The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/part/g_part_gpt.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  *
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/bio.h>
   34 #include <sys/diskmbr.h>
   35 #include <sys/gsb_crc32.h>
   36 #include <sys/endian.h>
   37 #include <sys/gpt.h>
   38 #include <sys/kernel.h>
   39 #include <sys/kobj.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/malloc.h>
   43 #include <sys/mutex.h>
   44 #include <sys/queue.h>
   45 #include <sys/sbuf.h>
   46 #include <sys/systm.h>
   47 #include <sys/sysctl.h>
   48 #include <sys/uuid.h>
   49 #include <geom/geom.h>
   50 #include <geom/geom_int.h>
   51 #include <geom/part/g_part.h>
   52 
   53 #include "g_part_if.h"
   54 
   55 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
   56 
   57 SYSCTL_DECL(_kern_geom_part);
   58 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt,
   59     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   60     "GEOM_PART_GPT GUID Partition Table");
   61 
   62 static u_int allow_nesting = 0;
   63 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting,
   64     CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes");
   65 
   66 CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
   67 CTASSERT(sizeof(struct gpt_ent) == 128);
   68 
   69 extern u_int geom_part_check_integrity;
   70 
   71 #define EQUUID(a,b)     (memcmp(a, b, sizeof(struct uuid)) == 0)
   72 
   73 #define MBRSIZE         512
   74 
   75 enum gpt_elt {
   76         GPT_ELT_PRIHDR,
   77         GPT_ELT_PRITBL,
   78         GPT_ELT_SECHDR,
   79         GPT_ELT_SECTBL,
   80         GPT_ELT_COUNT
   81 };
   82 
   83 enum gpt_state {
   84         GPT_STATE_UNKNOWN,      /* Not determined. */
   85         GPT_STATE_MISSING,      /* No signature found. */
   86         GPT_STATE_CORRUPT,      /* Checksum mismatch. */
   87         GPT_STATE_INVALID,      /* Nonconformant/invalid. */
   88         GPT_STATE_UNSUPPORTED,  /* Not supported. */
   89         GPT_STATE_OK            /* Perfectly fine. */
   90 };
   91 
   92 struct g_part_gpt_table {
   93         struct g_part_table     base;
   94         u_char                  mbr[MBRSIZE];
   95         struct gpt_hdr          *hdr;
   96         quad_t                  lba[GPT_ELT_COUNT];
   97         enum gpt_state          state[GPT_ELT_COUNT];
   98         int                     bootcamp;
   99 };
  100 
  101 struct g_part_gpt_entry {
  102         struct g_part_entry     base;
  103         struct gpt_ent          ent;
  104 };
  105 
  106 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
  107 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
  108 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
  109 
  110 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
  111     struct g_part_parms *);
  112 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
  113 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
  114 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
  115 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
  116     struct sbuf *, const char *);
  117 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
  118 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
  119     struct g_part_parms *);
  120 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
  121     char *, size_t);
  122 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
  123 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
  124 static int g_part_gpt_setunset(struct g_part_table *table,
  125     struct g_part_entry *baseentry, const char *attrib, unsigned int set);
  126 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
  127     char *, size_t);
  128 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
  129 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
  130     struct g_part_parms *);
  131 static int g_part_gpt_recover(struct g_part_table *);
  132 
  133 static kobj_method_t g_part_gpt_methods[] = {
  134         KOBJMETHOD(g_part_add,          g_part_gpt_add),
  135         KOBJMETHOD(g_part_bootcode,     g_part_gpt_bootcode),
  136         KOBJMETHOD(g_part_create,       g_part_gpt_create),
  137         KOBJMETHOD(g_part_destroy,      g_part_gpt_destroy),
  138         KOBJMETHOD(g_part_dumpconf,     g_part_gpt_dumpconf),
  139         KOBJMETHOD(g_part_dumpto,       g_part_gpt_dumpto),
  140         KOBJMETHOD(g_part_modify,       g_part_gpt_modify),
  141         KOBJMETHOD(g_part_resize,       g_part_gpt_resize),
  142         KOBJMETHOD(g_part_name,         g_part_gpt_name),
  143         KOBJMETHOD(g_part_probe,        g_part_gpt_probe),
  144         KOBJMETHOD(g_part_read,         g_part_gpt_read),
  145         KOBJMETHOD(g_part_recover,      g_part_gpt_recover),
  146         KOBJMETHOD(g_part_setunset,     g_part_gpt_setunset),
  147         KOBJMETHOD(g_part_type,         g_part_gpt_type),
  148         KOBJMETHOD(g_part_write,        g_part_gpt_write),
  149         { 0, 0 }
  150 };
  151 
  152 #define MAXENTSIZE 1024
  153 
  154 static struct g_part_scheme g_part_gpt_scheme = {
  155         "GPT",
  156         g_part_gpt_methods,
  157         sizeof(struct g_part_gpt_table),
  158         .gps_entrysz = sizeof(struct g_part_gpt_entry),
  159         .gps_minent = 128,
  160         .gps_maxent = 4096,
  161         .gps_bootcodesz = MBRSIZE,
  162 };
  163 G_PART_SCHEME_DECLARE(g_part_gpt);
  164 MODULE_VERSION(geom_part_gpt, 0);
  165 
  166 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS;
  167 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
  168 static struct uuid gpt_uuid_apple_core_storage =
  169     GPT_ENT_TYPE_APPLE_CORE_STORAGE;
  170 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
  171 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
  172 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
  173 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
  174 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
  175 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
  176 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS;
  177 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
  178 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
  179 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
  180 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
  181 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
  182 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
  183 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
  184 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
  185 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
  186 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
  187 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
  188 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
  189 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
  190 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
  191 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
  192 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
  193 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
  194 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
  195 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
  196 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
  197 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
  198 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
  199 static struct uuid gpt_uuid_hifive_fsbl = GPT_ENT_TYPE_HIFIVE_FSBL;
  200 static struct uuid gpt_uuid_hifive_bbl = GPT_ENT_TYPE_HIFIVE_BBL;
  201 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
  202 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
  203 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
  204 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
  205 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
  206 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
  207 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
  208 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
  209 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
  210 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
  211 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
  212 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
  213 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
  214 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
  215 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
  216 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
  217 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
  218 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
  219 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
  220 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT;
  221 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT;
  222 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP;
  223 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP;
  224 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR;
  225 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME;
  226 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC;
  227 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED;
  228 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
  229 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
  230 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
  231 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
  232 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
  233 
  234 static struct g_part_uuid_alias {
  235         struct uuid *uuid;
  236         int alias;
  237         int mbrtype;
  238 } gpt_uuid_alias_match[] = {
  239         { &gpt_uuid_apple_apfs,         G_PART_ALIAS_APPLE_APFS,         0 },
  240         { &gpt_uuid_apple_boot,         G_PART_ALIAS_APPLE_BOOT,         0xab },
  241         { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
  242         { &gpt_uuid_apple_hfs,          G_PART_ALIAS_APPLE_HFS,          0xaf },
  243         { &gpt_uuid_apple_label,        G_PART_ALIAS_APPLE_LABEL,        0 },
  244         { &gpt_uuid_apple_raid,         G_PART_ALIAS_APPLE_RAID,         0 },
  245         { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
  246         { &gpt_uuid_apple_tv_recovery,  G_PART_ALIAS_APPLE_TV_RECOVERY,  0 },
  247         { &gpt_uuid_apple_ufs,          G_PART_ALIAS_APPLE_UFS,          0 },
  248         { &gpt_uuid_apple_zfs,          G_PART_ALIAS_APPLE_ZFS,          0 },
  249         { &gpt_uuid_bios_boot,          G_PART_ALIAS_BIOS_BOOT,          0 },
  250         { &gpt_uuid_chromeos_firmware,  G_PART_ALIAS_CHROMEOS_FIRMWARE,  0 },
  251         { &gpt_uuid_chromeos_kernel,    G_PART_ALIAS_CHROMEOS_KERNEL,    0 },
  252         { &gpt_uuid_chromeos_reserved,  G_PART_ALIAS_CHROMEOS_RESERVED,  0 },
  253         { &gpt_uuid_chromeos_root,      G_PART_ALIAS_CHROMEOS_ROOT,      0 },
  254         { &gpt_uuid_dfbsd_ccd,          G_PART_ALIAS_DFBSD_CCD,          0 },
  255         { &gpt_uuid_dfbsd_hammer,       G_PART_ALIAS_DFBSD_HAMMER,       0 },
  256         { &gpt_uuid_dfbsd_hammer2,      G_PART_ALIAS_DFBSD_HAMMER2,      0 },
  257         { &gpt_uuid_dfbsd_label32,      G_PART_ALIAS_DFBSD,              0xa5 },
  258         { &gpt_uuid_dfbsd_label64,      G_PART_ALIAS_DFBSD64,            0xa5 },
  259         { &gpt_uuid_dfbsd_legacy,       G_PART_ALIAS_DFBSD_LEGACY,       0 },
  260         { &gpt_uuid_dfbsd_swap,         G_PART_ALIAS_DFBSD_SWAP,         0 },
  261         { &gpt_uuid_dfbsd_ufs1,         G_PART_ALIAS_DFBSD_UFS,          0 },
  262         { &gpt_uuid_dfbsd_vinum,        G_PART_ALIAS_DFBSD_VINUM,        0 },
  263         { &gpt_uuid_efi,                G_PART_ALIAS_EFI,                0xee },
  264         { &gpt_uuid_freebsd,            G_PART_ALIAS_FREEBSD,            0xa5 },
  265         { &gpt_uuid_freebsd_boot,       G_PART_ALIAS_FREEBSD_BOOT,       0 },
  266         { &gpt_uuid_freebsd_nandfs,     G_PART_ALIAS_FREEBSD_NANDFS,     0 },
  267         { &gpt_uuid_freebsd_swap,       G_PART_ALIAS_FREEBSD_SWAP,       0 },
  268         { &gpt_uuid_freebsd_ufs,        G_PART_ALIAS_FREEBSD_UFS,        0 },
  269         { &gpt_uuid_freebsd_vinum,      G_PART_ALIAS_FREEBSD_VINUM,      0 },
  270         { &gpt_uuid_freebsd_zfs,        G_PART_ALIAS_FREEBSD_ZFS,        0 },
  271         { &gpt_uuid_hifive_fsbl,        G_PART_ALIAS_HIFIVE_FSBL,        0 },
  272         { &gpt_uuid_hifive_bbl,         G_PART_ALIAS_HIFIVE_BBL,         0 },
  273         { &gpt_uuid_linux_data,         G_PART_ALIAS_LINUX_DATA,         0x0b },
  274         { &gpt_uuid_linux_lvm,          G_PART_ALIAS_LINUX_LVM,          0 },
  275         { &gpt_uuid_linux_raid,         G_PART_ALIAS_LINUX_RAID,         0 },
  276         { &gpt_uuid_linux_swap,         G_PART_ALIAS_LINUX_SWAP,         0 },
  277         { &gpt_uuid_mbr,                G_PART_ALIAS_MBR,                0 },
  278         { &gpt_uuid_ms_basic_data,      G_PART_ALIAS_MS_BASIC_DATA,      0x0b },
  279         { &gpt_uuid_ms_ldm_data,        G_PART_ALIAS_MS_LDM_DATA,        0 },
  280         { &gpt_uuid_ms_ldm_metadata,    G_PART_ALIAS_MS_LDM_METADATA,    0 },
  281         { &gpt_uuid_ms_recovery,        G_PART_ALIAS_MS_RECOVERY,        0 },
  282         { &gpt_uuid_ms_reserved,        G_PART_ALIAS_MS_RESERVED,        0 },
  283         { &gpt_uuid_ms_spaces,          G_PART_ALIAS_MS_SPACES,          0 },
  284         { &gpt_uuid_netbsd_ccd,         G_PART_ALIAS_NETBSD_CCD,         0 },
  285         { &gpt_uuid_netbsd_cgd,         G_PART_ALIAS_NETBSD_CGD,         0 },
  286         { &gpt_uuid_netbsd_ffs,         G_PART_ALIAS_NETBSD_FFS,         0 },
  287         { &gpt_uuid_netbsd_lfs,         G_PART_ALIAS_NETBSD_LFS,         0 },
  288         { &gpt_uuid_netbsd_raid,        G_PART_ALIAS_NETBSD_RAID,        0 },
  289         { &gpt_uuid_netbsd_swap,        G_PART_ALIAS_NETBSD_SWAP,        0 },
  290         { &gpt_uuid_openbsd_data,       G_PART_ALIAS_OPENBSD_DATA,       0 },
  291         { &gpt_uuid_prep_boot,          G_PART_ALIAS_PREP_BOOT,          0x41 },
  292         { &gpt_uuid_solaris_boot,       G_PART_ALIAS_SOLARIS_BOOT,       0 },
  293         { &gpt_uuid_solaris_root,       G_PART_ALIAS_SOLARIS_ROOT,       0 },
  294         { &gpt_uuid_solaris_swap,       G_PART_ALIAS_SOLARIS_SWAP,       0 },
  295         { &gpt_uuid_solaris_backup,     G_PART_ALIAS_SOLARIS_BACKUP,     0 },
  296         { &gpt_uuid_solaris_var,        G_PART_ALIAS_SOLARIS_VAR,        0 },
  297         { &gpt_uuid_solaris_home,       G_PART_ALIAS_SOLARIS_HOME,       0 },
  298         { &gpt_uuid_solaris_altsec,     G_PART_ALIAS_SOLARIS_ALTSEC,     0 },
  299         { &gpt_uuid_solaris_reserved,   G_PART_ALIAS_SOLARIS_RESERVED,   0 },
  300         { &gpt_uuid_vmfs,               G_PART_ALIAS_VMFS,               0 },
  301         { &gpt_uuid_vmkdiag,            G_PART_ALIAS_VMKDIAG,            0 },
  302         { &gpt_uuid_vmreserved,         G_PART_ALIAS_VMRESERVED,         0 },
  303         { &gpt_uuid_vmvsanhdr,          G_PART_ALIAS_VMVSANHDR,          0 },
  304         { NULL, 0, 0 }
  305 };
  306 
  307 static int
  308 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
  309     quad_t end)
  310 {
  311 
  312         if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
  313                 return (EINVAL);
  314 
  315         mbr += DOSPARTOFF + idx * DOSPARTSIZE;
  316         mbr[0] = 0;
  317         if (start == 1) {
  318                 /*
  319                  * Treat the PMBR partition specially to maximize
  320                  * interoperability with BIOSes.
  321                  */
  322                 mbr[1] = mbr[3] = 0;
  323                 mbr[2] = 2;
  324         } else
  325                 mbr[1] = mbr[2] = mbr[3] = 0xff;
  326         mbr[4] = typ;
  327         mbr[5] = mbr[6] = mbr[7] = 0xff;
  328         le32enc(mbr + 8, (uint32_t)start);
  329         le32enc(mbr + 12, (uint32_t)(end - start + 1));
  330         return (0);
  331 }
  332 
  333 static int
  334 gpt_map_type(struct uuid *t)
  335 {
  336         struct g_part_uuid_alias *uap;
  337 
  338         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
  339                 if (EQUUID(t, uap->uuid))
  340                         return (uap->mbrtype);
  341         }
  342         return (0);
  343 }
  344 
  345 static void
  346 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
  347 {
  348 
  349         bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
  350         gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
  351             MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
  352         le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
  353 }
  354 
  355 /*
  356  * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
  357  * whole disk anymore. Rather, it covers the GPT table and the EFI
  358  * system partition only. This way the HFS+ partition and any FAT
  359  * partitions can be added to the MBR without creating an overlap.
  360  */
  361 static int
  362 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
  363 {
  364         uint8_t *p;
  365 
  366         p = table->mbr + DOSPARTOFF;
  367         if (p[4] != 0xee || le32dec(p + 8) != 1)
  368                 return (0);
  369 
  370         p += DOSPARTSIZE;
  371         if (p[4] != 0xaf)
  372                 return (0);
  373 
  374         printf("GEOM: %s: enabling Boot Camp\n", provname);
  375         return (1);
  376 }
  377 
  378 static void
  379 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
  380 {
  381         struct g_part_entry *baseentry;
  382         struct g_part_gpt_entry *entry;
  383         struct g_part_gpt_table *table;
  384         int bootable, error, index, slices, typ;
  385 
  386         table = (struct g_part_gpt_table *)basetable;
  387 
  388         bootable = -1;
  389         for (index = 0; index < NDOSPART; index++) {
  390                 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
  391                         bootable = index;
  392         }
  393 
  394         bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
  395         slices = 0;
  396         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
  397                 if (baseentry->gpe_deleted)
  398                         continue;
  399                 index = baseentry->gpe_index - 1;
  400                 if (index >= NDOSPART)
  401                         continue;
  402 
  403                 entry = (struct g_part_gpt_entry *)baseentry;
  404 
  405                 switch (index) {
  406                 case 0: /* This must be the EFI system partition. */
  407                         if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
  408                                 goto disable;
  409                         error = gpt_write_mbr_entry(table->mbr, index, 0xee,
  410                             1ull, entry->ent.ent_lba_end);
  411                         break;
  412                 case 1: /* This must be the HFS+ partition. */
  413                         if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
  414                                 goto disable;
  415                         error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
  416                             entry->ent.ent_lba_start, entry->ent.ent_lba_end);
  417                         break;
  418                 default:
  419                         typ = gpt_map_type(&entry->ent.ent_type);
  420                         error = gpt_write_mbr_entry(table->mbr, index, typ,
  421                             entry->ent.ent_lba_start, entry->ent.ent_lba_end);
  422                         break;
  423                 }
  424                 if (error)
  425                         continue;
  426 
  427                 if (index == bootable)
  428                         table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
  429                 slices |= 1 << index;
  430         }
  431         if ((slices & 3) == 3)
  432                 return;
  433 
  434  disable:
  435         table->bootcamp = 0;
  436         gpt_create_pmbr(table, pp);
  437 }
  438 
  439 static struct gpt_hdr *
  440 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
  441     enum gpt_elt elt)
  442 {
  443         struct gpt_hdr *buf, *hdr;
  444         struct g_provider *pp;
  445         quad_t lba, last;
  446         int error;
  447         uint32_t crc, sz;
  448 
  449         pp = cp->provider;
  450         last = (pp->mediasize / pp->sectorsize) - 1;
  451         table->state[elt] = GPT_STATE_MISSING;
  452         /*
  453          * If the primary header is valid look for secondary
  454          * header in AlternateLBA, otherwise in the last medium's LBA.
  455          */
  456         if (elt == GPT_ELT_SECHDR) {
  457                 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
  458                         table->lba[elt] = last;
  459         } else
  460                 table->lba[elt] = 1;
  461         buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
  462             &error);
  463         if (buf == NULL)
  464                 return (NULL);
  465         hdr = NULL;
  466         if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
  467                 goto fail;
  468 
  469         table->state[elt] = GPT_STATE_CORRUPT;
  470         sz = le32toh(buf->hdr_size);
  471         if (sz < 92 || sz > pp->sectorsize)
  472                 goto fail;
  473 
  474         hdr = g_malloc(sz, M_WAITOK | M_ZERO);
  475         bcopy(buf, hdr, sz);
  476         hdr->hdr_size = sz;
  477 
  478         crc = le32toh(buf->hdr_crc_self);
  479         buf->hdr_crc_self = 0;
  480         if (crc32(buf, sz) != crc)
  481                 goto fail;
  482         hdr->hdr_crc_self = crc;
  483 
  484         table->state[elt] = GPT_STATE_INVALID;
  485         hdr->hdr_revision = le32toh(buf->hdr_revision);
  486         if (hdr->hdr_revision < GPT_HDR_REVISION)
  487                 goto fail;
  488         hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
  489         if (hdr->hdr_lba_self != table->lba[elt])
  490                 goto fail;
  491         hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
  492         if (hdr->hdr_lba_alt == hdr->hdr_lba_self)
  493                 goto fail;
  494         if (hdr->hdr_lba_alt > last && geom_part_check_integrity)
  495                 goto fail;
  496 
  497         /* Check the managed area. */
  498         hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
  499         if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
  500                 goto fail;
  501         hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
  502         if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
  503                 goto fail;
  504 
  505         /* Check the table location and size of the table. */
  506         hdr->hdr_entries = le32toh(buf->hdr_entries);
  507         hdr->hdr_entsz = le32toh(buf->hdr_entsz);
  508         if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
  509             (hdr->hdr_entsz & 7) != 0)
  510                 goto fail;
  511         hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
  512         if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
  513                 goto fail;
  514         if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
  515             hdr->hdr_lba_table <= hdr->hdr_lba_end)
  516                 goto fail;
  517         lba = hdr->hdr_lba_table +
  518             howmany((uint64_t)hdr->hdr_entries * hdr->hdr_entsz,
  519                 pp->sectorsize) - 1;
  520         if (lba >= last)
  521                 goto fail;
  522         if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
  523                 goto fail;
  524 
  525         table->state[elt] = GPT_STATE_OK;
  526         le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
  527         hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
  528 
  529         /* save LBA for secondary header */
  530         if (elt == GPT_ELT_PRIHDR)
  531                 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
  532 
  533         g_free(buf);
  534         return (hdr);
  535 
  536  fail:
  537         g_free(hdr);
  538         g_free(buf);
  539         return (NULL);
  540 }
  541 
  542 static struct gpt_ent *
  543 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
  544     enum gpt_elt elt, struct gpt_hdr *hdr)
  545 {
  546         struct g_provider *pp;
  547         struct gpt_ent *ent, *tbl;
  548         char *buf, *p;
  549         unsigned int idx, sectors, tblsz, size;
  550         int error;
  551 
  552         if (hdr == NULL)
  553                 return (NULL);
  554         if (hdr->hdr_entries > g_part_gpt_scheme.gps_maxent ||
  555             hdr->hdr_entsz > MAXENTSIZE) {
  556                 table->state[elt] = GPT_STATE_UNSUPPORTED;
  557                 return (NULL);
  558         }
  559 
  560         pp = cp->provider;
  561         table->lba[elt] = hdr->hdr_lba_table;
  562 
  563         table->state[elt] = GPT_STATE_MISSING;
  564         tblsz = hdr->hdr_entries * hdr->hdr_entsz;
  565         sectors = howmany(tblsz, pp->sectorsize);
  566         buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
  567         for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) {
  568                 size = (sectors - idx > maxphys / pp->sectorsize) ?  maxphys:
  569                     (sectors - idx) * pp->sectorsize;
  570                 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
  571                     size, &error);
  572                 if (p == NULL) {
  573                         g_free(buf);
  574                         return (NULL);
  575                 }
  576                 bcopy(p, buf + idx * pp->sectorsize, size);
  577                 g_free(p);
  578         }
  579         table->state[elt] = GPT_STATE_CORRUPT;
  580         if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
  581                 g_free(buf);
  582                 return (NULL);
  583         }
  584 
  585         table->state[elt] = GPT_STATE_OK;
  586         tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
  587             M_WAITOK | M_ZERO);
  588 
  589         for (idx = 0, ent = tbl, p = buf;
  590              idx < hdr->hdr_entries;
  591              idx++, ent++, p += hdr->hdr_entsz) {
  592                 le_uuid_dec(p, &ent->ent_type);
  593                 le_uuid_dec(p + 16, &ent->ent_uuid);
  594                 ent->ent_lba_start = le64dec(p + 32);
  595                 ent->ent_lba_end = le64dec(p + 40);
  596                 ent->ent_attr = le64dec(p + 48);
  597                 /* Keep UTF-16 in little-endian. */
  598                 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
  599         }
  600 
  601         g_free(buf);
  602         return (tbl);
  603 }
  604 
  605 static int
  606 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
  607 {
  608 
  609         if (pri == NULL || sec == NULL)
  610                 return (0);
  611 
  612         if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
  613                 return (0);
  614         return ((pri->hdr_revision == sec->hdr_revision &&
  615             pri->hdr_size == sec->hdr_size &&
  616             pri->hdr_lba_start == sec->hdr_lba_start &&
  617             pri->hdr_lba_end == sec->hdr_lba_end &&
  618             pri->hdr_entries == sec->hdr_entries &&
  619             pri->hdr_entsz == sec->hdr_entsz &&
  620             pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
  621 }
  622 
  623 static int
  624 gpt_parse_type(const char *type, struct uuid *uuid)
  625 {
  626         struct uuid tmp;
  627         const char *alias;
  628         int error;
  629         struct g_part_uuid_alias *uap;
  630 
  631         if (type[0] == '!') {
  632                 error = parse_uuid(type + 1, &tmp);
  633                 if (error)
  634                         return (error);
  635                 if (EQUUID(&tmp, &gpt_uuid_unused))
  636                         return (EINVAL);
  637                 *uuid = tmp;
  638                 return (0);
  639         }
  640         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
  641                 alias = g_part_alias_name(uap->alias);
  642                 if (!strcasecmp(type, alias)) {
  643                         *uuid = *uap->uuid;
  644                         return (0);
  645                 }
  646         }
  647         return (EINVAL);
  648 }
  649 
  650 static int
  651 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
  652     struct g_part_parms *gpp)
  653 {
  654         struct g_part_gpt_entry *entry;
  655         int error;
  656 
  657         entry = (struct g_part_gpt_entry *)baseentry;
  658         error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
  659         if (error)
  660                 return (error);
  661         kern_uuidgen(&entry->ent.ent_uuid, 1);
  662         entry->ent.ent_lba_start = baseentry->gpe_start;
  663         entry->ent.ent_lba_end = baseentry->gpe_end;
  664         if (baseentry->gpe_deleted) {
  665                 entry->ent.ent_attr = 0;
  666                 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
  667         }
  668         if (gpp->gpp_parms & G_PART_PARM_LABEL)
  669                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
  670                     sizeof(entry->ent.ent_name) /
  671                     sizeof(entry->ent.ent_name[0]));
  672         return (0);
  673 }
  674 
  675 static int
  676 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
  677 {
  678         struct g_part_gpt_table *table;
  679         size_t codesz;
  680 
  681         codesz = DOSPARTOFF;
  682         table = (struct g_part_gpt_table *)basetable;
  683         bzero(table->mbr, codesz);
  684         codesz = MIN(codesz, gpp->gpp_codesize);
  685         if (codesz > 0)
  686                 bcopy(gpp->gpp_codeptr, table->mbr, codesz);
  687         return (0);
  688 }
  689 
  690 static int
  691 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
  692 {
  693         struct g_provider *pp;
  694         struct g_part_gpt_table *table;
  695         size_t tblsz;
  696 
  697         /* Our depth should be 0 unless nesting was explicitly enabled. */
  698         if (!allow_nesting && basetable->gpt_depth != 0)
  699                 return (ENXIO);
  700 
  701         table = (struct g_part_gpt_table *)basetable;
  702         pp = gpp->gpp_provider;
  703         tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
  704             pp->sectorsize);
  705         if (pp->sectorsize < MBRSIZE ||
  706             pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
  707             pp->sectorsize)
  708                 return (ENOSPC);
  709 
  710         gpt_create_pmbr(table, pp);
  711 
  712         /* Allocate space for the header */
  713         table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
  714 
  715         bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
  716         table->hdr->hdr_revision = GPT_HDR_REVISION;
  717         table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
  718         kern_uuidgen(&table->hdr->hdr_uuid, 1);
  719         table->hdr->hdr_entries = basetable->gpt_entries;
  720         table->hdr->hdr_entsz = sizeof(struct gpt_ent);
  721 
  722         g_gpt_set_defaults(basetable, pp);
  723         return (0);
  724 }
  725 
  726 static int
  727 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
  728 {
  729         struct g_part_gpt_table *table;
  730         struct g_provider *pp;
  731 
  732         table = (struct g_part_gpt_table *)basetable;
  733         pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
  734         g_free(table->hdr);
  735         table->hdr = NULL;
  736 
  737         /*
  738          * Wipe the first 2 sectors and last one to clear the partitioning.
  739          * Wipe sectors only if they have valid metadata.
  740          */
  741         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK)
  742                 basetable->gpt_smhead |= 3;
  743         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
  744             table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
  745                 basetable->gpt_smtail |= 1;
  746         return (0);
  747 }
  748 
  749 static void
  750 g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb)
  751 {
  752         sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index);
  753         sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
  754         sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start,
  755             (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1));
  756 }
  757 
  758 static void
  759 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
  760     struct sbuf *sb, const char *indent)
  761 {
  762         struct g_part_gpt_entry *entry;
  763 
  764         entry = (struct g_part_gpt_entry *)baseentry;
  765         if (indent == NULL) {
  766                 /* conftxt: libdisk compatibility */
  767                 sbuf_cat(sb, " xs GPT xt ");
  768                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
  769         } else if (entry != NULL) {
  770                 /* confxml: partition entry information */
  771                 sbuf_printf(sb, "%s<label>", indent);
  772                 g_gpt_printf_utf16(sb, entry->ent.ent_name,
  773                     sizeof(entry->ent.ent_name) >> 1);
  774                 sbuf_cat(sb, "</label>\n");
  775                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
  776                         sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
  777                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
  778                         sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
  779                             indent);
  780                 }
  781                 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
  782                         sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
  783                             indent);
  784                 }
  785                 sbuf_printf(sb, "%s<rawtype>", indent);
  786                 sbuf_printf_uuid(sb, &entry->ent.ent_type);
  787                 sbuf_cat(sb, "</rawtype>\n");
  788                 sbuf_printf(sb, "%s<rawuuid>", indent);
  789                 sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
  790                 sbuf_cat(sb, "</rawuuid>\n");
  791                 sbuf_printf(sb, "%s<efimedia>", indent);
  792                 g_part_gpt_efimedia(entry, sb);
  793                 sbuf_cat(sb, "</efimedia>\n");
  794         } else {
  795                 /* confxml: scheme information */
  796         }
  797 }
  798 
  799 static int
  800 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
  801 {
  802         struct g_part_gpt_entry *entry;
  803 
  804         entry = (struct g_part_gpt_entry *)baseentry;
  805         return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
  806             EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
  807             EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
  808 }
  809 
  810 static int
  811 g_part_gpt_modify(struct g_part_table *basetable,
  812     struct g_part_entry *baseentry, struct g_part_parms *gpp)
  813 {
  814         struct g_part_gpt_entry *entry;
  815         int error;
  816 
  817         entry = (struct g_part_gpt_entry *)baseentry;
  818         if (gpp->gpp_parms & G_PART_PARM_TYPE) {
  819                 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
  820                 if (error)
  821                         return (error);
  822         }
  823         if (gpp->gpp_parms & G_PART_PARM_LABEL)
  824                 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
  825                     sizeof(entry->ent.ent_name) /
  826                     sizeof(entry->ent.ent_name[0]));
  827         return (0);
  828 }
  829 
  830 static int
  831 g_part_gpt_resize(struct g_part_table *basetable,
  832     struct g_part_entry *baseentry, struct g_part_parms *gpp)
  833 {
  834         struct g_part_gpt_entry *entry;
  835 
  836         if (baseentry == NULL)
  837                 return (g_part_gpt_recover(basetable));
  838 
  839         entry = (struct g_part_gpt_entry *)baseentry;
  840         baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
  841         entry->ent.ent_lba_end = baseentry->gpe_end;
  842 
  843         return (0);
  844 }
  845 
  846 static const char *
  847 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
  848     char *buf, size_t bufsz)
  849 {
  850         struct g_part_gpt_entry *entry;
  851         char c;
  852 
  853         entry = (struct g_part_gpt_entry *)baseentry;
  854         c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
  855         snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
  856         return (buf);
  857 }
  858 
  859 static int
  860 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
  861 {
  862         struct g_provider *pp;
  863         u_char *buf;
  864         int error, index, pri, res;
  865 
  866         /* Our depth should be 0 unless nesting was explicitly enabled. */
  867         if (!allow_nesting && table->gpt_depth != 0)
  868                 return (ENXIO);
  869 
  870         pp = cp->provider;
  871 
  872         /*
  873          * Sanity-check the provider. Since the first sector on the provider
  874          * must be a PMBR and a PMBR is 512 bytes large, the sector size
  875          * must be at least 512 bytes.  Also, since the theoretical minimum
  876          * number of sectors needed by GPT is 6, any medium that has less
  877          * than 6 sectors is never going to be able to hold a GPT. The
  878          * number 6 comes from:
  879          *      1 sector for the PMBR
  880          *      2 sectors for the GPT headers (each 1 sector)
  881          *      2 sectors for the GPT tables (each 1 sector)
  882          *      1 sector for an actual partition
  883          * It's better to catch this pathological case early than behaving
  884          * pathologically later on...
  885          */
  886         if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
  887                 return (ENOSPC);
  888 
  889         /*
  890          * Check that there's a MBR or a PMBR. If it's a PMBR, we return
  891          * as the highest priority on a match, otherwise we assume some
  892          * GPT-unaware tool has destroyed the GPT by recreating a MBR and
  893          * we really want the MBR scheme to take precedence.
  894          */
  895         buf = g_read_data(cp, 0L, pp->sectorsize, &error);
  896         if (buf == NULL)
  897                 return (error);
  898         res = le16dec(buf + DOSMAGICOFFSET);
  899         pri = G_PART_PROBE_PRI_LOW;
  900         if (res == DOSMAGIC) {
  901                 for (index = 0; index < NDOSPART; index++) {
  902                         if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
  903                                 pri = G_PART_PROBE_PRI_HIGH;
  904                 }
  905                 g_free(buf);
  906 
  907                 /* Check that there's a primary header. */
  908                 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
  909                 if (buf == NULL)
  910                         return (error);
  911                 res = memcmp(buf, GPT_HDR_SIG, 8);
  912                 g_free(buf);
  913                 if (res == 0)
  914                         return (pri);
  915         } else
  916                 g_free(buf);
  917 
  918         /* No primary? Check that there's a secondary. */
  919         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
  920             &error);
  921         if (buf == NULL)
  922                 return (error);
  923         res = memcmp(buf, GPT_HDR_SIG, 8);
  924         g_free(buf);
  925         return ((res == 0) ? pri : ENXIO);
  926 }
  927 
  928 static int
  929 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
  930 {
  931         struct gpt_hdr *prihdr, *sechdr;
  932         struct gpt_ent *tbl, *pritbl, *sectbl;
  933         struct g_provider *pp;
  934         struct g_part_gpt_table *table;
  935         struct g_part_gpt_entry *entry;
  936         u_char *buf;
  937         uint64_t last;
  938         int error, index;
  939 
  940         table = (struct g_part_gpt_table *)basetable;
  941         pp = cp->provider;
  942         last = (pp->mediasize / pp->sectorsize) - 1;
  943 
  944         /* Read the PMBR */
  945         buf = g_read_data(cp, 0, pp->sectorsize, &error);
  946         if (buf == NULL)
  947                 return (error);
  948         bcopy(buf, table->mbr, MBRSIZE);
  949         g_free(buf);
  950 
  951         /* Read the primary header and table. */
  952         prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
  953         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
  954                 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
  955         } else {
  956                 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
  957                 pritbl = NULL;
  958         }
  959 
  960         /* Read the secondary header and table. */
  961         sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
  962         if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
  963                 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
  964         } else {
  965                 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
  966                 sectbl = NULL;
  967         }
  968 
  969         /* Fail if we haven't got any good tables at all. */
  970         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
  971             table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
  972                 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_UNSUPPORTED &&
  973                     table->state[GPT_ELT_SECTBL] == GPT_STATE_UNSUPPORTED &&
  974                     gpt_matched_hdrs(prihdr, sechdr)) {
  975                         printf("GEOM: %s: unsupported GPT detected.\n",
  976                             pp->name);
  977                         printf(
  978                     "GEOM: %s: number of GPT entries: %u, entry size: %uB.\n",
  979                             pp->name, prihdr->hdr_entries, prihdr->hdr_entsz);
  980                         printf(
  981     "GEOM: %s: maximum supported number of GPT entries: %u, entry size: %uB.\n",
  982                             pp->name, g_part_gpt_scheme.gps_maxent, MAXENTSIZE);
  983                         printf("GEOM: %s: GPT rejected.\n", pp->name);
  984                 } else {
  985                         printf("GEOM: %s: corrupt or invalid GPT detected.\n",
  986                             pp->name);
  987                         printf(
  988                     "GEOM: %s: GPT rejected -- may not be recoverable.\n",
  989                             pp->name);
  990                 }
  991                 g_free(prihdr);
  992                 g_free(pritbl);
  993                 g_free(sechdr);
  994                 g_free(sectbl);
  995                 return (EINVAL);
  996         }
  997 
  998         /*
  999          * If both headers are good but they disagree with each other,
 1000          * then invalidate one. We prefer to keep the primary header,
 1001          * unless the primary table is corrupt.
 1002          */
 1003         if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
 1004             table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
 1005             !gpt_matched_hdrs(prihdr, sechdr)) {
 1006                 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
 1007                         table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
 1008                         table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
 1009                         g_free(sechdr);
 1010                         sechdr = NULL;
 1011                 } else {
 1012                         table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
 1013                         table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
 1014                         g_free(prihdr);
 1015                         prihdr = NULL;
 1016                 }
 1017         }
 1018 
 1019         if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
 1020                 printf("GEOM: %s: the primary GPT table is corrupt or "
 1021                     "invalid.\n", pp->name);
 1022                 printf("GEOM: %s: using the secondary instead -- recovery "
 1023                     "strongly advised.\n", pp->name);
 1024                 table->hdr = sechdr;
 1025                 basetable->gpt_corrupt = 1;
 1026                 g_free(prihdr);
 1027                 tbl = sectbl;
 1028                 g_free(pritbl);
 1029         } else {
 1030                 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
 1031                         printf("GEOM: %s: the secondary GPT table is corrupt "
 1032                             "or invalid.\n", pp->name);
 1033                         printf("GEOM: %s: using the primary only -- recovery "
 1034                             "suggested.\n", pp->name);
 1035                         basetable->gpt_corrupt = 1;
 1036                 } else if (table->lba[GPT_ELT_SECHDR] != last) {
 1037                         printf( "GEOM: %s: the secondary GPT header is not in "
 1038                             "the last LBA.\n", pp->name);
 1039                         basetable->gpt_corrupt = 1;
 1040                 }
 1041                 table->hdr = prihdr;
 1042                 g_free(sechdr);
 1043                 tbl = pritbl;
 1044                 g_free(sectbl);
 1045         }
 1046 
 1047         basetable->gpt_first = table->hdr->hdr_lba_start;
 1048         basetable->gpt_last = table->hdr->hdr_lba_end;
 1049         basetable->gpt_entries = table->hdr->hdr_entries;
 1050 
 1051         for (index = basetable->gpt_entries - 1; index >= 0; index--) {
 1052                 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
 1053                         continue;
 1054                 entry = (struct g_part_gpt_entry *)g_part_new_entry(
 1055                     basetable, index + 1, tbl[index].ent_lba_start,
 1056                     tbl[index].ent_lba_end);
 1057                 entry->ent = tbl[index];
 1058         }
 1059 
 1060         g_free(tbl);
 1061 
 1062         /*
 1063          * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
 1064          * if (and only if) any FAT32 or FAT16 partitions have been
 1065          * created. This happens irrespective of whether Boot Camp is
 1066          * used/enabled, though it's generally understood to be done
 1067          * to support legacy Windows under Boot Camp. We refer to this
 1068          * mirroring simply as Boot Camp. We try to detect Boot Camp
 1069          * so that we can update the MBR if and when GPT changes have
 1070          * been made. Note that we do not enable Boot Camp if not
 1071          * previously enabled because we can't assume that we're on a
 1072          * Mac alongside Mac OS X.
 1073          */
 1074         table->bootcamp = gpt_is_bootcamp(table, pp->name);
 1075 
 1076         return (0);
 1077 }
 1078 
 1079 static int
 1080 g_part_gpt_recover(struct g_part_table *basetable)
 1081 {
 1082         struct g_part_gpt_table *table;
 1083         struct g_provider *pp;
 1084 
 1085         table = (struct g_part_gpt_table *)basetable;
 1086         pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
 1087         gpt_create_pmbr(table, pp);
 1088         g_gpt_set_defaults(basetable, pp);
 1089         basetable->gpt_corrupt = 0;
 1090         return (0);
 1091 }
 1092 
 1093 static int
 1094 g_part_gpt_setunset(struct g_part_table *basetable,
 1095     struct g_part_entry *baseentry, const char *attrib, unsigned int set)
 1096 {
 1097         struct g_part_gpt_entry *entry;
 1098         struct g_part_gpt_table *table;
 1099         struct g_provider *pp;
 1100         uint8_t *p;
 1101         uint64_t attr;
 1102         int i;
 1103 
 1104         table = (struct g_part_gpt_table *)basetable;
 1105         entry = (struct g_part_gpt_entry *)baseentry;
 1106 
 1107         if (strcasecmp(attrib, "active") == 0) {
 1108                 if (table->bootcamp) {
 1109                         /* The active flag must be set on a valid entry. */
 1110                         if (entry == NULL)
 1111                                 return (ENXIO);
 1112                         if (baseentry->gpe_index > NDOSPART)
 1113                                 return (EINVAL);
 1114                         for (i = 0; i < NDOSPART; i++) {
 1115                                 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
 1116                                 p[0] = (i == baseentry->gpe_index - 1)
 1117                                     ? ((set) ? 0x80 : 0) : 0;
 1118                         }
 1119                 } else {
 1120                         /* The PMBR is marked as active without an entry. */
 1121                         if (entry != NULL)
 1122                                 return (ENXIO);
 1123                         for (i = 0; i < NDOSPART; i++) {
 1124                                 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
 1125                                 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
 1126                         }
 1127                 }
 1128                 return (0);
 1129         } else if (strcasecmp(attrib, "lenovofix") == 0) {
 1130                 /*
 1131                  * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
 1132                  * This workaround allows Lenovo X220, T420, T520, etc to boot
 1133                  * from GPT Partitions in BIOS mode.
 1134                  */
 1135 
 1136                 if (entry != NULL)
 1137                         return (ENXIO);
 1138 
 1139                 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
 1140                 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
 1141                 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
 1142                     MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
 1143                 return (0);
 1144         }
 1145 
 1146         if (entry == NULL)
 1147                 return (ENODEV);
 1148 
 1149         attr = 0;
 1150         if (strcasecmp(attrib, "bootme") == 0) {
 1151                 attr |= GPT_ENT_ATTR_BOOTME;
 1152         } else if (strcasecmp(attrib, "bootonce") == 0) {
 1153                 attr |= GPT_ENT_ATTR_BOOTONCE;
 1154                 if (set)
 1155                         attr |= GPT_ENT_ATTR_BOOTME;
 1156         } else if (strcasecmp(attrib, "bootfailed") == 0) {
 1157                 /*
 1158                  * It should only be possible to unset BOOTFAILED, but it might
 1159                  * be useful for test purposes to also be able to set it.
 1160                  */
 1161                 attr |= GPT_ENT_ATTR_BOOTFAILED;
 1162         }
 1163         if (attr == 0)
 1164                 return (EINVAL);
 1165 
 1166         if (set)
 1167                 attr = entry->ent.ent_attr | attr;
 1168         else
 1169                 attr = entry->ent.ent_attr & ~attr;
 1170         if (attr != entry->ent.ent_attr) {
 1171                 entry->ent.ent_attr = attr;
 1172                 if (!baseentry->gpe_created)
 1173                         baseentry->gpe_modified = 1;
 1174         }
 1175         return (0);
 1176 }
 1177 
 1178 static const char *
 1179 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
 1180     char *buf, size_t bufsz)
 1181 {
 1182         struct g_part_gpt_entry *entry;
 1183         struct uuid *type;
 1184         struct g_part_uuid_alias *uap;
 1185 
 1186         entry = (struct g_part_gpt_entry *)baseentry;
 1187         type = &entry->ent.ent_type;
 1188         for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
 1189                 if (EQUUID(type, uap->uuid))
 1190                         return (g_part_alias_name(uap->alias));
 1191         buf[0] = '!';
 1192         snprintf_uuid(buf + 1, bufsz - 1, type);
 1193 
 1194         return (buf);
 1195 }
 1196 
 1197 static int
 1198 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
 1199 {
 1200         unsigned char *buf, *bp;
 1201         struct g_provider *pp;
 1202         struct g_part_entry *baseentry;
 1203         struct g_part_gpt_entry *entry;
 1204         struct g_part_gpt_table *table;
 1205         size_t tblsz;
 1206         uint32_t crc;
 1207         int error, index;
 1208 
 1209         pp = cp->provider;
 1210         table = (struct g_part_gpt_table *)basetable;
 1211         tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz,
 1212             pp->sectorsize);
 1213 
 1214         /* Reconstruct the MBR from the GPT if under Boot Camp. */
 1215         if (table->bootcamp)
 1216                 gpt_update_bootcamp(basetable, pp);
 1217 
 1218         /* Write the PMBR */
 1219         buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
 1220         bcopy(table->mbr, buf, MBRSIZE);
 1221         error = g_write_data(cp, 0, buf, pp->sectorsize);
 1222         g_free(buf);
 1223         if (error)
 1224                 return (error);
 1225 
 1226         /* Allocate space for the header and entries. */
 1227         buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
 1228 
 1229         memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
 1230         le32enc(buf + 8, table->hdr->hdr_revision);
 1231         le32enc(buf + 12, table->hdr->hdr_size);
 1232         le64enc(buf + 40, table->hdr->hdr_lba_start);
 1233         le64enc(buf + 48, table->hdr->hdr_lba_end);
 1234         le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
 1235         le32enc(buf + 80, table->hdr->hdr_entries);
 1236         le32enc(buf + 84, table->hdr->hdr_entsz);
 1237 
 1238         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
 1239                 if (baseentry->gpe_deleted)
 1240                         continue;
 1241                 entry = (struct g_part_gpt_entry *)baseentry;
 1242                 index = baseentry->gpe_index - 1;
 1243                 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
 1244                 le_uuid_enc(bp, &entry->ent.ent_type);
 1245                 le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
 1246                 le64enc(bp + 32, entry->ent.ent_lba_start);
 1247                 le64enc(bp + 40, entry->ent.ent_lba_end);
 1248                 le64enc(bp + 48, entry->ent.ent_attr);
 1249                 memcpy(bp + 56, entry->ent.ent_name,
 1250                     sizeof(entry->ent.ent_name));
 1251         }
 1252 
 1253         crc = crc32(buf + pp->sectorsize,
 1254             table->hdr->hdr_entries * table->hdr->hdr_entsz);
 1255         le32enc(buf + 88, crc);
 1256 
 1257         /* Write primary meta-data. */
 1258         le32enc(buf + 16, 0);   /* hdr_crc_self. */
 1259         le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_self. */
 1260         le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_alt. */
 1261         le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);  /* hdr_lba_table. */
 1262         crc = crc32(buf, table->hdr->hdr_size);
 1263         le32enc(buf + 16, crc);
 1264 
 1265         for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
 1266                 error = g_write_data(cp,
 1267                     (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
 1268                     buf + (index + 1) * pp->sectorsize,
 1269                     (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
 1270                     (tblsz - index) * pp->sectorsize);
 1271                 if (error)
 1272                         goto out;
 1273         }
 1274         error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
 1275             buf, pp->sectorsize);
 1276         if (error)
 1277                 goto out;
 1278 
 1279         /* Write secondary meta-data. */
 1280         le32enc(buf + 16, 0);   /* hdr_crc_self. */
 1281         le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);  /* hdr_lba_self. */
 1282         le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);  /* hdr_lba_alt. */
 1283         le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);  /* hdr_lba_table. */
 1284         crc = crc32(buf, table->hdr->hdr_size);
 1285         le32enc(buf + 16, crc);
 1286 
 1287         for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
 1288                 error = g_write_data(cp,
 1289                     (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
 1290                     buf + (index + 1) * pp->sectorsize,
 1291                     (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
 1292                     (tblsz - index) * pp->sectorsize);
 1293                 if (error)
 1294                         goto out;
 1295         }
 1296         error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
 1297             buf, pp->sectorsize);
 1298 
 1299  out:
 1300         g_free(buf);
 1301         return (error);
 1302 }
 1303 
 1304 static void
 1305 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
 1306 {
 1307         struct g_part_entry *baseentry;
 1308         struct g_part_gpt_entry *entry;
 1309         struct g_part_gpt_table *table;
 1310         quad_t start, end, min, max;
 1311         quad_t lba, last;
 1312         size_t spb, tblsz;
 1313 
 1314         table = (struct g_part_gpt_table *)basetable;
 1315         last = pp->mediasize / pp->sectorsize - 1;
 1316         tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
 1317             pp->sectorsize);
 1318 
 1319         table->lba[GPT_ELT_PRIHDR] = 1;
 1320         table->lba[GPT_ELT_PRITBL] = 2;
 1321         table->lba[GPT_ELT_SECHDR] = last;
 1322         table->lba[GPT_ELT_SECTBL] = last - tblsz;
 1323         table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
 1324         table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
 1325         table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
 1326         table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
 1327 
 1328         max = start = 2 + tblsz;
 1329         min = end = last - tblsz - 1;
 1330         LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
 1331                 if (baseentry->gpe_deleted)
 1332                         continue;
 1333                 entry = (struct g_part_gpt_entry *)baseentry;
 1334                 if (entry->ent.ent_lba_start < min)
 1335                         min = entry->ent.ent_lba_start;
 1336                 if (entry->ent.ent_lba_end > max)
 1337                         max = entry->ent.ent_lba_end;
 1338         }
 1339         spb = 4096 / pp->sectorsize;
 1340         if (spb > 1) {
 1341                 lba = start + ((start % spb) ? spb - start % spb : 0);
 1342                 if (lba <= min)
 1343                         start = lba;
 1344                 lba = end - (end + 1) % spb;
 1345                 if (max <= lba)
 1346                         end = lba;
 1347         }
 1348         table->hdr->hdr_lba_start = start;
 1349         table->hdr->hdr_lba_end = end;
 1350 
 1351         basetable->gpt_first = start;
 1352         basetable->gpt_last = end;
 1353 }
 1354 
 1355 static void
 1356 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
 1357 {
 1358         u_int bo;
 1359         uint32_t ch;
 1360         uint16_t c;
 1361 
 1362         bo = LITTLE_ENDIAN;     /* GPT is little-endian */
 1363         while (len > 0 && *str != 0) {
 1364                 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
 1365                 str++, len--;
 1366                 if ((ch & 0xf800) == 0xd800) {
 1367                         if (len > 0) {
 1368                                 c = (bo == BIG_ENDIAN) ? be16toh(*str)
 1369                                     : le16toh(*str);
 1370                                 str++, len--;
 1371                         } else
 1372                                 c = 0xfffd;
 1373                         if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
 1374                                 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
 1375                                 ch += 0x10000;
 1376                         } else
 1377                                 ch = 0xfffd;
 1378                 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
 1379                         bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
 1380                         continue;
 1381                 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
 1382                         continue;
 1383 
 1384                 /* Write the Unicode character in UTF-8 */
 1385                 if (ch < 0x80)
 1386                         g_conf_printf_escaped(sb, "%c", ch);
 1387                 else if (ch < 0x800)
 1388                         g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
 1389                             0x80 | (ch & 0x3f));
 1390                 else if (ch < 0x10000)
 1391                         g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
 1392                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
 1393                 else if (ch < 0x200000)
 1394                         g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
 1395                             (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
 1396                             0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
 1397         }
 1398 }
 1399 
 1400 static void
 1401 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
 1402 {
 1403         size_t s16idx, s8idx;
 1404         uint32_t utfchar;
 1405         unsigned int c, utfbytes;
 1406 
 1407         s8idx = s16idx = 0;
 1408         utfchar = 0;
 1409         utfbytes = 0;
 1410         bzero(s16, s16len << 1);
 1411         while (s8[s8idx] != 0 && s16idx < s16len) {
 1412                 c = s8[s8idx++];
 1413                 if ((c & 0xc0) != 0x80) {
 1414                         /* Initial characters. */
 1415                         if (utfbytes != 0) {
 1416                                 /* Incomplete encoding of previous char. */
 1417                                 s16[s16idx++] = htole16(0xfffd);
 1418                         }
 1419                         if ((c & 0xf8) == 0xf0) {
 1420                                 utfchar = c & 0x07;
 1421                                 utfbytes = 3;
 1422                         } else if ((c & 0xf0) == 0xe0) {
 1423                                 utfchar = c & 0x0f;
 1424                                 utfbytes = 2;
 1425                         } else if ((c & 0xe0) == 0xc0) {
 1426                                 utfchar = c & 0x1f;
 1427                                 utfbytes = 1;
 1428                         } else {
 1429                                 utfchar = c & 0x7f;
 1430                                 utfbytes = 0;
 1431                         }
 1432                 } else {
 1433                         /* Followup characters. */
 1434                         if (utfbytes > 0) {
 1435                                 utfchar = (utfchar << 6) + (c & 0x3f);
 1436                                 utfbytes--;
 1437                         } else if (utfbytes == 0)
 1438                                 utfbytes = ~0;
 1439                 }
 1440                 /*
 1441                  * Write the complete Unicode character as UTF-16 when we
 1442                  * have all the UTF-8 charactars collected.
 1443                  */
 1444                 if (utfbytes == 0) {
 1445                         /*
 1446                          * If we need to write 2 UTF-16 characters, but
 1447                          * we only have room for 1, then we truncate the
 1448                          * string by writing a 0 instead.
 1449                          */
 1450                         if (utfchar >= 0x10000 && s16idx < s16len - 1) {
 1451                                 s16[s16idx++] =
 1452                                     htole16(0xd800 | ((utfchar >> 10) - 0x40));
 1453                                 s16[s16idx++] =
 1454                                     htole16(0xdc00 | (utfchar & 0x3ff));
 1455                         } else
 1456                                 s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
 1457                                     htole16(utfchar);
 1458                 }
 1459         }
 1460         /*
 1461          * If our input string was truncated, append an invalid encoding
 1462          * character to the output string.
 1463          */
 1464         if (utfbytes != 0 && s16idx < s16len)
 1465                 s16[s16idx++] = htole16(0xfffd);
 1466 }

Cache object: 605f10ffe133c08ef2e620420b2c2e2f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.