1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/diskmbr.h>
35 #include <sys/gsb_crc32.h>
36 #include <sys/endian.h>
37 #include <sys/gpt.h>
38 #include <sys/kernel.h>
39 #include <sys/kobj.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/queue.h>
45 #include <sys/sbuf.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/uuid.h>
49 #include <geom/geom.h>
50 #include <geom/geom_int.h>
51 #include <geom/part/g_part.h>
52
53 #include "g_part_if.h"
54
55 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
56
57 SYSCTL_DECL(_kern_geom_part);
58 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt,
59 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
60 "GEOM_PART_GPT GUID Partition Table");
61
62 static u_int allow_nesting = 0;
63 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting,
64 CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes");
65
66 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
67 CTASSERT(sizeof(struct gpt_ent) == 128);
68
69 extern u_int geom_part_check_integrity;
70
71 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0)
72
73 #define MBRSIZE 512
74
75 enum gpt_elt {
76 GPT_ELT_PRIHDR,
77 GPT_ELT_PRITBL,
78 GPT_ELT_SECHDR,
79 GPT_ELT_SECTBL,
80 GPT_ELT_COUNT
81 };
82
83 enum gpt_state {
84 GPT_STATE_UNKNOWN, /* Not determined. */
85 GPT_STATE_MISSING, /* No signature found. */
86 GPT_STATE_CORRUPT, /* Checksum mismatch. */
87 GPT_STATE_INVALID, /* Nonconformant/invalid. */
88 GPT_STATE_UNSUPPORTED, /* Not supported. */
89 GPT_STATE_OK /* Perfectly fine. */
90 };
91
92 struct g_part_gpt_table {
93 struct g_part_table base;
94 u_char mbr[MBRSIZE];
95 struct gpt_hdr *hdr;
96 quad_t lba[GPT_ELT_COUNT];
97 enum gpt_state state[GPT_ELT_COUNT];
98 int bootcamp;
99 };
100
101 struct g_part_gpt_entry {
102 struct g_part_entry base;
103 struct gpt_ent ent;
104 };
105
106 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
107 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
108 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
109
110 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
111 struct g_part_parms *);
112 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
113 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
114 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
115 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
116 struct sbuf *, const char *);
117 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
118 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
119 struct g_part_parms *);
120 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
121 char *, size_t);
122 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
123 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
124 static int g_part_gpt_setunset(struct g_part_table *table,
125 struct g_part_entry *baseentry, const char *attrib, unsigned int set);
126 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
127 char *, size_t);
128 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
129 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
130 struct g_part_parms *);
131 static int g_part_gpt_recover(struct g_part_table *);
132
133 static kobj_method_t g_part_gpt_methods[] = {
134 KOBJMETHOD(g_part_add, g_part_gpt_add),
135 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode),
136 KOBJMETHOD(g_part_create, g_part_gpt_create),
137 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy),
138 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf),
139 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto),
140 KOBJMETHOD(g_part_modify, g_part_gpt_modify),
141 KOBJMETHOD(g_part_resize, g_part_gpt_resize),
142 KOBJMETHOD(g_part_name, g_part_gpt_name),
143 KOBJMETHOD(g_part_probe, g_part_gpt_probe),
144 KOBJMETHOD(g_part_read, g_part_gpt_read),
145 KOBJMETHOD(g_part_recover, g_part_gpt_recover),
146 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset),
147 KOBJMETHOD(g_part_type, g_part_gpt_type),
148 KOBJMETHOD(g_part_write, g_part_gpt_write),
149 { 0, 0 }
150 };
151
152 #define MAXENTSIZE 1024
153
154 static struct g_part_scheme g_part_gpt_scheme = {
155 "GPT",
156 g_part_gpt_methods,
157 sizeof(struct g_part_gpt_table),
158 .gps_entrysz = sizeof(struct g_part_gpt_entry),
159 .gps_minent = 128,
160 .gps_maxent = 4096,
161 .gps_bootcodesz = MBRSIZE,
162 };
163 G_PART_SCHEME_DECLARE(g_part_gpt);
164 MODULE_VERSION(geom_part_gpt, 0);
165
166 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS;
167 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
168 static struct uuid gpt_uuid_apple_core_storage =
169 GPT_ENT_TYPE_APPLE_CORE_STORAGE;
170 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
171 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
172 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
173 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
174 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
175 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
176 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS;
177 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
178 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
179 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
180 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
181 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
182 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
183 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
184 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
185 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
186 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
187 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
188 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
189 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
190 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
191 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
192 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
193 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
194 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
195 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
196 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
197 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
198 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
199 static struct uuid gpt_uuid_hifive_fsbl = GPT_ENT_TYPE_HIFIVE_FSBL;
200 static struct uuid gpt_uuid_hifive_bbl = GPT_ENT_TYPE_HIFIVE_BBL;
201 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
202 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
203 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
204 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
205 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
206 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
207 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
208 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
209 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
210 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
211 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
212 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
213 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
214 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
215 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
216 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
217 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
218 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
219 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
220 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT;
221 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT;
222 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP;
223 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP;
224 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR;
225 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME;
226 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC;
227 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED;
228 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
229 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
230 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
231 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
232 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
233
234 static struct g_part_uuid_alias {
235 struct uuid *uuid;
236 int alias;
237 int mbrtype;
238 } gpt_uuid_alias_match[] = {
239 { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 },
240 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab },
241 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
242 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf },
243 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 },
244 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 },
245 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
246 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 },
247 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 },
248 { &gpt_uuid_apple_zfs, G_PART_ALIAS_APPLE_ZFS, 0 },
249 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 },
250 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 },
251 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 },
252 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 },
253 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 },
254 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 },
255 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 },
256 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 },
257 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 },
258 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 },
259 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 },
260 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 },
261 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 },
262 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 },
263 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee },
264 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 },
265 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 },
266 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 },
267 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 },
268 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 },
269 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 },
270 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 },
271 { &gpt_uuid_hifive_fsbl, G_PART_ALIAS_HIFIVE_FSBL, 0 },
272 { &gpt_uuid_hifive_bbl, G_PART_ALIAS_HIFIVE_BBL, 0 },
273 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b },
274 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 },
275 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 },
276 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 },
277 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 },
278 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b },
279 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 },
280 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 },
281 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 },
282 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 },
283 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 },
284 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 },
285 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 },
286 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 },
287 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 },
288 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 },
289 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 },
290 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 },
291 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 },
292 { &gpt_uuid_solaris_boot, G_PART_ALIAS_SOLARIS_BOOT, 0 },
293 { &gpt_uuid_solaris_root, G_PART_ALIAS_SOLARIS_ROOT, 0 },
294 { &gpt_uuid_solaris_swap, G_PART_ALIAS_SOLARIS_SWAP, 0 },
295 { &gpt_uuid_solaris_backup, G_PART_ALIAS_SOLARIS_BACKUP, 0 },
296 { &gpt_uuid_solaris_var, G_PART_ALIAS_SOLARIS_VAR, 0 },
297 { &gpt_uuid_solaris_home, G_PART_ALIAS_SOLARIS_HOME, 0 },
298 { &gpt_uuid_solaris_altsec, G_PART_ALIAS_SOLARIS_ALTSEC, 0 },
299 { &gpt_uuid_solaris_reserved, G_PART_ALIAS_SOLARIS_RESERVED, 0 },
300 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 },
301 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 },
302 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 },
303 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 },
304 { NULL, 0, 0 }
305 };
306
307 static int
308 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
309 quad_t end)
310 {
311
312 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
313 return (EINVAL);
314
315 mbr += DOSPARTOFF + idx * DOSPARTSIZE;
316 mbr[0] = 0;
317 if (start == 1) {
318 /*
319 * Treat the PMBR partition specially to maximize
320 * interoperability with BIOSes.
321 */
322 mbr[1] = mbr[3] = 0;
323 mbr[2] = 2;
324 } else
325 mbr[1] = mbr[2] = mbr[3] = 0xff;
326 mbr[4] = typ;
327 mbr[5] = mbr[6] = mbr[7] = 0xff;
328 le32enc(mbr + 8, (uint32_t)start);
329 le32enc(mbr + 12, (uint32_t)(end - start + 1));
330 return (0);
331 }
332
333 static int
334 gpt_map_type(struct uuid *t)
335 {
336 struct g_part_uuid_alias *uap;
337
338 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
339 if (EQUUID(t, uap->uuid))
340 return (uap->mbrtype);
341 }
342 return (0);
343 }
344
345 static void
346 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
347 {
348
349 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
350 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
351 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
352 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
353 }
354
355 /*
356 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
357 * whole disk anymore. Rather, it covers the GPT table and the EFI
358 * system partition only. This way the HFS+ partition and any FAT
359 * partitions can be added to the MBR without creating an overlap.
360 */
361 static int
362 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
363 {
364 uint8_t *p;
365
366 p = table->mbr + DOSPARTOFF;
367 if (p[4] != 0xee || le32dec(p + 8) != 1)
368 return (0);
369
370 p += DOSPARTSIZE;
371 if (p[4] != 0xaf)
372 return (0);
373
374 printf("GEOM: %s: enabling Boot Camp\n", provname);
375 return (1);
376 }
377
378 static void
379 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
380 {
381 struct g_part_entry *baseentry;
382 struct g_part_gpt_entry *entry;
383 struct g_part_gpt_table *table;
384 int bootable, error, index, slices, typ;
385
386 table = (struct g_part_gpt_table *)basetable;
387
388 bootable = -1;
389 for (index = 0; index < NDOSPART; index++) {
390 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
391 bootable = index;
392 }
393
394 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
395 slices = 0;
396 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
397 if (baseentry->gpe_deleted)
398 continue;
399 index = baseentry->gpe_index - 1;
400 if (index >= NDOSPART)
401 continue;
402
403 entry = (struct g_part_gpt_entry *)baseentry;
404
405 switch (index) {
406 case 0: /* This must be the EFI system partition. */
407 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
408 goto disable;
409 error = gpt_write_mbr_entry(table->mbr, index, 0xee,
410 1ull, entry->ent.ent_lba_end);
411 break;
412 case 1: /* This must be the HFS+ partition. */
413 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
414 goto disable;
415 error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
416 entry->ent.ent_lba_start, entry->ent.ent_lba_end);
417 break;
418 default:
419 typ = gpt_map_type(&entry->ent.ent_type);
420 error = gpt_write_mbr_entry(table->mbr, index, typ,
421 entry->ent.ent_lba_start, entry->ent.ent_lba_end);
422 break;
423 }
424 if (error)
425 continue;
426
427 if (index == bootable)
428 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
429 slices |= 1 << index;
430 }
431 if ((slices & 3) == 3)
432 return;
433
434 disable:
435 table->bootcamp = 0;
436 gpt_create_pmbr(table, pp);
437 }
438
439 static struct gpt_hdr *
440 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
441 enum gpt_elt elt)
442 {
443 struct gpt_hdr *buf, *hdr;
444 struct g_provider *pp;
445 quad_t lba, last;
446 int error;
447 uint32_t crc, sz;
448
449 pp = cp->provider;
450 last = (pp->mediasize / pp->sectorsize) - 1;
451 table->state[elt] = GPT_STATE_MISSING;
452 /*
453 * If the primary header is valid look for secondary
454 * header in AlternateLBA, otherwise in the last medium's LBA.
455 */
456 if (elt == GPT_ELT_SECHDR) {
457 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
458 table->lba[elt] = last;
459 } else
460 table->lba[elt] = 1;
461 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
462 &error);
463 if (buf == NULL)
464 return (NULL);
465 hdr = NULL;
466 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
467 goto fail;
468
469 table->state[elt] = GPT_STATE_CORRUPT;
470 sz = le32toh(buf->hdr_size);
471 if (sz < 92 || sz > pp->sectorsize)
472 goto fail;
473
474 hdr = g_malloc(sz, M_WAITOK | M_ZERO);
475 bcopy(buf, hdr, sz);
476 hdr->hdr_size = sz;
477
478 crc = le32toh(buf->hdr_crc_self);
479 buf->hdr_crc_self = 0;
480 if (crc32(buf, sz) != crc)
481 goto fail;
482 hdr->hdr_crc_self = crc;
483
484 table->state[elt] = GPT_STATE_INVALID;
485 hdr->hdr_revision = le32toh(buf->hdr_revision);
486 if (hdr->hdr_revision < GPT_HDR_REVISION)
487 goto fail;
488 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
489 if (hdr->hdr_lba_self != table->lba[elt])
490 goto fail;
491 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
492 if (hdr->hdr_lba_alt == hdr->hdr_lba_self)
493 goto fail;
494 if (hdr->hdr_lba_alt > last && geom_part_check_integrity)
495 goto fail;
496
497 /* Check the managed area. */
498 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
499 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
500 goto fail;
501 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
502 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
503 goto fail;
504
505 /* Check the table location and size of the table. */
506 hdr->hdr_entries = le32toh(buf->hdr_entries);
507 hdr->hdr_entsz = le32toh(buf->hdr_entsz);
508 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
509 (hdr->hdr_entsz & 7) != 0)
510 goto fail;
511 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
512 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
513 goto fail;
514 if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
515 hdr->hdr_lba_table <= hdr->hdr_lba_end)
516 goto fail;
517 lba = hdr->hdr_lba_table +
518 howmany((uint64_t)hdr->hdr_entries * hdr->hdr_entsz,
519 pp->sectorsize) - 1;
520 if (lba >= last)
521 goto fail;
522 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
523 goto fail;
524
525 table->state[elt] = GPT_STATE_OK;
526 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
527 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
528
529 /* save LBA for secondary header */
530 if (elt == GPT_ELT_PRIHDR)
531 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
532
533 g_free(buf);
534 return (hdr);
535
536 fail:
537 g_free(hdr);
538 g_free(buf);
539 return (NULL);
540 }
541
542 static struct gpt_ent *
543 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
544 enum gpt_elt elt, struct gpt_hdr *hdr)
545 {
546 struct g_provider *pp;
547 struct gpt_ent *ent, *tbl;
548 char *buf, *p;
549 unsigned int idx, sectors, tblsz, size;
550 int error;
551
552 if (hdr == NULL)
553 return (NULL);
554 if (hdr->hdr_entries > g_part_gpt_scheme.gps_maxent ||
555 hdr->hdr_entsz > MAXENTSIZE) {
556 table->state[elt] = GPT_STATE_UNSUPPORTED;
557 return (NULL);
558 }
559
560 pp = cp->provider;
561 table->lba[elt] = hdr->hdr_lba_table;
562
563 table->state[elt] = GPT_STATE_MISSING;
564 tblsz = hdr->hdr_entries * hdr->hdr_entsz;
565 sectors = howmany(tblsz, pp->sectorsize);
566 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
567 for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) {
568 size = (sectors - idx > maxphys / pp->sectorsize) ? maxphys:
569 (sectors - idx) * pp->sectorsize;
570 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
571 size, &error);
572 if (p == NULL) {
573 g_free(buf);
574 return (NULL);
575 }
576 bcopy(p, buf + idx * pp->sectorsize, size);
577 g_free(p);
578 }
579 table->state[elt] = GPT_STATE_CORRUPT;
580 if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
581 g_free(buf);
582 return (NULL);
583 }
584
585 table->state[elt] = GPT_STATE_OK;
586 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
587 M_WAITOK | M_ZERO);
588
589 for (idx = 0, ent = tbl, p = buf;
590 idx < hdr->hdr_entries;
591 idx++, ent++, p += hdr->hdr_entsz) {
592 le_uuid_dec(p, &ent->ent_type);
593 le_uuid_dec(p + 16, &ent->ent_uuid);
594 ent->ent_lba_start = le64dec(p + 32);
595 ent->ent_lba_end = le64dec(p + 40);
596 ent->ent_attr = le64dec(p + 48);
597 /* Keep UTF-16 in little-endian. */
598 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
599 }
600
601 g_free(buf);
602 return (tbl);
603 }
604
605 static int
606 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
607 {
608
609 if (pri == NULL || sec == NULL)
610 return (0);
611
612 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
613 return (0);
614 return ((pri->hdr_revision == sec->hdr_revision &&
615 pri->hdr_size == sec->hdr_size &&
616 pri->hdr_lba_start == sec->hdr_lba_start &&
617 pri->hdr_lba_end == sec->hdr_lba_end &&
618 pri->hdr_entries == sec->hdr_entries &&
619 pri->hdr_entsz == sec->hdr_entsz &&
620 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
621 }
622
623 static int
624 gpt_parse_type(const char *type, struct uuid *uuid)
625 {
626 struct uuid tmp;
627 const char *alias;
628 int error;
629 struct g_part_uuid_alias *uap;
630
631 if (type[0] == '!') {
632 error = parse_uuid(type + 1, &tmp);
633 if (error)
634 return (error);
635 if (EQUUID(&tmp, &gpt_uuid_unused))
636 return (EINVAL);
637 *uuid = tmp;
638 return (0);
639 }
640 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
641 alias = g_part_alias_name(uap->alias);
642 if (!strcasecmp(type, alias)) {
643 *uuid = *uap->uuid;
644 return (0);
645 }
646 }
647 return (EINVAL);
648 }
649
650 static int
651 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
652 struct g_part_parms *gpp)
653 {
654 struct g_part_gpt_entry *entry;
655 int error;
656
657 entry = (struct g_part_gpt_entry *)baseentry;
658 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
659 if (error)
660 return (error);
661 kern_uuidgen(&entry->ent.ent_uuid, 1);
662 entry->ent.ent_lba_start = baseentry->gpe_start;
663 entry->ent.ent_lba_end = baseentry->gpe_end;
664 if (baseentry->gpe_deleted) {
665 entry->ent.ent_attr = 0;
666 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
667 }
668 if (gpp->gpp_parms & G_PART_PARM_LABEL)
669 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
670 sizeof(entry->ent.ent_name) /
671 sizeof(entry->ent.ent_name[0]));
672 return (0);
673 }
674
675 static int
676 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
677 {
678 struct g_part_gpt_table *table;
679 size_t codesz;
680
681 codesz = DOSPARTOFF;
682 table = (struct g_part_gpt_table *)basetable;
683 bzero(table->mbr, codesz);
684 codesz = MIN(codesz, gpp->gpp_codesize);
685 if (codesz > 0)
686 bcopy(gpp->gpp_codeptr, table->mbr, codesz);
687 return (0);
688 }
689
690 static int
691 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
692 {
693 struct g_provider *pp;
694 struct g_part_gpt_table *table;
695 size_t tblsz;
696
697 /* Our depth should be 0 unless nesting was explicitly enabled. */
698 if (!allow_nesting && basetable->gpt_depth != 0)
699 return (ENXIO);
700
701 table = (struct g_part_gpt_table *)basetable;
702 pp = gpp->gpp_provider;
703 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
704 pp->sectorsize);
705 if (pp->sectorsize < MBRSIZE ||
706 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
707 pp->sectorsize)
708 return (ENOSPC);
709
710 gpt_create_pmbr(table, pp);
711
712 /* Allocate space for the header */
713 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
714
715 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
716 table->hdr->hdr_revision = GPT_HDR_REVISION;
717 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
718 kern_uuidgen(&table->hdr->hdr_uuid, 1);
719 table->hdr->hdr_entries = basetable->gpt_entries;
720 table->hdr->hdr_entsz = sizeof(struct gpt_ent);
721
722 g_gpt_set_defaults(basetable, pp);
723 return (0);
724 }
725
726 static int
727 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
728 {
729 struct g_part_gpt_table *table;
730 struct g_provider *pp;
731
732 table = (struct g_part_gpt_table *)basetable;
733 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
734 g_free(table->hdr);
735 table->hdr = NULL;
736
737 /*
738 * Wipe the first 2 sectors and last one to clear the partitioning.
739 * Wipe sectors only if they have valid metadata.
740 */
741 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK)
742 basetable->gpt_smhead |= 3;
743 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
744 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
745 basetable->gpt_smtail |= 1;
746 return (0);
747 }
748
749 static void
750 g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb)
751 {
752 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index);
753 sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
754 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start,
755 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1));
756 }
757
758 static void
759 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
760 struct sbuf *sb, const char *indent)
761 {
762 struct g_part_gpt_entry *entry;
763
764 entry = (struct g_part_gpt_entry *)baseentry;
765 if (indent == NULL) {
766 /* conftxt: libdisk compatibility */
767 sbuf_cat(sb, " xs GPT xt ");
768 sbuf_printf_uuid(sb, &entry->ent.ent_type);
769 } else if (entry != NULL) {
770 /* confxml: partition entry information */
771 sbuf_printf(sb, "%s<label>", indent);
772 g_gpt_printf_utf16(sb, entry->ent.ent_name,
773 sizeof(entry->ent.ent_name) >> 1);
774 sbuf_cat(sb, "</label>\n");
775 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
776 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
777 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
778 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
779 indent);
780 }
781 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
782 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
783 indent);
784 }
785 sbuf_printf(sb, "%s<rawtype>", indent);
786 sbuf_printf_uuid(sb, &entry->ent.ent_type);
787 sbuf_cat(sb, "</rawtype>\n");
788 sbuf_printf(sb, "%s<rawuuid>", indent);
789 sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
790 sbuf_cat(sb, "</rawuuid>\n");
791 sbuf_printf(sb, "%s<efimedia>", indent);
792 g_part_gpt_efimedia(entry, sb);
793 sbuf_cat(sb, "</efimedia>\n");
794 } else {
795 /* confxml: scheme information */
796 }
797 }
798
799 static int
800 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
801 {
802 struct g_part_gpt_entry *entry;
803
804 entry = (struct g_part_gpt_entry *)baseentry;
805 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
806 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
807 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
808 }
809
810 static int
811 g_part_gpt_modify(struct g_part_table *basetable,
812 struct g_part_entry *baseentry, struct g_part_parms *gpp)
813 {
814 struct g_part_gpt_entry *entry;
815 int error;
816
817 entry = (struct g_part_gpt_entry *)baseentry;
818 if (gpp->gpp_parms & G_PART_PARM_TYPE) {
819 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
820 if (error)
821 return (error);
822 }
823 if (gpp->gpp_parms & G_PART_PARM_LABEL)
824 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
825 sizeof(entry->ent.ent_name) /
826 sizeof(entry->ent.ent_name[0]));
827 return (0);
828 }
829
830 static int
831 g_part_gpt_resize(struct g_part_table *basetable,
832 struct g_part_entry *baseentry, struct g_part_parms *gpp)
833 {
834 struct g_part_gpt_entry *entry;
835
836 if (baseentry == NULL)
837 return (g_part_gpt_recover(basetable));
838
839 entry = (struct g_part_gpt_entry *)baseentry;
840 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
841 entry->ent.ent_lba_end = baseentry->gpe_end;
842
843 return (0);
844 }
845
846 static const char *
847 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
848 char *buf, size_t bufsz)
849 {
850 struct g_part_gpt_entry *entry;
851 char c;
852
853 entry = (struct g_part_gpt_entry *)baseentry;
854 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
855 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
856 return (buf);
857 }
858
859 static int
860 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
861 {
862 struct g_provider *pp;
863 u_char *buf;
864 int error, index, pri, res;
865
866 /* Our depth should be 0 unless nesting was explicitly enabled. */
867 if (!allow_nesting && table->gpt_depth != 0)
868 return (ENXIO);
869
870 pp = cp->provider;
871
872 /*
873 * Sanity-check the provider. Since the first sector on the provider
874 * must be a PMBR and a PMBR is 512 bytes large, the sector size
875 * must be at least 512 bytes. Also, since the theoretical minimum
876 * number of sectors needed by GPT is 6, any medium that has less
877 * than 6 sectors is never going to be able to hold a GPT. The
878 * number 6 comes from:
879 * 1 sector for the PMBR
880 * 2 sectors for the GPT headers (each 1 sector)
881 * 2 sectors for the GPT tables (each 1 sector)
882 * 1 sector for an actual partition
883 * It's better to catch this pathological case early than behaving
884 * pathologically later on...
885 */
886 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
887 return (ENOSPC);
888
889 /*
890 * Check that there's a MBR or a PMBR. If it's a PMBR, we return
891 * as the highest priority on a match, otherwise we assume some
892 * GPT-unaware tool has destroyed the GPT by recreating a MBR and
893 * we really want the MBR scheme to take precedence.
894 */
895 buf = g_read_data(cp, 0L, pp->sectorsize, &error);
896 if (buf == NULL)
897 return (error);
898 res = le16dec(buf + DOSMAGICOFFSET);
899 pri = G_PART_PROBE_PRI_LOW;
900 if (res == DOSMAGIC) {
901 for (index = 0; index < NDOSPART; index++) {
902 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
903 pri = G_PART_PROBE_PRI_HIGH;
904 }
905 g_free(buf);
906
907 /* Check that there's a primary header. */
908 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
909 if (buf == NULL)
910 return (error);
911 res = memcmp(buf, GPT_HDR_SIG, 8);
912 g_free(buf);
913 if (res == 0)
914 return (pri);
915 } else
916 g_free(buf);
917
918 /* No primary? Check that there's a secondary. */
919 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
920 &error);
921 if (buf == NULL)
922 return (error);
923 res = memcmp(buf, GPT_HDR_SIG, 8);
924 g_free(buf);
925 return ((res == 0) ? pri : ENXIO);
926 }
927
928 static int
929 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
930 {
931 struct gpt_hdr *prihdr, *sechdr;
932 struct gpt_ent *tbl, *pritbl, *sectbl;
933 struct g_provider *pp;
934 struct g_part_gpt_table *table;
935 struct g_part_gpt_entry *entry;
936 u_char *buf;
937 uint64_t last;
938 int error, index;
939
940 table = (struct g_part_gpt_table *)basetable;
941 pp = cp->provider;
942 last = (pp->mediasize / pp->sectorsize) - 1;
943
944 /* Read the PMBR */
945 buf = g_read_data(cp, 0, pp->sectorsize, &error);
946 if (buf == NULL)
947 return (error);
948 bcopy(buf, table->mbr, MBRSIZE);
949 g_free(buf);
950
951 /* Read the primary header and table. */
952 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
953 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
954 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
955 } else {
956 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
957 pritbl = NULL;
958 }
959
960 /* Read the secondary header and table. */
961 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
962 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
963 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
964 } else {
965 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
966 sectbl = NULL;
967 }
968
969 /* Fail if we haven't got any good tables at all. */
970 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
971 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
972 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_UNSUPPORTED &&
973 table->state[GPT_ELT_SECTBL] == GPT_STATE_UNSUPPORTED &&
974 gpt_matched_hdrs(prihdr, sechdr)) {
975 printf("GEOM: %s: unsupported GPT detected.\n",
976 pp->name);
977 printf(
978 "GEOM: %s: number of GPT entries: %u, entry size: %uB.\n",
979 pp->name, prihdr->hdr_entries, prihdr->hdr_entsz);
980 printf(
981 "GEOM: %s: maximum supported number of GPT entries: %u, entry size: %uB.\n",
982 pp->name, g_part_gpt_scheme.gps_maxent, MAXENTSIZE);
983 printf("GEOM: %s: GPT rejected.\n", pp->name);
984 } else {
985 printf("GEOM: %s: corrupt or invalid GPT detected.\n",
986 pp->name);
987 printf(
988 "GEOM: %s: GPT rejected -- may not be recoverable.\n",
989 pp->name);
990 }
991 g_free(prihdr);
992 g_free(pritbl);
993 g_free(sechdr);
994 g_free(sectbl);
995 return (EINVAL);
996 }
997
998 /*
999 * If both headers are good but they disagree with each other,
1000 * then invalidate one. We prefer to keep the primary header,
1001 * unless the primary table is corrupt.
1002 */
1003 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
1004 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
1005 !gpt_matched_hdrs(prihdr, sechdr)) {
1006 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
1007 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
1008 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
1009 g_free(sechdr);
1010 sechdr = NULL;
1011 } else {
1012 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
1013 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
1014 g_free(prihdr);
1015 prihdr = NULL;
1016 }
1017 }
1018
1019 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
1020 printf("GEOM: %s: the primary GPT table is corrupt or "
1021 "invalid.\n", pp->name);
1022 printf("GEOM: %s: using the secondary instead -- recovery "
1023 "strongly advised.\n", pp->name);
1024 table->hdr = sechdr;
1025 basetable->gpt_corrupt = 1;
1026 g_free(prihdr);
1027 tbl = sectbl;
1028 g_free(pritbl);
1029 } else {
1030 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
1031 printf("GEOM: %s: the secondary GPT table is corrupt "
1032 "or invalid.\n", pp->name);
1033 printf("GEOM: %s: using the primary only -- recovery "
1034 "suggested.\n", pp->name);
1035 basetable->gpt_corrupt = 1;
1036 } else if (table->lba[GPT_ELT_SECHDR] != last) {
1037 printf( "GEOM: %s: the secondary GPT header is not in "
1038 "the last LBA.\n", pp->name);
1039 basetable->gpt_corrupt = 1;
1040 }
1041 table->hdr = prihdr;
1042 g_free(sechdr);
1043 tbl = pritbl;
1044 g_free(sectbl);
1045 }
1046
1047 basetable->gpt_first = table->hdr->hdr_lba_start;
1048 basetable->gpt_last = table->hdr->hdr_lba_end;
1049 basetable->gpt_entries = table->hdr->hdr_entries;
1050
1051 for (index = basetable->gpt_entries - 1; index >= 0; index--) {
1052 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
1053 continue;
1054 entry = (struct g_part_gpt_entry *)g_part_new_entry(
1055 basetable, index + 1, tbl[index].ent_lba_start,
1056 tbl[index].ent_lba_end);
1057 entry->ent = tbl[index];
1058 }
1059
1060 g_free(tbl);
1061
1062 /*
1063 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
1064 * if (and only if) any FAT32 or FAT16 partitions have been
1065 * created. This happens irrespective of whether Boot Camp is
1066 * used/enabled, though it's generally understood to be done
1067 * to support legacy Windows under Boot Camp. We refer to this
1068 * mirroring simply as Boot Camp. We try to detect Boot Camp
1069 * so that we can update the MBR if and when GPT changes have
1070 * been made. Note that we do not enable Boot Camp if not
1071 * previously enabled because we can't assume that we're on a
1072 * Mac alongside Mac OS X.
1073 */
1074 table->bootcamp = gpt_is_bootcamp(table, pp->name);
1075
1076 return (0);
1077 }
1078
1079 static int
1080 g_part_gpt_recover(struct g_part_table *basetable)
1081 {
1082 struct g_part_gpt_table *table;
1083 struct g_provider *pp;
1084
1085 table = (struct g_part_gpt_table *)basetable;
1086 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1087 gpt_create_pmbr(table, pp);
1088 g_gpt_set_defaults(basetable, pp);
1089 basetable->gpt_corrupt = 0;
1090 return (0);
1091 }
1092
1093 static int
1094 g_part_gpt_setunset(struct g_part_table *basetable,
1095 struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1096 {
1097 struct g_part_gpt_entry *entry;
1098 struct g_part_gpt_table *table;
1099 struct g_provider *pp;
1100 uint8_t *p;
1101 uint64_t attr;
1102 int i;
1103
1104 table = (struct g_part_gpt_table *)basetable;
1105 entry = (struct g_part_gpt_entry *)baseentry;
1106
1107 if (strcasecmp(attrib, "active") == 0) {
1108 if (table->bootcamp) {
1109 /* The active flag must be set on a valid entry. */
1110 if (entry == NULL)
1111 return (ENXIO);
1112 if (baseentry->gpe_index > NDOSPART)
1113 return (EINVAL);
1114 for (i = 0; i < NDOSPART; i++) {
1115 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1116 p[0] = (i == baseentry->gpe_index - 1)
1117 ? ((set) ? 0x80 : 0) : 0;
1118 }
1119 } else {
1120 /* The PMBR is marked as active without an entry. */
1121 if (entry != NULL)
1122 return (ENXIO);
1123 for (i = 0; i < NDOSPART; i++) {
1124 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1125 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1126 }
1127 }
1128 return (0);
1129 } else if (strcasecmp(attrib, "lenovofix") == 0) {
1130 /*
1131 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
1132 * This workaround allows Lenovo X220, T420, T520, etc to boot
1133 * from GPT Partitions in BIOS mode.
1134 */
1135
1136 if (entry != NULL)
1137 return (ENXIO);
1138
1139 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1140 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
1141 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
1142 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
1143 return (0);
1144 }
1145
1146 if (entry == NULL)
1147 return (ENODEV);
1148
1149 attr = 0;
1150 if (strcasecmp(attrib, "bootme") == 0) {
1151 attr |= GPT_ENT_ATTR_BOOTME;
1152 } else if (strcasecmp(attrib, "bootonce") == 0) {
1153 attr |= GPT_ENT_ATTR_BOOTONCE;
1154 if (set)
1155 attr |= GPT_ENT_ATTR_BOOTME;
1156 } else if (strcasecmp(attrib, "bootfailed") == 0) {
1157 /*
1158 * It should only be possible to unset BOOTFAILED, but it might
1159 * be useful for test purposes to also be able to set it.
1160 */
1161 attr |= GPT_ENT_ATTR_BOOTFAILED;
1162 }
1163 if (attr == 0)
1164 return (EINVAL);
1165
1166 if (set)
1167 attr = entry->ent.ent_attr | attr;
1168 else
1169 attr = entry->ent.ent_attr & ~attr;
1170 if (attr != entry->ent.ent_attr) {
1171 entry->ent.ent_attr = attr;
1172 if (!baseentry->gpe_created)
1173 baseentry->gpe_modified = 1;
1174 }
1175 return (0);
1176 }
1177
1178 static const char *
1179 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1180 char *buf, size_t bufsz)
1181 {
1182 struct g_part_gpt_entry *entry;
1183 struct uuid *type;
1184 struct g_part_uuid_alias *uap;
1185
1186 entry = (struct g_part_gpt_entry *)baseentry;
1187 type = &entry->ent.ent_type;
1188 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1189 if (EQUUID(type, uap->uuid))
1190 return (g_part_alias_name(uap->alias));
1191 buf[0] = '!';
1192 snprintf_uuid(buf + 1, bufsz - 1, type);
1193
1194 return (buf);
1195 }
1196
1197 static int
1198 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1199 {
1200 unsigned char *buf, *bp;
1201 struct g_provider *pp;
1202 struct g_part_entry *baseentry;
1203 struct g_part_gpt_entry *entry;
1204 struct g_part_gpt_table *table;
1205 size_t tblsz;
1206 uint32_t crc;
1207 int error, index;
1208
1209 pp = cp->provider;
1210 table = (struct g_part_gpt_table *)basetable;
1211 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz,
1212 pp->sectorsize);
1213
1214 /* Reconstruct the MBR from the GPT if under Boot Camp. */
1215 if (table->bootcamp)
1216 gpt_update_bootcamp(basetable, pp);
1217
1218 /* Write the PMBR */
1219 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1220 bcopy(table->mbr, buf, MBRSIZE);
1221 error = g_write_data(cp, 0, buf, pp->sectorsize);
1222 g_free(buf);
1223 if (error)
1224 return (error);
1225
1226 /* Allocate space for the header and entries. */
1227 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1228
1229 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1230 le32enc(buf + 8, table->hdr->hdr_revision);
1231 le32enc(buf + 12, table->hdr->hdr_size);
1232 le64enc(buf + 40, table->hdr->hdr_lba_start);
1233 le64enc(buf + 48, table->hdr->hdr_lba_end);
1234 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1235 le32enc(buf + 80, table->hdr->hdr_entries);
1236 le32enc(buf + 84, table->hdr->hdr_entsz);
1237
1238 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1239 if (baseentry->gpe_deleted)
1240 continue;
1241 entry = (struct g_part_gpt_entry *)baseentry;
1242 index = baseentry->gpe_index - 1;
1243 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1244 le_uuid_enc(bp, &entry->ent.ent_type);
1245 le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1246 le64enc(bp + 32, entry->ent.ent_lba_start);
1247 le64enc(bp + 40, entry->ent.ent_lba_end);
1248 le64enc(bp + 48, entry->ent.ent_attr);
1249 memcpy(bp + 56, entry->ent.ent_name,
1250 sizeof(entry->ent.ent_name));
1251 }
1252
1253 crc = crc32(buf + pp->sectorsize,
1254 table->hdr->hdr_entries * table->hdr->hdr_entsz);
1255 le32enc(buf + 88, crc);
1256
1257 /* Write primary meta-data. */
1258 le32enc(buf + 16, 0); /* hdr_crc_self. */
1259 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */
1260 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */
1261 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */
1262 crc = crc32(buf, table->hdr->hdr_size);
1263 le32enc(buf + 16, crc);
1264
1265 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
1266 error = g_write_data(cp,
1267 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1268 buf + (index + 1) * pp->sectorsize,
1269 (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
1270 (tblsz - index) * pp->sectorsize);
1271 if (error)
1272 goto out;
1273 }
1274 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1275 buf, pp->sectorsize);
1276 if (error)
1277 goto out;
1278
1279 /* Write secondary meta-data. */
1280 le32enc(buf + 16, 0); /* hdr_crc_self. */
1281 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */
1282 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */
1283 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */
1284 crc = crc32(buf, table->hdr->hdr_size);
1285 le32enc(buf + 16, crc);
1286
1287 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
1288 error = g_write_data(cp,
1289 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1290 buf + (index + 1) * pp->sectorsize,
1291 (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
1292 (tblsz - index) * pp->sectorsize);
1293 if (error)
1294 goto out;
1295 }
1296 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1297 buf, pp->sectorsize);
1298
1299 out:
1300 g_free(buf);
1301 return (error);
1302 }
1303
1304 static void
1305 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1306 {
1307 struct g_part_entry *baseentry;
1308 struct g_part_gpt_entry *entry;
1309 struct g_part_gpt_table *table;
1310 quad_t start, end, min, max;
1311 quad_t lba, last;
1312 size_t spb, tblsz;
1313
1314 table = (struct g_part_gpt_table *)basetable;
1315 last = pp->mediasize / pp->sectorsize - 1;
1316 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
1317 pp->sectorsize);
1318
1319 table->lba[GPT_ELT_PRIHDR] = 1;
1320 table->lba[GPT_ELT_PRITBL] = 2;
1321 table->lba[GPT_ELT_SECHDR] = last;
1322 table->lba[GPT_ELT_SECTBL] = last - tblsz;
1323 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1324 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1325 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1326 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1327
1328 max = start = 2 + tblsz;
1329 min = end = last - tblsz - 1;
1330 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1331 if (baseentry->gpe_deleted)
1332 continue;
1333 entry = (struct g_part_gpt_entry *)baseentry;
1334 if (entry->ent.ent_lba_start < min)
1335 min = entry->ent.ent_lba_start;
1336 if (entry->ent.ent_lba_end > max)
1337 max = entry->ent.ent_lba_end;
1338 }
1339 spb = 4096 / pp->sectorsize;
1340 if (spb > 1) {
1341 lba = start + ((start % spb) ? spb - start % spb : 0);
1342 if (lba <= min)
1343 start = lba;
1344 lba = end - (end + 1) % spb;
1345 if (max <= lba)
1346 end = lba;
1347 }
1348 table->hdr->hdr_lba_start = start;
1349 table->hdr->hdr_lba_end = end;
1350
1351 basetable->gpt_first = start;
1352 basetable->gpt_last = end;
1353 }
1354
1355 static void
1356 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1357 {
1358 u_int bo;
1359 uint32_t ch;
1360 uint16_t c;
1361
1362 bo = LITTLE_ENDIAN; /* GPT is little-endian */
1363 while (len > 0 && *str != 0) {
1364 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1365 str++, len--;
1366 if ((ch & 0xf800) == 0xd800) {
1367 if (len > 0) {
1368 c = (bo == BIG_ENDIAN) ? be16toh(*str)
1369 : le16toh(*str);
1370 str++, len--;
1371 } else
1372 c = 0xfffd;
1373 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1374 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1375 ch += 0x10000;
1376 } else
1377 ch = 0xfffd;
1378 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1379 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1380 continue;
1381 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1382 continue;
1383
1384 /* Write the Unicode character in UTF-8 */
1385 if (ch < 0x80)
1386 g_conf_printf_escaped(sb, "%c", ch);
1387 else if (ch < 0x800)
1388 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1389 0x80 | (ch & 0x3f));
1390 else if (ch < 0x10000)
1391 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1392 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1393 else if (ch < 0x200000)
1394 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1395 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1396 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1397 }
1398 }
1399
1400 static void
1401 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1402 {
1403 size_t s16idx, s8idx;
1404 uint32_t utfchar;
1405 unsigned int c, utfbytes;
1406
1407 s8idx = s16idx = 0;
1408 utfchar = 0;
1409 utfbytes = 0;
1410 bzero(s16, s16len << 1);
1411 while (s8[s8idx] != 0 && s16idx < s16len) {
1412 c = s8[s8idx++];
1413 if ((c & 0xc0) != 0x80) {
1414 /* Initial characters. */
1415 if (utfbytes != 0) {
1416 /* Incomplete encoding of previous char. */
1417 s16[s16idx++] = htole16(0xfffd);
1418 }
1419 if ((c & 0xf8) == 0xf0) {
1420 utfchar = c & 0x07;
1421 utfbytes = 3;
1422 } else if ((c & 0xf0) == 0xe0) {
1423 utfchar = c & 0x0f;
1424 utfbytes = 2;
1425 } else if ((c & 0xe0) == 0xc0) {
1426 utfchar = c & 0x1f;
1427 utfbytes = 1;
1428 } else {
1429 utfchar = c & 0x7f;
1430 utfbytes = 0;
1431 }
1432 } else {
1433 /* Followup characters. */
1434 if (utfbytes > 0) {
1435 utfchar = (utfchar << 6) + (c & 0x3f);
1436 utfbytes--;
1437 } else if (utfbytes == 0)
1438 utfbytes = ~0;
1439 }
1440 /*
1441 * Write the complete Unicode character as UTF-16 when we
1442 * have all the UTF-8 charactars collected.
1443 */
1444 if (utfbytes == 0) {
1445 /*
1446 * If we need to write 2 UTF-16 characters, but
1447 * we only have room for 1, then we truncate the
1448 * string by writing a 0 instead.
1449 */
1450 if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1451 s16[s16idx++] =
1452 htole16(0xd800 | ((utfchar >> 10) - 0x40));
1453 s16[s16idx++] =
1454 htole16(0xdc00 | (utfchar & 0x3ff));
1455 } else
1456 s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1457 htole16(utfchar);
1458 }
1459 }
1460 /*
1461 * If our input string was truncated, append an invalid encoding
1462 * character to the output string.
1463 */
1464 if (utfbytes != 0 && s16idx < s16len)
1465 s16[s16idx++] = htole16(0xfffd);
1466 }
Cache object: 605f10ffe133c08ef2e620420b2c2e2f
|