The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/raid/g_raid.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/kernel.h>
   35 #include <sys/module.h>
   36 #include <sys/limits.h>
   37 #include <sys/lock.h>
   38 #include <sys/mutex.h>
   39 #include <sys/bio.h>
   40 #include <sys/sbuf.h>
   41 #include <sys/sysctl.h>
   42 #include <sys/malloc.h>
   43 #include <sys/eventhandler.h>
   44 #include <vm/uma.h>
   45 #include <geom/geom.h>
   46 #include <sys/proc.h>
   47 #include <sys/kthread.h>
   48 #include <sys/sched.h>
   49 #include <geom/raid/g_raid.h>
   50 #include "g_raid_md_if.h"
   51 #include "g_raid_tr_if.h"
   52 
   53 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
   54 
   55 SYSCTL_DECL(_kern_geom);
   56 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
   57 int g_raid_enable = 1;
   58 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
   59     &g_raid_enable, 0, "Enable on-disk metadata taste");
   60 u_int g_raid_aggressive_spare = 0;
   61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
   62     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
   63 u_int g_raid_debug = 0;
   64 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
   65     "Debug level");
   66 int g_raid_read_err_thresh = 10;
   67 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
   68     &g_raid_read_err_thresh, 0,
   69     "Number of read errors equated to disk failure");
   70 u_int g_raid_start_timeout = 30;
   71 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
   72     &g_raid_start_timeout, 0,
   73     "Time to wait for all array components");
   74 static u_int g_raid_clean_time = 5;
   75 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
   76     &g_raid_clean_time, 0, "Mark volume as clean when idling");
   77 static u_int g_raid_disconnect_on_failure = 1;
   78 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
   79     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
   80 static u_int g_raid_name_format = 0;
   81 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
   82     &g_raid_name_format, 0, "Providers name format.");
   83 static u_int g_raid_idle_threshold = 1000000;
   84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
   85     &g_raid_idle_threshold, 1000000,
   86     "Time in microseconds to consider a volume idle.");
   87 
   88 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
   89         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
   90         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
   91         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
   92 } while (0)
   93 
   94 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
   95     LIST_HEAD_INITIALIZER(g_raid_md_classes);
   96 
   97 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
   98     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
   99 
  100 LIST_HEAD(, g_raid_volume) g_raid_volumes =
  101     LIST_HEAD_INITIALIZER(g_raid_volumes);
  102 
  103 static eventhandler_tag g_raid_post_sync = NULL;
  104 static int g_raid_started = 0;
  105 static int g_raid_shutdown = 0;
  106 
  107 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
  108     struct g_geom *gp);
  109 static g_taste_t g_raid_taste;
  110 static void g_raid_init(struct g_class *mp);
  111 static void g_raid_fini(struct g_class *mp);
  112 
  113 struct g_class g_raid_class = {
  114         .name = G_RAID_CLASS_NAME,
  115         .version = G_VERSION,
  116         .ctlreq = g_raid_ctl,
  117         .taste = g_raid_taste,
  118         .destroy_geom = g_raid_destroy_geom,
  119         .init = g_raid_init,
  120         .fini = g_raid_fini
  121 };
  122 
  123 static void g_raid_destroy_provider(struct g_raid_volume *vol);
  124 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
  125 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
  126 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
  127 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
  128 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
  129     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
  130 static void g_raid_start(struct bio *bp);
  131 static void g_raid_start_request(struct bio *bp);
  132 static void g_raid_disk_done(struct bio *bp);
  133 static void g_raid_poll(struct g_raid_softc *sc);
  134 
  135 static const char *
  136 g_raid_node_event2str(int event)
  137 {
  138 
  139         switch (event) {
  140         case G_RAID_NODE_E_WAKE:
  141                 return ("WAKE");
  142         case G_RAID_NODE_E_START:
  143                 return ("START");
  144         default:
  145                 return ("INVALID");
  146         }
  147 }
  148 
  149 const char *
  150 g_raid_disk_state2str(int state)
  151 {
  152 
  153         switch (state) {
  154         case G_RAID_DISK_S_NONE:
  155                 return ("NONE");
  156         case G_RAID_DISK_S_OFFLINE:
  157                 return ("OFFLINE");
  158         case G_RAID_DISK_S_DISABLED:
  159                 return ("DISABLED");
  160         case G_RAID_DISK_S_FAILED:
  161                 return ("FAILED");
  162         case G_RAID_DISK_S_STALE_FAILED:
  163                 return ("STALE_FAILED");
  164         case G_RAID_DISK_S_SPARE:
  165                 return ("SPARE");
  166         case G_RAID_DISK_S_STALE:
  167                 return ("STALE");
  168         case G_RAID_DISK_S_ACTIVE:
  169                 return ("ACTIVE");
  170         default:
  171                 return ("INVALID");
  172         }
  173 }
  174 
  175 static const char *
  176 g_raid_disk_event2str(int event)
  177 {
  178 
  179         switch (event) {
  180         case G_RAID_DISK_E_DISCONNECTED:
  181                 return ("DISCONNECTED");
  182         default:
  183                 return ("INVALID");
  184         }
  185 }
  186 
  187 const char *
  188 g_raid_subdisk_state2str(int state)
  189 {
  190 
  191         switch (state) {
  192         case G_RAID_SUBDISK_S_NONE:
  193                 return ("NONE");
  194         case G_RAID_SUBDISK_S_FAILED:
  195                 return ("FAILED");
  196         case G_RAID_SUBDISK_S_NEW:
  197                 return ("NEW");
  198         case G_RAID_SUBDISK_S_REBUILD:
  199                 return ("REBUILD");
  200         case G_RAID_SUBDISK_S_UNINITIALIZED:
  201                 return ("UNINITIALIZED");
  202         case G_RAID_SUBDISK_S_STALE:
  203                 return ("STALE");
  204         case G_RAID_SUBDISK_S_RESYNC:
  205                 return ("RESYNC");
  206         case G_RAID_SUBDISK_S_ACTIVE:
  207                 return ("ACTIVE");
  208         default:
  209                 return ("INVALID");
  210         }
  211 }
  212 
  213 static const char *
  214 g_raid_subdisk_event2str(int event)
  215 {
  216 
  217         switch (event) {
  218         case G_RAID_SUBDISK_E_NEW:
  219                 return ("NEW");
  220         case G_RAID_SUBDISK_E_FAILED:
  221                 return ("FAILED");
  222         case G_RAID_SUBDISK_E_DISCONNECTED:
  223                 return ("DISCONNECTED");
  224         default:
  225                 return ("INVALID");
  226         }
  227 }
  228 
  229 const char *
  230 g_raid_volume_state2str(int state)
  231 {
  232 
  233         switch (state) {
  234         case G_RAID_VOLUME_S_STARTING:
  235                 return ("STARTING");
  236         case G_RAID_VOLUME_S_BROKEN:
  237                 return ("BROKEN");
  238         case G_RAID_VOLUME_S_DEGRADED:
  239                 return ("DEGRADED");
  240         case G_RAID_VOLUME_S_SUBOPTIMAL:
  241                 return ("SUBOPTIMAL");
  242         case G_RAID_VOLUME_S_OPTIMAL:
  243                 return ("OPTIMAL");
  244         case G_RAID_VOLUME_S_UNSUPPORTED:
  245                 return ("UNSUPPORTED");
  246         case G_RAID_VOLUME_S_STOPPED:
  247                 return ("STOPPED");
  248         default:
  249                 return ("INVALID");
  250         }
  251 }
  252 
  253 static const char *
  254 g_raid_volume_event2str(int event)
  255 {
  256 
  257         switch (event) {
  258         case G_RAID_VOLUME_E_UP:
  259                 return ("UP");
  260         case G_RAID_VOLUME_E_DOWN:
  261                 return ("DOWN");
  262         case G_RAID_VOLUME_E_START:
  263                 return ("START");
  264         case G_RAID_VOLUME_E_STARTMD:
  265                 return ("STARTMD");
  266         default:
  267                 return ("INVALID");
  268         }
  269 }
  270 
  271 const char *
  272 g_raid_volume_level2str(int level, int qual)
  273 {
  274 
  275         switch (level) {
  276         case G_RAID_VOLUME_RL_RAID0:
  277                 return ("RAID0");
  278         case G_RAID_VOLUME_RL_RAID1:
  279                 return ("RAID1");
  280         case G_RAID_VOLUME_RL_RAID3:
  281                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
  282                         return ("RAID3-P0");
  283                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
  284                         return ("RAID3-PN");
  285                 return ("RAID3");
  286         case G_RAID_VOLUME_RL_RAID4:
  287                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
  288                         return ("RAID4-P0");
  289                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
  290                         return ("RAID4-PN");
  291                 return ("RAID4");
  292         case G_RAID_VOLUME_RL_RAID5:
  293                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
  294                         return ("RAID5-RA");
  295                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
  296                         return ("RAID5-RS");
  297                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
  298                         return ("RAID5-LA");
  299                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
  300                         return ("RAID5-LS");
  301                 return ("RAID5");
  302         case G_RAID_VOLUME_RL_RAID6:
  303                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
  304                         return ("RAID6-RA");
  305                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
  306                         return ("RAID6-RS");
  307                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
  308                         return ("RAID6-LA");
  309                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
  310                         return ("RAID6-LS");
  311                 return ("RAID6");
  312         case G_RAID_VOLUME_RL_RAIDMDF:
  313                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
  314                         return ("RAIDMDF-RA");
  315                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
  316                         return ("RAIDMDF-RS");
  317                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
  318                         return ("RAIDMDF-LA");
  319                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
  320                         return ("RAIDMDF-LS");
  321                 return ("RAIDMDF");
  322         case G_RAID_VOLUME_RL_RAID1E:
  323                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
  324                         return ("RAID1E-A");
  325                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
  326                         return ("RAID1E-O");
  327                 return ("RAID1E");
  328         case G_RAID_VOLUME_RL_SINGLE:
  329                 return ("SINGLE");
  330         case G_RAID_VOLUME_RL_CONCAT:
  331                 return ("CONCAT");
  332         case G_RAID_VOLUME_RL_RAID5E:
  333                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
  334                         return ("RAID5E-RA");
  335                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
  336                         return ("RAID5E-RS");
  337                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
  338                         return ("RAID5E-LA");
  339                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
  340                         return ("RAID5E-LS");
  341                 return ("RAID5E");
  342         case G_RAID_VOLUME_RL_RAID5EE:
  343                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
  344                         return ("RAID5EE-RA");
  345                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
  346                         return ("RAID5EE-RS");
  347                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
  348                         return ("RAID5EE-LA");
  349                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
  350                         return ("RAID5EE-LS");
  351                 return ("RAID5EE");
  352         case G_RAID_VOLUME_RL_RAID5R:
  353                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
  354                         return ("RAID5R-RA");
  355                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
  356                         return ("RAID5R-RS");
  357                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
  358                         return ("RAID5R-LA");
  359                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
  360                         return ("RAID5R-LS");
  361                 return ("RAID5E");
  362         default:
  363                 return ("UNKNOWN");
  364         }
  365 }
  366 
  367 int
  368 g_raid_volume_str2level(const char *str, int *level, int *qual)
  369 {
  370 
  371         *level = G_RAID_VOLUME_RL_UNKNOWN;
  372         *qual = G_RAID_VOLUME_RLQ_NONE;
  373         if (strcasecmp(str, "RAID0") == 0)
  374                 *level = G_RAID_VOLUME_RL_RAID0;
  375         else if (strcasecmp(str, "RAID1") == 0)
  376                 *level = G_RAID_VOLUME_RL_RAID1;
  377         else if (strcasecmp(str, "RAID3-P0") == 0) {
  378                 *level = G_RAID_VOLUME_RL_RAID3;
  379                 *qual = G_RAID_VOLUME_RLQ_R3P0;
  380         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
  381                    strcasecmp(str, "RAID3") == 0) {
  382                 *level = G_RAID_VOLUME_RL_RAID3;
  383                 *qual = G_RAID_VOLUME_RLQ_R3PN;
  384         } else if (strcasecmp(str, "RAID4-P0") == 0) {
  385                 *level = G_RAID_VOLUME_RL_RAID4;
  386                 *qual = G_RAID_VOLUME_RLQ_R4P0;
  387         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
  388                    strcasecmp(str, "RAID4") == 0) {
  389                 *level = G_RAID_VOLUME_RL_RAID4;
  390                 *qual = G_RAID_VOLUME_RLQ_R4PN;
  391         } else if (strcasecmp(str, "RAID5-RA") == 0) {
  392                 *level = G_RAID_VOLUME_RL_RAID5;
  393                 *qual = G_RAID_VOLUME_RLQ_R5RA;
  394         } else if (strcasecmp(str, "RAID5-RS") == 0) {
  395                 *level = G_RAID_VOLUME_RL_RAID5;
  396                 *qual = G_RAID_VOLUME_RLQ_R5RS;
  397         } else if (strcasecmp(str, "RAID5") == 0 ||
  398                    strcasecmp(str, "RAID5-LA") == 0) {
  399                 *level = G_RAID_VOLUME_RL_RAID5;
  400                 *qual = G_RAID_VOLUME_RLQ_R5LA;
  401         } else if (strcasecmp(str, "RAID5-LS") == 0) {
  402                 *level = G_RAID_VOLUME_RL_RAID5;
  403                 *qual = G_RAID_VOLUME_RLQ_R5LS;
  404         } else if (strcasecmp(str, "RAID6-RA") == 0) {
  405                 *level = G_RAID_VOLUME_RL_RAID6;
  406                 *qual = G_RAID_VOLUME_RLQ_R6RA;
  407         } else if (strcasecmp(str, "RAID6-RS") == 0) {
  408                 *level = G_RAID_VOLUME_RL_RAID6;
  409                 *qual = G_RAID_VOLUME_RLQ_R6RS;
  410         } else if (strcasecmp(str, "RAID6") == 0 ||
  411                    strcasecmp(str, "RAID6-LA") == 0) {
  412                 *level = G_RAID_VOLUME_RL_RAID6;
  413                 *qual = G_RAID_VOLUME_RLQ_R6LA;
  414         } else if (strcasecmp(str, "RAID6-LS") == 0) {
  415                 *level = G_RAID_VOLUME_RL_RAID6;
  416                 *qual = G_RAID_VOLUME_RLQ_R6LS;
  417         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
  418                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  419                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
  420         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
  421                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  422                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
  423         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
  424                    strcasecmp(str, "RAIDMDF-LA") == 0) {
  425                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  426                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
  427         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
  428                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  429                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
  430         } else if (strcasecmp(str, "RAID10") == 0 ||
  431                    strcasecmp(str, "RAID1E") == 0 ||
  432                    strcasecmp(str, "RAID1E-A") == 0) {
  433                 *level = G_RAID_VOLUME_RL_RAID1E;
  434                 *qual = G_RAID_VOLUME_RLQ_R1EA;
  435         } else if (strcasecmp(str, "RAID1E-O") == 0) {
  436                 *level = G_RAID_VOLUME_RL_RAID1E;
  437                 *qual = G_RAID_VOLUME_RLQ_R1EO;
  438         } else if (strcasecmp(str, "SINGLE") == 0)
  439                 *level = G_RAID_VOLUME_RL_SINGLE;
  440         else if (strcasecmp(str, "CONCAT") == 0)
  441                 *level = G_RAID_VOLUME_RL_CONCAT;
  442         else if (strcasecmp(str, "RAID5E-RA") == 0) {
  443                 *level = G_RAID_VOLUME_RL_RAID5E;
  444                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
  445         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
  446                 *level = G_RAID_VOLUME_RL_RAID5E;
  447                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
  448         } else if (strcasecmp(str, "RAID5E") == 0 ||
  449                    strcasecmp(str, "RAID5E-LA") == 0) {
  450                 *level = G_RAID_VOLUME_RL_RAID5E;
  451                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
  452         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
  453                 *level = G_RAID_VOLUME_RL_RAID5E;
  454                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
  455         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
  456                 *level = G_RAID_VOLUME_RL_RAID5EE;
  457                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
  458         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
  459                 *level = G_RAID_VOLUME_RL_RAID5EE;
  460                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
  461         } else if (strcasecmp(str, "RAID5EE") == 0 ||
  462                    strcasecmp(str, "RAID5EE-LA") == 0) {
  463                 *level = G_RAID_VOLUME_RL_RAID5EE;
  464                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
  465         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
  466                 *level = G_RAID_VOLUME_RL_RAID5EE;
  467                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
  468         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
  469                 *level = G_RAID_VOLUME_RL_RAID5R;
  470                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
  471         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
  472                 *level = G_RAID_VOLUME_RL_RAID5R;
  473                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
  474         } else if (strcasecmp(str, "RAID5R") == 0 ||
  475                    strcasecmp(str, "RAID5R-LA") == 0) {
  476                 *level = G_RAID_VOLUME_RL_RAID5R;
  477                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
  478         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
  479                 *level = G_RAID_VOLUME_RL_RAID5R;
  480                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
  481         } else
  482                 return (-1);
  483         return (0);
  484 }
  485 
  486 const char *
  487 g_raid_get_diskname(struct g_raid_disk *disk)
  488 {
  489 
  490         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
  491                 return ("[unknown]");
  492         return (disk->d_consumer->provider->name);
  493 }
  494 
  495 void
  496 g_raid_get_disk_info(struct g_raid_disk *disk)
  497 {
  498         struct g_consumer *cp = disk->d_consumer;
  499         int error, len;
  500 
  501         /* Read kernel dumping information. */
  502         disk->d_kd.offset = 0;
  503         disk->d_kd.length = OFF_MAX;
  504         len = sizeof(disk->d_kd);
  505         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
  506         if (error)
  507                 disk->d_kd.di.dumper = NULL;
  508         if (disk->d_kd.di.dumper == NULL)
  509                 G_RAID_DEBUG1(2, disk->d_softc,
  510                     "Dumping not supported by %s: %d.", 
  511                     cp->provider->name, error);
  512 
  513         /* Read BIO_DELETE support. */
  514         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
  515         if (error)
  516                 disk->d_candelete = 0;
  517         if (!disk->d_candelete)
  518                 G_RAID_DEBUG1(2, disk->d_softc,
  519                     "BIO_DELETE not supported by %s: %d.", 
  520                     cp->provider->name, error);
  521 }
  522 
  523 void
  524 g_raid_report_disk_state(struct g_raid_disk *disk)
  525 {
  526         struct g_raid_subdisk *sd;
  527         int len, state;
  528         uint32_t s;
  529 
  530         if (disk->d_consumer == NULL)
  531                 return;
  532         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
  533                 s = G_STATE_ACTIVE; /* XXX */
  534         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
  535             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
  536                 s = G_STATE_FAILED;
  537         } else {
  538                 state = G_RAID_SUBDISK_S_ACTIVE;
  539                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
  540                         if (sd->sd_state < state)
  541                                 state = sd->sd_state;
  542                 }
  543                 if (state == G_RAID_SUBDISK_S_FAILED)
  544                         s = G_STATE_FAILED;
  545                 else if (state == G_RAID_SUBDISK_S_NEW ||
  546                     state == G_RAID_SUBDISK_S_REBUILD)
  547                         s = G_STATE_REBUILD;
  548                 else if (state == G_RAID_SUBDISK_S_STALE ||
  549                     state == G_RAID_SUBDISK_S_RESYNC)
  550                         s = G_STATE_RESYNC;
  551                 else
  552                         s = G_STATE_ACTIVE;
  553         }
  554         len = sizeof(s);
  555         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
  556         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
  557             g_raid_get_diskname(disk), s);
  558 }
  559 
  560 void
  561 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
  562 {
  563 
  564         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
  565             g_raid_get_diskname(disk),
  566             g_raid_disk_state2str(disk->d_state),
  567             g_raid_disk_state2str(state));
  568         disk->d_state = state;
  569         g_raid_report_disk_state(disk);
  570 }
  571 
  572 void
  573 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
  574 {
  575 
  576         G_RAID_DEBUG1(0, sd->sd_softc,
  577             "Subdisk %s:%d-%s state changed from %s to %s.",
  578             sd->sd_volume->v_name, sd->sd_pos,
  579             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
  580             g_raid_subdisk_state2str(sd->sd_state),
  581             g_raid_subdisk_state2str(state));
  582         sd->sd_state = state;
  583         if (sd->sd_disk)
  584                 g_raid_report_disk_state(sd->sd_disk);
  585 }
  586 
  587 void
  588 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
  589 {
  590 
  591         G_RAID_DEBUG1(0, vol->v_softc,
  592             "Volume %s state changed from %s to %s.",
  593             vol->v_name,
  594             g_raid_volume_state2str(vol->v_state),
  595             g_raid_volume_state2str(state));
  596         vol->v_state = state;
  597 }
  598 
  599 /*
  600  * --- Events handling functions ---
  601  * Events in geom_raid are used to maintain subdisks and volumes status
  602  * from one thread to simplify locking.
  603  */
  604 static void
  605 g_raid_event_free(struct g_raid_event *ep)
  606 {
  607 
  608         free(ep, M_RAID);
  609 }
  610 
  611 int
  612 g_raid_event_send(void *arg, int event, int flags)
  613 {
  614         struct g_raid_softc *sc;
  615         struct g_raid_event *ep;
  616         int error;
  617 
  618         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
  619                 sc = ((struct g_raid_volume *)arg)->v_softc;
  620         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
  621                 sc = ((struct g_raid_disk *)arg)->d_softc;
  622         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
  623                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
  624         } else {
  625                 sc = arg;
  626         }
  627         ep = malloc(sizeof(*ep), M_RAID,
  628             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
  629         if (ep == NULL)
  630                 return (ENOMEM);
  631         ep->e_tgt = arg;
  632         ep->e_event = event;
  633         ep->e_flags = flags;
  634         ep->e_error = 0;
  635         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
  636         mtx_lock(&sc->sc_queue_mtx);
  637         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
  638         mtx_unlock(&sc->sc_queue_mtx);
  639         wakeup(sc);
  640 
  641         if ((flags & G_RAID_EVENT_WAIT) == 0)
  642                 return (0);
  643 
  644         sx_assert(&sc->sc_lock, SX_XLOCKED);
  645         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
  646         sx_xunlock(&sc->sc_lock);
  647         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
  648                 mtx_lock(&sc->sc_queue_mtx);
  649                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
  650                     hz * 5);
  651         }
  652         error = ep->e_error;
  653         g_raid_event_free(ep);
  654         sx_xlock(&sc->sc_lock);
  655         return (error);
  656 }
  657 
  658 static void
  659 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
  660 {
  661         struct g_raid_event *ep, *tmpep;
  662 
  663         sx_assert(&sc->sc_lock, SX_XLOCKED);
  664 
  665         mtx_lock(&sc->sc_queue_mtx);
  666         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
  667                 if (ep->e_tgt != tgt)
  668                         continue;
  669                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  670                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
  671                         g_raid_event_free(ep);
  672                 else {
  673                         ep->e_error = ECANCELED;
  674                         wakeup(ep);
  675                 }
  676         }
  677         mtx_unlock(&sc->sc_queue_mtx);
  678 }
  679 
  680 static int
  681 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
  682 {
  683         struct g_raid_event *ep;
  684         int     res = 0;
  685 
  686         sx_assert(&sc->sc_lock, SX_XLOCKED);
  687 
  688         mtx_lock(&sc->sc_queue_mtx);
  689         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
  690                 if (ep->e_tgt != tgt)
  691                         continue;
  692                 res = 1;
  693                 break;
  694         }
  695         mtx_unlock(&sc->sc_queue_mtx);
  696         return (res);
  697 }
  698 
  699 /*
  700  * Return the number of disks in given state.
  701  * If state is equal to -1, count all connected disks.
  702  */
  703 u_int
  704 g_raid_ndisks(struct g_raid_softc *sc, int state)
  705 {
  706         struct g_raid_disk *disk;
  707         u_int n;
  708 
  709         sx_assert(&sc->sc_lock, SX_LOCKED);
  710 
  711         n = 0;
  712         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
  713                 if (disk->d_state == state || state == -1)
  714                         n++;
  715         }
  716         return (n);
  717 }
  718 
  719 /*
  720  * Return the number of subdisks in given state.
  721  * If state is equal to -1, count all connected disks.
  722  */
  723 u_int
  724 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
  725 {
  726         struct g_raid_subdisk *subdisk;
  727         struct g_raid_softc *sc;
  728         u_int i, n ;
  729 
  730         sc = vol->v_softc;
  731         sx_assert(&sc->sc_lock, SX_LOCKED);
  732 
  733         n = 0;
  734         for (i = 0; i < vol->v_disks_count; i++) {
  735                 subdisk = &vol->v_subdisks[i];
  736                 if ((state == -1 &&
  737                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
  738                     subdisk->sd_state == state)
  739                         n++;
  740         }
  741         return (n);
  742 }
  743 
  744 /*
  745  * Return the first subdisk in given state.
  746  * If state is equal to -1, then the first connected disks.
  747  */
  748 struct g_raid_subdisk *
  749 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
  750 {
  751         struct g_raid_subdisk *sd;
  752         struct g_raid_softc *sc;
  753         u_int i;
  754 
  755         sc = vol->v_softc;
  756         sx_assert(&sc->sc_lock, SX_LOCKED);
  757 
  758         for (i = 0; i < vol->v_disks_count; i++) {
  759                 sd = &vol->v_subdisks[i];
  760                 if ((state == -1 &&
  761                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
  762                     sd->sd_state == state)
  763                         return (sd);
  764         }
  765         return (NULL);
  766 }
  767 
  768 struct g_consumer *
  769 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
  770 {
  771         struct g_consumer *cp;
  772         struct g_provider *pp;
  773 
  774         g_topology_assert();
  775 
  776         if (strncmp(name, "/dev/", 5) == 0)
  777                 name += 5;
  778         pp = g_provider_by_name(name);
  779         if (pp == NULL)
  780                 return (NULL);
  781         cp = g_new_consumer(sc->sc_geom);
  782         cp->flags |= G_CF_DIRECT_RECEIVE;
  783         if (g_attach(cp, pp) != 0) {
  784                 g_destroy_consumer(cp);
  785                 return (NULL);
  786         }
  787         if (g_access(cp, 1, 1, 1) != 0) {
  788                 g_detach(cp);
  789                 g_destroy_consumer(cp);
  790                 return (NULL);
  791         }
  792         return (cp);
  793 }
  794 
  795 static u_int
  796 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
  797 {
  798         struct bio *bp;
  799         u_int nreqs = 0;
  800 
  801         mtx_lock(&sc->sc_queue_mtx);
  802         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
  803                 if (bp->bio_from == cp)
  804                         nreqs++;
  805         }
  806         mtx_unlock(&sc->sc_queue_mtx);
  807         return (nreqs);
  808 }
  809 
  810 u_int
  811 g_raid_nopens(struct g_raid_softc *sc)
  812 {
  813         struct g_raid_volume *vol;
  814         u_int opens;
  815 
  816         opens = 0;
  817         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
  818                 if (vol->v_provider_open != 0)
  819                         opens++;
  820         }
  821         return (opens);
  822 }
  823 
  824 static int
  825 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
  826 {
  827 
  828         if (cp->index > 0) {
  829                 G_RAID_DEBUG1(2, sc,
  830                     "I/O requests for %s exist, can't destroy it now.",
  831                     cp->provider->name);
  832                 return (1);
  833         }
  834         if (g_raid_nrequests(sc, cp) > 0) {
  835                 G_RAID_DEBUG1(2, sc,
  836                     "I/O requests for %s in queue, can't destroy it now.",
  837                     cp->provider->name);
  838                 return (1);
  839         }
  840         return (0);
  841 }
  842 
  843 static void
  844 g_raid_destroy_consumer(void *arg, int flags __unused)
  845 {
  846         struct g_consumer *cp;
  847 
  848         g_topology_assert();
  849 
  850         cp = arg;
  851         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
  852         g_detach(cp);
  853         g_destroy_consumer(cp);
  854 }
  855 
  856 void
  857 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
  858 {
  859         struct g_provider *pp;
  860         int retaste_wait;
  861 
  862         g_topology_assert_not();
  863 
  864         g_topology_lock();
  865         cp->private = NULL;
  866         if (g_raid_consumer_is_busy(sc, cp))
  867                 goto out;
  868         pp = cp->provider;
  869         retaste_wait = 0;
  870         if (cp->acw == 1) {
  871                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
  872                         retaste_wait = 1;
  873         }
  874         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
  875                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
  876         if (retaste_wait) {
  877                 /*
  878                  * After retaste event was send (inside g_access()), we can send
  879                  * event to detach and destroy consumer.
  880                  * A class, which has consumer to the given provider connected
  881                  * will not receive retaste event for the provider.
  882                  * This is the way how I ignore retaste events when I close
  883                  * consumers opened for write: I detach and destroy consumer
  884                  * after retaste event is sent.
  885                  */
  886                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
  887                 goto out;
  888         }
  889         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
  890         g_detach(cp);
  891         g_destroy_consumer(cp);
  892 out:
  893         g_topology_unlock();
  894 }
  895 
  896 static void
  897 g_raid_orphan(struct g_consumer *cp)
  898 {
  899         struct g_raid_disk *disk;
  900 
  901         g_topology_assert();
  902 
  903         disk = cp->private;
  904         if (disk == NULL)
  905                 return;
  906         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
  907             G_RAID_EVENT_DISK);
  908 }
  909 
  910 static void
  911 g_raid_clean(struct g_raid_volume *vol, int acw)
  912 {
  913         struct g_raid_softc *sc;
  914         int timeout;
  915 
  916         sc = vol->v_softc;
  917         g_topology_assert_not();
  918         sx_assert(&sc->sc_lock, SX_XLOCKED);
  919 
  920 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  921 //              return;
  922         if (!vol->v_dirty)
  923                 return;
  924         if (vol->v_writes > 0)
  925                 return;
  926         if (acw > 0 || (acw == -1 &&
  927             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
  928                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
  929                 if (!g_raid_shutdown && timeout > 0)
  930                         return;
  931         }
  932         vol->v_dirty = 0;
  933         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
  934             vol->v_name);
  935         g_raid_write_metadata(sc, vol, NULL, NULL);
  936 }
  937 
  938 static void
  939 g_raid_dirty(struct g_raid_volume *vol)
  940 {
  941         struct g_raid_softc *sc;
  942 
  943         sc = vol->v_softc;
  944         g_topology_assert_not();
  945         sx_assert(&sc->sc_lock, SX_XLOCKED);
  946 
  947 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  948 //              return;
  949         vol->v_dirty = 1;
  950         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
  951             vol->v_name);
  952         g_raid_write_metadata(sc, vol, NULL, NULL);
  953 }
  954 
  955 void
  956 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
  957 {
  958         struct g_raid_volume *vol;
  959         struct g_raid_subdisk *sd;
  960         struct bio_queue_head queue;
  961         struct bio *cbp;
  962         int i;
  963 
  964         vol = tr->tro_volume;
  965 
  966         /*
  967          * Allocate all bios before sending any request, so we can return
  968          * ENOMEM in nice and clean way.
  969          */
  970         bioq_init(&queue);
  971         for (i = 0; i < vol->v_disks_count; i++) {
  972                 sd = &vol->v_subdisks[i];
  973                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
  974                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
  975                         continue;
  976                 cbp = g_clone_bio(bp);
  977                 if (cbp == NULL)
  978                         goto failure;
  979                 cbp->bio_caller1 = sd;
  980                 bioq_insert_tail(&queue, cbp);
  981         }
  982         while ((cbp = bioq_takefirst(&queue)) != NULL) {
  983                 sd = cbp->bio_caller1;
  984                 cbp->bio_caller1 = NULL;
  985                 g_raid_subdisk_iostart(sd, cbp);
  986         }
  987         return;
  988 failure:
  989         while ((cbp = bioq_takefirst(&queue)) != NULL)
  990                 g_destroy_bio(cbp);
  991         if (bp->bio_error == 0)
  992                 bp->bio_error = ENOMEM;
  993         g_raid_iodone(bp, bp->bio_error);
  994 }
  995 
  996 static void
  997 g_raid_tr_kerneldump_common_done(struct bio *bp)
  998 {
  999 
 1000         bp->bio_flags |= BIO_DONE;
 1001 }
 1002 
 1003 int
 1004 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
 1005     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1006 {
 1007         struct g_raid_softc *sc;
 1008         struct g_raid_volume *vol;
 1009         struct bio bp;
 1010 
 1011         vol = tr->tro_volume;
 1012         sc = vol->v_softc;
 1013 
 1014         g_reset_bio(&bp);
 1015         bp.bio_cmd = BIO_WRITE;
 1016         bp.bio_done = g_raid_tr_kerneldump_common_done;
 1017         bp.bio_attribute = NULL;
 1018         bp.bio_offset = offset;
 1019         bp.bio_length = length;
 1020         bp.bio_data = virtual;
 1021         bp.bio_to = vol->v_provider;
 1022 
 1023         g_raid_start(&bp);
 1024         while (!(bp.bio_flags & BIO_DONE)) {
 1025                 G_RAID_DEBUG1(4, sc, "Poll...");
 1026                 g_raid_poll(sc);
 1027                 DELAY(10);
 1028         }
 1029 
 1030         return (bp.bio_error != 0 ? EIO : 0);
 1031 }
 1032 
 1033 static int
 1034 g_raid_dump(void *arg,
 1035     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1036 {
 1037         struct g_raid_volume *vol;
 1038         int error;
 1039 
 1040         vol = (struct g_raid_volume *)arg;
 1041         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
 1042             (long long unsigned)offset, (long long unsigned)length);
 1043 
 1044         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
 1045             virtual, physical, offset, length);
 1046         return (error);
 1047 }
 1048 
 1049 static void
 1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
 1051 {
 1052         struct g_kerneldump *gkd;
 1053         struct g_provider *pp;
 1054         struct g_raid_volume *vol;
 1055 
 1056         gkd = (struct g_kerneldump*)bp->bio_data;
 1057         pp = bp->bio_to;
 1058         vol = pp->private;
 1059         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
 1060                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
 1061         gkd->di.dumper = g_raid_dump;
 1062         gkd->di.priv = vol;
 1063         gkd->di.blocksize = vol->v_sectorsize;
 1064         gkd->di.maxiosize = DFLTPHYS;
 1065         gkd->di.mediaoffset = gkd->offset;
 1066         if ((gkd->offset + gkd->length) > vol->v_mediasize)
 1067                 gkd->length = vol->v_mediasize - gkd->offset;
 1068         gkd->di.mediasize = gkd->length;
 1069         g_io_deliver(bp, 0);
 1070 }
 1071 
 1072 static void
 1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
 1074 {
 1075         struct g_provider *pp;
 1076         struct g_raid_volume *vol;
 1077         struct g_raid_subdisk *sd;
 1078         int i, val;
 1079 
 1080         pp = bp->bio_to;
 1081         vol = pp->private;
 1082         for (i = 0; i < vol->v_disks_count; i++) {
 1083                 sd = &vol->v_subdisks[i];
 1084                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1085                         continue;
 1086                 if (sd->sd_disk->d_candelete)
 1087                         break;
 1088         }
 1089         val = i < vol->v_disks_count;
 1090         g_handleattr(bp, "GEOM::candelete", &val, sizeof(val));
 1091 }
 1092 
 1093 static void
 1094 g_raid_start(struct bio *bp)
 1095 {
 1096         struct g_raid_softc *sc;
 1097 
 1098         sc = bp->bio_to->geom->softc;
 1099         /*
 1100          * If sc == NULL or there are no valid disks, provider's error
 1101          * should be set and g_raid_start() should not be called at all.
 1102          */
 1103 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
 1104 //          ("Provider's error should be set (error=%d)(mirror=%s).",
 1105 //          bp->bio_to->error, bp->bio_to->name));
 1106         G_RAID_LOGREQ(3, bp, "Request received.");
 1107 
 1108         switch (bp->bio_cmd) {
 1109         case BIO_READ:
 1110         case BIO_WRITE:
 1111         case BIO_DELETE:
 1112         case BIO_FLUSH:
 1113                 break;
 1114         case BIO_GETATTR:
 1115                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
 1116                         g_raid_candelete(sc, bp);
 1117                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
 1118                         g_raid_kerneldump(sc, bp);
 1119                 else
 1120                         g_io_deliver(bp, EOPNOTSUPP);
 1121                 return;
 1122         default:
 1123                 g_io_deliver(bp, EOPNOTSUPP);
 1124                 return;
 1125         }
 1126         mtx_lock(&sc->sc_queue_mtx);
 1127         bioq_insert_tail(&sc->sc_queue, bp);
 1128         mtx_unlock(&sc->sc_queue_mtx);
 1129         if (!dumping) {
 1130                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
 1131                 wakeup(sc);
 1132         }
 1133 }
 1134 
 1135 static int
 1136 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
 1137 {
 1138         /*
 1139          * 5 cases:
 1140          * (1) bp entirely below NO
 1141          * (2) bp entirely above NO
 1142          * (3) bp start below, but end in range YES
 1143          * (4) bp entirely within YES
 1144          * (5) bp starts within, ends above YES
 1145          *
 1146          * lock range 10-19 (offset 10 length 10)
 1147          * (1) 1-5: first if kicks it out
 1148          * (2) 30-35: second if kicks it out
 1149          * (3) 5-15: passes both ifs
 1150          * (4) 12-14: passes both ifs
 1151          * (5) 19-20: passes both
 1152          */
 1153         off_t lend = lstart + len - 1;
 1154         off_t bstart = bp->bio_offset;
 1155         off_t bend = bp->bio_offset + bp->bio_length - 1;
 1156 
 1157         if (bend < lstart)
 1158                 return (0);
 1159         if (lend < bstart)
 1160                 return (0);
 1161         return (1);
 1162 }
 1163 
 1164 static int
 1165 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
 1166 {
 1167         struct g_raid_lock *lp;
 1168 
 1169         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
 1170 
 1171         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1172                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
 1173                         return (1);
 1174         }
 1175         return (0);
 1176 }
 1177 
 1178 static void
 1179 g_raid_start_request(struct bio *bp)
 1180 {
 1181         struct g_raid_softc *sc;
 1182         struct g_raid_volume *vol;
 1183 
 1184         sc = bp->bio_to->geom->softc;
 1185         sx_assert(&sc->sc_lock, SX_LOCKED);
 1186         vol = bp->bio_to->private;
 1187 
 1188         /*
 1189          * Check to see if this item is in a locked range.  If so,
 1190          * queue it to our locked queue and return.  We'll requeue
 1191          * it when the range is unlocked.  Internal I/O for the
 1192          * rebuild/rescan/recovery process is excluded from this
 1193          * check so we can actually do the recovery.
 1194          */
 1195         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
 1196             g_raid_is_in_locked_range(vol, bp)) {
 1197                 G_RAID_LOGREQ(3, bp, "Defer request.");
 1198                 bioq_insert_tail(&vol->v_locked, bp);
 1199                 return;
 1200         }
 1201 
 1202         /*
 1203          * If we're actually going to do the write/delete, then
 1204          * update the idle stats for the volume.
 1205          */
 1206         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1207                 if (!vol->v_dirty)
 1208                         g_raid_dirty(vol);
 1209                 vol->v_writes++;
 1210         }
 1211 
 1212         /*
 1213          * Put request onto inflight queue, so we can check if new
 1214          * synchronization requests don't collide with it.  Then tell
 1215          * the transformation layer to start the I/O.
 1216          */
 1217         bioq_insert_tail(&vol->v_inflight, bp);
 1218         G_RAID_LOGREQ(4, bp, "Request started");
 1219         G_RAID_TR_IOSTART(vol->v_tr, bp);
 1220 }
 1221 
 1222 static void
 1223 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
 1224 {
 1225         off_t off, len;
 1226         struct bio *nbp;
 1227         struct g_raid_lock *lp;
 1228 
 1229         vol->v_pending_lock = 0;
 1230         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1231                 if (lp->l_pending) {
 1232                         off = lp->l_offset;
 1233                         len = lp->l_length;
 1234                         lp->l_pending = 0;
 1235                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
 1236                                 if (g_raid_bio_overlaps(nbp, off, len))
 1237                                         lp->l_pending++;
 1238                         }
 1239                         if (lp->l_pending) {
 1240                                 vol->v_pending_lock = 1;
 1241                                 G_RAID_DEBUG1(4, vol->v_softc,
 1242                                     "Deferred lock(%jd, %jd) has %d pending",
 1243                                     (intmax_t)off, (intmax_t)(off + len),
 1244                                     lp->l_pending);
 1245                                 continue;
 1246                         }
 1247                         G_RAID_DEBUG1(4, vol->v_softc,
 1248                             "Deferred lock of %jd to %jd completed",
 1249                             (intmax_t)off, (intmax_t)(off + len));
 1250                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1251                 }
 1252         }
 1253 }
 1254 
 1255 void
 1256 g_raid_iodone(struct bio *bp, int error)
 1257 {
 1258         struct g_raid_softc *sc;
 1259         struct g_raid_volume *vol;
 1260 
 1261         sc = bp->bio_to->geom->softc;
 1262         sx_assert(&sc->sc_lock, SX_LOCKED);
 1263         vol = bp->bio_to->private;
 1264         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
 1265 
 1266         /* Update stats if we done write/delete. */
 1267         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1268                 vol->v_writes--;
 1269                 vol->v_last_write = time_uptime;
 1270         }
 1271 
 1272         bioq_remove(&vol->v_inflight, bp);
 1273         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
 1274                 g_raid_finish_with_locked_ranges(vol, bp);
 1275         getmicrouptime(&vol->v_last_done);
 1276         g_io_deliver(bp, error);
 1277 }
 1278 
 1279 int
 1280 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
 1281     struct bio *ignore, void *argp)
 1282 {
 1283         struct g_raid_softc *sc;
 1284         struct g_raid_lock *lp;
 1285         struct bio *bp;
 1286 
 1287         sc = vol->v_softc;
 1288         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
 1289         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
 1290         lp->l_offset = off;
 1291         lp->l_length = len;
 1292         lp->l_callback_arg = argp;
 1293 
 1294         lp->l_pending = 0;
 1295         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
 1296                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
 1297                         lp->l_pending++;
 1298         }       
 1299 
 1300         /*
 1301          * If there are any writes that are pending, we return EBUSY.  All
 1302          * callers will have to wait until all pending writes clear.
 1303          */
 1304         if (lp->l_pending > 0) {
 1305                 vol->v_pending_lock = 1;
 1306                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
 1307                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
 1308                 return (EBUSY);
 1309         }
 1310         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
 1311             (intmax_t)off, (intmax_t)(off+len));
 1312         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1313         return (0);
 1314 }
 1315 
 1316 int
 1317 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
 1318 {
 1319         struct g_raid_lock *lp;
 1320         struct g_raid_softc *sc;
 1321         struct bio *bp;
 1322 
 1323         sc = vol->v_softc;
 1324         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1325                 if (lp->l_offset == off && lp->l_length == len) {
 1326                         LIST_REMOVE(lp, l_next);
 1327                         /* XXX
 1328                          * Right now we just put them all back on the queue
 1329                          * and hope for the best.  We hope this because any
 1330                          * locked ranges will go right back on this list
 1331                          * when the worker thread runs.
 1332                          * XXX
 1333                          */
 1334                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
 1335                             (intmax_t)lp->l_offset,
 1336                             (intmax_t)(lp->l_offset+lp->l_length));
 1337                         mtx_lock(&sc->sc_queue_mtx);
 1338                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
 1339                                 bioq_insert_tail(&sc->sc_queue, bp);
 1340                         mtx_unlock(&sc->sc_queue_mtx);
 1341                         free(lp, M_RAID);
 1342                         return (0);
 1343                 }
 1344         }
 1345         return (EINVAL);
 1346 }
 1347 
 1348 void
 1349 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
 1350 {
 1351         struct g_consumer *cp;
 1352         struct g_raid_disk *disk, *tdisk;
 1353 
 1354         bp->bio_caller1 = sd;
 1355 
 1356         /*
 1357          * Make sure that the disk is present. Generally it is a task of
 1358          * transformation layers to not send requests to absent disks, but
 1359          * it is better to be safe and report situation then sorry.
 1360          */
 1361         if (sd->sd_disk == NULL) {
 1362                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
 1363 nodisk:
 1364                 bp->bio_from = NULL;
 1365                 bp->bio_to = NULL;
 1366                 bp->bio_error = ENXIO;
 1367                 g_raid_disk_done(bp);
 1368                 return;
 1369         }
 1370         disk = sd->sd_disk;
 1371         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
 1372             disk->d_state != G_RAID_DISK_S_FAILED) {
 1373                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
 1374                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 1375                 goto nodisk;
 1376         }
 1377 
 1378         cp = disk->d_consumer;
 1379         bp->bio_from = cp;
 1380         bp->bio_to = cp->provider;
 1381         cp->index++;
 1382 
 1383         /* Update average disks load. */
 1384         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
 1385                 if (tdisk->d_consumer == NULL)
 1386                         tdisk->d_load = 0;
 1387                 else
 1388                         tdisk->d_load = (tdisk->d_consumer->index *
 1389                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
 1390         }
 1391 
 1392         disk->d_last_offset = bp->bio_offset + bp->bio_length;
 1393         if (dumping) {
 1394                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
 1395                 if (bp->bio_cmd == BIO_WRITE) {
 1396                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
 1397                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
 1398                 } else
 1399                         bp->bio_error = EOPNOTSUPP;
 1400                 g_raid_disk_done(bp);
 1401         } else {
 1402                 bp->bio_done = g_raid_disk_done;
 1403                 bp->bio_offset += sd->sd_offset;
 1404                 G_RAID_LOGREQ(3, bp, "Sending request.");
 1405                 g_io_request(bp, cp);
 1406         }
 1407 }
 1408 
 1409 int
 1410 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
 1411     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1412 {
 1413 
 1414         if (sd->sd_disk == NULL)
 1415                 return (ENXIO);
 1416         if (sd->sd_disk->d_kd.di.dumper == NULL)
 1417                 return (EOPNOTSUPP);
 1418         return (dump_write(&sd->sd_disk->d_kd.di,
 1419             virtual, physical,
 1420             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
 1421             length));
 1422 }
 1423 
 1424 static void
 1425 g_raid_disk_done(struct bio *bp)
 1426 {
 1427         struct g_raid_softc *sc;
 1428         struct g_raid_subdisk *sd;
 1429 
 1430         sd = bp->bio_caller1;
 1431         sc = sd->sd_softc;
 1432         mtx_lock(&sc->sc_queue_mtx);
 1433         bioq_insert_tail(&sc->sc_queue, bp);
 1434         mtx_unlock(&sc->sc_queue_mtx);
 1435         if (!dumping)
 1436                 wakeup(sc);
 1437 }
 1438 
 1439 static void
 1440 g_raid_disk_done_request(struct bio *bp)
 1441 {
 1442         struct g_raid_softc *sc;
 1443         struct g_raid_disk *disk;
 1444         struct g_raid_subdisk *sd;
 1445         struct g_raid_volume *vol;
 1446 
 1447         g_topology_assert_not();
 1448 
 1449         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
 1450         sd = bp->bio_caller1;
 1451         sc = sd->sd_softc;
 1452         vol = sd->sd_volume;
 1453         if (bp->bio_from != NULL) {
 1454                 bp->bio_from->index--;
 1455                 disk = bp->bio_from->private;
 1456                 if (disk == NULL)
 1457                         g_raid_kill_consumer(sc, bp->bio_from);
 1458         }
 1459         bp->bio_offset -= sd->sd_offset;
 1460 
 1461         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
 1462 }
 1463 
 1464 static void
 1465 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
 1466 {
 1467 
 1468         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
 1469                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
 1470         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
 1471                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
 1472         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
 1473                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
 1474         else
 1475                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
 1476         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
 1477                 KASSERT(ep->e_error == 0,
 1478                     ("Error cannot be handled."));
 1479                 g_raid_event_free(ep);
 1480         } else {
 1481                 ep->e_flags |= G_RAID_EVENT_DONE;
 1482                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
 1483                 mtx_lock(&sc->sc_queue_mtx);
 1484                 wakeup(ep);
 1485                 mtx_unlock(&sc->sc_queue_mtx);
 1486         }
 1487 }
 1488 
 1489 /*
 1490  * Worker thread.
 1491  */
 1492 static void
 1493 g_raid_worker(void *arg)
 1494 {
 1495         struct g_raid_softc *sc;
 1496         struct g_raid_event *ep;
 1497         struct g_raid_volume *vol;
 1498         struct bio *bp;
 1499         struct timeval now, t;
 1500         int timeout, rv;
 1501 
 1502         sc = arg;
 1503         thread_lock(curthread);
 1504         sched_prio(curthread, PRIBIO);
 1505         thread_unlock(curthread);
 1506 
 1507         sx_xlock(&sc->sc_lock);
 1508         for (;;) {
 1509                 mtx_lock(&sc->sc_queue_mtx);
 1510                 /*
 1511                  * First take a look at events.
 1512                  * This is important to handle events before any I/O requests.
 1513                  */
 1514                 bp = NULL;
 1515                 vol = NULL;
 1516                 rv = 0;
 1517                 ep = TAILQ_FIRST(&sc->sc_events);
 1518                 if (ep != NULL)
 1519                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1520                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
 1521                         ;
 1522                 else {
 1523                         getmicrouptime(&now);
 1524                         t = now;
 1525                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1526                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1527                                     vol->v_tr &&
 1528                                     timevalcmp(&vol->v_last_done, &t, < ))
 1529                                         t = vol->v_last_done;
 1530                         }
 1531                         timevalsub(&t, &now);
 1532                         timeout = g_raid_idle_threshold +
 1533                             t.tv_sec * 1000000 + t.tv_usec;
 1534                         if (timeout > 0) {
 1535                                 /*
 1536                                  * Two steps to avoid overflows at HZ=1000
 1537                                  * and idle timeouts > 2.1s.  Some rounding
 1538                                  * errors can occur, but they are < 1tick,
 1539                                  * which is deemed to be close enough for
 1540                                  * this purpose.
 1541                                  */
 1542                                 int micpertic = 1000000 / hz;
 1543                                 timeout = (timeout + micpertic - 1) / micpertic;
 1544                                 sx_xunlock(&sc->sc_lock);
 1545                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
 1546                                     PRIBIO | PDROP, "-", timeout);
 1547                                 sx_xlock(&sc->sc_lock);
 1548                                 goto process;
 1549                         } else
 1550                                 rv = EWOULDBLOCK;
 1551                 }
 1552                 mtx_unlock(&sc->sc_queue_mtx);
 1553 process:
 1554                 if (ep != NULL) {
 1555                         g_raid_handle_event(sc, ep);
 1556                 } else if (bp != NULL) {
 1557                         if (bp->bio_to != NULL &&
 1558                             bp->bio_to->geom == sc->sc_geom)
 1559                                 g_raid_start_request(bp);
 1560                         else
 1561                                 g_raid_disk_done_request(bp);
 1562                 } else if (rv == EWOULDBLOCK) {
 1563                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1564                                 g_raid_clean(vol, -1);
 1565                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1566                                     vol->v_tr) {
 1567                                         t.tv_sec = g_raid_idle_threshold / 1000000;
 1568                                         t.tv_usec = g_raid_idle_threshold % 1000000;
 1569                                         timevaladd(&t, &vol->v_last_done);
 1570                                         getmicrouptime(&now);
 1571                                         if (timevalcmp(&t, &now, <= )) {
 1572                                                 G_RAID_TR_IDLE(vol->v_tr);
 1573                                                 vol->v_last_done = now;
 1574                                         }
 1575                                 }
 1576                         }
 1577                 }
 1578                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 1579                         g_raid_destroy_node(sc, 1);     /* May not return. */
 1580         }
 1581 }
 1582 
 1583 static void
 1584 g_raid_poll(struct g_raid_softc *sc)
 1585 {
 1586         struct g_raid_event *ep;
 1587         struct bio *bp;
 1588 
 1589         sx_xlock(&sc->sc_lock);
 1590         mtx_lock(&sc->sc_queue_mtx);
 1591         /*
 1592          * First take a look at events.
 1593          * This is important to handle events before any I/O requests.
 1594          */
 1595         ep = TAILQ_FIRST(&sc->sc_events);
 1596         if (ep != NULL) {
 1597                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1598                 mtx_unlock(&sc->sc_queue_mtx);
 1599                 g_raid_handle_event(sc, ep);
 1600                 goto out;
 1601         }
 1602         bp = bioq_takefirst(&sc->sc_queue);
 1603         if (bp != NULL) {
 1604                 mtx_unlock(&sc->sc_queue_mtx);
 1605                 if (bp->bio_from == NULL ||
 1606                     bp->bio_from->geom != sc->sc_geom)
 1607                         g_raid_start_request(bp);
 1608                 else
 1609                         g_raid_disk_done_request(bp);
 1610         }
 1611 out:
 1612         sx_xunlock(&sc->sc_lock);
 1613 }
 1614 
 1615 static void
 1616 g_raid_launch_provider(struct g_raid_volume *vol)
 1617 {
 1618         struct g_raid_disk *disk;
 1619         struct g_raid_subdisk *sd;
 1620         struct g_raid_softc *sc;
 1621         struct g_provider *pp;
 1622         char name[G_RAID_MAX_VOLUMENAME];
 1623         off_t off;
 1624         int i;
 1625 
 1626         sc = vol->v_softc;
 1627         sx_assert(&sc->sc_lock, SX_LOCKED);
 1628 
 1629         g_topology_lock();
 1630         /* Try to name provider with volume name. */
 1631         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
 1632         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
 1633             g_provider_by_name(name) != NULL) {
 1634                 /* Otherwise use sequential volume number. */
 1635                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
 1636         }
 1637 
 1638         pp = g_new_providerf(sc->sc_geom, "%s", name);
 1639         pp->flags |= G_PF_DIRECT_RECEIVE;
 1640         if (vol->v_tr->tro_class->trc_accept_unmapped) {
 1641                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
 1642                 for (i = 0; i < vol->v_disks_count; i++) {
 1643                         sd = &vol->v_subdisks[i];
 1644                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1645                                 continue;
 1646                         if ((sd->sd_disk->d_consumer->provider->flags &
 1647                             G_PF_ACCEPT_UNMAPPED) == 0)
 1648                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
 1649                 }
 1650         }
 1651         pp->private = vol;
 1652         pp->mediasize = vol->v_mediasize;
 1653         pp->sectorsize = vol->v_sectorsize;
 1654         pp->stripesize = 0;
 1655         pp->stripeoffset = 0;
 1656         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
 1657             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
 1658             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
 1659             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
 1660                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
 1661                     disk->d_consumer != NULL &&
 1662                     disk->d_consumer->provider != NULL) {
 1663                         pp->stripesize = disk->d_consumer->provider->stripesize;
 1664                         off = disk->d_consumer->provider->stripeoffset;
 1665                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
 1666                         if (off > 0)
 1667                                 pp->stripeoffset %= off;
 1668                 }
 1669                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
 1670                         pp->stripesize *= (vol->v_disks_count - 1);
 1671                         pp->stripeoffset *= (vol->v_disks_count - 1);
 1672                 }
 1673         } else
 1674                 pp->stripesize = vol->v_strip_size;
 1675         vol->v_provider = pp;
 1676         g_error_provider(pp, 0);
 1677         g_topology_unlock();
 1678         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
 1679             pp->name, vol->v_name);
 1680 }
 1681 
 1682 static void
 1683 g_raid_destroy_provider(struct g_raid_volume *vol)
 1684 {
 1685         struct g_raid_softc *sc;
 1686         struct g_provider *pp;
 1687         struct bio *bp, *tmp;
 1688 
 1689         g_topology_assert_not();
 1690         sc = vol->v_softc;
 1691         pp = vol->v_provider;
 1692         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
 1693 
 1694         g_topology_lock();
 1695         g_error_provider(pp, ENXIO);
 1696         mtx_lock(&sc->sc_queue_mtx);
 1697         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
 1698                 if (bp->bio_to != pp)
 1699                         continue;
 1700                 bioq_remove(&sc->sc_queue, bp);
 1701                 g_io_deliver(bp, ENXIO);
 1702         }
 1703         mtx_unlock(&sc->sc_queue_mtx);
 1704         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
 1705             pp->name, vol->v_name);
 1706         g_wither_provider(pp, ENXIO);
 1707         g_topology_unlock();
 1708         vol->v_provider = NULL;
 1709 }
 1710 
 1711 /*
 1712  * Update device state.
 1713  */
 1714 static int
 1715 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
 1716 {
 1717         struct g_raid_softc *sc;
 1718 
 1719         sc = vol->v_softc;
 1720         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1721 
 1722         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
 1723             g_raid_volume_event2str(event),
 1724             vol->v_name);
 1725         switch (event) {
 1726         case G_RAID_VOLUME_E_DOWN:
 1727                 if (vol->v_provider != NULL)
 1728                         g_raid_destroy_provider(vol);
 1729                 break;
 1730         case G_RAID_VOLUME_E_UP:
 1731                 if (vol->v_provider == NULL)
 1732                         g_raid_launch_provider(vol);
 1733                 break;
 1734         case G_RAID_VOLUME_E_START:
 1735                 if (vol->v_tr)
 1736                         G_RAID_TR_START(vol->v_tr);
 1737                 return (0);
 1738         default:
 1739                 if (sc->sc_md)
 1740                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
 1741                 return (0);
 1742         }
 1743 
 1744         /* Manage root mount release. */
 1745         if (vol->v_starting) {
 1746                 vol->v_starting = 0;
 1747                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
 1748                 root_mount_rel(vol->v_rootmount);
 1749                 vol->v_rootmount = NULL;
 1750         }
 1751         if (vol->v_stopping && vol->v_provider_open == 0)
 1752                 g_raid_destroy_volume(vol);
 1753         return (0);
 1754 }
 1755 
 1756 /*
 1757  * Update subdisk state.
 1758  */
 1759 static int
 1760 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
 1761 {
 1762         struct g_raid_softc *sc;
 1763         struct g_raid_volume *vol;
 1764 
 1765         sc = sd->sd_softc;
 1766         vol = sd->sd_volume;
 1767         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1768 
 1769         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
 1770             g_raid_subdisk_event2str(event),
 1771             vol->v_name, sd->sd_pos,
 1772             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
 1773         if (vol->v_tr)
 1774                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
 1775 
 1776         return (0);
 1777 }
 1778 
 1779 /*
 1780  * Update disk state.
 1781  */
 1782 static int
 1783 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
 1784 {
 1785         struct g_raid_softc *sc;
 1786 
 1787         sc = disk->d_softc;
 1788         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1789 
 1790         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
 1791             g_raid_disk_event2str(event),
 1792             g_raid_get_diskname(disk));
 1793 
 1794         if (sc->sc_md)
 1795                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
 1796         return (0);
 1797 }
 1798 
 1799 /*
 1800  * Node event.
 1801  */
 1802 static int
 1803 g_raid_update_node(struct g_raid_softc *sc, u_int event)
 1804 {
 1805         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1806 
 1807         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
 1808             g_raid_node_event2str(event));
 1809 
 1810         if (event == G_RAID_NODE_E_WAKE)
 1811                 return (0);
 1812         if (sc->sc_md)
 1813                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
 1814         return (0);
 1815 }
 1816 
 1817 static int
 1818 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
 1819 {
 1820         struct g_raid_volume *vol;
 1821         struct g_raid_softc *sc;
 1822         int dcw, opens, error = 0;
 1823 
 1824         g_topology_assert();
 1825         sc = pp->geom->softc;
 1826         vol = pp->private;
 1827         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
 1828         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
 1829 
 1830         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
 1831             acr, acw, ace);
 1832         dcw = pp->acw + acw;
 1833 
 1834         g_topology_unlock();
 1835         sx_xlock(&sc->sc_lock);
 1836         /* Deny new opens while dying. */
 1837         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
 1838                 error = ENXIO;
 1839                 goto out;
 1840         }
 1841         /* Deny write opens for read-only volumes. */
 1842         if (vol->v_read_only && acw > 0) {
 1843                 error = EROFS;
 1844                 goto out;
 1845         }
 1846         if (dcw == 0)
 1847                 g_raid_clean(vol, dcw);
 1848         vol->v_provider_open += acr + acw + ace;
 1849         /* Handle delayed node destruction. */
 1850         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
 1851             vol->v_provider_open == 0) {
 1852                 /* Count open volumes. */
 1853                 opens = g_raid_nopens(sc);
 1854                 if (opens == 0) {
 1855                         sc->sc_stopping = G_RAID_DESTROY_HARD;
 1856                         /* Wake up worker to make it selfdestruct. */
 1857                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 1858                 }
 1859         }
 1860         /* Handle open volume destruction. */
 1861         if (vol->v_stopping && vol->v_provider_open == 0)
 1862                 g_raid_destroy_volume(vol);
 1863 out:
 1864         sx_xunlock(&sc->sc_lock);
 1865         g_topology_lock();
 1866         return (error);
 1867 }
 1868 
 1869 struct g_raid_softc *
 1870 g_raid_create_node(struct g_class *mp,
 1871     const char *name, struct g_raid_md_object *md)
 1872 {
 1873         struct g_raid_softc *sc;
 1874         struct g_geom *gp;
 1875         int error;
 1876 
 1877         g_topology_assert();
 1878         G_RAID_DEBUG(1, "Creating array %s.", name);
 1879 
 1880         gp = g_new_geomf(mp, "%s", name);
 1881         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
 1882         gp->start = g_raid_start;
 1883         gp->orphan = g_raid_orphan;
 1884         gp->access = g_raid_access;
 1885         gp->dumpconf = g_raid_dumpconf;
 1886 
 1887         sc->sc_md = md;
 1888         sc->sc_geom = gp;
 1889         sc->sc_flags = 0;
 1890         TAILQ_INIT(&sc->sc_volumes);
 1891         TAILQ_INIT(&sc->sc_disks);
 1892         sx_init(&sc->sc_lock, "graid:lock");
 1893         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
 1894         TAILQ_INIT(&sc->sc_events);
 1895         bioq_init(&sc->sc_queue);
 1896         gp->softc = sc;
 1897         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
 1898             "g_raid %s", name);
 1899         if (error != 0) {
 1900                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
 1901                 mtx_destroy(&sc->sc_queue_mtx);
 1902                 sx_destroy(&sc->sc_lock);
 1903                 g_destroy_geom(sc->sc_geom);
 1904                 free(sc, M_RAID);
 1905                 return (NULL);
 1906         }
 1907 
 1908         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
 1909         return (sc);
 1910 }
 1911 
 1912 struct g_raid_volume *
 1913 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
 1914 {
 1915         struct g_raid_volume    *vol, *vol1;
 1916         int i;
 1917 
 1918         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
 1919         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
 1920         vol->v_softc = sc;
 1921         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
 1922         vol->v_state = G_RAID_VOLUME_S_STARTING;
 1923         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
 1924         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
 1925         vol->v_rotate_parity = 1;
 1926         bioq_init(&vol->v_inflight);
 1927         bioq_init(&vol->v_locked);
 1928         LIST_INIT(&vol->v_locks);
 1929         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 1930                 vol->v_subdisks[i].sd_softc = sc;
 1931                 vol->v_subdisks[i].sd_volume = vol;
 1932                 vol->v_subdisks[i].sd_pos = i;
 1933                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
 1934         }
 1935 
 1936         /* Find free ID for this volume. */
 1937         g_topology_lock();
 1938         vol1 = vol;
 1939         if (id >= 0) {
 1940                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1941                         if (vol1->v_global_id == id)
 1942                                 break;
 1943                 }
 1944         }
 1945         if (vol1 != NULL) {
 1946                 for (id = 0; ; id++) {
 1947                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1948                                 if (vol1->v_global_id == id)
 1949                                         break;
 1950                         }
 1951                         if (vol1 == NULL)
 1952                                 break;
 1953                 }
 1954         }
 1955         vol->v_global_id = id;
 1956         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
 1957         g_topology_unlock();
 1958 
 1959         /* Delay root mounting. */
 1960         vol->v_rootmount = root_mount_hold("GRAID");
 1961         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
 1962         vol->v_starting = 1;
 1963         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
 1964         return (vol);
 1965 }
 1966 
 1967 struct g_raid_disk *
 1968 g_raid_create_disk(struct g_raid_softc *sc)
 1969 {
 1970         struct g_raid_disk      *disk;
 1971 
 1972         G_RAID_DEBUG1(1, sc, "Creating disk.");
 1973         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
 1974         disk->d_softc = sc;
 1975         disk->d_state = G_RAID_DISK_S_NONE;
 1976         TAILQ_INIT(&disk->d_subdisks);
 1977         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
 1978         return (disk);
 1979 }
 1980 
 1981 int g_raid_start_volume(struct g_raid_volume *vol)
 1982 {
 1983         struct g_raid_tr_class *class;
 1984         struct g_raid_tr_object *obj;
 1985         int status;
 1986 
 1987         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
 1988         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
 1989                 if (!class->trc_enable)
 1990                         continue;
 1991                 G_RAID_DEBUG1(2, vol->v_softc,
 1992                     "Tasting volume %s for %s transformation.",
 1993                     vol->v_name, class->name);
 1994                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 1995                     M_WAITOK);
 1996                 obj->tro_class = class;
 1997                 obj->tro_volume = vol;
 1998                 status = G_RAID_TR_TASTE(obj, vol);
 1999                 if (status != G_RAID_TR_TASTE_FAIL)
 2000                         break;
 2001                 kobj_delete((kobj_t)obj, M_RAID);
 2002         }
 2003         if (class == NULL) {
 2004                 G_RAID_DEBUG1(0, vol->v_softc,
 2005                     "No transformation module found for %s.",
 2006                     vol->v_name);
 2007                 vol->v_tr = NULL;
 2008                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
 2009                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
 2010                     G_RAID_EVENT_VOLUME);
 2011                 return (-1);
 2012         }
 2013         G_RAID_DEBUG1(2, vol->v_softc,
 2014             "Transformation module %s chosen for %s.",
 2015             class->name, vol->v_name);
 2016         vol->v_tr = obj;
 2017         return (0);
 2018 }
 2019 
 2020 int
 2021 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
 2022 {
 2023         struct g_raid_volume *vol, *tmpv;
 2024         struct g_raid_disk *disk, *tmpd;
 2025         int error = 0;
 2026 
 2027         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2028         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
 2029                 if (g_raid_destroy_volume(vol))
 2030                         error = EBUSY;
 2031         }
 2032         if (error)
 2033                 return (error);
 2034         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
 2035                 if (g_raid_destroy_disk(disk))
 2036                         error = EBUSY;
 2037         }
 2038         if (error)
 2039                 return (error);
 2040         if (sc->sc_md) {
 2041                 G_RAID_MD_FREE(sc->sc_md);
 2042                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
 2043                 sc->sc_md = NULL;
 2044         }
 2045         if (sc->sc_geom != NULL) {
 2046                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
 2047                 g_topology_lock();
 2048                 sc->sc_geom->softc = NULL;
 2049                 g_wither_geom(sc->sc_geom, ENXIO);
 2050                 g_topology_unlock();
 2051                 sc->sc_geom = NULL;
 2052         } else
 2053                 G_RAID_DEBUG(1, "Array destroyed.");
 2054         if (worker) {
 2055                 g_raid_event_cancel(sc, sc);
 2056                 mtx_destroy(&sc->sc_queue_mtx);
 2057                 sx_xunlock(&sc->sc_lock);
 2058                 sx_destroy(&sc->sc_lock);
 2059                 wakeup(&sc->sc_stopping);
 2060                 free(sc, M_RAID);
 2061                 curthread->td_pflags &= ~TDP_GEOM;
 2062                 G_RAID_DEBUG(1, "Thread exiting.");
 2063                 kproc_exit(0);
 2064         } else {
 2065                 /* Wake up worker to make it selfdestruct. */
 2066                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2067         }
 2068         return (0);
 2069 }
 2070 
 2071 int
 2072 g_raid_destroy_volume(struct g_raid_volume *vol)
 2073 {
 2074         struct g_raid_softc *sc;
 2075         struct g_raid_disk *disk;
 2076         int i;
 2077 
 2078         sc = vol->v_softc;
 2079         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
 2080         vol->v_stopping = 1;
 2081         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
 2082                 if (vol->v_tr) {
 2083                         G_RAID_TR_STOP(vol->v_tr);
 2084                         return (EBUSY);
 2085                 } else
 2086                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
 2087         }
 2088         if (g_raid_event_check(sc, vol) != 0)
 2089                 return (EBUSY);
 2090         if (vol->v_provider != NULL)
 2091                 return (EBUSY);
 2092         if (vol->v_provider_open != 0)
 2093                 return (EBUSY);
 2094         if (vol->v_tr) {
 2095                 G_RAID_TR_FREE(vol->v_tr);
 2096                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
 2097                 vol->v_tr = NULL;
 2098         }
 2099         if (vol->v_rootmount)
 2100                 root_mount_rel(vol->v_rootmount);
 2101         g_topology_lock();
 2102         LIST_REMOVE(vol, v_global_next);
 2103         g_topology_unlock();
 2104         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
 2105         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 2106                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
 2107                 disk = vol->v_subdisks[i].sd_disk;
 2108                 if (disk == NULL)
 2109                         continue;
 2110                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
 2111         }
 2112         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
 2113         if (sc->sc_md)
 2114                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
 2115         g_raid_event_cancel(sc, vol);
 2116         free(vol, M_RAID);
 2117         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
 2118                 /* Wake up worker to let it selfdestruct. */
 2119                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2120         }
 2121         return (0);
 2122 }
 2123 
 2124 int
 2125 g_raid_destroy_disk(struct g_raid_disk *disk)
 2126 {
 2127         struct g_raid_softc *sc;
 2128         struct g_raid_subdisk *sd, *tmp;
 2129 
 2130         sc = disk->d_softc;
 2131         G_RAID_DEBUG1(2, sc, "Destroying disk.");
 2132         if (disk->d_consumer) {
 2133                 g_raid_kill_consumer(sc, disk->d_consumer);
 2134                 disk->d_consumer = NULL;
 2135         }
 2136         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
 2137                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
 2138                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
 2139                     G_RAID_EVENT_SUBDISK);
 2140                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
 2141                 sd->sd_disk = NULL;
 2142         }
 2143         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
 2144         if (sc->sc_md)
 2145                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
 2146         g_raid_event_cancel(sc, disk);
 2147         free(disk, M_RAID);
 2148         return (0);
 2149 }
 2150 
 2151 int
 2152 g_raid_destroy(struct g_raid_softc *sc, int how)
 2153 {
 2154         int error, opens;
 2155 
 2156         g_topology_assert_not();
 2157         if (sc == NULL)
 2158                 return (ENXIO);
 2159         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2160 
 2161         /* Count open volumes. */
 2162         opens = g_raid_nopens(sc);
 2163 
 2164         /* React on some opened volumes. */
 2165         if (opens > 0) {
 2166                 switch (how) {
 2167                 case G_RAID_DESTROY_SOFT:
 2168                         G_RAID_DEBUG1(1, sc,
 2169                             "%d volumes are still open.",
 2170                             opens);
 2171                         sx_xunlock(&sc->sc_lock);
 2172                         return (EBUSY);
 2173                 case G_RAID_DESTROY_DELAYED:
 2174                         G_RAID_DEBUG1(1, sc,
 2175                             "Array will be destroyed on last close.");
 2176                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
 2177                         sx_xunlock(&sc->sc_lock);
 2178                         return (EBUSY);
 2179                 case G_RAID_DESTROY_HARD:
 2180                         G_RAID_DEBUG1(1, sc,
 2181                             "%d volumes are still open.",
 2182                             opens);
 2183                 }
 2184         }
 2185 
 2186         /* Mark node for destruction. */
 2187         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2188         /* Wake up worker to let it selfdestruct. */
 2189         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2190         /* Sleep until node destroyed. */
 2191         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
 2192             PRIBIO | PDROP, "r:destroy", hz * 3);
 2193         return (error == EWOULDBLOCK ? EBUSY : 0);
 2194 }
 2195 
 2196 static void
 2197 g_raid_taste_orphan(struct g_consumer *cp)
 2198 {
 2199 
 2200         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
 2201             cp->provider->name));
 2202 }
 2203 
 2204 static struct g_geom *
 2205 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
 2206 {
 2207         struct g_consumer *cp;
 2208         struct g_geom *gp, *geom;
 2209         struct g_raid_md_class *class;
 2210         struct g_raid_md_object *obj;
 2211         int status;
 2212 
 2213         g_topology_assert();
 2214         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
 2215         if (!g_raid_enable)
 2216                 return (NULL);
 2217         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
 2218 
 2219         geom = NULL;
 2220         status = G_RAID_MD_TASTE_FAIL;
 2221         gp = g_new_geomf(mp, "raid:taste");
 2222         /*
 2223          * This orphan function should be never called.
 2224          */
 2225         gp->orphan = g_raid_taste_orphan;
 2226         cp = g_new_consumer(gp);
 2227         cp->flags |= G_CF_DIRECT_RECEIVE;
 2228         g_attach(cp, pp);
 2229         if (g_access(cp, 1, 0, 0) != 0)
 2230                 goto ofail;
 2231 
 2232         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2233                 if (!class->mdc_enable)
 2234                         continue;
 2235                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
 2236                     pp->name, class->name);
 2237                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2238                     M_WAITOK);
 2239                 obj->mdo_class = class;
 2240                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
 2241                 if (status != G_RAID_MD_TASTE_NEW)
 2242                         kobj_delete((kobj_t)obj, M_RAID);
 2243                 if (status != G_RAID_MD_TASTE_FAIL)
 2244                         break;
 2245         }
 2246 
 2247         if (status == G_RAID_MD_TASTE_FAIL)
 2248                 (void)g_access(cp, -1, 0, 0);
 2249 ofail:
 2250         g_detach(cp);
 2251         g_destroy_consumer(cp);
 2252         g_destroy_geom(gp);
 2253         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
 2254         return (geom);
 2255 }
 2256 
 2257 int
 2258 g_raid_create_node_format(const char *format, struct gctl_req *req,
 2259     struct g_geom **gp)
 2260 {
 2261         struct g_raid_md_class *class;
 2262         struct g_raid_md_object *obj;
 2263         int status;
 2264 
 2265         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
 2266         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2267                 if (strcasecmp(class->name, format) == 0)
 2268                         break;
 2269         }
 2270         if (class == NULL) {
 2271                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
 2272                 return (G_RAID_MD_TASTE_FAIL);
 2273         }
 2274         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2275             M_WAITOK);
 2276         obj->mdo_class = class;
 2277         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
 2278         if (status != G_RAID_MD_TASTE_NEW)
 2279                 kobj_delete((kobj_t)obj, M_RAID);
 2280         return (status);
 2281 }
 2282 
 2283 static int
 2284 g_raid_destroy_geom(struct gctl_req *req __unused,
 2285     struct g_class *mp __unused, struct g_geom *gp)
 2286 {
 2287         struct g_raid_softc *sc;
 2288         int error;
 2289 
 2290         g_topology_unlock();
 2291         sc = gp->softc;
 2292         sx_xlock(&sc->sc_lock);
 2293         g_cancel_event(sc);
 2294         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
 2295         g_topology_lock();
 2296         return (error);
 2297 }
 2298 
 2299 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
 2300     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2301 {
 2302 
 2303         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 2304                 return;
 2305         if (sc->sc_md)
 2306                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
 2307 }
 2308 
 2309 void g_raid_fail_disk(struct g_raid_softc *sc,
 2310     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2311 {
 2312 
 2313         if (disk == NULL)
 2314                 disk = sd->sd_disk;
 2315         if (disk == NULL) {
 2316                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
 2317                 return;
 2318         }
 2319         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
 2320                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
 2321                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 2322                 return;
 2323         }
 2324         if (sc->sc_md)
 2325                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
 2326 }
 2327 
 2328 static void
 2329 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
 2330     struct g_consumer *cp, struct g_provider *pp)
 2331 {
 2332         struct g_raid_softc *sc;
 2333         struct g_raid_volume *vol;
 2334         struct g_raid_subdisk *sd;
 2335         struct g_raid_disk *disk;
 2336         int i, s;
 2337 
 2338         g_topology_assert();
 2339 
 2340         sc = gp->softc;
 2341         if (sc == NULL)
 2342                 return;
 2343         if (pp != NULL) {
 2344                 vol = pp->private;
 2345                 g_topology_unlock();
 2346                 sx_xlock(&sc->sc_lock);
 2347                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
 2348                     sc->sc_md->mdo_class->name,
 2349                     g_raid_volume_level2str(vol->v_raid_level,
 2350                     vol->v_raid_level_qualifier));
 2351                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
 2352                     vol->v_name);
 2353                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
 2354                     g_raid_volume_level2str(vol->v_raid_level,
 2355                     vol->v_raid_level_qualifier));
 2356                 sbuf_printf(sb,
 2357                     "%s<Transformation>%s</Transformation>\n", indent,
 2358                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
 2359                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
 2360                     vol->v_disks_count);
 2361                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
 2362                     vol->v_strip_size);
 2363                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2364                     g_raid_volume_state2str(vol->v_state));
 2365                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
 2366                     vol->v_dirty ? "Yes" : "No");
 2367                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2368                 for (i = 0; i < vol->v_disks_count; i++) {
 2369                         sd = &vol->v_subdisks[i];
 2370                         if (sd->sd_disk != NULL &&
 2371                             sd->sd_disk->d_consumer != NULL) {
 2372                                 sbuf_printf(sb, "%s ",
 2373                                     g_raid_get_diskname(sd->sd_disk));
 2374                         } else {
 2375                                 sbuf_cat(sb, "NONE ");
 2376                         }
 2377                         sbuf_printf(sb, "(%s",
 2378                             g_raid_subdisk_state2str(sd->sd_state));
 2379                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2380                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2381                                 sbuf_printf(sb, " %d%%",
 2382                                     (int)(sd->sd_rebuild_pos * 100 /
 2383                                      sd->sd_size));
 2384                         }
 2385                         sbuf_cat(sb, ")");
 2386                         if (i + 1 < vol->v_disks_count)
 2387                                 sbuf_cat(sb, ", ");
 2388                 }
 2389                 sbuf_cat(sb, "</Subdisks>\n");
 2390                 sx_xunlock(&sc->sc_lock);
 2391                 g_topology_lock();
 2392         } else if (cp != NULL) {
 2393                 disk = cp->private;
 2394                 if (disk == NULL)
 2395                         return;
 2396                 g_topology_unlock();
 2397                 sx_xlock(&sc->sc_lock);
 2398                 sbuf_printf(sb, "%s<State>%s", indent,
 2399                     g_raid_disk_state2str(disk->d_state));
 2400                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
 2401                         sbuf_cat(sb, " (");
 2402                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2403                                 sbuf_printf(sb, "%s",
 2404                                     g_raid_subdisk_state2str(sd->sd_state));
 2405                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2406                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2407                                         sbuf_printf(sb, " %d%%",
 2408                                             (int)(sd->sd_rebuild_pos * 100 /
 2409                                              sd->sd_size));
 2410                                 }
 2411                                 if (TAILQ_NEXT(sd, sd_next))
 2412                                         sbuf_cat(sb, ", ");
 2413                         }
 2414                         sbuf_cat(sb, ")");
 2415                 }
 2416                 sbuf_cat(sb, "</State>\n");
 2417                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2418                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2419                         sbuf_printf(sb, "r%d(%s):%d@%ju",
 2420                             sd->sd_volume->v_global_id,
 2421                             sd->sd_volume->v_name,
 2422                             sd->sd_pos, sd->sd_offset);
 2423                         if (TAILQ_NEXT(sd, sd_next))
 2424                                 sbuf_cat(sb, ", ");
 2425                 }
 2426                 sbuf_cat(sb, "</Subdisks>\n");
 2427                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
 2428                     disk->d_read_errs);
 2429                 sx_xunlock(&sc->sc_lock);
 2430                 g_topology_lock();
 2431         } else {
 2432                 g_topology_unlock();
 2433                 sx_xlock(&sc->sc_lock);
 2434                 if (sc->sc_md) {
 2435                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
 2436                             sc->sc_md->mdo_class->name);
 2437                 }
 2438                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
 2439                         s = 0xff;
 2440                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 2441                                 if (vol->v_state < s)
 2442                                         s = vol->v_state;
 2443                         }
 2444                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2445                             g_raid_volume_state2str(s));
 2446                 }
 2447                 sx_xunlock(&sc->sc_lock);
 2448                 g_topology_lock();
 2449         }
 2450 }
 2451 
 2452 static void
 2453 g_raid_shutdown_post_sync(void *arg, int howto)
 2454 {
 2455         struct g_class *mp;
 2456         struct g_geom *gp, *gp2;
 2457         struct g_raid_softc *sc;
 2458         struct g_raid_volume *vol;
 2459 
 2460         mp = arg;
 2461         g_topology_lock();
 2462         g_raid_shutdown = 1;
 2463         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
 2464                 if ((sc = gp->softc) == NULL)
 2465                         continue;
 2466                 g_topology_unlock();
 2467                 sx_xlock(&sc->sc_lock);
 2468                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
 2469                         g_raid_clean(vol, -1);
 2470                 g_cancel_event(sc);
 2471                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
 2472                 g_topology_lock();
 2473         }
 2474         g_topology_unlock();
 2475 }
 2476 
 2477 static void
 2478 g_raid_init(struct g_class *mp)
 2479 {
 2480 
 2481         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
 2482             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
 2483         if (g_raid_post_sync == NULL)
 2484                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
 2485         g_raid_started = 1;
 2486 }
 2487 
 2488 static void
 2489 g_raid_fini(struct g_class *mp)
 2490 {
 2491 
 2492         if (g_raid_post_sync != NULL)
 2493                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
 2494         g_raid_started = 0;
 2495 }
 2496 
 2497 int
 2498 g_raid_md_modevent(module_t mod, int type, void *arg)
 2499 {
 2500         struct g_raid_md_class *class, *c, *nc;
 2501         int error;
 2502 
 2503         error = 0;
 2504         class = arg;
 2505         switch (type) {
 2506         case MOD_LOAD:
 2507                 c = LIST_FIRST(&g_raid_md_classes);
 2508                 if (c == NULL || c->mdc_priority > class->mdc_priority)
 2509                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
 2510                 else {
 2511                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
 2512                             nc->mdc_priority < class->mdc_priority)
 2513                                 c = nc;
 2514                         LIST_INSERT_AFTER(c, class, mdc_list);
 2515                 }
 2516                 if (g_raid_started)
 2517                         g_retaste(&g_raid_class);
 2518                 break;
 2519         case MOD_UNLOAD:
 2520                 LIST_REMOVE(class, mdc_list);
 2521                 break;
 2522         default:
 2523                 error = EOPNOTSUPP;
 2524                 break;
 2525         }
 2526 
 2527         return (error);
 2528 }
 2529 
 2530 int
 2531 g_raid_tr_modevent(module_t mod, int type, void *arg)
 2532 {
 2533         struct g_raid_tr_class *class, *c, *nc;
 2534         int error;
 2535 
 2536         error = 0;
 2537         class = arg;
 2538         switch (type) {
 2539         case MOD_LOAD:
 2540                 c = LIST_FIRST(&g_raid_tr_classes);
 2541                 if (c == NULL || c->trc_priority > class->trc_priority)
 2542                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
 2543                 else {
 2544                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
 2545                             nc->trc_priority < class->trc_priority)
 2546                                 c = nc;
 2547                         LIST_INSERT_AFTER(c, class, trc_list);
 2548                 }
 2549                 break;
 2550         case MOD_UNLOAD:
 2551                 LIST_REMOVE(class, trc_list);
 2552                 break;
 2553         default:
 2554                 error = EOPNOTSUPP;
 2555                 break;
 2556         }
 2557 
 2558         return (error);
 2559 }
 2560 
 2561 /*
 2562  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
 2563  * to reduce module priority, allowing submodules to register them first.
 2564  */
 2565 static moduledata_t g_raid_mod = {
 2566         "g_raid",
 2567         g_modevent,
 2568         &g_raid_class
 2569 };
 2570 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
 2571 MODULE_VERSION(geom_raid, 0);

Cache object: 385575114d5df91f3b2043b4fd2aa66e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.