * evenly over all component disks up to the size of the smallest
87 * component (the first group), then we interleave evenly over all
88 * remaining disks up to the size of the next-smallest (second group),
89 * and so on.
90 *
91 * Each table entry describes the interleave characteristics of one
92 * of these groups. For example if a concatenated disk consisted of
93 * three components of 5, 3, and 7 DEV_BSIZE blocks interleaved at
94 * DEV_BSIZE (1), the table would have three entries:
95 *
96 * ndisk startblk startoff dev
97 * 3 0 0 0, 1, 2
98 * 2 9 3 0, 2
99 * 1 13 5 2
100 * 0 - - -
101 *
102 * which says that the first nine blocks (0-8) are interleaved over
103 * 3 disks (0, 1, 2) starting at block offset 0 on any component disk,
104 * the next 4 blocks (9-12) are interleaved over 2 disks (0, 2) starting
105 * at component block 3, and the remaining blocks (13-14) are on disk
106 * 2 starting at offset 5.
107 */
108 struct ccdiinfo {
109 int ii_ndisk; /* # of disks range is interleaved over */
110 daddr_t ii_startblk; /* starting scaled block # for range */
111 daddr_t ii_startoff; /* starting component offset (block #) */
112 int *ii_index; /* ordered list of components in range */
113 };
114
115 /*
116 * Component info table.
117 * Describes a single component of a concatenated disk.
118 */
119 struct ccdcinfo {
120 daddr_t ci_size; /* size */
121 struct g_provider *ci_provider; /* provider */
122 struct g_consumer *ci_consumer; /* consumer */
123 };
124
125 /*
126 * A concatenated disk is described by this structure.
127 */
128
129 struct ccd_s {
130 LIST_ENTRY(ccd_s) list;
131
132 int sc_unit; /* logical unit number */
133 int sc_flags; /* flags */
134 daddr_t sc_size; /* size of ccd */
135 int sc_ileave; /* interleave */
136 u_int sc_ndisks; /* number of components */
137 struct ccdcinfo *sc_cinfo; /* component info */
138 struct ccdiinfo *sc_itable; /* interleave table */
139 u_int32_t sc_secsize; /* # bytes per sector */
140 int sc_pick; /* side of mirror picked */
141 daddr_t sc_blk[2]; /* mirror localization */
142 u_int32_t sc_offset; /* actual offset used */
143 };
144
145 static g_start_t g_ccd_start;
146 static void ccdiodone(struct bio *bp);
147 static void ccdinterleave(struct ccd_s *);
148 static int ccdinit(struct gctl_req *req, struct ccd_s *);
149 static int ccdbuffer(struct bio **ret, struct ccd_s *,
150 struct bio *, daddr_t, caddr_t, long);
151
152 static void
153 g_ccd_orphan(struct g_consumer *cp)
154 {
155 /*
156 * XXX: We don't do anything here. It is not obvious
157 * XXX: what DTRT would be, so we do what the previous
158 * XXX: code did: ignore it and let the user cope.
159 */
160 }
161
162 static int
163 g_ccd_access(struct g_provider *pp, int dr, int dw, int de)
164 {
165 struct g_geom *gp;
166 struct g_consumer *cp1, *cp2;
167 int error;
168
169 de += dr;
170 de += dw;
171
172 gp = pp->geom;
173 error = ENXIO;
174 LIST_FOREACH(cp1, &gp->consumer, consumer) {
175 error = g_access(cp1, dr, dw, de);
176 if (error) {
177 LIST_FOREACH(cp2, &gp->consumer, consumer) {
178 if (cp1 == cp2)
179 break;
180 g_access(cp2, -dr, -dw, -de);
181 }
182 break;
183 }
184 }
185 return (error);
186 }
187
188 /*
189 * Free the softc and its substructures.
190 */
191 static void
192 g_ccd_freesc(struct ccd_s *sc)
193 {
194 struct ccdiinfo *ii;
195
196 g_free(sc->sc_cinfo);
197 if (sc->sc_itable != NULL) {
198 for (ii = sc->sc_itable; ii->ii_ndisk > 0; ii++)
199 if (ii->ii_index != NULL)
200 g_free(ii->ii_index);
201 g_free(sc->sc_itable);
202 }
203 g_free(sc);
204 }
205
206
207 static int
208 ccdinit(struct gctl_req *req, struct ccd_s *cs)
209 {
210 struct ccdcinfo *ci;
211 daddr_t size;
212 int ix;
213 daddr_t minsize;
214 int maxsecsize;
215 off_t mediasize;
216 u_int sectorsize;
217
218 cs->sc_size = 0;
219
220 maxsecsize = 0;
221 minsize = 0;
222
223 if (cs->sc_flags & CCDF_LINUX) {
224 cs->sc_offset = 0;
225 cs->sc_ileave *= 2;
226 if (cs->sc_flags & CCDF_MIRROR && cs->sc_ndisks != 2)
227 gctl_error(req, "Mirror mode for Linux raids is "
228 "only supported with 2 devices");
229 } else {
230 if (cs->sc_flags & CCDF_NO_OFFSET)
231 cs->sc_offset = 0;
232 else
233 cs->sc_offset = CCD_OFFSET;
234
235 }
236 for (ix = 0; ix < cs->sc_ndisks; ix++) {
237 ci = &cs->sc_cinfo[ix];
238
239 mediasize = ci->ci_provider->mediasize;
240 sectorsize = ci->ci_provider->sectorsize;
241 if (sectorsize > maxsecsize)
242 maxsecsize = sectorsize;
243 size = mediasize / DEV_BSIZE - cs->sc_offset;
244
245 /* Truncate to interleave boundary */
246
247 if (cs->sc_ileave > 1)
248 size -= size % cs->sc_ileave;
249
250 if (size == 0) {
251 gctl_error(req, "Component %s has effective size zero",
252 ci->ci_provider->name);
253 return(ENODEV);
254 }
255
256 if (minsize == 0 || size < minsize)
257 minsize = size;
258 ci->ci_size = size;
259 cs->sc_size += size;
260 }
261
262 /*
263 * Don't allow the interleave to be smaller than
264 * the biggest component sector.
265 */
266 if ((cs->sc_ileave > 0) &&
267 (cs->sc_ileave < (maxsecsize / DEV_BSIZE))) {
268 gctl_error(req, "Interleave to small for sector size");
269 return(EINVAL);
270 }
271
272 /*
273 * If uniform interleave is desired set all sizes to that of
274 * the smallest component. This will guarantee that a single
275 * interleave table is generated.
276 *
277 * Lost space must be taken into account when calculating the
278 * overall size. Half the space is lost when CCDF_MIRROR is
279 * specified.
280 */
281 if (cs->sc_flags & CCDF_UNIFORM) {
282 for (ix = 0; ix < cs->sc_ndisks; ix++) {
283 ci = &cs->sc_cinfo[ix];
284 ci->ci_size = minsize;
285 }
286 cs->sc_size = cs->sc_ndisks * minsize;
287 }
288
289 if (cs->sc_flags & CCDF_MIRROR) {
290 /*
291 * Check to see if an even number of components
292 * have been specified. The interleave must also
293 * be non-zero in order for us to be able to
294 * guarantee the topology.
295 */
296 if (cs->sc_ndisks % 2) {
297 gctl_error(req,
298 "Mirroring requires an even number of disks");
299 return(EINVAL);
300 }
301 if (cs->sc_ileave == 0) {
302 gctl_error(req,
303 "An interleave must be specified when mirroring");
304 return(EINVAL);
305 }
306 cs->sc_size = (cs->sc_ndisks/2) * minsize;
307 }
308
309 /*
310 * Construct the interleave table.
311 */
312 ccdinterleave(cs);
313
314 /*
315 * Create pseudo-geometry based on 1MB cylinders. It's
316 * pretty close.
317 */
318 cs->sc_secsize = maxsecsize;
319
320 return (0);
321 }
322
323 static void
324 ccdinterleave(struct ccd_s *cs)
325 {
326 struct ccdcinfo *ci, *smallci;
327 struct ccdiinfo *ii;
328 daddr_t bn, lbn;
329 int ix;
330 daddr_t size;
331
332
333 /*
334 * Allocate an interleave table. The worst case occurs when each
335 * of N disks is of a different size, resulting in N interleave
336 * tables.
337 *
338 * Chances are this is too big, but we don't care.
339 */
340 size = (cs->sc_ndisks + 1) * sizeof(struct ccdiinfo);
341 cs->sc_itable = g_malloc(size, M_WAITOK | M_ZERO);
342
343 /*
344 * Trivial case: no interleave (actually interleave of disk size).
345 * Each table entry represents a single component in its entirety.
346 *
347 * An interleave of 0 may not be used with a mirror setup.
348 */
349 if (cs->sc_ileave == 0) {
350 bn = 0;
351 ii = cs->sc_itable;
352
353 for (ix = 0; ix < cs->sc_ndisks; ix++) {
354 /* Allocate space for ii_index. */
355 ii->ii_index = g_malloc(sizeof(int), M_WAITOK);
356 ii->ii_ndisk = 1;
357 ii->ii_startblk = bn;
358 ii->ii_startoff = 0;
359 ii->ii_index[0] = ix;
360 bn += cs->sc_cinfo[ix].ci_size;
361 ii++;
362 }
363 ii->ii_ndisk = 0;
364 return;
365 }
366
367 /*
368 * The following isn't fast or pretty; it doesn't have to be.
369 */
370 size = 0;
371 bn = lbn = 0;
372 for (ii = cs->sc_itable; ; ii++) {
373 /*
374 * Allocate space for ii_index. We might allocate more then
375 * we use.
376 */
377 ii->ii_index = g_malloc((sizeof(int) * cs->sc_ndisks),
378 M_WAITOK);
379
380 /*
381 * Locate the smallest of the remaining components
382 */
383 smallci = NULL;
384 for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_ndisks];
385 ci++) {
386 if (ci->ci_size > size &&
387 (smallci == NULL ||
388 ci->ci_size < smallci->ci_size)) {
389 smallci = ci;
390 }
391 }
392
393 /*
394 * Nobody left, all done
395 */
396 if (smallci == NULL) {
397 ii->ii_ndisk = 0;
398 g_free(ii->ii_index);
399 ii->ii_index = NULL;
400 break;
401 }
402
403 /*
404 * Record starting logical block using an sc_ileave blocksize.
405 */
406 ii->ii_startblk = bn / cs->sc_ileave;
407
408 /*
409 * Record starting component block using an sc_ileave
410 * blocksize. This value is relative to the beginning of
411 * a component disk.
412 */
413 ii->ii_startoff = lbn;
414
415 /*
416 * Determine how many disks take part in this interleave
417 * and record their indices.
418 */
419 ix = 0;
420 for (ci = cs->sc_cinfo;
421 ci < &cs->sc_cinfo[cs->sc_ndisks]; ci++) {
422 if (ci->ci_size >= smallci->ci_size) {
423 ii->ii_index[ix++] = ci - cs->sc_cinfo;
424 }
425 }
426 ii->ii_ndisk = ix;
427 bn += ix * (smallci->ci_size - size);
428 lbn = smallci->ci_size / cs->sc_ileave;
429 size = smallci->ci_size;
430 }
431 }
432
433 static void
434 g_ccd_start(struct bio *bp)
435 {
436 long bcount, rcount;
437 struct bio *cbp[2];
438 caddr_t addr;
439 daddr_t bn;
440 int err;
441 struct ccd_s *cs;
442
443 cs = bp->bio_to->geom->softc;
444
445 /*
446 * Block all GETATTR requests, we wouldn't know which of our
447 * subdevices we should ship it off to.
448 * XXX: this may not be the right policy.
449 */
450 if(bp->bio_cmd == BIO_GETATTR) {
451 g_io_deliver(bp, EINVAL);
452 return;
453 }
454
455 /*
456 * Translate the partition-relative block number to an absolute.
457 */
458 bn = bp->bio_offset / cs->sc_secsize;
459
460 /*
461 * Allocate component buffers and fire off the requests
462 */
463 addr = bp->bio_data;
464 for (bcount = bp->bio_length; bcount > 0; bcount -= rcount) {
465 err = ccdbuffer(cbp, cs, bp, bn, addr, bcount);
466 if (err) {
467 bp->bio_completed += bcount;
468 if (bp->bio_error == 0)
469 bp->bio_error = err;
470 if (bp->bio_completed == bp->bio_length)
471 g_io_deliver(bp, bp->bio_error);
472 return;
473 }
474 rcount = cbp[0]->bio_length;
475
476 if (cs->sc_flags & CCDF_MIRROR) {
477 /*
478 * Mirroring. Writes go to both disks, reads are
479 * taken from whichever disk seems most appropriate.
480 *
481 * We attempt to localize reads to the disk whos arm
482 * is nearest the read request. We ignore seeks due
483 * to writes when making this determination and we
484 * also try to avoid hogging.
485 */
486 if (cbp[0]->bio_cmd != BIO_READ) {
487 g_io_request(cbp[0], cbp[0]->bio_from);
488 g_io_request(cbp[1], cbp[1]->bio_from);
489 } else {
490 int pick = cs->sc_pick;
491 daddr_t range = cs->sc_size / 16;
492
493 if (bn < cs->sc_blk[pick] - range ||
494 bn > cs->sc_blk[pick] + range
495 ) {
496 cs->sc_pick = pick = 1 - pick;
497 }
498 cs->sc_blk[pick] = bn + btodb(rcount);
499 g_io_request(cbp[pick], cbp[pick]->bio_from);
500 }
501 } else {
502 /*
503 * Not mirroring
504 */
505 g_io_request(cbp[0], cbp[0]->bio_from);
506 }
507 bn += btodb(rcount);
508 addr += rcount;
509 }
510 }
511
512 /*
513 * Build a component buffer header.
514 */
515 static int
516 ccdbuffer(struct bio **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount)
517 {
518 struct ccdcinfo *ci, *ci2 = NULL;
519 struct bio *cbp;
520 daddr_t cbn, cboff;
521 off_t cbc;
522
523 /*
524 * Determine which component bn falls in.
525 */
526 cbn = bn;
527 cboff = 0;
528
529 if (cs->sc_ileave == 0) {
530 /*
531 * Serially concatenated and neither a mirror nor a parity
532 * config. This is a special case.
533 */
534 daddr_t sblk;
535
536 sblk = 0;
537 for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++)
538 sblk += ci->ci_size;
539 cbn -= sblk;
540 } else {
541 struct ccdiinfo *ii;
542 int ccdisk, off;
543
544 /*
545 * Calculate cbn, the logical superblock (sc_ileave chunks),
546 * and cboff, a normal block offset (DEV_BSIZE chunks) relative
547 * to cbn.
548 */
549 cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */
550 cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */
551
552 /*
553 * Figure out which interleave table to use.
554 */
555 for (ii = cs->sc_itable; ii->ii_ndisk; ii++) {
556 if (ii->ii_startblk > cbn)
557 break;
558 }
559 ii--;
560
561 /*
562 * off is the logical superblock relative to the beginning
563 * of this interleave block.
564 */
565 off = cbn - ii->ii_startblk;
566
567 /*
568 * We must calculate which disk component to use (ccdisk),
569 * and recalculate cbn to be the superblock relative to
570 * the beginning of the component. This is typically done by
571 * adding 'off' and ii->ii_startoff together. However, 'off'
572 * must typically be divided by the number of components in
573 * this interleave array to be properly convert it from a
574 * CCD-relative logical superblock number to a
575 * component-relative superblock number.
576 */
577 if (ii->ii_ndisk == 1) {
578 /*
579 * When we have just one disk, it can't be a mirror
580 * or a parity config.
581 */
582 ccdisk = ii->ii_index[0];
583 cbn = ii->ii_startoff + off;
584 } else {
585 if (cs->sc_flags & CCDF_MIRROR) {
586 /*
587 * We have forced a uniform mapping, resulting
588 * in a single interleave array. We double
589 * up on the first half of the available
590 * components and our mirror is in the second
591 * half. This only works with a single
592 * interleave array because doubling up
593 * doubles the number of sectors, so there
594 * cannot be another interleave array because
595 * the next interleave array's calculations
596 * would be off.
597 */
598 int ndisk2 = ii->ii_ndisk / 2;
599 ccdisk = ii->ii_index[off % ndisk2];
600 cbn = ii->ii_startoff + off / ndisk2;
601 ci2 = &cs->sc_cinfo[ccdisk + ndisk2];
602 } else {
603 ccdisk = ii->ii_index[off % ii->ii_ndisk];
604 cbn = ii->ii_startoff + off / ii->ii_ndisk;
605 }
606 }
607
608 ci = &cs->sc_cinfo[ccdisk];
609
610 /*
611 * Convert cbn from a superblock to a normal block so it
612 * can be used to calculate (along with cboff) the normal
613 * block index into this particular disk.
614 */
615 cbn *= cs->sc_ileave;
616 }
617
618 /*
619 * Fill in the component buf structure.
620 */
621 cbp = g_clone_bio(bp);
622 if (cbp == NULL)
623 return (ENOMEM);
624 cbp->bio_done = g_std_done;
625 cbp->bio_offset = dbtob(cbn + cboff + cs->sc_offset);
626 cbp->bio_data = addr;
627 if (cs->sc_ileave == 0)
628 cbc = dbtob((off_t)(ci->ci_size - cbn));
629 else
630 cbc = dbtob((off_t)(cs->sc_ileave - cboff));
631 cbp->bio_length = (cbc < bcount) ? cbc : bcount;
632
633 cbp->bio_from = ci->ci_consumer;
634 cb[0] = cbp;
635
636 if (cs->sc_flags & CCDF_MIRROR) {
637 cbp = g_clone_bio(bp);
638 if (cbp == NULL)
639 return (ENOMEM);
640 cbp->bio_done = cb[0]->bio_done = ccdiodone;
641 cbp->bio_offset = cb[0]->bio_offset;
642 cbp->bio_data = cb[0]->bio_data;
643 cbp->bio_length = cb[0]->bio_length;
644 cbp->bio_from = ci2->ci_consumer;
645 cbp->bio_caller1 = cb[0];
646 cb[0]->bio_caller1 = cbp;
647 cb[1] = cbp;
648 }
649 return (0);
650 }
651
652 /*
653 * Called only for mirrored operations.
654 */
655 static void
656 ccdiodone(struct bio *cbp)
657 {
658 struct bio *mbp, *pbp;
659
660 mbp = cbp->bio_caller1;
661 pbp = cbp->bio_parent;
662
663 if (pbp->bio_cmd == BIO_READ) {
664 if (cbp->bio_error == 0) {
665 /* We will not be needing the partner bio */
666 if (mbp != NULL) {
667 pbp->bio_inbed++;
668 g_destroy_bio(mbp);
669 }
670 g_std_done(cbp);
671 return;
672 }
673 if (mbp != NULL) {
674 /* Try partner the bio instead */
675 mbp->bio_caller1 = NULL;
676 pbp->bio_inbed++;
677 g_destroy_bio(cbp);
678 g_io_request(mbp, mbp->bio_from);
679 /*
680 * XXX: If this comes back OK, we should actually
681 * try to write the good data on the failed mirror
682 */
683 return;
684 }
685 g_std_done(cbp);
686 return;
687 }
688 if (mbp != NULL) {
689 mbp->bio_caller1 = NULL;
690 pbp->bio_inbed++;
691 if (cbp->bio_error != 0 && pbp->bio_error == 0)
692 pbp->bio_error = cbp->bio_error;
693 g_destroy_bio(cbp);
694 return;
695 }
696 g_std_done(cbp);
697 }
698
699 static void
700 g_ccd_create(struct gctl_req *req, struct g_class *mp)
701 {
702 int *unit, *ileave, *nprovider;
703 struct g_geom *gp;
704 struct g_consumer *cp;
705 struct g_provider *pp;
706 struct ccd_s *sc;
707 struct sbuf *sb;
708 char buf[20];
709 int i, error;
710
711 g_topology_assert();
712 unit = gctl_get_paraml(req, "unit", sizeof (*unit));
713 if (unit == NULL) {
714 gctl_error(req, "unit parameter not given");
715 return;
716 }
717 ileave = gctl_get_paraml(req, "ileave", sizeof (*ileave));
718 if (ileave == NULL) {
719 gctl_error(req, "ileave parameter not given");
720 return;
721 }
722 nprovider = gctl_get_paraml(req, "nprovider", sizeof (*nprovider));
723 if (nprovider == NULL) {
724 gctl_error(req, "nprovider parameter not given");
725 return;
726 }
727
728 /* Check for duplicate unit */
729 LIST_FOREACH(gp, &mp->geom, geom) {
730 sc = gp->softc;
731 if (sc != NULL && sc->sc_unit == *unit) {
732 gctl_error(req, "Unit %d already configured", *unit);
733 return;
734 }
735 }
736
737 if (*nprovider <= 0) {
738 gctl_error(req, "Bogus nprovider argument (= %d)", *nprovider);
739 return;
740 }
741
742 /* Check all providers are valid */
743 for (i = 0; i < *nprovider; i++) {
744 sprintf(buf, "provider%d", i);
745 pp = gctl_get_provider(req, buf);
746 if (pp == NULL)
747 return;
748 }
749
750 gp = g_new_geomf(mp, "ccd%d", *unit);
751 sc = g_malloc(sizeof *sc, M_WAITOK | M_ZERO);
752 gp->softc = sc;
753 sc->sc_ndisks = *nprovider;
754
755 /* Allocate space for the component info. */
756 sc->sc_cinfo = g_malloc(sc->sc_ndisks * sizeof(struct ccdcinfo),
757 M_WAITOK | M_ZERO);
758
759 /* Create consumers and attach to all providers */
760 for (i = 0; i < *nprovider; i++) {
761 sprintf(buf, "provider%d", i);
762 pp = gctl_get_provider(req, buf);
763 cp = g_new_consumer(gp);
764 error = g_attach(cp, pp);
765 KASSERT(error == 0, ("attach to %s failed", pp->name));
766 sc->sc_cinfo[i].ci_consumer = cp;
767 sc->sc_cinfo[i].ci_provider = pp;
768 }
769
770 sc->sc_unit = *unit;
771 sc->sc_ileave = *ileave;
772
773 if (gctl_get_param(req, "no_offset", NULL))
774 sc->sc_flags |= CCDF_NO_OFFSET;
775 if (gctl_get_param(req, "linux", NULL))
776 sc->sc_flags |= CCDF_LINUX;
777
778 if (gctl_get_param(req, "uniform", NULL))
779 sc->sc_flags |= CCDF_UNIFORM;
780 if (gctl_get_param(req, "mirror", NULL))
781 sc->sc_flags |= CCDF_MIRROR;
782
783 if (sc->sc_ileave == 0 && (sc->sc_flags & CCDF_MIRROR)) {
784 printf("%s: disabling mirror, interleave is 0\n", gp->name);
785 sc->sc_flags &= ~(CCDF_MIRROR);
786 }
787
788 if ((sc->sc_flags & CCDF_MIRROR) && !(sc->sc_flags & CCDF_UNIFORM)) {
789 printf("%s: mirror/parity forces uniform flag\n", gp->name);
790 sc->sc_flags |= CCDF_UNIFORM;
791 }
792
793 error = ccdinit(req, sc);
794 if (error != 0) {
795 g_ccd_freesc(sc);
796 gp->softc = NULL;
797 g_wither_geom(gp, ENXIO);
798 return;
799 }
800
801 pp = g_new_providerf(gp, "%s", gp->name);
802 pp->mediasize = sc->sc_size * (off_t)sc->sc_secsize;
803 pp->sectorsize = sc->sc_secsize;
804 g_error_provider(pp, 0);
805
806 sb = sbuf_new_auto();
807 sbuf_printf(sb, "ccd%d: %d components ", sc->sc_unit, *nprovider);
808 for (i = 0; i < *nprovider; i++) {
809 sbuf_printf(sb, "%s%s",
810 i == 0 ? "(" : ", ",
811 sc->sc_cinfo[i].ci_provider->name);
812 }
813 sbuf_printf(sb, "), %jd blocks ", (off_t)pp->mediasize / DEV_BSIZE);
814 if (sc->sc_ileave != 0)
815 sbuf_printf(sb, "interleaved at %d blocks\n",
816 sc->sc_ileave);
817 else
818 sbuf_printf(sb, "concatenated\n");
819 sbuf_finish(sb);
820 gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1);
821 sbuf_delete(sb);
822 }
823
824 static int
825 g_ccd_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp)
826 {
827 struct g_provider *pp;
828 struct ccd_s *sc;
829
830 g_topology_assert();
831 sc = gp->softc;
832 pp = LIST_FIRST(&gp->provider);
833 if (sc == NULL || pp == NULL)
834 return (EBUSY);
835 if (pp->acr != 0 || pp->acw != 0 || pp->ace != 0) {
836 gctl_error(req, "%s is open(r%dw%de%d)", gp->name,
837 pp->acr, pp->acw, pp->ace);
838 return (EBUSY);
839 }
840 g_ccd_freesc(sc);
841 gp->softc = NULL;
842 g_wither_geom(gp, ENXIO);
843 return (0);
844 }
845
846 static void
847 g_ccd_list(struct gctl_req *req, struct g_class *mp)
848 {
849 struct sbuf *sb;
850 struct ccd_s *cs;
851 struct g_geom *gp;
852 int i, unit, *up;
853
854 up = gctl_get_paraml(req, "unit", sizeof (*up));
855 if (up == NULL) {
856 gctl_error(req, "unit parameter not given");
857 return;
858 }
859 unit = *up;
860 sb = sbuf_new_auto();
861 LIST_FOREACH(gp, &mp->geom, geom) {
862 cs = gp->softc;
863 if (cs == NULL || (unit >= 0 && unit != cs->sc_unit))
864 continue;
865 sbuf_printf(sb, "ccd%d\t\t%d\t%d\t",
866 cs->sc_unit, cs->sc_ileave, cs->sc_flags & CCDF_USERMASK);
867
868 for (i = 0; i < cs->sc_ndisks; ++i) {
869 sbuf_printf(sb, "%s/dev/%s", i == 0 ? "" : " ",
870 cs->sc_cinfo[i].ci_provider->name);
871 }
872 sbuf_printf(sb, "\n");
873 }
874 sbuf_finish(sb);
875 gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1);
876 sbuf_delete(sb);
877 }
878
879 static void
880 g_ccd_config(struct gctl_req *req, struct g_class *mp, char const *verb)
881 {
882 struct g_geom *gp;
883
884 g_topology_assert();
885 if (!strcmp(verb, "create geom")) {
886 g_ccd_create(req, mp);
887 } else if (!strcmp(verb, "destroy geom")) {
888 gp = gctl_get_geom(req, mp, "geom");
889 if (gp != NULL)
890 g_ccd_destroy_geom(req, mp, gp);
891 } else if (!strcmp(verb, "list")) {
892 g_ccd_list(req, mp);
893 } else {
894 gctl_error(req, "unknown verb");
895 }
896 }
897
898 static struct g_class g_ccd_class = {
899 .name = "CCD",
900 .version = G_VERSION,
901 .ctlreq = g_ccd_config,
902 .destroy_geom = g_ccd_destroy_geom,
903 .start = g_ccd_start,
904 .orphan = g_ccd_orphan,
905 .access = g_ccd_access,
906 };
907
908 DECLARE_GEOM_CLASS(g_ccd_class, g_ccd);
909 MODULE_VERSION(geom_ccd, 0);
Cache object: 4b662de5e6965aa88ad56fb84661432c
|