The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/raid/g_raid.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/kernel.h>
   35 #include <sys/module.h>
   36 #include <sys/limits.h>
   37 #include <sys/lock.h>
   38 #include <sys/mutex.h>
   39 #include <sys/bio.h>
   40 #include <sys/sbuf.h>
   41 #include <sys/sysctl.h>
   42 #include <sys/malloc.h>
   43 #include <sys/eventhandler.h>
   44 #include <vm/uma.h>
   45 #include <geom/geom.h>
   46 #include <geom/geom_dbg.h>
   47 #include <sys/proc.h>
   48 #include <sys/kthread.h>
   49 #include <sys/sched.h>
   50 #include <geom/raid/g_raid.h>
   51 #include "g_raid_md_if.h"
   52 #include "g_raid_tr_if.h"
   53 
   54 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
   55 
   56 SYSCTL_DECL(_kern_geom);
   57 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   58     "GEOM_RAID stuff");
   59 int g_raid_enable = 1;
   60 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
   61     &g_raid_enable, 0, "Enable on-disk metadata taste");
   62 u_int g_raid_aggressive_spare = 0;
   63 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
   64     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
   65 u_int g_raid_debug = 0;
   66 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
   67     "Debug level");
   68 int g_raid_read_err_thresh = 10;
   69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
   70     &g_raid_read_err_thresh, 0,
   71     "Number of read errors equated to disk failure");
   72 u_int g_raid_start_timeout = 30;
   73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
   74     &g_raid_start_timeout, 0,
   75     "Time to wait for all array components");
   76 static u_int g_raid_clean_time = 5;
   77 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
   78     &g_raid_clean_time, 0, "Mark volume as clean when idling");
   79 static u_int g_raid_disconnect_on_failure = 1;
   80 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
   81     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
   82 static u_int g_raid_name_format = 0;
   83 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
   84     &g_raid_name_format, 0, "Providers name format.");
   85 static u_int g_raid_idle_threshold = 1000000;
   86 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
   87     &g_raid_idle_threshold, 1000000,
   88     "Time in microseconds to consider a volume idle.");
   89 
   90 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
   91         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
   92         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
   93         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
   94 } while (0)
   95 
   96 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
   97     LIST_HEAD_INITIALIZER(g_raid_md_classes);
   98 
   99 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
  100     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
  101 
  102 LIST_HEAD(, g_raid_volume) g_raid_volumes =
  103     LIST_HEAD_INITIALIZER(g_raid_volumes);
  104 
  105 static eventhandler_tag g_raid_post_sync = NULL;
  106 static int g_raid_started = 0;
  107 static int g_raid_shutdown = 0;
  108 
  109 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
  110     struct g_geom *gp);
  111 static g_taste_t g_raid_taste;
  112 static void g_raid_init(struct g_class *mp);
  113 static void g_raid_fini(struct g_class *mp);
  114 
  115 struct g_class g_raid_class = {
  116         .name = G_RAID_CLASS_NAME,
  117         .version = G_VERSION,
  118         .ctlreq = g_raid_ctl,
  119         .taste = g_raid_taste,
  120         .destroy_geom = g_raid_destroy_geom,
  121         .init = g_raid_init,
  122         .fini = g_raid_fini
  123 };
  124 
  125 static void g_raid_destroy_provider(struct g_raid_volume *vol);
  126 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
  127 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
  128 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
  129 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
  130 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
  131     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
  132 static void g_raid_start(struct bio *bp);
  133 static void g_raid_start_request(struct bio *bp);
  134 static void g_raid_disk_done(struct bio *bp);
  135 static void g_raid_poll(struct g_raid_softc *sc);
  136 
  137 static const char *
  138 g_raid_node_event2str(int event)
  139 {
  140 
  141         switch (event) {
  142         case G_RAID_NODE_E_WAKE:
  143                 return ("WAKE");
  144         case G_RAID_NODE_E_START:
  145                 return ("START");
  146         default:
  147                 return ("INVALID");
  148         }
  149 }
  150 
  151 const char *
  152 g_raid_disk_state2str(int state)
  153 {
  154 
  155         switch (state) {
  156         case G_RAID_DISK_S_NONE:
  157                 return ("NONE");
  158         case G_RAID_DISK_S_OFFLINE:
  159                 return ("OFFLINE");
  160         case G_RAID_DISK_S_DISABLED:
  161                 return ("DISABLED");
  162         case G_RAID_DISK_S_FAILED:
  163                 return ("FAILED");
  164         case G_RAID_DISK_S_STALE_FAILED:
  165                 return ("STALE_FAILED");
  166         case G_RAID_DISK_S_SPARE:
  167                 return ("SPARE");
  168         case G_RAID_DISK_S_STALE:
  169                 return ("STALE");
  170         case G_RAID_DISK_S_ACTIVE:
  171                 return ("ACTIVE");
  172         default:
  173                 return ("INVALID");
  174         }
  175 }
  176 
  177 static const char *
  178 g_raid_disk_event2str(int event)
  179 {
  180 
  181         switch (event) {
  182         case G_RAID_DISK_E_DISCONNECTED:
  183                 return ("DISCONNECTED");
  184         default:
  185                 return ("INVALID");
  186         }
  187 }
  188 
  189 const char *
  190 g_raid_subdisk_state2str(int state)
  191 {
  192 
  193         switch (state) {
  194         case G_RAID_SUBDISK_S_NONE:
  195                 return ("NONE");
  196         case G_RAID_SUBDISK_S_FAILED:
  197                 return ("FAILED");
  198         case G_RAID_SUBDISK_S_NEW:
  199                 return ("NEW");
  200         case G_RAID_SUBDISK_S_REBUILD:
  201                 return ("REBUILD");
  202         case G_RAID_SUBDISK_S_UNINITIALIZED:
  203                 return ("UNINITIALIZED");
  204         case G_RAID_SUBDISK_S_STALE:
  205                 return ("STALE");
  206         case G_RAID_SUBDISK_S_RESYNC:
  207                 return ("RESYNC");
  208         case G_RAID_SUBDISK_S_ACTIVE:
  209                 return ("ACTIVE");
  210         default:
  211                 return ("INVALID");
  212         }
  213 }
  214 
  215 static const char *
  216 g_raid_subdisk_event2str(int event)
  217 {
  218 
  219         switch (event) {
  220         case G_RAID_SUBDISK_E_NEW:
  221                 return ("NEW");
  222         case G_RAID_SUBDISK_E_FAILED:
  223                 return ("FAILED");
  224         case G_RAID_SUBDISK_E_DISCONNECTED:
  225                 return ("DISCONNECTED");
  226         default:
  227                 return ("INVALID");
  228         }
  229 }
  230 
  231 const char *
  232 g_raid_volume_state2str(int state)
  233 {
  234 
  235         switch (state) {
  236         case G_RAID_VOLUME_S_STARTING:
  237                 return ("STARTING");
  238         case G_RAID_VOLUME_S_BROKEN:
  239                 return ("BROKEN");
  240         case G_RAID_VOLUME_S_DEGRADED:
  241                 return ("DEGRADED");
  242         case G_RAID_VOLUME_S_SUBOPTIMAL:
  243                 return ("SUBOPTIMAL");
  244         case G_RAID_VOLUME_S_OPTIMAL:
  245                 return ("OPTIMAL");
  246         case G_RAID_VOLUME_S_UNSUPPORTED:
  247                 return ("UNSUPPORTED");
  248         case G_RAID_VOLUME_S_STOPPED:
  249                 return ("STOPPED");
  250         default:
  251                 return ("INVALID");
  252         }
  253 }
  254 
  255 static const char *
  256 g_raid_volume_event2str(int event)
  257 {
  258 
  259         switch (event) {
  260         case G_RAID_VOLUME_E_UP:
  261                 return ("UP");
  262         case G_RAID_VOLUME_E_DOWN:
  263                 return ("DOWN");
  264         case G_RAID_VOLUME_E_START:
  265                 return ("START");
  266         case G_RAID_VOLUME_E_STARTMD:
  267                 return ("STARTMD");
  268         default:
  269                 return ("INVALID");
  270         }
  271 }
  272 
  273 const char *
  274 g_raid_volume_level2str(int level, int qual)
  275 {
  276 
  277         switch (level) {
  278         case G_RAID_VOLUME_RL_RAID0:
  279                 return ("RAID0");
  280         case G_RAID_VOLUME_RL_RAID1:
  281                 return ("RAID1");
  282         case G_RAID_VOLUME_RL_RAID3:
  283                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
  284                         return ("RAID3-P0");
  285                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
  286                         return ("RAID3-PN");
  287                 return ("RAID3");
  288         case G_RAID_VOLUME_RL_RAID4:
  289                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
  290                         return ("RAID4-P0");
  291                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
  292                         return ("RAID4-PN");
  293                 return ("RAID4");
  294         case G_RAID_VOLUME_RL_RAID5:
  295                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
  296                         return ("RAID5-RA");
  297                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
  298                         return ("RAID5-RS");
  299                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
  300                         return ("RAID5-LA");
  301                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
  302                         return ("RAID5-LS");
  303                 return ("RAID5");
  304         case G_RAID_VOLUME_RL_RAID6:
  305                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
  306                         return ("RAID6-RA");
  307                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
  308                         return ("RAID6-RS");
  309                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
  310                         return ("RAID6-LA");
  311                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
  312                         return ("RAID6-LS");
  313                 return ("RAID6");
  314         case G_RAID_VOLUME_RL_RAIDMDF:
  315                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
  316                         return ("RAIDMDF-RA");
  317                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
  318                         return ("RAIDMDF-RS");
  319                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
  320                         return ("RAIDMDF-LA");
  321                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
  322                         return ("RAIDMDF-LS");
  323                 return ("RAIDMDF");
  324         case G_RAID_VOLUME_RL_RAID1E:
  325                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
  326                         return ("RAID1E-A");
  327                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
  328                         return ("RAID1E-O");
  329                 return ("RAID1E");
  330         case G_RAID_VOLUME_RL_SINGLE:
  331                 return ("SINGLE");
  332         case G_RAID_VOLUME_RL_CONCAT:
  333                 return ("CONCAT");
  334         case G_RAID_VOLUME_RL_RAID5E:
  335                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
  336                         return ("RAID5E-RA");
  337                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
  338                         return ("RAID5E-RS");
  339                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
  340                         return ("RAID5E-LA");
  341                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
  342                         return ("RAID5E-LS");
  343                 return ("RAID5E");
  344         case G_RAID_VOLUME_RL_RAID5EE:
  345                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
  346                         return ("RAID5EE-RA");
  347                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
  348                         return ("RAID5EE-RS");
  349                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
  350                         return ("RAID5EE-LA");
  351                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
  352                         return ("RAID5EE-LS");
  353                 return ("RAID5EE");
  354         case G_RAID_VOLUME_RL_RAID5R:
  355                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
  356                         return ("RAID5R-RA");
  357                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
  358                         return ("RAID5R-RS");
  359                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
  360                         return ("RAID5R-LA");
  361                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
  362                         return ("RAID5R-LS");
  363                 return ("RAID5E");
  364         default:
  365                 return ("UNKNOWN");
  366         }
  367 }
  368 
  369 int
  370 g_raid_volume_str2level(const char *str, int *level, int *qual)
  371 {
  372 
  373         *level = G_RAID_VOLUME_RL_UNKNOWN;
  374         *qual = G_RAID_VOLUME_RLQ_NONE;
  375         if (strcasecmp(str, "RAID0") == 0)
  376                 *level = G_RAID_VOLUME_RL_RAID0;
  377         else if (strcasecmp(str, "RAID1") == 0)
  378                 *level = G_RAID_VOLUME_RL_RAID1;
  379         else if (strcasecmp(str, "RAID3-P0") == 0) {
  380                 *level = G_RAID_VOLUME_RL_RAID3;
  381                 *qual = G_RAID_VOLUME_RLQ_R3P0;
  382         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
  383                    strcasecmp(str, "RAID3") == 0) {
  384                 *level = G_RAID_VOLUME_RL_RAID3;
  385                 *qual = G_RAID_VOLUME_RLQ_R3PN;
  386         } else if (strcasecmp(str, "RAID4-P0") == 0) {
  387                 *level = G_RAID_VOLUME_RL_RAID4;
  388                 *qual = G_RAID_VOLUME_RLQ_R4P0;
  389         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
  390                    strcasecmp(str, "RAID4") == 0) {
  391                 *level = G_RAID_VOLUME_RL_RAID4;
  392                 *qual = G_RAID_VOLUME_RLQ_R4PN;
  393         } else if (strcasecmp(str, "RAID5-RA") == 0) {
  394                 *level = G_RAID_VOLUME_RL_RAID5;
  395                 *qual = G_RAID_VOLUME_RLQ_R5RA;
  396         } else if (strcasecmp(str, "RAID5-RS") == 0) {
  397                 *level = G_RAID_VOLUME_RL_RAID5;
  398                 *qual = G_RAID_VOLUME_RLQ_R5RS;
  399         } else if (strcasecmp(str, "RAID5") == 0 ||
  400                    strcasecmp(str, "RAID5-LA") == 0) {
  401                 *level = G_RAID_VOLUME_RL_RAID5;
  402                 *qual = G_RAID_VOLUME_RLQ_R5LA;
  403         } else if (strcasecmp(str, "RAID5-LS") == 0) {
  404                 *level = G_RAID_VOLUME_RL_RAID5;
  405                 *qual = G_RAID_VOLUME_RLQ_R5LS;
  406         } else if (strcasecmp(str, "RAID6-RA") == 0) {
  407                 *level = G_RAID_VOLUME_RL_RAID6;
  408                 *qual = G_RAID_VOLUME_RLQ_R6RA;
  409         } else if (strcasecmp(str, "RAID6-RS") == 0) {
  410                 *level = G_RAID_VOLUME_RL_RAID6;
  411                 *qual = G_RAID_VOLUME_RLQ_R6RS;
  412         } else if (strcasecmp(str, "RAID6") == 0 ||
  413                    strcasecmp(str, "RAID6-LA") == 0) {
  414                 *level = G_RAID_VOLUME_RL_RAID6;
  415                 *qual = G_RAID_VOLUME_RLQ_R6LA;
  416         } else if (strcasecmp(str, "RAID6-LS") == 0) {
  417                 *level = G_RAID_VOLUME_RL_RAID6;
  418                 *qual = G_RAID_VOLUME_RLQ_R6LS;
  419         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
  420                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  421                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
  422         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
  423                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  424                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
  425         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
  426                    strcasecmp(str, "RAIDMDF-LA") == 0) {
  427                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  428                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
  429         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
  430                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  431                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
  432         } else if (strcasecmp(str, "RAID10") == 0 ||
  433                    strcasecmp(str, "RAID1E") == 0 ||
  434                    strcasecmp(str, "RAID1E-A") == 0) {
  435                 *level = G_RAID_VOLUME_RL_RAID1E;
  436                 *qual = G_RAID_VOLUME_RLQ_R1EA;
  437         } else if (strcasecmp(str, "RAID1E-O") == 0) {
  438                 *level = G_RAID_VOLUME_RL_RAID1E;
  439                 *qual = G_RAID_VOLUME_RLQ_R1EO;
  440         } else if (strcasecmp(str, "SINGLE") == 0)
  441                 *level = G_RAID_VOLUME_RL_SINGLE;
  442         else if (strcasecmp(str, "CONCAT") == 0)
  443                 *level = G_RAID_VOLUME_RL_CONCAT;
  444         else if (strcasecmp(str, "RAID5E-RA") == 0) {
  445                 *level = G_RAID_VOLUME_RL_RAID5E;
  446                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
  447         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
  448                 *level = G_RAID_VOLUME_RL_RAID5E;
  449                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
  450         } else if (strcasecmp(str, "RAID5E") == 0 ||
  451                    strcasecmp(str, "RAID5E-LA") == 0) {
  452                 *level = G_RAID_VOLUME_RL_RAID5E;
  453                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
  454         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
  455                 *level = G_RAID_VOLUME_RL_RAID5E;
  456                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
  457         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
  458                 *level = G_RAID_VOLUME_RL_RAID5EE;
  459                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
  460         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
  461                 *level = G_RAID_VOLUME_RL_RAID5EE;
  462                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
  463         } else if (strcasecmp(str, "RAID5EE") == 0 ||
  464                    strcasecmp(str, "RAID5EE-LA") == 0) {
  465                 *level = G_RAID_VOLUME_RL_RAID5EE;
  466                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
  467         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
  468                 *level = G_RAID_VOLUME_RL_RAID5EE;
  469                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
  470         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
  471                 *level = G_RAID_VOLUME_RL_RAID5R;
  472                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
  473         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
  474                 *level = G_RAID_VOLUME_RL_RAID5R;
  475                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
  476         } else if (strcasecmp(str, "RAID5R") == 0 ||
  477                    strcasecmp(str, "RAID5R-LA") == 0) {
  478                 *level = G_RAID_VOLUME_RL_RAID5R;
  479                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
  480         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
  481                 *level = G_RAID_VOLUME_RL_RAID5R;
  482                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
  483         } else
  484                 return (-1);
  485         return (0);
  486 }
  487 
  488 const char *
  489 g_raid_get_diskname(struct g_raid_disk *disk)
  490 {
  491 
  492         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
  493                 return ("[unknown]");
  494         return (disk->d_consumer->provider->name);
  495 }
  496 
  497 void
  498 g_raid_get_disk_info(struct g_raid_disk *disk)
  499 {
  500         struct g_consumer *cp = disk->d_consumer;
  501         int error, len;
  502 
  503         /* Read kernel dumping information. */
  504         disk->d_kd.offset = 0;
  505         disk->d_kd.length = OFF_MAX;
  506         len = sizeof(disk->d_kd);
  507         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
  508         if (error)
  509                 disk->d_kd.di.dumper = NULL;
  510         if (disk->d_kd.di.dumper == NULL)
  511                 G_RAID_DEBUG1(2, disk->d_softc,
  512                     "Dumping not supported by %s: %d.", 
  513                     cp->provider->name, error);
  514 
  515         /* Read BIO_DELETE support. */
  516         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
  517         if (error)
  518                 disk->d_candelete = 0;
  519         if (!disk->d_candelete)
  520                 G_RAID_DEBUG1(2, disk->d_softc,
  521                     "BIO_DELETE not supported by %s: %d.", 
  522                     cp->provider->name, error);
  523 }
  524 
  525 void
  526 g_raid_report_disk_state(struct g_raid_disk *disk)
  527 {
  528         struct g_raid_subdisk *sd;
  529         int len, state;
  530         uint32_t s;
  531 
  532         if (disk->d_consumer == NULL)
  533                 return;
  534         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
  535                 s = G_STATE_ACTIVE; /* XXX */
  536         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
  537             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
  538                 s = G_STATE_FAILED;
  539         } else {
  540                 state = G_RAID_SUBDISK_S_ACTIVE;
  541                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
  542                         if (sd->sd_state < state)
  543                                 state = sd->sd_state;
  544                 }
  545                 if (state == G_RAID_SUBDISK_S_FAILED)
  546                         s = G_STATE_FAILED;
  547                 else if (state == G_RAID_SUBDISK_S_NEW ||
  548                     state == G_RAID_SUBDISK_S_REBUILD)
  549                         s = G_STATE_REBUILD;
  550                 else if (state == G_RAID_SUBDISK_S_STALE ||
  551                     state == G_RAID_SUBDISK_S_RESYNC)
  552                         s = G_STATE_RESYNC;
  553                 else
  554                         s = G_STATE_ACTIVE;
  555         }
  556         len = sizeof(s);
  557         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
  558         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
  559             g_raid_get_diskname(disk), s);
  560 }
  561 
  562 void
  563 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
  564 {
  565 
  566         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
  567             g_raid_get_diskname(disk),
  568             g_raid_disk_state2str(disk->d_state),
  569             g_raid_disk_state2str(state));
  570         disk->d_state = state;
  571         g_raid_report_disk_state(disk);
  572 }
  573 
  574 void
  575 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
  576 {
  577 
  578         G_RAID_DEBUG1(0, sd->sd_softc,
  579             "Subdisk %s:%d-%s state changed from %s to %s.",
  580             sd->sd_volume->v_name, sd->sd_pos,
  581             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
  582             g_raid_subdisk_state2str(sd->sd_state),
  583             g_raid_subdisk_state2str(state));
  584         sd->sd_state = state;
  585         if (sd->sd_disk)
  586                 g_raid_report_disk_state(sd->sd_disk);
  587 }
  588 
  589 void
  590 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
  591 {
  592 
  593         G_RAID_DEBUG1(0, vol->v_softc,
  594             "Volume %s state changed from %s to %s.",
  595             vol->v_name,
  596             g_raid_volume_state2str(vol->v_state),
  597             g_raid_volume_state2str(state));
  598         vol->v_state = state;
  599 }
  600 
  601 /*
  602  * --- Events handling functions ---
  603  * Events in geom_raid are used to maintain subdisks and volumes status
  604  * from one thread to simplify locking.
  605  */
  606 static void
  607 g_raid_event_free(struct g_raid_event *ep)
  608 {
  609 
  610         free(ep, M_RAID);
  611 }
  612 
  613 int
  614 g_raid_event_send(void *arg, int event, int flags)
  615 {
  616         struct g_raid_softc *sc;
  617         struct g_raid_event *ep;
  618         int error;
  619 
  620         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
  621                 sc = ((struct g_raid_volume *)arg)->v_softc;
  622         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
  623                 sc = ((struct g_raid_disk *)arg)->d_softc;
  624         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
  625                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
  626         } else {
  627                 sc = arg;
  628         }
  629         ep = malloc(sizeof(*ep), M_RAID,
  630             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
  631         if (ep == NULL)
  632                 return (ENOMEM);
  633         ep->e_tgt = arg;
  634         ep->e_event = event;
  635         ep->e_flags = flags;
  636         ep->e_error = 0;
  637         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
  638         mtx_lock(&sc->sc_queue_mtx);
  639         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
  640         mtx_unlock(&sc->sc_queue_mtx);
  641         wakeup(sc);
  642 
  643         if ((flags & G_RAID_EVENT_WAIT) == 0)
  644                 return (0);
  645 
  646         sx_assert(&sc->sc_lock, SX_XLOCKED);
  647         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
  648         sx_xunlock(&sc->sc_lock);
  649         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
  650                 mtx_lock(&sc->sc_queue_mtx);
  651                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
  652                     hz * 5);
  653         }
  654         error = ep->e_error;
  655         g_raid_event_free(ep);
  656         sx_xlock(&sc->sc_lock);
  657         return (error);
  658 }
  659 
  660 static void
  661 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
  662 {
  663         struct g_raid_event *ep, *tmpep;
  664 
  665         sx_assert(&sc->sc_lock, SX_XLOCKED);
  666 
  667         mtx_lock(&sc->sc_queue_mtx);
  668         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
  669                 if (ep->e_tgt != tgt)
  670                         continue;
  671                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  672                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
  673                         g_raid_event_free(ep);
  674                 else {
  675                         ep->e_error = ECANCELED;
  676                         wakeup(ep);
  677                 }
  678         }
  679         mtx_unlock(&sc->sc_queue_mtx);
  680 }
  681 
  682 static int
  683 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
  684 {
  685         struct g_raid_event *ep;
  686         int     res = 0;
  687 
  688         sx_assert(&sc->sc_lock, SX_XLOCKED);
  689 
  690         mtx_lock(&sc->sc_queue_mtx);
  691         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
  692                 if (ep->e_tgt != tgt)
  693                         continue;
  694                 res = 1;
  695                 break;
  696         }
  697         mtx_unlock(&sc->sc_queue_mtx);
  698         return (res);
  699 }
  700 
  701 /*
  702  * Return the number of disks in given state.
  703  * If state is equal to -1, count all connected disks.
  704  */
  705 u_int
  706 g_raid_ndisks(struct g_raid_softc *sc, int state)
  707 {
  708         struct g_raid_disk *disk;
  709         u_int n;
  710 
  711         sx_assert(&sc->sc_lock, SX_LOCKED);
  712 
  713         n = 0;
  714         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
  715                 if (disk->d_state == state || state == -1)
  716                         n++;
  717         }
  718         return (n);
  719 }
  720 
  721 /*
  722  * Return the number of subdisks in given state.
  723  * If state is equal to -1, count all connected disks.
  724  */
  725 u_int
  726 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
  727 {
  728         struct g_raid_subdisk *subdisk;
  729         struct g_raid_softc *sc __diagused;
  730         u_int i, n ;
  731 
  732         sc = vol->v_softc;
  733         sx_assert(&sc->sc_lock, SX_LOCKED);
  734 
  735         n = 0;
  736         for (i = 0; i < vol->v_disks_count; i++) {
  737                 subdisk = &vol->v_subdisks[i];
  738                 if ((state == -1 &&
  739                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
  740                     subdisk->sd_state == state)
  741                         n++;
  742         }
  743         return (n);
  744 }
  745 
  746 /*
  747  * Return the first subdisk in given state.
  748  * If state is equal to -1, then the first connected disks.
  749  */
  750 struct g_raid_subdisk *
  751 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
  752 {
  753         struct g_raid_subdisk *sd;
  754         struct g_raid_softc *sc __diagused;
  755         u_int i;
  756 
  757         sc = vol->v_softc;
  758         sx_assert(&sc->sc_lock, SX_LOCKED);
  759 
  760         for (i = 0; i < vol->v_disks_count; i++) {
  761                 sd = &vol->v_subdisks[i];
  762                 if ((state == -1 &&
  763                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
  764                     sd->sd_state == state)
  765                         return (sd);
  766         }
  767         return (NULL);
  768 }
  769 
  770 struct g_consumer *
  771 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
  772 {
  773         struct g_consumer *cp;
  774         struct g_provider *pp;
  775 
  776         g_topology_assert();
  777 
  778         if (strncmp(name, _PATH_DEV, 5) == 0)
  779                 name += 5;
  780         pp = g_provider_by_name(name);
  781         if (pp == NULL)
  782                 return (NULL);
  783         cp = g_new_consumer(sc->sc_geom);
  784         cp->flags |= G_CF_DIRECT_RECEIVE;
  785         if (g_attach(cp, pp) != 0) {
  786                 g_destroy_consumer(cp);
  787                 return (NULL);
  788         }
  789         if (g_access(cp, 1, 1, 1) != 0) {
  790                 g_detach(cp);
  791                 g_destroy_consumer(cp);
  792                 return (NULL);
  793         }
  794         return (cp);
  795 }
  796 
  797 static u_int
  798 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
  799 {
  800         struct bio *bp;
  801         u_int nreqs = 0;
  802 
  803         mtx_lock(&sc->sc_queue_mtx);
  804         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
  805                 if (bp->bio_from == cp)
  806                         nreqs++;
  807         }
  808         mtx_unlock(&sc->sc_queue_mtx);
  809         return (nreqs);
  810 }
  811 
  812 u_int
  813 g_raid_nopens(struct g_raid_softc *sc)
  814 {
  815         struct g_raid_volume *vol;
  816         u_int opens;
  817 
  818         opens = 0;
  819         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
  820                 if (vol->v_provider_open != 0)
  821                         opens++;
  822         }
  823         return (opens);
  824 }
  825 
  826 static int
  827 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
  828 {
  829 
  830         if (cp->index > 0) {
  831                 G_RAID_DEBUG1(2, sc,
  832                     "I/O requests for %s exist, can't destroy it now.",
  833                     cp->provider->name);
  834                 return (1);
  835         }
  836         if (g_raid_nrequests(sc, cp) > 0) {
  837                 G_RAID_DEBUG1(2, sc,
  838                     "I/O requests for %s in queue, can't destroy it now.",
  839                     cp->provider->name);
  840                 return (1);
  841         }
  842         return (0);
  843 }
  844 
  845 static void
  846 g_raid_destroy_consumer(void *arg, int flags __unused)
  847 {
  848         struct g_consumer *cp;
  849 
  850         g_topology_assert();
  851 
  852         cp = arg;
  853         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
  854         g_detach(cp);
  855         g_destroy_consumer(cp);
  856 }
  857 
  858 void
  859 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
  860 {
  861         struct g_provider *pp;
  862         int retaste_wait;
  863 
  864         g_topology_assert_not();
  865 
  866         g_topology_lock();
  867         cp->private = NULL;
  868         if (g_raid_consumer_is_busy(sc, cp))
  869                 goto out;
  870         pp = cp->provider;
  871         retaste_wait = 0;
  872         if (cp->acw == 1) {
  873                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
  874                         retaste_wait = 1;
  875         }
  876         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
  877                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
  878         if (retaste_wait) {
  879                 /*
  880                  * After retaste event was send (inside g_access()), we can send
  881                  * event to detach and destroy consumer.
  882                  * A class, which has consumer to the given provider connected
  883                  * will not receive retaste event for the provider.
  884                  * This is the way how I ignore retaste events when I close
  885                  * consumers opened for write: I detach and destroy consumer
  886                  * after retaste event is sent.
  887                  */
  888                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
  889                 goto out;
  890         }
  891         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
  892         g_detach(cp);
  893         g_destroy_consumer(cp);
  894 out:
  895         g_topology_unlock();
  896 }
  897 
  898 static void
  899 g_raid_orphan(struct g_consumer *cp)
  900 {
  901         struct g_raid_disk *disk;
  902 
  903         g_topology_assert();
  904 
  905         disk = cp->private;
  906         if (disk == NULL)
  907                 return;
  908         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
  909             G_RAID_EVENT_DISK);
  910 }
  911 
  912 static void
  913 g_raid_clean(struct g_raid_volume *vol, int acw)
  914 {
  915         struct g_raid_softc *sc;
  916         int timeout;
  917 
  918         sc = vol->v_softc;
  919         g_topology_assert_not();
  920         sx_assert(&sc->sc_lock, SX_XLOCKED);
  921 
  922 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  923 //              return;
  924         if (!vol->v_dirty)
  925                 return;
  926         if (vol->v_writes > 0)
  927                 return;
  928         if (acw > 0 || (acw == -1 &&
  929             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
  930                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
  931                 if (!g_raid_shutdown && timeout > 0)
  932                         return;
  933         }
  934         vol->v_dirty = 0;
  935         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
  936             vol->v_name);
  937         g_raid_write_metadata(sc, vol, NULL, NULL);
  938 }
  939 
  940 static void
  941 g_raid_dirty(struct g_raid_volume *vol)
  942 {
  943         struct g_raid_softc *sc;
  944 
  945         sc = vol->v_softc;
  946         g_topology_assert_not();
  947         sx_assert(&sc->sc_lock, SX_XLOCKED);
  948 
  949 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  950 //              return;
  951         vol->v_dirty = 1;
  952         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
  953             vol->v_name);
  954         g_raid_write_metadata(sc, vol, NULL, NULL);
  955 }
  956 
  957 void
  958 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
  959 {
  960         struct g_raid_volume *vol;
  961         struct g_raid_subdisk *sd;
  962         struct bio_queue_head queue;
  963         struct bio *cbp;
  964         int i;
  965 
  966         vol = tr->tro_volume;
  967 
  968         /*
  969          * Allocate all bios before sending any request, so we can return
  970          * ENOMEM in nice and clean way.
  971          */
  972         bioq_init(&queue);
  973         for (i = 0; i < vol->v_disks_count; i++) {
  974                 sd = &vol->v_subdisks[i];
  975                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
  976                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
  977                         continue;
  978                 cbp = g_clone_bio(bp);
  979                 if (cbp == NULL)
  980                         goto failure;
  981                 cbp->bio_caller1 = sd;
  982                 bioq_insert_tail(&queue, cbp);
  983         }
  984         while ((cbp = bioq_takefirst(&queue)) != NULL) {
  985                 sd = cbp->bio_caller1;
  986                 cbp->bio_caller1 = NULL;
  987                 g_raid_subdisk_iostart(sd, cbp);
  988         }
  989         return;
  990 failure:
  991         while ((cbp = bioq_takefirst(&queue)) != NULL)
  992                 g_destroy_bio(cbp);
  993         if (bp->bio_error == 0)
  994                 bp->bio_error = ENOMEM;
  995         g_raid_iodone(bp, bp->bio_error);
  996 }
  997 
  998 static void
  999 g_raid_tr_kerneldump_common_done(struct bio *bp)
 1000 {
 1001 
 1002         bp->bio_flags |= BIO_DONE;
 1003 }
 1004 
 1005 int
 1006 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
 1007     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1008 {
 1009         struct g_raid_softc *sc;
 1010         struct g_raid_volume *vol;
 1011         struct bio bp;
 1012 
 1013         vol = tr->tro_volume;
 1014         sc = vol->v_softc;
 1015 
 1016         g_reset_bio(&bp);
 1017         bp.bio_cmd = BIO_WRITE;
 1018         bp.bio_done = g_raid_tr_kerneldump_common_done;
 1019         bp.bio_attribute = NULL;
 1020         bp.bio_offset = offset;
 1021         bp.bio_length = length;
 1022         bp.bio_data = virtual;
 1023         bp.bio_to = vol->v_provider;
 1024 
 1025         g_raid_start(&bp);
 1026         while (!(bp.bio_flags & BIO_DONE)) {
 1027                 G_RAID_DEBUG1(4, sc, "Poll...");
 1028                 g_raid_poll(sc);
 1029                 DELAY(10);
 1030         }
 1031 
 1032         return (bp.bio_error != 0 ? EIO : 0);
 1033 }
 1034 
 1035 static int
 1036 g_raid_dump(void *arg, void *virtual, off_t offset, size_t length)
 1037 {
 1038         struct g_raid_volume *vol;
 1039         int error;
 1040 
 1041         vol = (struct g_raid_volume *)arg;
 1042         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
 1043             (long long unsigned)offset, (long long unsigned)length);
 1044 
 1045         error = G_RAID_TR_KERNELDUMP(vol->v_tr, virtual, offset, length);
 1046         return (error);
 1047 }
 1048 
 1049 static void
 1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
 1051 {
 1052         struct g_kerneldump *gkd;
 1053         struct g_provider *pp;
 1054         struct g_raid_volume *vol;
 1055 
 1056         gkd = (struct g_kerneldump*)bp->bio_data;
 1057         pp = bp->bio_to;
 1058         vol = pp->private;
 1059         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
 1060                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
 1061         gkd->di.dumper = g_raid_dump;
 1062         gkd->di.priv = vol;
 1063         gkd->di.blocksize = vol->v_sectorsize;
 1064         gkd->di.maxiosize = DFLTPHYS;
 1065         gkd->di.mediaoffset = gkd->offset;
 1066         if ((gkd->offset + gkd->length) > vol->v_mediasize)
 1067                 gkd->length = vol->v_mediasize - gkd->offset;
 1068         gkd->di.mediasize = gkd->length;
 1069         g_io_deliver(bp, 0);
 1070 }
 1071 
 1072 static void
 1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
 1074 {
 1075         struct g_provider *pp;
 1076         struct g_raid_volume *vol;
 1077         struct g_raid_subdisk *sd;
 1078         int i, val;
 1079 
 1080         pp = bp->bio_to;
 1081         vol = pp->private;
 1082         for (i = 0; i < vol->v_disks_count; i++) {
 1083                 sd = &vol->v_subdisks[i];
 1084                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1085                         continue;
 1086                 if (sd->sd_disk->d_candelete)
 1087                         break;
 1088         }
 1089         val = i < vol->v_disks_count;
 1090         g_handleattr(bp, "GEOM::candelete", &val, sizeof(val));
 1091 }
 1092 
 1093 static void
 1094 g_raid_start(struct bio *bp)
 1095 {
 1096         struct g_raid_softc *sc;
 1097 
 1098         sc = bp->bio_to->geom->softc;
 1099         /*
 1100          * If sc == NULL or there are no valid disks, provider's error
 1101          * should be set and g_raid_start() should not be called at all.
 1102          */
 1103 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
 1104 //          ("Provider's error should be set (error=%d)(mirror=%s).",
 1105 //          bp->bio_to->error, bp->bio_to->name));
 1106         G_RAID_LOGREQ(3, bp, "Request received.");
 1107 
 1108         switch (bp->bio_cmd) {
 1109         case BIO_READ:
 1110         case BIO_WRITE:
 1111         case BIO_DELETE:
 1112         case BIO_FLUSH:
 1113         case BIO_SPEEDUP:
 1114                 break;
 1115         case BIO_GETATTR:
 1116                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
 1117                         g_raid_candelete(sc, bp);
 1118                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
 1119                         g_raid_kerneldump(sc, bp);
 1120                 else
 1121                         g_io_deliver(bp, EOPNOTSUPP);
 1122                 return;
 1123         default:
 1124                 g_io_deliver(bp, EOPNOTSUPP);
 1125                 return;
 1126         }
 1127         mtx_lock(&sc->sc_queue_mtx);
 1128         bioq_insert_tail(&sc->sc_queue, bp);
 1129         mtx_unlock(&sc->sc_queue_mtx);
 1130         if (!dumping) {
 1131                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
 1132                 wakeup(sc);
 1133         }
 1134 }
 1135 
 1136 static int
 1137 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
 1138 {
 1139         /*
 1140          * 5 cases:
 1141          * (1) bp entirely below NO
 1142          * (2) bp entirely above NO
 1143          * (3) bp start below, but end in range YES
 1144          * (4) bp entirely within YES
 1145          * (5) bp starts within, ends above YES
 1146          *
 1147          * lock range 10-19 (offset 10 length 10)
 1148          * (1) 1-5: first if kicks it out
 1149          * (2) 30-35: second if kicks it out
 1150          * (3) 5-15: passes both ifs
 1151          * (4) 12-14: passes both ifs
 1152          * (5) 19-20: passes both
 1153          */
 1154         off_t lend = lstart + len - 1;
 1155         off_t bstart = bp->bio_offset;
 1156         off_t bend = bp->bio_offset + bp->bio_length - 1;
 1157 
 1158         if (bend < lstart)
 1159                 return (0);
 1160         if (lend < bstart)
 1161                 return (0);
 1162         return (1);
 1163 }
 1164 
 1165 static int
 1166 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
 1167 {
 1168         struct g_raid_lock *lp;
 1169 
 1170         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
 1171 
 1172         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1173                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
 1174                         return (1);
 1175         }
 1176         return (0);
 1177 }
 1178 
 1179 static void
 1180 g_raid_start_request(struct bio *bp)
 1181 {
 1182         struct g_raid_softc *sc __diagused;
 1183         struct g_raid_volume *vol;
 1184 
 1185         sc = bp->bio_to->geom->softc;
 1186         sx_assert(&sc->sc_lock, SX_LOCKED);
 1187         vol = bp->bio_to->private;
 1188 
 1189         /*
 1190          * Check to see if this item is in a locked range.  If so,
 1191          * queue it to our locked queue and return.  We'll requeue
 1192          * it when the range is unlocked.  Internal I/O for the
 1193          * rebuild/rescan/recovery process is excluded from this
 1194          * check so we can actually do the recovery.
 1195          */
 1196         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
 1197             g_raid_is_in_locked_range(vol, bp)) {
 1198                 G_RAID_LOGREQ(3, bp, "Defer request.");
 1199                 bioq_insert_tail(&vol->v_locked, bp);
 1200                 return;
 1201         }
 1202 
 1203         /*
 1204          * If we're actually going to do the write/delete, then
 1205          * update the idle stats for the volume.
 1206          */
 1207         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1208                 if (!vol->v_dirty)
 1209                         g_raid_dirty(vol);
 1210                 vol->v_writes++;
 1211         }
 1212 
 1213         /*
 1214          * Put request onto inflight queue, so we can check if new
 1215          * synchronization requests don't collide with it.  Then tell
 1216          * the transformation layer to start the I/O.
 1217          */
 1218         bioq_insert_tail(&vol->v_inflight, bp);
 1219         G_RAID_LOGREQ(4, bp, "Request started");
 1220         G_RAID_TR_IOSTART(vol->v_tr, bp);
 1221 }
 1222 
 1223 static void
 1224 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
 1225 {
 1226         off_t off, len;
 1227         struct bio *nbp;
 1228         struct g_raid_lock *lp;
 1229 
 1230         vol->v_pending_lock = 0;
 1231         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1232                 if (lp->l_pending) {
 1233                         off = lp->l_offset;
 1234                         len = lp->l_length;
 1235                         lp->l_pending = 0;
 1236                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
 1237                                 if (g_raid_bio_overlaps(nbp, off, len))
 1238                                         lp->l_pending++;
 1239                         }
 1240                         if (lp->l_pending) {
 1241                                 vol->v_pending_lock = 1;
 1242                                 G_RAID_DEBUG1(4, vol->v_softc,
 1243                                     "Deferred lock(%jd, %jd) has %d pending",
 1244                                     (intmax_t)off, (intmax_t)(off + len),
 1245                                     lp->l_pending);
 1246                                 continue;
 1247                         }
 1248                         G_RAID_DEBUG1(4, vol->v_softc,
 1249                             "Deferred lock of %jd to %jd completed",
 1250                             (intmax_t)off, (intmax_t)(off + len));
 1251                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1252                 }
 1253         }
 1254 }
 1255 
 1256 void
 1257 g_raid_iodone(struct bio *bp, int error)
 1258 {
 1259         struct g_raid_softc *sc __diagused;
 1260         struct g_raid_volume *vol;
 1261 
 1262         sc = bp->bio_to->geom->softc;
 1263         sx_assert(&sc->sc_lock, SX_LOCKED);
 1264         vol = bp->bio_to->private;
 1265         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
 1266 
 1267         /* Update stats if we done write/delete. */
 1268         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1269                 vol->v_writes--;
 1270                 vol->v_last_write = time_uptime;
 1271         }
 1272 
 1273         bioq_remove(&vol->v_inflight, bp);
 1274         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
 1275                 g_raid_finish_with_locked_ranges(vol, bp);
 1276         getmicrouptime(&vol->v_last_done);
 1277         g_io_deliver(bp, error);
 1278 }
 1279 
 1280 int
 1281 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
 1282     struct bio *ignore, void *argp)
 1283 {
 1284         struct g_raid_softc *sc;
 1285         struct g_raid_lock *lp;
 1286         struct bio *bp;
 1287 
 1288         sc = vol->v_softc;
 1289         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
 1290         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
 1291         lp->l_offset = off;
 1292         lp->l_length = len;
 1293         lp->l_callback_arg = argp;
 1294 
 1295         lp->l_pending = 0;
 1296         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
 1297                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
 1298                         lp->l_pending++;
 1299         }       
 1300 
 1301         /*
 1302          * If there are any writes that are pending, we return EBUSY.  All
 1303          * callers will have to wait until all pending writes clear.
 1304          */
 1305         if (lp->l_pending > 0) {
 1306                 vol->v_pending_lock = 1;
 1307                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
 1308                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
 1309                 return (EBUSY);
 1310         }
 1311         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
 1312             (intmax_t)off, (intmax_t)(off+len));
 1313         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1314         return (0);
 1315 }
 1316 
 1317 int
 1318 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
 1319 {
 1320         struct g_raid_lock *lp;
 1321         struct g_raid_softc *sc;
 1322         struct bio *bp;
 1323 
 1324         sc = vol->v_softc;
 1325         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1326                 if (lp->l_offset == off && lp->l_length == len) {
 1327                         LIST_REMOVE(lp, l_next);
 1328                         /* XXX
 1329                          * Right now we just put them all back on the queue
 1330                          * and hope for the best.  We hope this because any
 1331                          * locked ranges will go right back on this list
 1332                          * when the worker thread runs.
 1333                          * XXX
 1334                          */
 1335                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
 1336                             (intmax_t)lp->l_offset,
 1337                             (intmax_t)(lp->l_offset+lp->l_length));
 1338                         mtx_lock(&sc->sc_queue_mtx);
 1339                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
 1340                                 bioq_insert_tail(&sc->sc_queue, bp);
 1341                         mtx_unlock(&sc->sc_queue_mtx);
 1342                         free(lp, M_RAID);
 1343                         return (0);
 1344                 }
 1345         }
 1346         return (EINVAL);
 1347 }
 1348 
 1349 void
 1350 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
 1351 {
 1352         struct g_consumer *cp;
 1353         struct g_raid_disk *disk, *tdisk;
 1354 
 1355         bp->bio_caller1 = sd;
 1356 
 1357         /*
 1358          * Make sure that the disk is present. Generally it is a task of
 1359          * transformation layers to not send requests to absent disks, but
 1360          * it is better to be safe and report situation then sorry.
 1361          */
 1362         if (sd->sd_disk == NULL) {
 1363                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
 1364 nodisk:
 1365                 bp->bio_from = NULL;
 1366                 bp->bio_to = NULL;
 1367                 bp->bio_error = ENXIO;
 1368                 g_raid_disk_done(bp);
 1369                 return;
 1370         }
 1371         disk = sd->sd_disk;
 1372         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
 1373             disk->d_state != G_RAID_DISK_S_FAILED) {
 1374                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
 1375                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 1376                 goto nodisk;
 1377         }
 1378 
 1379         cp = disk->d_consumer;
 1380         bp->bio_from = cp;
 1381         bp->bio_to = cp->provider;
 1382         cp->index++;
 1383 
 1384         /* Update average disks load. */
 1385         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
 1386                 if (tdisk->d_consumer == NULL)
 1387                         tdisk->d_load = 0;
 1388                 else
 1389                         tdisk->d_load = (tdisk->d_consumer->index *
 1390                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
 1391         }
 1392 
 1393         disk->d_last_offset = bp->bio_offset + bp->bio_length;
 1394         if (dumping) {
 1395                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
 1396                 if (bp->bio_cmd == BIO_WRITE) {
 1397                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
 1398                             bp->bio_data, bp->bio_offset, bp->bio_length);
 1399                 } else
 1400                         bp->bio_error = EOPNOTSUPP;
 1401                 g_raid_disk_done(bp);
 1402         } else {
 1403                 bp->bio_done = g_raid_disk_done;
 1404                 bp->bio_offset += sd->sd_offset;
 1405                 G_RAID_LOGREQ(3, bp, "Sending request.");
 1406                 g_io_request(bp, cp);
 1407         }
 1408 }
 1409 
 1410 int
 1411 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, void *virtual,
 1412     off_t offset, size_t length)
 1413 {
 1414 
 1415         if (sd->sd_disk == NULL)
 1416                 return (ENXIO);
 1417         if (sd->sd_disk->d_kd.di.dumper == NULL)
 1418                 return (EOPNOTSUPP);
 1419         return (dump_write(&sd->sd_disk->d_kd.di, virtual,
 1420             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, length));
 1421 }
 1422 
 1423 static void
 1424 g_raid_disk_done(struct bio *bp)
 1425 {
 1426         struct g_raid_softc *sc;
 1427         struct g_raid_subdisk *sd;
 1428 
 1429         sd = bp->bio_caller1;
 1430         sc = sd->sd_softc;
 1431         mtx_lock(&sc->sc_queue_mtx);
 1432         bioq_insert_tail(&sc->sc_queue, bp);
 1433         mtx_unlock(&sc->sc_queue_mtx);
 1434         if (!dumping)
 1435                 wakeup(sc);
 1436 }
 1437 
 1438 static void
 1439 g_raid_disk_done_request(struct bio *bp)
 1440 {
 1441         struct g_raid_softc *sc;
 1442         struct g_raid_disk *disk;
 1443         struct g_raid_subdisk *sd;
 1444         struct g_raid_volume *vol;
 1445 
 1446         g_topology_assert_not();
 1447 
 1448         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
 1449         sd = bp->bio_caller1;
 1450         sc = sd->sd_softc;
 1451         vol = sd->sd_volume;
 1452         if (bp->bio_from != NULL) {
 1453                 bp->bio_from->index--;
 1454                 disk = bp->bio_from->private;
 1455                 if (disk == NULL)
 1456                         g_raid_kill_consumer(sc, bp->bio_from);
 1457         }
 1458         bp->bio_offset -= sd->sd_offset;
 1459 
 1460         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
 1461 }
 1462 
 1463 static void
 1464 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
 1465 {
 1466 
 1467         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
 1468                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
 1469         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
 1470                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
 1471         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
 1472                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
 1473         else
 1474                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
 1475         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
 1476                 KASSERT(ep->e_error == 0,
 1477                     ("Error cannot be handled."));
 1478                 g_raid_event_free(ep);
 1479         } else {
 1480                 ep->e_flags |= G_RAID_EVENT_DONE;
 1481                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
 1482                 mtx_lock(&sc->sc_queue_mtx);
 1483                 wakeup(ep);
 1484                 mtx_unlock(&sc->sc_queue_mtx);
 1485         }
 1486 }
 1487 
 1488 /*
 1489  * Worker thread.
 1490  */
 1491 static void
 1492 g_raid_worker(void *arg)
 1493 {
 1494         struct g_raid_softc *sc;
 1495         struct g_raid_event *ep;
 1496         struct g_raid_volume *vol;
 1497         struct bio *bp;
 1498         struct timeval now, t;
 1499         int timeout, rv;
 1500 
 1501         sc = arg;
 1502         thread_lock(curthread);
 1503         sched_prio(curthread, PRIBIO);
 1504         thread_unlock(curthread);
 1505 
 1506         sx_xlock(&sc->sc_lock);
 1507         for (;;) {
 1508                 mtx_lock(&sc->sc_queue_mtx);
 1509                 /*
 1510                  * First take a look at events.
 1511                  * This is important to handle events before any I/O requests.
 1512                  */
 1513                 bp = NULL;
 1514                 vol = NULL;
 1515                 rv = 0;
 1516                 ep = TAILQ_FIRST(&sc->sc_events);
 1517                 if (ep != NULL)
 1518                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1519                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
 1520                         ;
 1521                 else {
 1522                         getmicrouptime(&now);
 1523                         t = now;
 1524                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1525                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1526                                     vol->v_tr &&
 1527                                     timevalcmp(&vol->v_last_done, &t, < ))
 1528                                         t = vol->v_last_done;
 1529                         }
 1530                         timevalsub(&t, &now);
 1531                         timeout = g_raid_idle_threshold +
 1532                             t.tv_sec * 1000000 + t.tv_usec;
 1533                         if (timeout > 0) {
 1534                                 /*
 1535                                  * Two steps to avoid overflows at HZ=1000
 1536                                  * and idle timeouts > 2.1s.  Some rounding
 1537                                  * errors can occur, but they are < 1tick,
 1538                                  * which is deemed to be close enough for
 1539                                  * this purpose.
 1540                                  */
 1541                                 int micpertic = 1000000 / hz;
 1542                                 timeout = (timeout + micpertic - 1) / micpertic;
 1543                                 sx_xunlock(&sc->sc_lock);
 1544                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
 1545                                     PRIBIO | PDROP, "-", timeout);
 1546                                 sx_xlock(&sc->sc_lock);
 1547                                 goto process;
 1548                         } else
 1549                                 rv = EWOULDBLOCK;
 1550                 }
 1551                 mtx_unlock(&sc->sc_queue_mtx);
 1552 process:
 1553                 if (ep != NULL) {
 1554                         g_raid_handle_event(sc, ep);
 1555                 } else if (bp != NULL) {
 1556                         if (bp->bio_to != NULL &&
 1557                             bp->bio_to->geom == sc->sc_geom)
 1558                                 g_raid_start_request(bp);
 1559                         else
 1560                                 g_raid_disk_done_request(bp);
 1561                 } else if (rv == EWOULDBLOCK) {
 1562                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1563                                 g_raid_clean(vol, -1);
 1564                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1565                                     vol->v_tr) {
 1566                                         t.tv_sec = g_raid_idle_threshold / 1000000;
 1567                                         t.tv_usec = g_raid_idle_threshold % 1000000;
 1568                                         timevaladd(&t, &vol->v_last_done);
 1569                                         getmicrouptime(&now);
 1570                                         if (timevalcmp(&t, &now, <= )) {
 1571                                                 G_RAID_TR_IDLE(vol->v_tr);
 1572                                                 vol->v_last_done = now;
 1573                                         }
 1574                                 }
 1575                         }
 1576                 }
 1577                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 1578                         g_raid_destroy_node(sc, 1);     /* May not return. */
 1579         }
 1580 }
 1581 
 1582 static void
 1583 g_raid_poll(struct g_raid_softc *sc)
 1584 {
 1585         struct g_raid_event *ep;
 1586         struct bio *bp;
 1587 
 1588         sx_xlock(&sc->sc_lock);
 1589         mtx_lock(&sc->sc_queue_mtx);
 1590         /*
 1591          * First take a look at events.
 1592          * This is important to handle events before any I/O requests.
 1593          */
 1594         ep = TAILQ_FIRST(&sc->sc_events);
 1595         if (ep != NULL) {
 1596                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1597                 mtx_unlock(&sc->sc_queue_mtx);
 1598                 g_raid_handle_event(sc, ep);
 1599                 goto out;
 1600         }
 1601         bp = bioq_takefirst(&sc->sc_queue);
 1602         if (bp != NULL) {
 1603                 mtx_unlock(&sc->sc_queue_mtx);
 1604                 if (bp->bio_from == NULL ||
 1605                     bp->bio_from->geom != sc->sc_geom)
 1606                         g_raid_start_request(bp);
 1607                 else
 1608                         g_raid_disk_done_request(bp);
 1609         }
 1610 out:
 1611         sx_xunlock(&sc->sc_lock);
 1612 }
 1613 
 1614 static void
 1615 g_raid_launch_provider(struct g_raid_volume *vol)
 1616 {
 1617         struct g_raid_disk *disk;
 1618         struct g_raid_subdisk *sd;
 1619         struct g_raid_softc *sc;
 1620         struct g_provider *pp;
 1621         char name[G_RAID_MAX_VOLUMENAME];
 1622         off_t off;
 1623         int i;
 1624 
 1625         sc = vol->v_softc;
 1626         sx_assert(&sc->sc_lock, SX_LOCKED);
 1627 
 1628         g_topology_lock();
 1629         /* Try to name provider with volume name. */
 1630         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
 1631         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
 1632             g_provider_by_name(name) != NULL) {
 1633                 /* Otherwise use sequential volume number. */
 1634                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
 1635         }
 1636 
 1637         pp = g_new_providerf(sc->sc_geom, "%s", name);
 1638         pp->flags |= G_PF_DIRECT_RECEIVE;
 1639         if (vol->v_tr->tro_class->trc_accept_unmapped) {
 1640                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
 1641                 for (i = 0; i < vol->v_disks_count; i++) {
 1642                         sd = &vol->v_subdisks[i];
 1643                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1644                                 continue;
 1645                         if ((sd->sd_disk->d_consumer->provider->flags &
 1646                             G_PF_ACCEPT_UNMAPPED) == 0)
 1647                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
 1648                 }
 1649         }
 1650         pp->private = vol;
 1651         pp->mediasize = vol->v_mediasize;
 1652         pp->sectorsize = vol->v_sectorsize;
 1653         pp->stripesize = 0;
 1654         pp->stripeoffset = 0;
 1655         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
 1656             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
 1657             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
 1658             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
 1659                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
 1660                     disk->d_consumer != NULL &&
 1661                     disk->d_consumer->provider != NULL) {
 1662                         pp->stripesize = disk->d_consumer->provider->stripesize;
 1663                         off = disk->d_consumer->provider->stripeoffset;
 1664                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
 1665                         if (off > 0)
 1666                                 pp->stripeoffset %= off;
 1667                 }
 1668                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
 1669                         pp->stripesize *= (vol->v_disks_count - 1);
 1670                         pp->stripeoffset *= (vol->v_disks_count - 1);
 1671                 }
 1672         } else
 1673                 pp->stripesize = vol->v_strip_size;
 1674         vol->v_provider = pp;
 1675         g_error_provider(pp, 0);
 1676         g_topology_unlock();
 1677         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
 1678             pp->name, vol->v_name);
 1679 }
 1680 
 1681 static void
 1682 g_raid_destroy_provider(struct g_raid_volume *vol)
 1683 {
 1684         struct g_raid_softc *sc;
 1685         struct g_provider *pp;
 1686         struct bio *bp, *tmp;
 1687 
 1688         g_topology_assert_not();
 1689         sc = vol->v_softc;
 1690         pp = vol->v_provider;
 1691         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
 1692 
 1693         g_topology_lock();
 1694         g_error_provider(pp, ENXIO);
 1695         mtx_lock(&sc->sc_queue_mtx);
 1696         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
 1697                 if (bp->bio_to != pp)
 1698                         continue;
 1699                 bioq_remove(&sc->sc_queue, bp);
 1700                 g_io_deliver(bp, ENXIO);
 1701         }
 1702         mtx_unlock(&sc->sc_queue_mtx);
 1703         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
 1704             pp->name, vol->v_name);
 1705         g_wither_provider(pp, ENXIO);
 1706         g_topology_unlock();
 1707         vol->v_provider = NULL;
 1708 }
 1709 
 1710 /*
 1711  * Update device state.
 1712  */
 1713 static int
 1714 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
 1715 {
 1716         struct g_raid_softc *sc;
 1717 
 1718         sc = vol->v_softc;
 1719         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1720 
 1721         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
 1722             g_raid_volume_event2str(event),
 1723             vol->v_name);
 1724         switch (event) {
 1725         case G_RAID_VOLUME_E_DOWN:
 1726                 if (vol->v_provider != NULL)
 1727                         g_raid_destroy_provider(vol);
 1728                 break;
 1729         case G_RAID_VOLUME_E_UP:
 1730                 if (vol->v_provider == NULL)
 1731                         g_raid_launch_provider(vol);
 1732                 break;
 1733         case G_RAID_VOLUME_E_START:
 1734                 if (vol->v_tr)
 1735                         G_RAID_TR_START(vol->v_tr);
 1736                 return (0);
 1737         default:
 1738                 if (sc->sc_md)
 1739                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
 1740                 return (0);
 1741         }
 1742 
 1743         /* Manage root mount release. */
 1744         if (vol->v_starting) {
 1745                 vol->v_starting = 0;
 1746                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
 1747                 root_mount_rel(vol->v_rootmount);
 1748                 vol->v_rootmount = NULL;
 1749         }
 1750         if (vol->v_stopping && vol->v_provider_open == 0)
 1751                 g_raid_destroy_volume(vol);
 1752         return (0);
 1753 }
 1754 
 1755 /*
 1756  * Update subdisk state.
 1757  */
 1758 static int
 1759 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
 1760 {
 1761         struct g_raid_softc *sc;
 1762         struct g_raid_volume *vol;
 1763 
 1764         sc = sd->sd_softc;
 1765         vol = sd->sd_volume;
 1766         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1767 
 1768         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
 1769             g_raid_subdisk_event2str(event),
 1770             vol->v_name, sd->sd_pos,
 1771             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
 1772         if (vol->v_tr)
 1773                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
 1774 
 1775         return (0);
 1776 }
 1777 
 1778 /*
 1779  * Update disk state.
 1780  */
 1781 static int
 1782 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
 1783 {
 1784         struct g_raid_softc *sc;
 1785 
 1786         sc = disk->d_softc;
 1787         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1788 
 1789         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
 1790             g_raid_disk_event2str(event),
 1791             g_raid_get_diskname(disk));
 1792 
 1793         if (sc->sc_md)
 1794                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
 1795         return (0);
 1796 }
 1797 
 1798 /*
 1799  * Node event.
 1800  */
 1801 static int
 1802 g_raid_update_node(struct g_raid_softc *sc, u_int event)
 1803 {
 1804         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1805 
 1806         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
 1807             g_raid_node_event2str(event));
 1808 
 1809         if (event == G_RAID_NODE_E_WAKE)
 1810                 return (0);
 1811         if (sc->sc_md)
 1812                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
 1813         return (0);
 1814 }
 1815 
 1816 static int
 1817 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
 1818 {
 1819         struct g_raid_volume *vol;
 1820         struct g_raid_softc *sc;
 1821         int dcw, opens, error = 0;
 1822 
 1823         g_topology_assert();
 1824         sc = pp->geom->softc;
 1825         vol = pp->private;
 1826         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
 1827         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
 1828 
 1829         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
 1830             acr, acw, ace);
 1831         dcw = pp->acw + acw;
 1832 
 1833         g_topology_unlock();
 1834         sx_xlock(&sc->sc_lock);
 1835         /* Deny new opens while dying. */
 1836         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
 1837                 error = ENXIO;
 1838                 goto out;
 1839         }
 1840         /* Deny write opens for read-only volumes. */
 1841         if (vol->v_read_only && acw > 0) {
 1842                 error = EROFS;
 1843                 goto out;
 1844         }
 1845         if (dcw == 0)
 1846                 g_raid_clean(vol, dcw);
 1847         vol->v_provider_open += acr + acw + ace;
 1848         /* Handle delayed node destruction. */
 1849         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
 1850             vol->v_provider_open == 0) {
 1851                 /* Count open volumes. */
 1852                 opens = g_raid_nopens(sc);
 1853                 if (opens == 0) {
 1854                         sc->sc_stopping = G_RAID_DESTROY_HARD;
 1855                         /* Wake up worker to make it selfdestruct. */
 1856                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 1857                 }
 1858         }
 1859         /* Handle open volume destruction. */
 1860         if (vol->v_stopping && vol->v_provider_open == 0)
 1861                 g_raid_destroy_volume(vol);
 1862 out:
 1863         sx_xunlock(&sc->sc_lock);
 1864         g_topology_lock();
 1865         return (error);
 1866 }
 1867 
 1868 struct g_raid_softc *
 1869 g_raid_create_node(struct g_class *mp,
 1870     const char *name, struct g_raid_md_object *md)
 1871 {
 1872         struct g_raid_softc *sc;
 1873         struct g_geom *gp;
 1874         int error;
 1875 
 1876         g_topology_assert();
 1877         G_RAID_DEBUG(1, "Creating array %s.", name);
 1878 
 1879         gp = g_new_geomf(mp, "%s", name);
 1880         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
 1881         gp->start = g_raid_start;
 1882         gp->orphan = g_raid_orphan;
 1883         gp->access = g_raid_access;
 1884         gp->dumpconf = g_raid_dumpconf;
 1885 
 1886         sc->sc_md = md;
 1887         sc->sc_geom = gp;
 1888         sc->sc_flags = 0;
 1889         TAILQ_INIT(&sc->sc_volumes);
 1890         TAILQ_INIT(&sc->sc_disks);
 1891         sx_init(&sc->sc_lock, "graid:lock");
 1892         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
 1893         TAILQ_INIT(&sc->sc_events);
 1894         bioq_init(&sc->sc_queue);
 1895         gp->softc = sc;
 1896         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
 1897             "g_raid %s", name);
 1898         if (error != 0) {
 1899                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
 1900                 mtx_destroy(&sc->sc_queue_mtx);
 1901                 sx_destroy(&sc->sc_lock);
 1902                 g_destroy_geom(sc->sc_geom);
 1903                 free(sc, M_RAID);
 1904                 return (NULL);
 1905         }
 1906 
 1907         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
 1908         return (sc);
 1909 }
 1910 
 1911 struct g_raid_volume *
 1912 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
 1913 {
 1914         struct g_raid_volume    *vol, *vol1;
 1915         int i;
 1916 
 1917         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
 1918         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
 1919         vol->v_softc = sc;
 1920         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
 1921         vol->v_state = G_RAID_VOLUME_S_STARTING;
 1922         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
 1923         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
 1924         vol->v_rotate_parity = 1;
 1925         bioq_init(&vol->v_inflight);
 1926         bioq_init(&vol->v_locked);
 1927         LIST_INIT(&vol->v_locks);
 1928         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 1929                 vol->v_subdisks[i].sd_softc = sc;
 1930                 vol->v_subdisks[i].sd_volume = vol;
 1931                 vol->v_subdisks[i].sd_pos = i;
 1932                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
 1933         }
 1934 
 1935         /* Find free ID for this volume. */
 1936         g_topology_lock();
 1937         vol1 = vol;
 1938         if (id >= 0) {
 1939                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1940                         if (vol1->v_global_id == id)
 1941                                 break;
 1942                 }
 1943         }
 1944         if (vol1 != NULL) {
 1945                 for (id = 0; ; id++) {
 1946                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1947                                 if (vol1->v_global_id == id)
 1948                                         break;
 1949                         }
 1950                         if (vol1 == NULL)
 1951                                 break;
 1952                 }
 1953         }
 1954         vol->v_global_id = id;
 1955         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
 1956         g_topology_unlock();
 1957 
 1958         /* Delay root mounting. */
 1959         vol->v_rootmount = root_mount_hold("GRAID");
 1960         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
 1961         vol->v_starting = 1;
 1962         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
 1963         return (vol);
 1964 }
 1965 
 1966 struct g_raid_disk *
 1967 g_raid_create_disk(struct g_raid_softc *sc)
 1968 {
 1969         struct g_raid_disk      *disk;
 1970 
 1971         G_RAID_DEBUG1(1, sc, "Creating disk.");
 1972         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
 1973         disk->d_softc = sc;
 1974         disk->d_state = G_RAID_DISK_S_NONE;
 1975         TAILQ_INIT(&disk->d_subdisks);
 1976         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
 1977         return (disk);
 1978 }
 1979 
 1980 int g_raid_start_volume(struct g_raid_volume *vol)
 1981 {
 1982         struct g_raid_tr_class *class;
 1983         struct g_raid_tr_object *obj;
 1984         int status;
 1985 
 1986         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
 1987         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
 1988                 if (!class->trc_enable)
 1989                         continue;
 1990                 G_RAID_DEBUG1(2, vol->v_softc,
 1991                     "Tasting volume %s for %s transformation.",
 1992                     vol->v_name, class->name);
 1993                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 1994                     M_WAITOK);
 1995                 obj->tro_class = class;
 1996                 obj->tro_volume = vol;
 1997                 status = G_RAID_TR_TASTE(obj, vol);
 1998                 if (status != G_RAID_TR_TASTE_FAIL)
 1999                         break;
 2000                 kobj_delete((kobj_t)obj, M_RAID);
 2001         }
 2002         if (class == NULL) {
 2003                 G_RAID_DEBUG1(0, vol->v_softc,
 2004                     "No transformation module found for %s.",
 2005                     vol->v_name);
 2006                 vol->v_tr = NULL;
 2007                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
 2008                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
 2009                     G_RAID_EVENT_VOLUME);
 2010                 return (-1);
 2011         }
 2012         G_RAID_DEBUG1(2, vol->v_softc,
 2013             "Transformation module %s chosen for %s.",
 2014             class->name, vol->v_name);
 2015         vol->v_tr = obj;
 2016         return (0);
 2017 }
 2018 
 2019 int
 2020 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
 2021 {
 2022         struct g_raid_volume *vol, *tmpv;
 2023         struct g_raid_disk *disk, *tmpd;
 2024         int error = 0;
 2025 
 2026         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2027         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
 2028                 if (g_raid_destroy_volume(vol))
 2029                         error = EBUSY;
 2030         }
 2031         if (error)
 2032                 return (error);
 2033         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
 2034                 if (g_raid_destroy_disk(disk))
 2035                         error = EBUSY;
 2036         }
 2037         if (error)
 2038                 return (error);
 2039         if (sc->sc_md) {
 2040                 G_RAID_MD_FREE(sc->sc_md);
 2041                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
 2042                 sc->sc_md = NULL;
 2043         }
 2044         if (sc->sc_geom != NULL) {
 2045                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
 2046                 g_topology_lock();
 2047                 sc->sc_geom->softc = NULL;
 2048                 g_wither_geom(sc->sc_geom, ENXIO);
 2049                 g_topology_unlock();
 2050                 sc->sc_geom = NULL;
 2051         } else
 2052                 G_RAID_DEBUG(1, "Array destroyed.");
 2053         if (worker) {
 2054                 g_raid_event_cancel(sc, sc);
 2055                 mtx_destroy(&sc->sc_queue_mtx);
 2056                 sx_xunlock(&sc->sc_lock);
 2057                 sx_destroy(&sc->sc_lock);
 2058                 wakeup(&sc->sc_stopping);
 2059                 free(sc, M_RAID);
 2060                 curthread->td_pflags &= ~TDP_GEOM;
 2061                 G_RAID_DEBUG(1, "Thread exiting.");
 2062                 kproc_exit(0);
 2063         } else {
 2064                 /* Wake up worker to make it selfdestruct. */
 2065                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2066         }
 2067         return (0);
 2068 }
 2069 
 2070 int
 2071 g_raid_destroy_volume(struct g_raid_volume *vol)
 2072 {
 2073         struct g_raid_softc *sc;
 2074         struct g_raid_disk *disk;
 2075         int i;
 2076 
 2077         sc = vol->v_softc;
 2078         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
 2079         vol->v_stopping = 1;
 2080         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
 2081                 if (vol->v_tr) {
 2082                         G_RAID_TR_STOP(vol->v_tr);
 2083                         return (EBUSY);
 2084                 } else
 2085                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
 2086         }
 2087         if (g_raid_event_check(sc, vol) != 0)
 2088                 return (EBUSY);
 2089         if (vol->v_provider != NULL)
 2090                 return (EBUSY);
 2091         if (vol->v_provider_open != 0)
 2092                 return (EBUSY);
 2093         if (vol->v_tr) {
 2094                 G_RAID_TR_FREE(vol->v_tr);
 2095                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
 2096                 vol->v_tr = NULL;
 2097         }
 2098         if (vol->v_rootmount)
 2099                 root_mount_rel(vol->v_rootmount);
 2100         g_topology_lock();
 2101         LIST_REMOVE(vol, v_global_next);
 2102         g_topology_unlock();
 2103         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
 2104         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 2105                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
 2106                 disk = vol->v_subdisks[i].sd_disk;
 2107                 if (disk == NULL)
 2108                         continue;
 2109                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
 2110         }
 2111         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
 2112         if (sc->sc_md)
 2113                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
 2114         g_raid_event_cancel(sc, vol);
 2115         free(vol, M_RAID);
 2116         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
 2117                 /* Wake up worker to let it selfdestruct. */
 2118                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2119         }
 2120         return (0);
 2121 }
 2122 
 2123 int
 2124 g_raid_destroy_disk(struct g_raid_disk *disk)
 2125 {
 2126         struct g_raid_softc *sc;
 2127         struct g_raid_subdisk *sd, *tmp;
 2128 
 2129         sc = disk->d_softc;
 2130         G_RAID_DEBUG1(2, sc, "Destroying disk.");
 2131         if (disk->d_consumer) {
 2132                 g_raid_kill_consumer(sc, disk->d_consumer);
 2133                 disk->d_consumer = NULL;
 2134         }
 2135         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
 2136                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
 2137                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
 2138                     G_RAID_EVENT_SUBDISK);
 2139                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
 2140                 sd->sd_disk = NULL;
 2141         }
 2142         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
 2143         if (sc->sc_md)
 2144                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
 2145         g_raid_event_cancel(sc, disk);
 2146         free(disk, M_RAID);
 2147         return (0);
 2148 }
 2149 
 2150 int
 2151 g_raid_destroy(struct g_raid_softc *sc, int how)
 2152 {
 2153         int error, opens;
 2154 
 2155         g_topology_assert_not();
 2156         if (sc == NULL)
 2157                 return (ENXIO);
 2158         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2159 
 2160         /* Count open volumes. */
 2161         opens = g_raid_nopens(sc);
 2162 
 2163         /* React on some opened volumes. */
 2164         if (opens > 0) {
 2165                 switch (how) {
 2166                 case G_RAID_DESTROY_SOFT:
 2167                         G_RAID_DEBUG1(1, sc,
 2168                             "%d volumes are still open.",
 2169                             opens);
 2170                         sx_xunlock(&sc->sc_lock);
 2171                         return (EBUSY);
 2172                 case G_RAID_DESTROY_DELAYED:
 2173                         G_RAID_DEBUG1(1, sc,
 2174                             "Array will be destroyed on last close.");
 2175                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
 2176                         sx_xunlock(&sc->sc_lock);
 2177                         return (EBUSY);
 2178                 case G_RAID_DESTROY_HARD:
 2179                         G_RAID_DEBUG1(1, sc,
 2180                             "%d volumes are still open.",
 2181                             opens);
 2182                 }
 2183         }
 2184 
 2185         /* Mark node for destruction. */
 2186         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2187         /* Wake up worker to let it selfdestruct. */
 2188         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2189         /* Sleep until node destroyed. */
 2190         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
 2191             PRIBIO | PDROP, "r:destroy", hz * 3);
 2192         return (error == EWOULDBLOCK ? EBUSY : 0);
 2193 }
 2194 
 2195 static void
 2196 g_raid_taste_orphan(struct g_consumer *cp)
 2197 {
 2198 
 2199         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
 2200             cp->provider->name));
 2201 }
 2202 
 2203 static struct g_geom *
 2204 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
 2205 {
 2206         struct g_consumer *cp;
 2207         struct g_geom *gp, *geom;
 2208         struct g_raid_md_class *class;
 2209         struct g_raid_md_object *obj;
 2210         int status;
 2211 
 2212         g_topology_assert();
 2213         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
 2214         if (!g_raid_enable)
 2215                 return (NULL);
 2216         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
 2217 
 2218         geom = NULL;
 2219         status = G_RAID_MD_TASTE_FAIL;
 2220         gp = g_new_geomf(mp, "raid:taste");
 2221         /*
 2222          * This orphan function should be never called.
 2223          */
 2224         gp->orphan = g_raid_taste_orphan;
 2225         cp = g_new_consumer(gp);
 2226         cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
 2227         if (g_attach(cp, pp) != 0)
 2228                 goto ofail2;
 2229         if (g_access(cp, 1, 0, 0) != 0)
 2230                 goto ofail;
 2231 
 2232         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2233                 if (!class->mdc_enable)
 2234                         continue;
 2235                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
 2236                     pp->name, class->name);
 2237                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2238                     M_WAITOK);
 2239                 obj->mdo_class = class;
 2240                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
 2241                 if (status != G_RAID_MD_TASTE_NEW)
 2242                         kobj_delete((kobj_t)obj, M_RAID);
 2243                 if (status != G_RAID_MD_TASTE_FAIL)
 2244                         break;
 2245         }
 2246 
 2247         if (status == G_RAID_MD_TASTE_FAIL)
 2248                 (void)g_access(cp, -1, 0, 0);
 2249 ofail:
 2250         g_detach(cp);
 2251 ofail2:
 2252         g_destroy_consumer(cp);
 2253         g_destroy_geom(gp);
 2254         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
 2255         return (geom);
 2256 }
 2257 
 2258 int
 2259 g_raid_create_node_format(const char *format, struct gctl_req *req,
 2260     struct g_geom **gp)
 2261 {
 2262         struct g_raid_md_class *class;
 2263         struct g_raid_md_object *obj;
 2264         int status;
 2265 
 2266         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
 2267         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2268                 if (strcasecmp(class->name, format) == 0)
 2269                         break;
 2270         }
 2271         if (class == NULL) {
 2272                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
 2273                 return (G_RAID_MD_TASTE_FAIL);
 2274         }
 2275         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2276             M_WAITOK);
 2277         obj->mdo_class = class;
 2278         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
 2279         if (status != G_RAID_MD_TASTE_NEW)
 2280                 kobj_delete((kobj_t)obj, M_RAID);
 2281         return (status);
 2282 }
 2283 
 2284 static int
 2285 g_raid_destroy_geom(struct gctl_req *req __unused,
 2286     struct g_class *mp __unused, struct g_geom *gp)
 2287 {
 2288         struct g_raid_softc *sc;
 2289         int error;
 2290 
 2291         g_topology_unlock();
 2292         sc = gp->softc;
 2293         sx_xlock(&sc->sc_lock);
 2294         g_cancel_event(sc);
 2295         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
 2296         g_topology_lock();
 2297         return (error);
 2298 }
 2299 
 2300 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
 2301     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2302 {
 2303 
 2304         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 2305                 return;
 2306         if (sc->sc_md)
 2307                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
 2308 }
 2309 
 2310 void g_raid_fail_disk(struct g_raid_softc *sc,
 2311     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2312 {
 2313 
 2314         if (disk == NULL)
 2315                 disk = sd->sd_disk;
 2316         if (disk == NULL) {
 2317                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
 2318                 return;
 2319         }
 2320         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
 2321                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
 2322                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 2323                 return;
 2324         }
 2325         if (sc->sc_md)
 2326                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
 2327 }
 2328 
 2329 static void
 2330 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
 2331     struct g_consumer *cp, struct g_provider *pp)
 2332 {
 2333         struct g_raid_softc *sc;
 2334         struct g_raid_volume *vol;
 2335         struct g_raid_subdisk *sd;
 2336         struct g_raid_disk *disk;
 2337         int i, s;
 2338 
 2339         g_topology_assert();
 2340 
 2341         sc = gp->softc;
 2342         if (sc == NULL)
 2343                 return;
 2344         if (pp != NULL) {
 2345                 vol = pp->private;
 2346                 g_topology_unlock();
 2347                 sx_xlock(&sc->sc_lock);
 2348                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
 2349                     sc->sc_md->mdo_class->name,
 2350                     g_raid_volume_level2str(vol->v_raid_level,
 2351                     vol->v_raid_level_qualifier));
 2352                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
 2353                     vol->v_name);
 2354                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
 2355                     g_raid_volume_level2str(vol->v_raid_level,
 2356                     vol->v_raid_level_qualifier));
 2357                 sbuf_printf(sb,
 2358                     "%s<Transformation>%s</Transformation>\n", indent,
 2359                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
 2360                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
 2361                     vol->v_disks_count);
 2362                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
 2363                     vol->v_strip_size);
 2364                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2365                     g_raid_volume_state2str(vol->v_state));
 2366                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
 2367                     vol->v_dirty ? "Yes" : "No");
 2368                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2369                 for (i = 0; i < vol->v_disks_count; i++) {
 2370                         sd = &vol->v_subdisks[i];
 2371                         if (sd->sd_disk != NULL &&
 2372                             sd->sd_disk->d_consumer != NULL) {
 2373                                 sbuf_printf(sb, "%s ",
 2374                                     g_raid_get_diskname(sd->sd_disk));
 2375                         } else {
 2376                                 sbuf_cat(sb, "NONE ");
 2377                         }
 2378                         sbuf_printf(sb, "(%s",
 2379                             g_raid_subdisk_state2str(sd->sd_state));
 2380                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2381                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2382                                 sbuf_printf(sb, " %d%%",
 2383                                     (int)(sd->sd_rebuild_pos * 100 /
 2384                                      sd->sd_size));
 2385                         }
 2386                         sbuf_cat(sb, ")");
 2387                         if (i + 1 < vol->v_disks_count)
 2388                                 sbuf_cat(sb, ", ");
 2389                 }
 2390                 sbuf_cat(sb, "</Subdisks>\n");
 2391                 sx_xunlock(&sc->sc_lock);
 2392                 g_topology_lock();
 2393         } else if (cp != NULL) {
 2394                 disk = cp->private;
 2395                 if (disk == NULL)
 2396                         return;
 2397                 g_topology_unlock();
 2398                 sx_xlock(&sc->sc_lock);
 2399                 sbuf_printf(sb, "%s<State>%s", indent,
 2400                     g_raid_disk_state2str(disk->d_state));
 2401                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
 2402                         sbuf_cat(sb, " (");
 2403                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2404                                 sbuf_printf(sb, "%s",
 2405                                     g_raid_subdisk_state2str(sd->sd_state));
 2406                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2407                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2408                                         sbuf_printf(sb, " %d%%",
 2409                                             (int)(sd->sd_rebuild_pos * 100 /
 2410                                              sd->sd_size));
 2411                                 }
 2412                                 if (TAILQ_NEXT(sd, sd_next))
 2413                                         sbuf_cat(sb, ", ");
 2414                         }
 2415                         sbuf_cat(sb, ")");
 2416                 }
 2417                 sbuf_cat(sb, "</State>\n");
 2418                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2419                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2420                         sbuf_printf(sb, "r%d(%s):%d@%ju",
 2421                             sd->sd_volume->v_global_id,
 2422                             sd->sd_volume->v_name,
 2423                             sd->sd_pos, (uintmax_t)sd->sd_offset);
 2424                         if (TAILQ_NEXT(sd, sd_next))
 2425                                 sbuf_cat(sb, ", ");
 2426                 }
 2427                 sbuf_cat(sb, "</Subdisks>\n");
 2428                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
 2429                     disk->d_read_errs);
 2430                 sx_xunlock(&sc->sc_lock);
 2431                 g_topology_lock();
 2432         } else {
 2433                 g_topology_unlock();
 2434                 sx_xlock(&sc->sc_lock);
 2435                 if (sc->sc_md) {
 2436                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
 2437                             sc->sc_md->mdo_class->name);
 2438                 }
 2439                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
 2440                         s = 0xff;
 2441                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 2442                                 if (vol->v_state < s)
 2443                                         s = vol->v_state;
 2444                         }
 2445                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2446                             g_raid_volume_state2str(s));
 2447                 }
 2448                 sx_xunlock(&sc->sc_lock);
 2449                 g_topology_lock();
 2450         }
 2451 }
 2452 
 2453 static void
 2454 g_raid_shutdown_post_sync(void *arg, int howto)
 2455 {
 2456         struct g_class *mp;
 2457         struct g_geom *gp, *gp2;
 2458         struct g_raid_softc *sc;
 2459         struct g_raid_volume *vol;
 2460 
 2461         mp = arg;
 2462         g_topology_lock();
 2463         g_raid_shutdown = 1;
 2464         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
 2465                 if ((sc = gp->softc) == NULL)
 2466                         continue;
 2467                 g_topology_unlock();
 2468                 sx_xlock(&sc->sc_lock);
 2469                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
 2470                         g_raid_clean(vol, -1);
 2471                 g_cancel_event(sc);
 2472                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
 2473                 g_topology_lock();
 2474         }
 2475         g_topology_unlock();
 2476 }
 2477 
 2478 static void
 2479 g_raid_init(struct g_class *mp)
 2480 {
 2481 
 2482         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
 2483             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
 2484         if (g_raid_post_sync == NULL)
 2485                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
 2486         g_raid_started = 1;
 2487 }
 2488 
 2489 static void
 2490 g_raid_fini(struct g_class *mp)
 2491 {
 2492 
 2493         if (g_raid_post_sync != NULL)
 2494                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
 2495         g_raid_started = 0;
 2496 }
 2497 
 2498 int
 2499 g_raid_md_modevent(module_t mod, int type, void *arg)
 2500 {
 2501         struct g_raid_md_class *class, *c, *nc;
 2502         int error;
 2503 
 2504         error = 0;
 2505         class = arg;
 2506         switch (type) {
 2507         case MOD_LOAD:
 2508                 c = LIST_FIRST(&g_raid_md_classes);
 2509                 if (c == NULL || c->mdc_priority > class->mdc_priority)
 2510                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
 2511                 else {
 2512                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
 2513                             nc->mdc_priority < class->mdc_priority)
 2514                                 c = nc;
 2515                         LIST_INSERT_AFTER(c, class, mdc_list);
 2516                 }
 2517                 if (g_raid_started)
 2518                         g_retaste(&g_raid_class);
 2519                 break;
 2520         case MOD_UNLOAD:
 2521                 LIST_REMOVE(class, mdc_list);
 2522                 break;
 2523         default:
 2524                 error = EOPNOTSUPP;
 2525                 break;
 2526         }
 2527 
 2528         return (error);
 2529 }
 2530 
 2531 int
 2532 g_raid_tr_modevent(module_t mod, int type, void *arg)
 2533 {
 2534         struct g_raid_tr_class *class, *c, *nc;
 2535         int error;
 2536 
 2537         error = 0;
 2538         class = arg;
 2539         switch (type) {
 2540         case MOD_LOAD:
 2541                 c = LIST_FIRST(&g_raid_tr_classes);
 2542                 if (c == NULL || c->trc_priority > class->trc_priority)
 2543                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
 2544                 else {
 2545                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
 2546                             nc->trc_priority < class->trc_priority)
 2547                                 c = nc;
 2548                         LIST_INSERT_AFTER(c, class, trc_list);
 2549                 }
 2550                 break;
 2551         case MOD_UNLOAD:
 2552                 LIST_REMOVE(class, trc_list);
 2553                 break;
 2554         default:
 2555                 error = EOPNOTSUPP;
 2556                 break;
 2557         }
 2558 
 2559         return (error);
 2560 }
 2561 
 2562 /*
 2563  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
 2564  * to reduce module priority, allowing submodules to register them first.
 2565  */
 2566 static moduledata_t g_raid_mod = {
 2567         "g_raid",
 2568         g_modevent,
 2569         &g_raid_class
 2570 };
 2571 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
 2572 MODULE_VERSION(geom_raid, 0);

Cache object: 4ae59f8662d5fa1b2533b0f8004b6c06


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.