The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/raid/g_raid.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/11.1/sys/geom/raid/g_raid.c 300288 2016-05-20 08:25:37Z kib $");
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/kernel.h>
   33 #include <sys/module.h>
   34 #include <sys/limits.h>
   35 #include <sys/lock.h>
   36 #include <sys/mutex.h>
   37 #include <sys/bio.h>
   38 #include <sys/sbuf.h>
   39 #include <sys/sysctl.h>
   40 #include <sys/malloc.h>
   41 #include <sys/eventhandler.h>
   42 #include <vm/uma.h>
   43 #include <geom/geom.h>
   44 #include <sys/proc.h>
   45 #include <sys/kthread.h>
   46 #include <sys/sched.h>
   47 #include <geom/raid/g_raid.h>
   48 #include "g_raid_md_if.h"
   49 #include "g_raid_tr_if.h"
   50 
   51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
   52 
   53 SYSCTL_DECL(_kern_geom);
   54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
   55 int g_raid_enable = 1;
   56 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
   57     &g_raid_enable, 0, "Enable on-disk metadata taste");
   58 u_int g_raid_aggressive_spare = 0;
   59 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
   60     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
   61 u_int g_raid_debug = 0;
   62 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
   63     "Debug level");
   64 int g_raid_read_err_thresh = 10;
   65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
   66     &g_raid_read_err_thresh, 0,
   67     "Number of read errors equated to disk failure");
   68 u_int g_raid_start_timeout = 30;
   69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
   70     &g_raid_start_timeout, 0,
   71     "Time to wait for all array components");
   72 static u_int g_raid_clean_time = 5;
   73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
   74     &g_raid_clean_time, 0, "Mark volume as clean when idling");
   75 static u_int g_raid_disconnect_on_failure = 1;
   76 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
   77     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
   78 static u_int g_raid_name_format = 0;
   79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
   80     &g_raid_name_format, 0, "Providers name format.");
   81 static u_int g_raid_idle_threshold = 1000000;
   82 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
   83     &g_raid_idle_threshold, 1000000,
   84     "Time in microseconds to consider a volume idle.");
   85 
   86 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
   87         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
   88         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
   89         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
   90 } while (0)
   91 
   92 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
   93     LIST_HEAD_INITIALIZER(g_raid_md_classes);
   94 
   95 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
   96     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
   97 
   98 LIST_HEAD(, g_raid_volume) g_raid_volumes =
   99     LIST_HEAD_INITIALIZER(g_raid_volumes);
  100 
  101 static eventhandler_tag g_raid_post_sync = NULL;
  102 static int g_raid_started = 0;
  103 static int g_raid_shutdown = 0;
  104 
  105 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
  106     struct g_geom *gp);
  107 static g_taste_t g_raid_taste;
  108 static void g_raid_init(struct g_class *mp);
  109 static void g_raid_fini(struct g_class *mp);
  110 
  111 struct g_class g_raid_class = {
  112         .name = G_RAID_CLASS_NAME,
  113         .version = G_VERSION,
  114         .ctlreq = g_raid_ctl,
  115         .taste = g_raid_taste,
  116         .destroy_geom = g_raid_destroy_geom,
  117         .init = g_raid_init,
  118         .fini = g_raid_fini
  119 };
  120 
  121 static void g_raid_destroy_provider(struct g_raid_volume *vol);
  122 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
  123 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
  124 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
  125 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
  126 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
  127     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
  128 static void g_raid_start(struct bio *bp);
  129 static void g_raid_start_request(struct bio *bp);
  130 static void g_raid_disk_done(struct bio *bp);
  131 static void g_raid_poll(struct g_raid_softc *sc);
  132 
  133 static const char *
  134 g_raid_node_event2str(int event)
  135 {
  136 
  137         switch (event) {
  138         case G_RAID_NODE_E_WAKE:
  139                 return ("WAKE");
  140         case G_RAID_NODE_E_START:
  141                 return ("START");
  142         default:
  143                 return ("INVALID");
  144         }
  145 }
  146 
  147 const char *
  148 g_raid_disk_state2str(int state)
  149 {
  150 
  151         switch (state) {
  152         case G_RAID_DISK_S_NONE:
  153                 return ("NONE");
  154         case G_RAID_DISK_S_OFFLINE:
  155                 return ("OFFLINE");
  156         case G_RAID_DISK_S_DISABLED:
  157                 return ("DISABLED");
  158         case G_RAID_DISK_S_FAILED:
  159                 return ("FAILED");
  160         case G_RAID_DISK_S_STALE_FAILED:
  161                 return ("STALE_FAILED");
  162         case G_RAID_DISK_S_SPARE:
  163                 return ("SPARE");
  164         case G_RAID_DISK_S_STALE:
  165                 return ("STALE");
  166         case G_RAID_DISK_S_ACTIVE:
  167                 return ("ACTIVE");
  168         default:
  169                 return ("INVALID");
  170         }
  171 }
  172 
  173 static const char *
  174 g_raid_disk_event2str(int event)
  175 {
  176 
  177         switch (event) {
  178         case G_RAID_DISK_E_DISCONNECTED:
  179                 return ("DISCONNECTED");
  180         default:
  181                 return ("INVALID");
  182         }
  183 }
  184 
  185 const char *
  186 g_raid_subdisk_state2str(int state)
  187 {
  188 
  189         switch (state) {
  190         case G_RAID_SUBDISK_S_NONE:
  191                 return ("NONE");
  192         case G_RAID_SUBDISK_S_FAILED:
  193                 return ("FAILED");
  194         case G_RAID_SUBDISK_S_NEW:
  195                 return ("NEW");
  196         case G_RAID_SUBDISK_S_REBUILD:
  197                 return ("REBUILD");
  198         case G_RAID_SUBDISK_S_UNINITIALIZED:
  199                 return ("UNINITIALIZED");
  200         case G_RAID_SUBDISK_S_STALE:
  201                 return ("STALE");
  202         case G_RAID_SUBDISK_S_RESYNC:
  203                 return ("RESYNC");
  204         case G_RAID_SUBDISK_S_ACTIVE:
  205                 return ("ACTIVE");
  206         default:
  207                 return ("INVALID");
  208         }
  209 }
  210 
  211 static const char *
  212 g_raid_subdisk_event2str(int event)
  213 {
  214 
  215         switch (event) {
  216         case G_RAID_SUBDISK_E_NEW:
  217                 return ("NEW");
  218         case G_RAID_SUBDISK_E_FAILED:
  219                 return ("FAILED");
  220         case G_RAID_SUBDISK_E_DISCONNECTED:
  221                 return ("DISCONNECTED");
  222         default:
  223                 return ("INVALID");
  224         }
  225 }
  226 
  227 const char *
  228 g_raid_volume_state2str(int state)
  229 {
  230 
  231         switch (state) {
  232         case G_RAID_VOLUME_S_STARTING:
  233                 return ("STARTING");
  234         case G_RAID_VOLUME_S_BROKEN:
  235                 return ("BROKEN");
  236         case G_RAID_VOLUME_S_DEGRADED:
  237                 return ("DEGRADED");
  238         case G_RAID_VOLUME_S_SUBOPTIMAL:
  239                 return ("SUBOPTIMAL");
  240         case G_RAID_VOLUME_S_OPTIMAL:
  241                 return ("OPTIMAL");
  242         case G_RAID_VOLUME_S_UNSUPPORTED:
  243                 return ("UNSUPPORTED");
  244         case G_RAID_VOLUME_S_STOPPED:
  245                 return ("STOPPED");
  246         default:
  247                 return ("INVALID");
  248         }
  249 }
  250 
  251 static const char *
  252 g_raid_volume_event2str(int event)
  253 {
  254 
  255         switch (event) {
  256         case G_RAID_VOLUME_E_UP:
  257                 return ("UP");
  258         case G_RAID_VOLUME_E_DOWN:
  259                 return ("DOWN");
  260         case G_RAID_VOLUME_E_START:
  261                 return ("START");
  262         case G_RAID_VOLUME_E_STARTMD:
  263                 return ("STARTMD");
  264         default:
  265                 return ("INVALID");
  266         }
  267 }
  268 
  269 const char *
  270 g_raid_volume_level2str(int level, int qual)
  271 {
  272 
  273         switch (level) {
  274         case G_RAID_VOLUME_RL_RAID0:
  275                 return ("RAID0");
  276         case G_RAID_VOLUME_RL_RAID1:
  277                 return ("RAID1");
  278         case G_RAID_VOLUME_RL_RAID3:
  279                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
  280                         return ("RAID3-P0");
  281                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
  282                         return ("RAID3-PN");
  283                 return ("RAID3");
  284         case G_RAID_VOLUME_RL_RAID4:
  285                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
  286                         return ("RAID4-P0");
  287                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
  288                         return ("RAID4-PN");
  289                 return ("RAID4");
  290         case G_RAID_VOLUME_RL_RAID5:
  291                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
  292                         return ("RAID5-RA");
  293                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
  294                         return ("RAID5-RS");
  295                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
  296                         return ("RAID5-LA");
  297                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
  298                         return ("RAID5-LS");
  299                 return ("RAID5");
  300         case G_RAID_VOLUME_RL_RAID6:
  301                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
  302                         return ("RAID6-RA");
  303                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
  304                         return ("RAID6-RS");
  305                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
  306                         return ("RAID6-LA");
  307                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
  308                         return ("RAID6-LS");
  309                 return ("RAID6");
  310         case G_RAID_VOLUME_RL_RAIDMDF:
  311                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
  312                         return ("RAIDMDF-RA");
  313                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
  314                         return ("RAIDMDF-RS");
  315                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
  316                         return ("RAIDMDF-LA");
  317                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
  318                         return ("RAIDMDF-LS");
  319                 return ("RAIDMDF");
  320         case G_RAID_VOLUME_RL_RAID1E:
  321                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
  322                         return ("RAID1E-A");
  323                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
  324                         return ("RAID1E-O");
  325                 return ("RAID1E");
  326         case G_RAID_VOLUME_RL_SINGLE:
  327                 return ("SINGLE");
  328         case G_RAID_VOLUME_RL_CONCAT:
  329                 return ("CONCAT");
  330         case G_RAID_VOLUME_RL_RAID5E:
  331                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
  332                         return ("RAID5E-RA");
  333                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
  334                         return ("RAID5E-RS");
  335                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
  336                         return ("RAID5E-LA");
  337                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
  338                         return ("RAID5E-LS");
  339                 return ("RAID5E");
  340         case G_RAID_VOLUME_RL_RAID5EE:
  341                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
  342                         return ("RAID5EE-RA");
  343                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
  344                         return ("RAID5EE-RS");
  345                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
  346                         return ("RAID5EE-LA");
  347                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
  348                         return ("RAID5EE-LS");
  349                 return ("RAID5EE");
  350         case G_RAID_VOLUME_RL_RAID5R:
  351                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
  352                         return ("RAID5R-RA");
  353                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
  354                         return ("RAID5R-RS");
  355                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
  356                         return ("RAID5R-LA");
  357                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
  358                         return ("RAID5R-LS");
  359                 return ("RAID5E");
  360         default:
  361                 return ("UNKNOWN");
  362         }
  363 }
  364 
  365 int
  366 g_raid_volume_str2level(const char *str, int *level, int *qual)
  367 {
  368 
  369         *level = G_RAID_VOLUME_RL_UNKNOWN;
  370         *qual = G_RAID_VOLUME_RLQ_NONE;
  371         if (strcasecmp(str, "RAID0") == 0)
  372                 *level = G_RAID_VOLUME_RL_RAID0;
  373         else if (strcasecmp(str, "RAID1") == 0)
  374                 *level = G_RAID_VOLUME_RL_RAID1;
  375         else if (strcasecmp(str, "RAID3-P0") == 0) {
  376                 *level = G_RAID_VOLUME_RL_RAID3;
  377                 *qual = G_RAID_VOLUME_RLQ_R3P0;
  378         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
  379                    strcasecmp(str, "RAID3") == 0) {
  380                 *level = G_RAID_VOLUME_RL_RAID3;
  381                 *qual = G_RAID_VOLUME_RLQ_R3PN;
  382         } else if (strcasecmp(str, "RAID4-P0") == 0) {
  383                 *level = G_RAID_VOLUME_RL_RAID4;
  384                 *qual = G_RAID_VOLUME_RLQ_R4P0;
  385         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
  386                    strcasecmp(str, "RAID4") == 0) {
  387                 *level = G_RAID_VOLUME_RL_RAID4;
  388                 *qual = G_RAID_VOLUME_RLQ_R4PN;
  389         } else if (strcasecmp(str, "RAID5-RA") == 0) {
  390                 *level = G_RAID_VOLUME_RL_RAID5;
  391                 *qual = G_RAID_VOLUME_RLQ_R5RA;
  392         } else if (strcasecmp(str, "RAID5-RS") == 0) {
  393                 *level = G_RAID_VOLUME_RL_RAID5;
  394                 *qual = G_RAID_VOLUME_RLQ_R5RS;
  395         } else if (strcasecmp(str, "RAID5") == 0 ||
  396                    strcasecmp(str, "RAID5-LA") == 0) {
  397                 *level = G_RAID_VOLUME_RL_RAID5;
  398                 *qual = G_RAID_VOLUME_RLQ_R5LA;
  399         } else if (strcasecmp(str, "RAID5-LS") == 0) {
  400                 *level = G_RAID_VOLUME_RL_RAID5;
  401                 *qual = G_RAID_VOLUME_RLQ_R5LS;
  402         } else if (strcasecmp(str, "RAID6-RA") == 0) {
  403                 *level = G_RAID_VOLUME_RL_RAID6;
  404                 *qual = G_RAID_VOLUME_RLQ_R6RA;
  405         } else if (strcasecmp(str, "RAID6-RS") == 0) {
  406                 *level = G_RAID_VOLUME_RL_RAID6;
  407                 *qual = G_RAID_VOLUME_RLQ_R6RS;
  408         } else if (strcasecmp(str, "RAID6") == 0 ||
  409                    strcasecmp(str, "RAID6-LA") == 0) {
  410                 *level = G_RAID_VOLUME_RL_RAID6;
  411                 *qual = G_RAID_VOLUME_RLQ_R6LA;
  412         } else if (strcasecmp(str, "RAID6-LS") == 0) {
  413                 *level = G_RAID_VOLUME_RL_RAID6;
  414                 *qual = G_RAID_VOLUME_RLQ_R6LS;
  415         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
  416                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  417                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
  418         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
  419                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  420                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
  421         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
  422                    strcasecmp(str, "RAIDMDF-LA") == 0) {
  423                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  424                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
  425         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
  426                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  427                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
  428         } else if (strcasecmp(str, "RAID10") == 0 ||
  429                    strcasecmp(str, "RAID1E") == 0 ||
  430                    strcasecmp(str, "RAID1E-A") == 0) {
  431                 *level = G_RAID_VOLUME_RL_RAID1E;
  432                 *qual = G_RAID_VOLUME_RLQ_R1EA;
  433         } else if (strcasecmp(str, "RAID1E-O") == 0) {
  434                 *level = G_RAID_VOLUME_RL_RAID1E;
  435                 *qual = G_RAID_VOLUME_RLQ_R1EO;
  436         } else if (strcasecmp(str, "SINGLE") == 0)
  437                 *level = G_RAID_VOLUME_RL_SINGLE;
  438         else if (strcasecmp(str, "CONCAT") == 0)
  439                 *level = G_RAID_VOLUME_RL_CONCAT;
  440         else if (strcasecmp(str, "RAID5E-RA") == 0) {
  441                 *level = G_RAID_VOLUME_RL_RAID5E;
  442                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
  443         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
  444                 *level = G_RAID_VOLUME_RL_RAID5E;
  445                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
  446         } else if (strcasecmp(str, "RAID5E") == 0 ||
  447                    strcasecmp(str, "RAID5E-LA") == 0) {
  448                 *level = G_RAID_VOLUME_RL_RAID5E;
  449                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
  450         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
  451                 *level = G_RAID_VOLUME_RL_RAID5E;
  452                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
  453         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
  454                 *level = G_RAID_VOLUME_RL_RAID5EE;
  455                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
  456         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
  457                 *level = G_RAID_VOLUME_RL_RAID5EE;
  458                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
  459         } else if (strcasecmp(str, "RAID5EE") == 0 ||
  460                    strcasecmp(str, "RAID5EE-LA") == 0) {
  461                 *level = G_RAID_VOLUME_RL_RAID5EE;
  462                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
  463         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
  464                 *level = G_RAID_VOLUME_RL_RAID5EE;
  465                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
  466         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
  467                 *level = G_RAID_VOLUME_RL_RAID5R;
  468                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
  469         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
  470                 *level = G_RAID_VOLUME_RL_RAID5R;
  471                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
  472         } else if (strcasecmp(str, "RAID5R") == 0 ||
  473                    strcasecmp(str, "RAID5R-LA") == 0) {
  474                 *level = G_RAID_VOLUME_RL_RAID5R;
  475                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
  476         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
  477                 *level = G_RAID_VOLUME_RL_RAID5R;
  478                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
  479         } else
  480                 return (-1);
  481         return (0);
  482 }
  483 
  484 const char *
  485 g_raid_get_diskname(struct g_raid_disk *disk)
  486 {
  487 
  488         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
  489                 return ("[unknown]");
  490         return (disk->d_consumer->provider->name);
  491 }
  492 
  493 void
  494 g_raid_get_disk_info(struct g_raid_disk *disk)
  495 {
  496         struct g_consumer *cp = disk->d_consumer;
  497         int error, len;
  498 
  499         /* Read kernel dumping information. */
  500         disk->d_kd.offset = 0;
  501         disk->d_kd.length = OFF_MAX;
  502         len = sizeof(disk->d_kd);
  503         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
  504         if (error)
  505                 disk->d_kd.di.dumper = NULL;
  506         if (disk->d_kd.di.dumper == NULL)
  507                 G_RAID_DEBUG1(2, disk->d_softc,
  508                     "Dumping not supported by %s: %d.", 
  509                     cp->provider->name, error);
  510 
  511         /* Read BIO_DELETE support. */
  512         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
  513         if (error)
  514                 disk->d_candelete = 0;
  515         if (!disk->d_candelete)
  516                 G_RAID_DEBUG1(2, disk->d_softc,
  517                     "BIO_DELETE not supported by %s: %d.", 
  518                     cp->provider->name, error);
  519 }
  520 
  521 void
  522 g_raid_report_disk_state(struct g_raid_disk *disk)
  523 {
  524         struct g_raid_subdisk *sd;
  525         int len, state;
  526         uint32_t s;
  527 
  528         if (disk->d_consumer == NULL)
  529                 return;
  530         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
  531                 s = G_STATE_ACTIVE; /* XXX */
  532         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
  533             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
  534                 s = G_STATE_FAILED;
  535         } else {
  536                 state = G_RAID_SUBDISK_S_ACTIVE;
  537                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
  538                         if (sd->sd_state < state)
  539                                 state = sd->sd_state;
  540                 }
  541                 if (state == G_RAID_SUBDISK_S_FAILED)
  542                         s = G_STATE_FAILED;
  543                 else if (state == G_RAID_SUBDISK_S_NEW ||
  544                     state == G_RAID_SUBDISK_S_REBUILD)
  545                         s = G_STATE_REBUILD;
  546                 else if (state == G_RAID_SUBDISK_S_STALE ||
  547                     state == G_RAID_SUBDISK_S_RESYNC)
  548                         s = G_STATE_RESYNC;
  549                 else
  550                         s = G_STATE_ACTIVE;
  551         }
  552         len = sizeof(s);
  553         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
  554         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
  555             g_raid_get_diskname(disk), s);
  556 }
  557 
  558 void
  559 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
  560 {
  561 
  562         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
  563             g_raid_get_diskname(disk),
  564             g_raid_disk_state2str(disk->d_state),
  565             g_raid_disk_state2str(state));
  566         disk->d_state = state;
  567         g_raid_report_disk_state(disk);
  568 }
  569 
  570 void
  571 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
  572 {
  573 
  574         G_RAID_DEBUG1(0, sd->sd_softc,
  575             "Subdisk %s:%d-%s state changed from %s to %s.",
  576             sd->sd_volume->v_name, sd->sd_pos,
  577             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
  578             g_raid_subdisk_state2str(sd->sd_state),
  579             g_raid_subdisk_state2str(state));
  580         sd->sd_state = state;
  581         if (sd->sd_disk)
  582                 g_raid_report_disk_state(sd->sd_disk);
  583 }
  584 
  585 void
  586 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
  587 {
  588 
  589         G_RAID_DEBUG1(0, vol->v_softc,
  590             "Volume %s state changed from %s to %s.",
  591             vol->v_name,
  592             g_raid_volume_state2str(vol->v_state),
  593             g_raid_volume_state2str(state));
  594         vol->v_state = state;
  595 }
  596 
  597 /*
  598  * --- Events handling functions ---
  599  * Events in geom_raid are used to maintain subdisks and volumes status
  600  * from one thread to simplify locking.
  601  */
  602 static void
  603 g_raid_event_free(struct g_raid_event *ep)
  604 {
  605 
  606         free(ep, M_RAID);
  607 }
  608 
  609 int
  610 g_raid_event_send(void *arg, int event, int flags)
  611 {
  612         struct g_raid_softc *sc;
  613         struct g_raid_event *ep;
  614         int error;
  615 
  616         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
  617                 sc = ((struct g_raid_volume *)arg)->v_softc;
  618         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
  619                 sc = ((struct g_raid_disk *)arg)->d_softc;
  620         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
  621                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
  622         } else {
  623                 sc = arg;
  624         }
  625         ep = malloc(sizeof(*ep), M_RAID,
  626             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
  627         if (ep == NULL)
  628                 return (ENOMEM);
  629         ep->e_tgt = arg;
  630         ep->e_event = event;
  631         ep->e_flags = flags;
  632         ep->e_error = 0;
  633         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
  634         mtx_lock(&sc->sc_queue_mtx);
  635         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
  636         mtx_unlock(&sc->sc_queue_mtx);
  637         wakeup(sc);
  638 
  639         if ((flags & G_RAID_EVENT_WAIT) == 0)
  640                 return (0);
  641 
  642         sx_assert(&sc->sc_lock, SX_XLOCKED);
  643         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
  644         sx_xunlock(&sc->sc_lock);
  645         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
  646                 mtx_lock(&sc->sc_queue_mtx);
  647                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
  648                     hz * 5);
  649         }
  650         error = ep->e_error;
  651         g_raid_event_free(ep);
  652         sx_xlock(&sc->sc_lock);
  653         return (error);
  654 }
  655 
  656 static void
  657 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
  658 {
  659         struct g_raid_event *ep, *tmpep;
  660 
  661         sx_assert(&sc->sc_lock, SX_XLOCKED);
  662 
  663         mtx_lock(&sc->sc_queue_mtx);
  664         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
  665                 if (ep->e_tgt != tgt)
  666                         continue;
  667                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  668                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
  669                         g_raid_event_free(ep);
  670                 else {
  671                         ep->e_error = ECANCELED;
  672                         wakeup(ep);
  673                 }
  674         }
  675         mtx_unlock(&sc->sc_queue_mtx);
  676 }
  677 
  678 static int
  679 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
  680 {
  681         struct g_raid_event *ep;
  682         int     res = 0;
  683 
  684         sx_assert(&sc->sc_lock, SX_XLOCKED);
  685 
  686         mtx_lock(&sc->sc_queue_mtx);
  687         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
  688                 if (ep->e_tgt != tgt)
  689                         continue;
  690                 res = 1;
  691                 break;
  692         }
  693         mtx_unlock(&sc->sc_queue_mtx);
  694         return (res);
  695 }
  696 
  697 /*
  698  * Return the number of disks in given state.
  699  * If state is equal to -1, count all connected disks.
  700  */
  701 u_int
  702 g_raid_ndisks(struct g_raid_softc *sc, int state)
  703 {
  704         struct g_raid_disk *disk;
  705         u_int n;
  706 
  707         sx_assert(&sc->sc_lock, SX_LOCKED);
  708 
  709         n = 0;
  710         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
  711                 if (disk->d_state == state || state == -1)
  712                         n++;
  713         }
  714         return (n);
  715 }
  716 
  717 /*
  718  * Return the number of subdisks in given state.
  719  * If state is equal to -1, count all connected disks.
  720  */
  721 u_int
  722 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
  723 {
  724         struct g_raid_subdisk *subdisk;
  725         struct g_raid_softc *sc;
  726         u_int i, n ;
  727 
  728         sc = vol->v_softc;
  729         sx_assert(&sc->sc_lock, SX_LOCKED);
  730 
  731         n = 0;
  732         for (i = 0; i < vol->v_disks_count; i++) {
  733                 subdisk = &vol->v_subdisks[i];
  734                 if ((state == -1 &&
  735                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
  736                     subdisk->sd_state == state)
  737                         n++;
  738         }
  739         return (n);
  740 }
  741 
  742 /*
  743  * Return the first subdisk in given state.
  744  * If state is equal to -1, then the first connected disks.
  745  */
  746 struct g_raid_subdisk *
  747 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
  748 {
  749         struct g_raid_subdisk *sd;
  750         struct g_raid_softc *sc;
  751         u_int i;
  752 
  753         sc = vol->v_softc;
  754         sx_assert(&sc->sc_lock, SX_LOCKED);
  755 
  756         for (i = 0; i < vol->v_disks_count; i++) {
  757                 sd = &vol->v_subdisks[i];
  758                 if ((state == -1 &&
  759                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
  760                     sd->sd_state == state)
  761                         return (sd);
  762         }
  763         return (NULL);
  764 }
  765 
  766 struct g_consumer *
  767 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
  768 {
  769         struct g_consumer *cp;
  770         struct g_provider *pp;
  771 
  772         g_topology_assert();
  773 
  774         if (strncmp(name, "/dev/", 5) == 0)
  775                 name += 5;
  776         pp = g_provider_by_name(name);
  777         if (pp == NULL)
  778                 return (NULL);
  779         cp = g_new_consumer(sc->sc_geom);
  780         cp->flags |= G_CF_DIRECT_RECEIVE;
  781         if (g_attach(cp, pp) != 0) {
  782                 g_destroy_consumer(cp);
  783                 return (NULL);
  784         }
  785         if (g_access(cp, 1, 1, 1) != 0) {
  786                 g_detach(cp);
  787                 g_destroy_consumer(cp);
  788                 return (NULL);
  789         }
  790         return (cp);
  791 }
  792 
  793 static u_int
  794 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
  795 {
  796         struct bio *bp;
  797         u_int nreqs = 0;
  798 
  799         mtx_lock(&sc->sc_queue_mtx);
  800         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
  801                 if (bp->bio_from == cp)
  802                         nreqs++;
  803         }
  804         mtx_unlock(&sc->sc_queue_mtx);
  805         return (nreqs);
  806 }
  807 
  808 u_int
  809 g_raid_nopens(struct g_raid_softc *sc)
  810 {
  811         struct g_raid_volume *vol;
  812         u_int opens;
  813 
  814         opens = 0;
  815         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
  816                 if (vol->v_provider_open != 0)
  817                         opens++;
  818         }
  819         return (opens);
  820 }
  821 
  822 static int
  823 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
  824 {
  825 
  826         if (cp->index > 0) {
  827                 G_RAID_DEBUG1(2, sc,
  828                     "I/O requests for %s exist, can't destroy it now.",
  829                     cp->provider->name);
  830                 return (1);
  831         }
  832         if (g_raid_nrequests(sc, cp) > 0) {
  833                 G_RAID_DEBUG1(2, sc,
  834                     "I/O requests for %s in queue, can't destroy it now.",
  835                     cp->provider->name);
  836                 return (1);
  837         }
  838         return (0);
  839 }
  840 
  841 static void
  842 g_raid_destroy_consumer(void *arg, int flags __unused)
  843 {
  844         struct g_consumer *cp;
  845 
  846         g_topology_assert();
  847 
  848         cp = arg;
  849         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
  850         g_detach(cp);
  851         g_destroy_consumer(cp);
  852 }
  853 
  854 void
  855 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
  856 {
  857         struct g_provider *pp;
  858         int retaste_wait;
  859 
  860         g_topology_assert_not();
  861 
  862         g_topology_lock();
  863         cp->private = NULL;
  864         if (g_raid_consumer_is_busy(sc, cp))
  865                 goto out;
  866         pp = cp->provider;
  867         retaste_wait = 0;
  868         if (cp->acw == 1) {
  869                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
  870                         retaste_wait = 1;
  871         }
  872         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
  873                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
  874         if (retaste_wait) {
  875                 /*
  876                  * After retaste event was send (inside g_access()), we can send
  877                  * event to detach and destroy consumer.
  878                  * A class, which has consumer to the given provider connected
  879                  * will not receive retaste event for the provider.
  880                  * This is the way how I ignore retaste events when I close
  881                  * consumers opened for write: I detach and destroy consumer
  882                  * after retaste event is sent.
  883                  */
  884                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
  885                 goto out;
  886         }
  887         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
  888         g_detach(cp);
  889         g_destroy_consumer(cp);
  890 out:
  891         g_topology_unlock();
  892 }
  893 
  894 static void
  895 g_raid_orphan(struct g_consumer *cp)
  896 {
  897         struct g_raid_disk *disk;
  898 
  899         g_topology_assert();
  900 
  901         disk = cp->private;
  902         if (disk == NULL)
  903                 return;
  904         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
  905             G_RAID_EVENT_DISK);
  906 }
  907 
  908 static void
  909 g_raid_clean(struct g_raid_volume *vol, int acw)
  910 {
  911         struct g_raid_softc *sc;
  912         int timeout;
  913 
  914         sc = vol->v_softc;
  915         g_topology_assert_not();
  916         sx_assert(&sc->sc_lock, SX_XLOCKED);
  917 
  918 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  919 //              return;
  920         if (!vol->v_dirty)
  921                 return;
  922         if (vol->v_writes > 0)
  923                 return;
  924         if (acw > 0 || (acw == -1 &&
  925             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
  926                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
  927                 if (!g_raid_shutdown && timeout > 0)
  928                         return;
  929         }
  930         vol->v_dirty = 0;
  931         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
  932             vol->v_name);
  933         g_raid_write_metadata(sc, vol, NULL, NULL);
  934 }
  935 
  936 static void
  937 g_raid_dirty(struct g_raid_volume *vol)
  938 {
  939         struct g_raid_softc *sc;
  940 
  941         sc = vol->v_softc;
  942         g_topology_assert_not();
  943         sx_assert(&sc->sc_lock, SX_XLOCKED);
  944 
  945 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  946 //              return;
  947         vol->v_dirty = 1;
  948         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
  949             vol->v_name);
  950         g_raid_write_metadata(sc, vol, NULL, NULL);
  951 }
  952 
  953 void
  954 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
  955 {
  956         struct g_raid_softc *sc;
  957         struct g_raid_volume *vol;
  958         struct g_raid_subdisk *sd;
  959         struct bio_queue_head queue;
  960         struct bio *cbp;
  961         int i;
  962 
  963         vol = tr->tro_volume;
  964         sc = vol->v_softc;
  965 
  966         /*
  967          * Allocate all bios before sending any request, so we can return
  968          * ENOMEM in nice and clean way.
  969          */
  970         bioq_init(&queue);
  971         for (i = 0; i < vol->v_disks_count; i++) {
  972                 sd = &vol->v_subdisks[i];
  973                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
  974                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
  975                         continue;
  976                 cbp = g_clone_bio(bp);
  977                 if (cbp == NULL)
  978                         goto failure;
  979                 cbp->bio_caller1 = sd;
  980                 bioq_insert_tail(&queue, cbp);
  981         }
  982         while ((cbp = bioq_takefirst(&queue)) != NULL) {
  983                 sd = cbp->bio_caller1;
  984                 cbp->bio_caller1 = NULL;
  985                 g_raid_subdisk_iostart(sd, cbp);
  986         }
  987         return;
  988 failure:
  989         while ((cbp = bioq_takefirst(&queue)) != NULL)
  990                 g_destroy_bio(cbp);
  991         if (bp->bio_error == 0)
  992                 bp->bio_error = ENOMEM;
  993         g_raid_iodone(bp, bp->bio_error);
  994 }
  995 
  996 static void
  997 g_raid_tr_kerneldump_common_done(struct bio *bp)
  998 {
  999 
 1000         bp->bio_flags |= BIO_DONE;
 1001 }
 1002 
 1003 int
 1004 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
 1005     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1006 {
 1007         struct g_raid_softc *sc;
 1008         struct g_raid_volume *vol;
 1009         struct bio bp;
 1010 
 1011         vol = tr->tro_volume;
 1012         sc = vol->v_softc;
 1013 
 1014         g_reset_bio(&bp);
 1015         bp.bio_cmd = BIO_WRITE;
 1016         bp.bio_done = g_raid_tr_kerneldump_common_done;
 1017         bp.bio_attribute = NULL;
 1018         bp.bio_offset = offset;
 1019         bp.bio_length = length;
 1020         bp.bio_data = virtual;
 1021         bp.bio_to = vol->v_provider;
 1022 
 1023         g_raid_start(&bp);
 1024         while (!(bp.bio_flags & BIO_DONE)) {
 1025                 G_RAID_DEBUG1(4, sc, "Poll...");
 1026                 g_raid_poll(sc);
 1027                 DELAY(10);
 1028         }
 1029 
 1030         return (bp.bio_error != 0 ? EIO : 0);
 1031 }
 1032 
 1033 static int
 1034 g_raid_dump(void *arg,
 1035     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1036 {
 1037         struct g_raid_volume *vol;
 1038         int error;
 1039 
 1040         vol = (struct g_raid_volume *)arg;
 1041         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
 1042             (long long unsigned)offset, (long long unsigned)length);
 1043 
 1044         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
 1045             virtual, physical, offset, length);
 1046         return (error);
 1047 }
 1048 
 1049 static void
 1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
 1051 {
 1052         struct g_kerneldump *gkd;
 1053         struct g_provider *pp;
 1054         struct g_raid_volume *vol;
 1055 
 1056         gkd = (struct g_kerneldump*)bp->bio_data;
 1057         pp = bp->bio_to;
 1058         vol = pp->private;
 1059         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
 1060                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
 1061         gkd->di.dumper = g_raid_dump;
 1062         gkd->di.priv = vol;
 1063         gkd->di.blocksize = vol->v_sectorsize;
 1064         gkd->di.maxiosize = DFLTPHYS;
 1065         gkd->di.mediaoffset = gkd->offset;
 1066         if ((gkd->offset + gkd->length) > vol->v_mediasize)
 1067                 gkd->length = vol->v_mediasize - gkd->offset;
 1068         gkd->di.mediasize = gkd->length;
 1069         g_io_deliver(bp, 0);
 1070 }
 1071 
 1072 static void
 1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
 1074 {
 1075         struct g_provider *pp;
 1076         struct g_raid_volume *vol;
 1077         struct g_raid_subdisk *sd;
 1078         int *val;
 1079         int i;
 1080 
 1081         val = (int *)bp->bio_data;
 1082         pp = bp->bio_to;
 1083         vol = pp->private;
 1084         *val = 0;
 1085         for (i = 0; i < vol->v_disks_count; i++) {
 1086                 sd = &vol->v_subdisks[i];
 1087                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1088                         continue;
 1089                 if (sd->sd_disk->d_candelete) {
 1090                         *val = 1;
 1091                         break;
 1092                 }
 1093         }
 1094         g_io_deliver(bp, 0);
 1095 }
 1096 
 1097 static void
 1098 g_raid_start(struct bio *bp)
 1099 {
 1100         struct g_raid_softc *sc;
 1101 
 1102         sc = bp->bio_to->geom->softc;
 1103         /*
 1104          * If sc == NULL or there are no valid disks, provider's error
 1105          * should be set and g_raid_start() should not be called at all.
 1106          */
 1107 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
 1108 //          ("Provider's error should be set (error=%d)(mirror=%s).",
 1109 //          bp->bio_to->error, bp->bio_to->name));
 1110         G_RAID_LOGREQ(3, bp, "Request received.");
 1111 
 1112         switch (bp->bio_cmd) {
 1113         case BIO_READ:
 1114         case BIO_WRITE:
 1115         case BIO_DELETE:
 1116         case BIO_FLUSH:
 1117                 break;
 1118         case BIO_GETATTR:
 1119                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
 1120                         g_raid_candelete(sc, bp);
 1121                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
 1122                         g_raid_kerneldump(sc, bp);
 1123                 else
 1124                         g_io_deliver(bp, EOPNOTSUPP);
 1125                 return;
 1126         default:
 1127                 g_io_deliver(bp, EOPNOTSUPP);
 1128                 return;
 1129         }
 1130         mtx_lock(&sc->sc_queue_mtx);
 1131         bioq_insert_tail(&sc->sc_queue, bp);
 1132         mtx_unlock(&sc->sc_queue_mtx);
 1133         if (!dumping) {
 1134                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
 1135                 wakeup(sc);
 1136         }
 1137 }
 1138 
 1139 static int
 1140 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
 1141 {
 1142         /*
 1143          * 5 cases:
 1144          * (1) bp entirely below NO
 1145          * (2) bp entirely above NO
 1146          * (3) bp start below, but end in range YES
 1147          * (4) bp entirely within YES
 1148          * (5) bp starts within, ends above YES
 1149          *
 1150          * lock range 10-19 (offset 10 length 10)
 1151          * (1) 1-5: first if kicks it out
 1152          * (2) 30-35: second if kicks it out
 1153          * (3) 5-15: passes both ifs
 1154          * (4) 12-14: passes both ifs
 1155          * (5) 19-20: passes both
 1156          */
 1157         off_t lend = lstart + len - 1;
 1158         off_t bstart = bp->bio_offset;
 1159         off_t bend = bp->bio_offset + bp->bio_length - 1;
 1160 
 1161         if (bend < lstart)
 1162                 return (0);
 1163         if (lend < bstart)
 1164                 return (0);
 1165         return (1);
 1166 }
 1167 
 1168 static int
 1169 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
 1170 {
 1171         struct g_raid_lock *lp;
 1172 
 1173         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
 1174 
 1175         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1176                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
 1177                         return (1);
 1178         }
 1179         return (0);
 1180 }
 1181 
 1182 static void
 1183 g_raid_start_request(struct bio *bp)
 1184 {
 1185         struct g_raid_softc *sc;
 1186         struct g_raid_volume *vol;
 1187 
 1188         sc = bp->bio_to->geom->softc;
 1189         sx_assert(&sc->sc_lock, SX_LOCKED);
 1190         vol = bp->bio_to->private;
 1191 
 1192         /*
 1193          * Check to see if this item is in a locked range.  If so,
 1194          * queue it to our locked queue and return.  We'll requeue
 1195          * it when the range is unlocked.  Internal I/O for the
 1196          * rebuild/rescan/recovery process is excluded from this
 1197          * check so we can actually do the recovery.
 1198          */
 1199         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
 1200             g_raid_is_in_locked_range(vol, bp)) {
 1201                 G_RAID_LOGREQ(3, bp, "Defer request.");
 1202                 bioq_insert_tail(&vol->v_locked, bp);
 1203                 return;
 1204         }
 1205 
 1206         /*
 1207          * If we're actually going to do the write/delete, then
 1208          * update the idle stats for the volume.
 1209          */
 1210         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1211                 if (!vol->v_dirty)
 1212                         g_raid_dirty(vol);
 1213                 vol->v_writes++;
 1214         }
 1215 
 1216         /*
 1217          * Put request onto inflight queue, so we can check if new
 1218          * synchronization requests don't collide with it.  Then tell
 1219          * the transformation layer to start the I/O.
 1220          */
 1221         bioq_insert_tail(&vol->v_inflight, bp);
 1222         G_RAID_LOGREQ(4, bp, "Request started");
 1223         G_RAID_TR_IOSTART(vol->v_tr, bp);
 1224 }
 1225 
 1226 static void
 1227 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
 1228 {
 1229         off_t off, len;
 1230         struct bio *nbp;
 1231         struct g_raid_lock *lp;
 1232 
 1233         vol->v_pending_lock = 0;
 1234         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1235                 if (lp->l_pending) {
 1236                         off = lp->l_offset;
 1237                         len = lp->l_length;
 1238                         lp->l_pending = 0;
 1239                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
 1240                                 if (g_raid_bio_overlaps(nbp, off, len))
 1241                                         lp->l_pending++;
 1242                         }
 1243                         if (lp->l_pending) {
 1244                                 vol->v_pending_lock = 1;
 1245                                 G_RAID_DEBUG1(4, vol->v_softc,
 1246                                     "Deferred lock(%jd, %jd) has %d pending",
 1247                                     (intmax_t)off, (intmax_t)(off + len),
 1248                                     lp->l_pending);
 1249                                 continue;
 1250                         }
 1251                         G_RAID_DEBUG1(4, vol->v_softc,
 1252                             "Deferred lock of %jd to %jd completed",
 1253                             (intmax_t)off, (intmax_t)(off + len));
 1254                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1255                 }
 1256         }
 1257 }
 1258 
 1259 void
 1260 g_raid_iodone(struct bio *bp, int error)
 1261 {
 1262         struct g_raid_softc *sc;
 1263         struct g_raid_volume *vol;
 1264 
 1265         sc = bp->bio_to->geom->softc;
 1266         sx_assert(&sc->sc_lock, SX_LOCKED);
 1267         vol = bp->bio_to->private;
 1268         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
 1269 
 1270         /* Update stats if we done write/delete. */
 1271         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1272                 vol->v_writes--;
 1273                 vol->v_last_write = time_uptime;
 1274         }
 1275 
 1276         bioq_remove(&vol->v_inflight, bp);
 1277         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
 1278                 g_raid_finish_with_locked_ranges(vol, bp);
 1279         getmicrouptime(&vol->v_last_done);
 1280         g_io_deliver(bp, error);
 1281 }
 1282 
 1283 int
 1284 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
 1285     struct bio *ignore, void *argp)
 1286 {
 1287         struct g_raid_softc *sc;
 1288         struct g_raid_lock *lp;
 1289         struct bio *bp;
 1290 
 1291         sc = vol->v_softc;
 1292         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
 1293         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
 1294         lp->l_offset = off;
 1295         lp->l_length = len;
 1296         lp->l_callback_arg = argp;
 1297 
 1298         lp->l_pending = 0;
 1299         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
 1300                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
 1301                         lp->l_pending++;
 1302         }       
 1303 
 1304         /*
 1305          * If there are any writes that are pending, we return EBUSY.  All
 1306          * callers will have to wait until all pending writes clear.
 1307          */
 1308         if (lp->l_pending > 0) {
 1309                 vol->v_pending_lock = 1;
 1310                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
 1311                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
 1312                 return (EBUSY);
 1313         }
 1314         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
 1315             (intmax_t)off, (intmax_t)(off+len));
 1316         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1317         return (0);
 1318 }
 1319 
 1320 int
 1321 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
 1322 {
 1323         struct g_raid_lock *lp;
 1324         struct g_raid_softc *sc;
 1325         struct bio *bp;
 1326 
 1327         sc = vol->v_softc;
 1328         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1329                 if (lp->l_offset == off && lp->l_length == len) {
 1330                         LIST_REMOVE(lp, l_next);
 1331                         /* XXX
 1332                          * Right now we just put them all back on the queue
 1333                          * and hope for the best.  We hope this because any
 1334                          * locked ranges will go right back on this list
 1335                          * when the worker thread runs.
 1336                          * XXX
 1337                          */
 1338                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
 1339                             (intmax_t)lp->l_offset,
 1340                             (intmax_t)(lp->l_offset+lp->l_length));
 1341                         mtx_lock(&sc->sc_queue_mtx);
 1342                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
 1343                                 bioq_insert_tail(&sc->sc_queue, bp);
 1344                         mtx_unlock(&sc->sc_queue_mtx);
 1345                         free(lp, M_RAID);
 1346                         return (0);
 1347                 }
 1348         }
 1349         return (EINVAL);
 1350 }
 1351 
 1352 void
 1353 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
 1354 {
 1355         struct g_consumer *cp;
 1356         struct g_raid_disk *disk, *tdisk;
 1357 
 1358         bp->bio_caller1 = sd;
 1359 
 1360         /*
 1361          * Make sure that the disk is present. Generally it is a task of
 1362          * transformation layers to not send requests to absent disks, but
 1363          * it is better to be safe and report situation then sorry.
 1364          */
 1365         if (sd->sd_disk == NULL) {
 1366                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
 1367 nodisk:
 1368                 bp->bio_from = NULL;
 1369                 bp->bio_to = NULL;
 1370                 bp->bio_error = ENXIO;
 1371                 g_raid_disk_done(bp);
 1372                 return;
 1373         }
 1374         disk = sd->sd_disk;
 1375         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
 1376             disk->d_state != G_RAID_DISK_S_FAILED) {
 1377                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
 1378                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 1379                 goto nodisk;
 1380         }
 1381 
 1382         cp = disk->d_consumer;
 1383         bp->bio_from = cp;
 1384         bp->bio_to = cp->provider;
 1385         cp->index++;
 1386 
 1387         /* Update average disks load. */
 1388         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
 1389                 if (tdisk->d_consumer == NULL)
 1390                         tdisk->d_load = 0;
 1391                 else
 1392                         tdisk->d_load = (tdisk->d_consumer->index *
 1393                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
 1394         }
 1395 
 1396         disk->d_last_offset = bp->bio_offset + bp->bio_length;
 1397         if (dumping) {
 1398                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
 1399                 if (bp->bio_cmd == BIO_WRITE) {
 1400                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
 1401                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
 1402                 } else
 1403                         bp->bio_error = EOPNOTSUPP;
 1404                 g_raid_disk_done(bp);
 1405         } else {
 1406                 bp->bio_done = g_raid_disk_done;
 1407                 bp->bio_offset += sd->sd_offset;
 1408                 G_RAID_LOGREQ(3, bp, "Sending request.");
 1409                 g_io_request(bp, cp);
 1410         }
 1411 }
 1412 
 1413 int
 1414 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
 1415     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1416 {
 1417 
 1418         if (sd->sd_disk == NULL)
 1419                 return (ENXIO);
 1420         if (sd->sd_disk->d_kd.di.dumper == NULL)
 1421                 return (EOPNOTSUPP);
 1422         return (dump_write(&sd->sd_disk->d_kd.di,
 1423             virtual, physical,
 1424             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
 1425             length));
 1426 }
 1427 
 1428 static void
 1429 g_raid_disk_done(struct bio *bp)
 1430 {
 1431         struct g_raid_softc *sc;
 1432         struct g_raid_subdisk *sd;
 1433 
 1434         sd = bp->bio_caller1;
 1435         sc = sd->sd_softc;
 1436         mtx_lock(&sc->sc_queue_mtx);
 1437         bioq_insert_tail(&sc->sc_queue, bp);
 1438         mtx_unlock(&sc->sc_queue_mtx);
 1439         if (!dumping)
 1440                 wakeup(sc);
 1441 }
 1442 
 1443 static void
 1444 g_raid_disk_done_request(struct bio *bp)
 1445 {
 1446         struct g_raid_softc *sc;
 1447         struct g_raid_disk *disk;
 1448         struct g_raid_subdisk *sd;
 1449         struct g_raid_volume *vol;
 1450 
 1451         g_topology_assert_not();
 1452 
 1453         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
 1454         sd = bp->bio_caller1;
 1455         sc = sd->sd_softc;
 1456         vol = sd->sd_volume;
 1457         if (bp->bio_from != NULL) {
 1458                 bp->bio_from->index--;
 1459                 disk = bp->bio_from->private;
 1460                 if (disk == NULL)
 1461                         g_raid_kill_consumer(sc, bp->bio_from);
 1462         }
 1463         bp->bio_offset -= sd->sd_offset;
 1464 
 1465         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
 1466 }
 1467 
 1468 static void
 1469 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
 1470 {
 1471 
 1472         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
 1473                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
 1474         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
 1475                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
 1476         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
 1477                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
 1478         else
 1479                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
 1480         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
 1481                 KASSERT(ep->e_error == 0,
 1482                     ("Error cannot be handled."));
 1483                 g_raid_event_free(ep);
 1484         } else {
 1485                 ep->e_flags |= G_RAID_EVENT_DONE;
 1486                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
 1487                 mtx_lock(&sc->sc_queue_mtx);
 1488                 wakeup(ep);
 1489                 mtx_unlock(&sc->sc_queue_mtx);
 1490         }
 1491 }
 1492 
 1493 /*
 1494  * Worker thread.
 1495  */
 1496 static void
 1497 g_raid_worker(void *arg)
 1498 {
 1499         struct g_raid_softc *sc;
 1500         struct g_raid_event *ep;
 1501         struct g_raid_volume *vol;
 1502         struct bio *bp;
 1503         struct timeval now, t;
 1504         int timeout, rv;
 1505 
 1506         sc = arg;
 1507         thread_lock(curthread);
 1508         sched_prio(curthread, PRIBIO);
 1509         thread_unlock(curthread);
 1510 
 1511         sx_xlock(&sc->sc_lock);
 1512         for (;;) {
 1513                 mtx_lock(&sc->sc_queue_mtx);
 1514                 /*
 1515                  * First take a look at events.
 1516                  * This is important to handle events before any I/O requests.
 1517                  */
 1518                 bp = NULL;
 1519                 vol = NULL;
 1520                 rv = 0;
 1521                 ep = TAILQ_FIRST(&sc->sc_events);
 1522                 if (ep != NULL)
 1523                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1524                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
 1525                         ;
 1526                 else {
 1527                         getmicrouptime(&now);
 1528                         t = now;
 1529                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1530                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1531                                     vol->v_tr &&
 1532                                     timevalcmp(&vol->v_last_done, &t, < ))
 1533                                         t = vol->v_last_done;
 1534                         }
 1535                         timevalsub(&t, &now);
 1536                         timeout = g_raid_idle_threshold +
 1537                             t.tv_sec * 1000000 + t.tv_usec;
 1538                         if (timeout > 0) {
 1539                                 /*
 1540                                  * Two steps to avoid overflows at HZ=1000
 1541                                  * and idle timeouts > 2.1s.  Some rounding
 1542                                  * errors can occur, but they are < 1tick,
 1543                                  * which is deemed to be close enough for
 1544                                  * this purpose.
 1545                                  */
 1546                                 int micpertic = 1000000 / hz;
 1547                                 timeout = (timeout + micpertic - 1) / micpertic;
 1548                                 sx_xunlock(&sc->sc_lock);
 1549                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
 1550                                     PRIBIO | PDROP, "-", timeout);
 1551                                 sx_xlock(&sc->sc_lock);
 1552                                 goto process;
 1553                         } else
 1554                                 rv = EWOULDBLOCK;
 1555                 }
 1556                 mtx_unlock(&sc->sc_queue_mtx);
 1557 process:
 1558                 if (ep != NULL) {
 1559                         g_raid_handle_event(sc, ep);
 1560                 } else if (bp != NULL) {
 1561                         if (bp->bio_to != NULL &&
 1562                             bp->bio_to->geom == sc->sc_geom)
 1563                                 g_raid_start_request(bp);
 1564                         else
 1565                                 g_raid_disk_done_request(bp);
 1566                 } else if (rv == EWOULDBLOCK) {
 1567                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1568                                 g_raid_clean(vol, -1);
 1569                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1570                                     vol->v_tr) {
 1571                                         t.tv_sec = g_raid_idle_threshold / 1000000;
 1572                                         t.tv_usec = g_raid_idle_threshold % 1000000;
 1573                                         timevaladd(&t, &vol->v_last_done);
 1574                                         getmicrouptime(&now);
 1575                                         if (timevalcmp(&t, &now, <= )) {
 1576                                                 G_RAID_TR_IDLE(vol->v_tr);
 1577                                                 vol->v_last_done = now;
 1578                                         }
 1579                                 }
 1580                         }
 1581                 }
 1582                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 1583                         g_raid_destroy_node(sc, 1);     /* May not return. */
 1584         }
 1585 }
 1586 
 1587 static void
 1588 g_raid_poll(struct g_raid_softc *sc)
 1589 {
 1590         struct g_raid_event *ep;
 1591         struct bio *bp;
 1592 
 1593         sx_xlock(&sc->sc_lock);
 1594         mtx_lock(&sc->sc_queue_mtx);
 1595         /*
 1596          * First take a look at events.
 1597          * This is important to handle events before any I/O requests.
 1598          */
 1599         ep = TAILQ_FIRST(&sc->sc_events);
 1600         if (ep != NULL) {
 1601                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1602                 mtx_unlock(&sc->sc_queue_mtx);
 1603                 g_raid_handle_event(sc, ep);
 1604                 goto out;
 1605         }
 1606         bp = bioq_takefirst(&sc->sc_queue);
 1607         if (bp != NULL) {
 1608                 mtx_unlock(&sc->sc_queue_mtx);
 1609                 if (bp->bio_from == NULL ||
 1610                     bp->bio_from->geom != sc->sc_geom)
 1611                         g_raid_start_request(bp);
 1612                 else
 1613                         g_raid_disk_done_request(bp);
 1614         }
 1615 out:
 1616         sx_xunlock(&sc->sc_lock);
 1617 }
 1618 
 1619 static void
 1620 g_raid_launch_provider(struct g_raid_volume *vol)
 1621 {
 1622         struct g_raid_disk *disk;
 1623         struct g_raid_subdisk *sd;
 1624         struct g_raid_softc *sc;
 1625         struct g_provider *pp;
 1626         char name[G_RAID_MAX_VOLUMENAME];
 1627         off_t off;
 1628         int i;
 1629 
 1630         sc = vol->v_softc;
 1631         sx_assert(&sc->sc_lock, SX_LOCKED);
 1632 
 1633         g_topology_lock();
 1634         /* Try to name provider with volume name. */
 1635         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
 1636         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
 1637             g_provider_by_name(name) != NULL) {
 1638                 /* Otherwise use sequential volume number. */
 1639                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
 1640         }
 1641 
 1642         pp = g_new_providerf(sc->sc_geom, "%s", name);
 1643         pp->flags |= G_PF_DIRECT_RECEIVE;
 1644         if (vol->v_tr->tro_class->trc_accept_unmapped) {
 1645                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
 1646                 for (i = 0; i < vol->v_disks_count; i++) {
 1647                         sd = &vol->v_subdisks[i];
 1648                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1649                                 continue;
 1650                         if ((sd->sd_disk->d_consumer->provider->flags &
 1651                             G_PF_ACCEPT_UNMAPPED) == 0)
 1652                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
 1653                 }
 1654         }
 1655         pp->private = vol;
 1656         pp->mediasize = vol->v_mediasize;
 1657         pp->sectorsize = vol->v_sectorsize;
 1658         pp->stripesize = 0;
 1659         pp->stripeoffset = 0;
 1660         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
 1661             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
 1662             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
 1663             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
 1664                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
 1665                     disk->d_consumer != NULL &&
 1666                     disk->d_consumer->provider != NULL) {
 1667                         pp->stripesize = disk->d_consumer->provider->stripesize;
 1668                         off = disk->d_consumer->provider->stripeoffset;
 1669                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
 1670                         if (off > 0)
 1671                                 pp->stripeoffset %= off;
 1672                 }
 1673                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
 1674                         pp->stripesize *= (vol->v_disks_count - 1);
 1675                         pp->stripeoffset *= (vol->v_disks_count - 1);
 1676                 }
 1677         } else
 1678                 pp->stripesize = vol->v_strip_size;
 1679         vol->v_provider = pp;
 1680         g_error_provider(pp, 0);
 1681         g_topology_unlock();
 1682         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
 1683             pp->name, vol->v_name);
 1684 }
 1685 
 1686 static void
 1687 g_raid_destroy_provider(struct g_raid_volume *vol)
 1688 {
 1689         struct g_raid_softc *sc;
 1690         struct g_provider *pp;
 1691         struct bio *bp, *tmp;
 1692 
 1693         g_topology_assert_not();
 1694         sc = vol->v_softc;
 1695         pp = vol->v_provider;
 1696         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
 1697 
 1698         g_topology_lock();
 1699         g_error_provider(pp, ENXIO);
 1700         mtx_lock(&sc->sc_queue_mtx);
 1701         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
 1702                 if (bp->bio_to != pp)
 1703                         continue;
 1704                 bioq_remove(&sc->sc_queue, bp);
 1705                 g_io_deliver(bp, ENXIO);
 1706         }
 1707         mtx_unlock(&sc->sc_queue_mtx);
 1708         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
 1709             pp->name, vol->v_name);
 1710         g_wither_provider(pp, ENXIO);
 1711         g_topology_unlock();
 1712         vol->v_provider = NULL;
 1713 }
 1714 
 1715 /*
 1716  * Update device state.
 1717  */
 1718 static int
 1719 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
 1720 {
 1721         struct g_raid_softc *sc;
 1722 
 1723         sc = vol->v_softc;
 1724         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1725 
 1726         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
 1727             g_raid_volume_event2str(event),
 1728             vol->v_name);
 1729         switch (event) {
 1730         case G_RAID_VOLUME_E_DOWN:
 1731                 if (vol->v_provider != NULL)
 1732                         g_raid_destroy_provider(vol);
 1733                 break;
 1734         case G_RAID_VOLUME_E_UP:
 1735                 if (vol->v_provider == NULL)
 1736                         g_raid_launch_provider(vol);
 1737                 break;
 1738         case G_RAID_VOLUME_E_START:
 1739                 if (vol->v_tr)
 1740                         G_RAID_TR_START(vol->v_tr);
 1741                 return (0);
 1742         default:
 1743                 if (sc->sc_md)
 1744                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
 1745                 return (0);
 1746         }
 1747 
 1748         /* Manage root mount release. */
 1749         if (vol->v_starting) {
 1750                 vol->v_starting = 0;
 1751                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
 1752                 root_mount_rel(vol->v_rootmount);
 1753                 vol->v_rootmount = NULL;
 1754         }
 1755         if (vol->v_stopping && vol->v_provider_open == 0)
 1756                 g_raid_destroy_volume(vol);
 1757         return (0);
 1758 }
 1759 
 1760 /*
 1761  * Update subdisk state.
 1762  */
 1763 static int
 1764 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
 1765 {
 1766         struct g_raid_softc *sc;
 1767         struct g_raid_volume *vol;
 1768 
 1769         sc = sd->sd_softc;
 1770         vol = sd->sd_volume;
 1771         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1772 
 1773         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
 1774             g_raid_subdisk_event2str(event),
 1775             vol->v_name, sd->sd_pos,
 1776             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
 1777         if (vol->v_tr)
 1778                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
 1779 
 1780         return (0);
 1781 }
 1782 
 1783 /*
 1784  * Update disk state.
 1785  */
 1786 static int
 1787 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
 1788 {
 1789         struct g_raid_softc *sc;
 1790 
 1791         sc = disk->d_softc;
 1792         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1793 
 1794         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
 1795             g_raid_disk_event2str(event),
 1796             g_raid_get_diskname(disk));
 1797 
 1798         if (sc->sc_md)
 1799                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
 1800         return (0);
 1801 }
 1802 
 1803 /*
 1804  * Node event.
 1805  */
 1806 static int
 1807 g_raid_update_node(struct g_raid_softc *sc, u_int event)
 1808 {
 1809         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1810 
 1811         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
 1812             g_raid_node_event2str(event));
 1813 
 1814         if (event == G_RAID_NODE_E_WAKE)
 1815                 return (0);
 1816         if (sc->sc_md)
 1817                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
 1818         return (0);
 1819 }
 1820 
 1821 static int
 1822 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
 1823 {
 1824         struct g_raid_volume *vol;
 1825         struct g_raid_softc *sc;
 1826         int dcw, opens, error = 0;
 1827 
 1828         g_topology_assert();
 1829         sc = pp->geom->softc;
 1830         vol = pp->private;
 1831         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
 1832         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
 1833 
 1834         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
 1835             acr, acw, ace);
 1836         dcw = pp->acw + acw;
 1837 
 1838         g_topology_unlock();
 1839         sx_xlock(&sc->sc_lock);
 1840         /* Deny new opens while dying. */
 1841         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
 1842                 error = ENXIO;
 1843                 goto out;
 1844         }
 1845         /* Deny write opens for read-only volumes. */
 1846         if (vol->v_read_only && acw > 0) {
 1847                 error = EROFS;
 1848                 goto out;
 1849         }
 1850         if (dcw == 0)
 1851                 g_raid_clean(vol, dcw);
 1852         vol->v_provider_open += acr + acw + ace;
 1853         /* Handle delayed node destruction. */
 1854         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
 1855             vol->v_provider_open == 0) {
 1856                 /* Count open volumes. */
 1857                 opens = g_raid_nopens(sc);
 1858                 if (opens == 0) {
 1859                         sc->sc_stopping = G_RAID_DESTROY_HARD;
 1860                         /* Wake up worker to make it selfdestruct. */
 1861                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 1862                 }
 1863         }
 1864         /* Handle open volume destruction. */
 1865         if (vol->v_stopping && vol->v_provider_open == 0)
 1866                 g_raid_destroy_volume(vol);
 1867 out:
 1868         sx_xunlock(&sc->sc_lock);
 1869         g_topology_lock();
 1870         return (error);
 1871 }
 1872 
 1873 struct g_raid_softc *
 1874 g_raid_create_node(struct g_class *mp,
 1875     const char *name, struct g_raid_md_object *md)
 1876 {
 1877         struct g_raid_softc *sc;
 1878         struct g_geom *gp;
 1879         int error;
 1880 
 1881         g_topology_assert();
 1882         G_RAID_DEBUG(1, "Creating array %s.", name);
 1883 
 1884         gp = g_new_geomf(mp, "%s", name);
 1885         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
 1886         gp->start = g_raid_start;
 1887         gp->orphan = g_raid_orphan;
 1888         gp->access = g_raid_access;
 1889         gp->dumpconf = g_raid_dumpconf;
 1890 
 1891         sc->sc_md = md;
 1892         sc->sc_geom = gp;
 1893         sc->sc_flags = 0;
 1894         TAILQ_INIT(&sc->sc_volumes);
 1895         TAILQ_INIT(&sc->sc_disks);
 1896         sx_init(&sc->sc_lock, "graid:lock");
 1897         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
 1898         TAILQ_INIT(&sc->sc_events);
 1899         bioq_init(&sc->sc_queue);
 1900         gp->softc = sc;
 1901         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
 1902             "g_raid %s", name);
 1903         if (error != 0) {
 1904                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
 1905                 mtx_destroy(&sc->sc_queue_mtx);
 1906                 sx_destroy(&sc->sc_lock);
 1907                 g_destroy_geom(sc->sc_geom);
 1908                 free(sc, M_RAID);
 1909                 return (NULL);
 1910         }
 1911 
 1912         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
 1913         return (sc);
 1914 }
 1915 
 1916 struct g_raid_volume *
 1917 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
 1918 {
 1919         struct g_raid_volume    *vol, *vol1;
 1920         int i;
 1921 
 1922         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
 1923         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
 1924         vol->v_softc = sc;
 1925         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
 1926         vol->v_state = G_RAID_VOLUME_S_STARTING;
 1927         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
 1928         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
 1929         vol->v_rotate_parity = 1;
 1930         bioq_init(&vol->v_inflight);
 1931         bioq_init(&vol->v_locked);
 1932         LIST_INIT(&vol->v_locks);
 1933         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 1934                 vol->v_subdisks[i].sd_softc = sc;
 1935                 vol->v_subdisks[i].sd_volume = vol;
 1936                 vol->v_subdisks[i].sd_pos = i;
 1937                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
 1938         }
 1939 
 1940         /* Find free ID for this volume. */
 1941         g_topology_lock();
 1942         vol1 = vol;
 1943         if (id >= 0) {
 1944                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1945                         if (vol1->v_global_id == id)
 1946                                 break;
 1947                 }
 1948         }
 1949         if (vol1 != NULL) {
 1950                 for (id = 0; ; id++) {
 1951                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1952                                 if (vol1->v_global_id == id)
 1953                                         break;
 1954                         }
 1955                         if (vol1 == NULL)
 1956                                 break;
 1957                 }
 1958         }
 1959         vol->v_global_id = id;
 1960         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
 1961         g_topology_unlock();
 1962 
 1963         /* Delay root mounting. */
 1964         vol->v_rootmount = root_mount_hold("GRAID");
 1965         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
 1966         vol->v_starting = 1;
 1967         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
 1968         return (vol);
 1969 }
 1970 
 1971 struct g_raid_disk *
 1972 g_raid_create_disk(struct g_raid_softc *sc)
 1973 {
 1974         struct g_raid_disk      *disk;
 1975 
 1976         G_RAID_DEBUG1(1, sc, "Creating disk.");
 1977         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
 1978         disk->d_softc = sc;
 1979         disk->d_state = G_RAID_DISK_S_NONE;
 1980         TAILQ_INIT(&disk->d_subdisks);
 1981         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
 1982         return (disk);
 1983 }
 1984 
 1985 int g_raid_start_volume(struct g_raid_volume *vol)
 1986 {
 1987         struct g_raid_tr_class *class;
 1988         struct g_raid_tr_object *obj;
 1989         int status;
 1990 
 1991         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
 1992         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
 1993                 if (!class->trc_enable)
 1994                         continue;
 1995                 G_RAID_DEBUG1(2, vol->v_softc,
 1996                     "Tasting volume %s for %s transformation.",
 1997                     vol->v_name, class->name);
 1998                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 1999                     M_WAITOK);
 2000                 obj->tro_class = class;
 2001                 obj->tro_volume = vol;
 2002                 status = G_RAID_TR_TASTE(obj, vol);
 2003                 if (status != G_RAID_TR_TASTE_FAIL)
 2004                         break;
 2005                 kobj_delete((kobj_t)obj, M_RAID);
 2006         }
 2007         if (class == NULL) {
 2008                 G_RAID_DEBUG1(0, vol->v_softc,
 2009                     "No transformation module found for %s.",
 2010                     vol->v_name);
 2011                 vol->v_tr = NULL;
 2012                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
 2013                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
 2014                     G_RAID_EVENT_VOLUME);
 2015                 return (-1);
 2016         }
 2017         G_RAID_DEBUG1(2, vol->v_softc,
 2018             "Transformation module %s chosen for %s.",
 2019             class->name, vol->v_name);
 2020         vol->v_tr = obj;
 2021         return (0);
 2022 }
 2023 
 2024 int
 2025 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
 2026 {
 2027         struct g_raid_volume *vol, *tmpv;
 2028         struct g_raid_disk *disk, *tmpd;
 2029         int error = 0;
 2030 
 2031         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2032         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
 2033                 if (g_raid_destroy_volume(vol))
 2034                         error = EBUSY;
 2035         }
 2036         if (error)
 2037                 return (error);
 2038         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
 2039                 if (g_raid_destroy_disk(disk))
 2040                         error = EBUSY;
 2041         }
 2042         if (error)
 2043                 return (error);
 2044         if (sc->sc_md) {
 2045                 G_RAID_MD_FREE(sc->sc_md);
 2046                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
 2047                 sc->sc_md = NULL;
 2048         }
 2049         if (sc->sc_geom != NULL) {
 2050                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
 2051                 g_topology_lock();
 2052                 sc->sc_geom->softc = NULL;
 2053                 g_wither_geom(sc->sc_geom, ENXIO);
 2054                 g_topology_unlock();
 2055                 sc->sc_geom = NULL;
 2056         } else
 2057                 G_RAID_DEBUG(1, "Array destroyed.");
 2058         if (worker) {
 2059                 g_raid_event_cancel(sc, sc);
 2060                 mtx_destroy(&sc->sc_queue_mtx);
 2061                 sx_xunlock(&sc->sc_lock);
 2062                 sx_destroy(&sc->sc_lock);
 2063                 wakeup(&sc->sc_stopping);
 2064                 free(sc, M_RAID);
 2065                 curthread->td_pflags &= ~TDP_GEOM;
 2066                 G_RAID_DEBUG(1, "Thread exiting.");
 2067                 kproc_exit(0);
 2068         } else {
 2069                 /* Wake up worker to make it selfdestruct. */
 2070                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2071         }
 2072         return (0);
 2073 }
 2074 
 2075 int
 2076 g_raid_destroy_volume(struct g_raid_volume *vol)
 2077 {
 2078         struct g_raid_softc *sc;
 2079         struct g_raid_disk *disk;
 2080         int i;
 2081 
 2082         sc = vol->v_softc;
 2083         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
 2084         vol->v_stopping = 1;
 2085         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
 2086                 if (vol->v_tr) {
 2087                         G_RAID_TR_STOP(vol->v_tr);
 2088                         return (EBUSY);
 2089                 } else
 2090                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
 2091         }
 2092         if (g_raid_event_check(sc, vol) != 0)
 2093                 return (EBUSY);
 2094         if (vol->v_provider != NULL)
 2095                 return (EBUSY);
 2096         if (vol->v_provider_open != 0)
 2097                 return (EBUSY);
 2098         if (vol->v_tr) {
 2099                 G_RAID_TR_FREE(vol->v_tr);
 2100                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
 2101                 vol->v_tr = NULL;
 2102         }
 2103         if (vol->v_rootmount)
 2104                 root_mount_rel(vol->v_rootmount);
 2105         g_topology_lock();
 2106         LIST_REMOVE(vol, v_global_next);
 2107         g_topology_unlock();
 2108         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
 2109         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 2110                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
 2111                 disk = vol->v_subdisks[i].sd_disk;
 2112                 if (disk == NULL)
 2113                         continue;
 2114                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
 2115         }
 2116         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
 2117         if (sc->sc_md)
 2118                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
 2119         g_raid_event_cancel(sc, vol);
 2120         free(vol, M_RAID);
 2121         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
 2122                 /* Wake up worker to let it selfdestruct. */
 2123                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2124         }
 2125         return (0);
 2126 }
 2127 
 2128 int
 2129 g_raid_destroy_disk(struct g_raid_disk *disk)
 2130 {
 2131         struct g_raid_softc *sc;
 2132         struct g_raid_subdisk *sd, *tmp;
 2133 
 2134         sc = disk->d_softc;
 2135         G_RAID_DEBUG1(2, sc, "Destroying disk.");
 2136         if (disk->d_consumer) {
 2137                 g_raid_kill_consumer(sc, disk->d_consumer);
 2138                 disk->d_consumer = NULL;
 2139         }
 2140         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
 2141                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
 2142                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
 2143                     G_RAID_EVENT_SUBDISK);
 2144                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
 2145                 sd->sd_disk = NULL;
 2146         }
 2147         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
 2148         if (sc->sc_md)
 2149                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
 2150         g_raid_event_cancel(sc, disk);
 2151         free(disk, M_RAID);
 2152         return (0);
 2153 }
 2154 
 2155 int
 2156 g_raid_destroy(struct g_raid_softc *sc, int how)
 2157 {
 2158         int error, opens;
 2159 
 2160         g_topology_assert_not();
 2161         if (sc == NULL)
 2162                 return (ENXIO);
 2163         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2164 
 2165         /* Count open volumes. */
 2166         opens = g_raid_nopens(sc);
 2167 
 2168         /* React on some opened volumes. */
 2169         if (opens > 0) {
 2170                 switch (how) {
 2171                 case G_RAID_DESTROY_SOFT:
 2172                         G_RAID_DEBUG1(1, sc,
 2173                             "%d volumes are still open.",
 2174                             opens);
 2175                         sx_xunlock(&sc->sc_lock);
 2176                         return (EBUSY);
 2177                 case G_RAID_DESTROY_DELAYED:
 2178                         G_RAID_DEBUG1(1, sc,
 2179                             "Array will be destroyed on last close.");
 2180                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
 2181                         sx_xunlock(&sc->sc_lock);
 2182                         return (EBUSY);
 2183                 case G_RAID_DESTROY_HARD:
 2184                         G_RAID_DEBUG1(1, sc,
 2185                             "%d volumes are still open.",
 2186                             opens);
 2187                 }
 2188         }
 2189 
 2190         /* Mark node for destruction. */
 2191         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2192         /* Wake up worker to let it selfdestruct. */
 2193         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2194         /* Sleep until node destroyed. */
 2195         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
 2196             PRIBIO | PDROP, "r:destroy", hz * 3);
 2197         return (error == EWOULDBLOCK ? EBUSY : 0);
 2198 }
 2199 
 2200 static void
 2201 g_raid_taste_orphan(struct g_consumer *cp)
 2202 {
 2203 
 2204         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
 2205             cp->provider->name));
 2206 }
 2207 
 2208 static struct g_geom *
 2209 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
 2210 {
 2211         struct g_consumer *cp;
 2212         struct g_geom *gp, *geom;
 2213         struct g_raid_md_class *class;
 2214         struct g_raid_md_object *obj;
 2215         int status;
 2216 
 2217         g_topology_assert();
 2218         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
 2219         if (!g_raid_enable)
 2220                 return (NULL);
 2221         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
 2222 
 2223         geom = NULL;
 2224         status = G_RAID_MD_TASTE_FAIL;
 2225         gp = g_new_geomf(mp, "raid:taste");
 2226         /*
 2227          * This orphan function should be never called.
 2228          */
 2229         gp->orphan = g_raid_taste_orphan;
 2230         cp = g_new_consumer(gp);
 2231         cp->flags |= G_CF_DIRECT_RECEIVE;
 2232         g_attach(cp, pp);
 2233         if (g_access(cp, 1, 0, 0) != 0)
 2234                 goto ofail;
 2235 
 2236         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2237                 if (!class->mdc_enable)
 2238                         continue;
 2239                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
 2240                     pp->name, class->name);
 2241                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2242                     M_WAITOK);
 2243                 obj->mdo_class = class;
 2244                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
 2245                 if (status != G_RAID_MD_TASTE_NEW)
 2246                         kobj_delete((kobj_t)obj, M_RAID);
 2247                 if (status != G_RAID_MD_TASTE_FAIL)
 2248                         break;
 2249         }
 2250 
 2251         if (status == G_RAID_MD_TASTE_FAIL)
 2252                 (void)g_access(cp, -1, 0, 0);
 2253 ofail:
 2254         g_detach(cp);
 2255         g_destroy_consumer(cp);
 2256         g_destroy_geom(gp);
 2257         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
 2258         return (geom);
 2259 }
 2260 
 2261 int
 2262 g_raid_create_node_format(const char *format, struct gctl_req *req,
 2263     struct g_geom **gp)
 2264 {
 2265         struct g_raid_md_class *class;
 2266         struct g_raid_md_object *obj;
 2267         int status;
 2268 
 2269         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
 2270         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2271                 if (strcasecmp(class->name, format) == 0)
 2272                         break;
 2273         }
 2274         if (class == NULL) {
 2275                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
 2276                 return (G_RAID_MD_TASTE_FAIL);
 2277         }
 2278         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2279             M_WAITOK);
 2280         obj->mdo_class = class;
 2281         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
 2282         if (status != G_RAID_MD_TASTE_NEW)
 2283                 kobj_delete((kobj_t)obj, M_RAID);
 2284         return (status);
 2285 }
 2286 
 2287 static int
 2288 g_raid_destroy_geom(struct gctl_req *req __unused,
 2289     struct g_class *mp __unused, struct g_geom *gp)
 2290 {
 2291         struct g_raid_softc *sc;
 2292         int error;
 2293 
 2294         g_topology_unlock();
 2295         sc = gp->softc;
 2296         sx_xlock(&sc->sc_lock);
 2297         g_cancel_event(sc);
 2298         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
 2299         g_topology_lock();
 2300         return (error);
 2301 }
 2302 
 2303 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
 2304     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2305 {
 2306 
 2307         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 2308                 return;
 2309         if (sc->sc_md)
 2310                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
 2311 }
 2312 
 2313 void g_raid_fail_disk(struct g_raid_softc *sc,
 2314     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2315 {
 2316 
 2317         if (disk == NULL)
 2318                 disk = sd->sd_disk;
 2319         if (disk == NULL) {
 2320                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
 2321                 return;
 2322         }
 2323         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
 2324                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
 2325                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 2326                 return;
 2327         }
 2328         if (sc->sc_md)
 2329                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
 2330 }
 2331 
 2332 static void
 2333 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
 2334     struct g_consumer *cp, struct g_provider *pp)
 2335 {
 2336         struct g_raid_softc *sc;
 2337         struct g_raid_volume *vol;
 2338         struct g_raid_subdisk *sd;
 2339         struct g_raid_disk *disk;
 2340         int i, s;
 2341 
 2342         g_topology_assert();
 2343 
 2344         sc = gp->softc;
 2345         if (sc == NULL)
 2346                 return;
 2347         if (pp != NULL) {
 2348                 vol = pp->private;
 2349                 g_topology_unlock();
 2350                 sx_xlock(&sc->sc_lock);
 2351                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
 2352                     sc->sc_md->mdo_class->name,
 2353                     g_raid_volume_level2str(vol->v_raid_level,
 2354                     vol->v_raid_level_qualifier));
 2355                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
 2356                     vol->v_name);
 2357                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
 2358                     g_raid_volume_level2str(vol->v_raid_level,
 2359                     vol->v_raid_level_qualifier));
 2360                 sbuf_printf(sb,
 2361                     "%s<Transformation>%s</Transformation>\n", indent,
 2362                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
 2363                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
 2364                     vol->v_disks_count);
 2365                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
 2366                     vol->v_strip_size);
 2367                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2368                     g_raid_volume_state2str(vol->v_state));
 2369                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
 2370                     vol->v_dirty ? "Yes" : "No");
 2371                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2372                 for (i = 0; i < vol->v_disks_count; i++) {
 2373                         sd = &vol->v_subdisks[i];
 2374                         if (sd->sd_disk != NULL &&
 2375                             sd->sd_disk->d_consumer != NULL) {
 2376                                 sbuf_printf(sb, "%s ",
 2377                                     g_raid_get_diskname(sd->sd_disk));
 2378                         } else {
 2379                                 sbuf_printf(sb, "NONE ");
 2380                         }
 2381                         sbuf_printf(sb, "(%s",
 2382                             g_raid_subdisk_state2str(sd->sd_state));
 2383                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2384                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2385                                 sbuf_printf(sb, " %d%%",
 2386                                     (int)(sd->sd_rebuild_pos * 100 /
 2387                                      sd->sd_size));
 2388                         }
 2389                         sbuf_printf(sb, ")");
 2390                         if (i + 1 < vol->v_disks_count)
 2391                                 sbuf_printf(sb, ", ");
 2392                 }
 2393                 sbuf_printf(sb, "</Subdisks>\n");
 2394                 sx_xunlock(&sc->sc_lock);
 2395                 g_topology_lock();
 2396         } else if (cp != NULL) {
 2397                 disk = cp->private;
 2398                 if (disk == NULL)
 2399                         return;
 2400                 g_topology_unlock();
 2401                 sx_xlock(&sc->sc_lock);
 2402                 sbuf_printf(sb, "%s<State>%s", indent,
 2403                     g_raid_disk_state2str(disk->d_state));
 2404                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
 2405                         sbuf_printf(sb, " (");
 2406                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2407                                 sbuf_printf(sb, "%s",
 2408                                     g_raid_subdisk_state2str(sd->sd_state));
 2409                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2410                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2411                                         sbuf_printf(sb, " %d%%",
 2412                                             (int)(sd->sd_rebuild_pos * 100 /
 2413                                              sd->sd_size));
 2414                                 }
 2415                                 if (TAILQ_NEXT(sd, sd_next))
 2416                                         sbuf_printf(sb, ", ");
 2417                         }
 2418                         sbuf_printf(sb, ")");
 2419                 }
 2420                 sbuf_printf(sb, "</State>\n");
 2421                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2422                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2423                         sbuf_printf(sb, "r%d(%s):%d@%ju",
 2424                             sd->sd_volume->v_global_id,
 2425                             sd->sd_volume->v_name,
 2426                             sd->sd_pos, sd->sd_offset);
 2427                         if (TAILQ_NEXT(sd, sd_next))
 2428                                 sbuf_printf(sb, ", ");
 2429                 }
 2430                 sbuf_printf(sb, "</Subdisks>\n");
 2431                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
 2432                     disk->d_read_errs);
 2433                 sx_xunlock(&sc->sc_lock);
 2434                 g_topology_lock();
 2435         } else {
 2436                 g_topology_unlock();
 2437                 sx_xlock(&sc->sc_lock);
 2438                 if (sc->sc_md) {
 2439                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
 2440                             sc->sc_md->mdo_class->name);
 2441                 }
 2442                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
 2443                         s = 0xff;
 2444                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 2445                                 if (vol->v_state < s)
 2446                                         s = vol->v_state;
 2447                         }
 2448                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2449                             g_raid_volume_state2str(s));
 2450                 }
 2451                 sx_xunlock(&sc->sc_lock);
 2452                 g_topology_lock();
 2453         }
 2454 }
 2455 
 2456 static void
 2457 g_raid_shutdown_post_sync(void *arg, int howto)
 2458 {
 2459         struct g_class *mp;
 2460         struct g_geom *gp, *gp2;
 2461         struct g_raid_softc *sc;
 2462         struct g_raid_volume *vol;
 2463 
 2464         mp = arg;
 2465         g_topology_lock();
 2466         g_raid_shutdown = 1;
 2467         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
 2468                 if ((sc = gp->softc) == NULL)
 2469                         continue;
 2470                 g_topology_unlock();
 2471                 sx_xlock(&sc->sc_lock);
 2472                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
 2473                         g_raid_clean(vol, -1);
 2474                 g_cancel_event(sc);
 2475                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
 2476                 g_topology_lock();
 2477         }
 2478         g_topology_unlock();
 2479 }
 2480 
 2481 static void
 2482 g_raid_init(struct g_class *mp)
 2483 {
 2484 
 2485         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
 2486             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
 2487         if (g_raid_post_sync == NULL)
 2488                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
 2489         g_raid_started = 1;
 2490 }
 2491 
 2492 static void
 2493 g_raid_fini(struct g_class *mp)
 2494 {
 2495 
 2496         if (g_raid_post_sync != NULL)
 2497                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
 2498         g_raid_started = 0;
 2499 }
 2500 
 2501 int
 2502 g_raid_md_modevent(module_t mod, int type, void *arg)
 2503 {
 2504         struct g_raid_md_class *class, *c, *nc;
 2505         int error;
 2506 
 2507         error = 0;
 2508         class = arg;
 2509         switch (type) {
 2510         case MOD_LOAD:
 2511                 c = LIST_FIRST(&g_raid_md_classes);
 2512                 if (c == NULL || c->mdc_priority > class->mdc_priority)
 2513                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
 2514                 else {
 2515                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
 2516                             nc->mdc_priority < class->mdc_priority)
 2517                                 c = nc;
 2518                         LIST_INSERT_AFTER(c, class, mdc_list);
 2519                 }
 2520                 if (g_raid_started)
 2521                         g_retaste(&g_raid_class);
 2522                 break;
 2523         case MOD_UNLOAD:
 2524                 LIST_REMOVE(class, mdc_list);
 2525                 break;
 2526         default:
 2527                 error = EOPNOTSUPP;
 2528                 break;
 2529         }
 2530 
 2531         return (error);
 2532 }
 2533 
 2534 int
 2535 g_raid_tr_modevent(module_t mod, int type, void *arg)
 2536 {
 2537         struct g_raid_tr_class *class, *c, *nc;
 2538         int error;
 2539 
 2540         error = 0;
 2541         class = arg;
 2542         switch (type) {
 2543         case MOD_LOAD:
 2544                 c = LIST_FIRST(&g_raid_tr_classes);
 2545                 if (c == NULL || c->trc_priority > class->trc_priority)
 2546                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
 2547                 else {
 2548                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
 2549                             nc->trc_priority < class->trc_priority)
 2550                                 c = nc;
 2551                         LIST_INSERT_AFTER(c, class, trc_list);
 2552                 }
 2553                 break;
 2554         case MOD_UNLOAD:
 2555                 LIST_REMOVE(class, trc_list);
 2556                 break;
 2557         default:
 2558                 error = EOPNOTSUPP;
 2559                 break;
 2560         }
 2561 
 2562         return (error);
 2563 }
 2564 
 2565 /*
 2566  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
 2567  * to reduce module priority, allowing submodules to register them first.
 2568  */
 2569 static moduledata_t g_raid_mod = {
 2570         "g_raid",
 2571         g_modevent,
 2572         &g_raid_class
 2573 };
 2574 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
 2575 MODULE_VERSION(geom_raid, 0);

Cache object: c6cc5d4159730c6472c9cebe126d1106


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.