The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/raid/g_raid.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/kernel.h>
   33 #include <sys/module.h>
   34 #include <sys/limits.h>
   35 #include <sys/lock.h>
   36 #include <sys/mutex.h>
   37 #include <sys/bio.h>
   38 #include <sys/sysctl.h>
   39 #include <sys/malloc.h>
   40 #include <sys/eventhandler.h>
   41 #include <vm/uma.h>
   42 #include <geom/geom.h>
   43 #include <sys/proc.h>
   44 #include <sys/kthread.h>
   45 #include <sys/sched.h>
   46 #include <geom/raid/g_raid.h>
   47 #include "g_raid_md_if.h"
   48 #include "g_raid_tr_if.h"
   49 
   50 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
   51 
   52 SYSCTL_DECL(_kern_geom);
   53 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
   54 int g_raid_enable = 1;
   55 TUNABLE_INT("kern.geom.raid.enable", &g_raid_enable);
   56 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RW,
   57     &g_raid_enable, 0, "Enable on-disk metadata taste");
   58 u_int g_raid_aggressive_spare = 0;
   59 TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare);
   60 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW,
   61     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
   62 u_int g_raid_debug = 0;
   63 TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug);
   64 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0,
   65     "Debug level");
   66 int g_raid_read_err_thresh = 10;
   67 TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh);
   68 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW,
   69     &g_raid_read_err_thresh, 0,
   70     "Number of read errors equated to disk failure");
   71 u_int g_raid_start_timeout = 30;
   72 TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout);
   73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW,
   74     &g_raid_start_timeout, 0,
   75     "Time to wait for all array components");
   76 static u_int g_raid_clean_time = 5;
   77 TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time);
   78 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW,
   79     &g_raid_clean_time, 0, "Mark volume as clean when idling");
   80 static u_int g_raid_disconnect_on_failure = 1;
   81 TUNABLE_INT("kern.geom.raid.disconnect_on_failure",
   82     &g_raid_disconnect_on_failure);
   83 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
   84     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
   85 static u_int g_raid_name_format = 0;
   86 TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format);
   87 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW,
   88     &g_raid_name_format, 0, "Providers name format.");
   89 static u_int g_raid_idle_threshold = 1000000;
   90 TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold);
   91 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW,
   92     &g_raid_idle_threshold, 1000000,
   93     "Time in microseconds to consider a volume idle.");
   94 
   95 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
   96         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
   97         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
   98         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
   99 } while (0)
  100 
  101 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
  102     LIST_HEAD_INITIALIZER(g_raid_md_classes);
  103 
  104 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
  105     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
  106 
  107 LIST_HEAD(, g_raid_volume) g_raid_volumes =
  108     LIST_HEAD_INITIALIZER(g_raid_volumes);
  109 
  110 static eventhandler_tag g_raid_post_sync = NULL;
  111 static int g_raid_started = 0;
  112 static int g_raid_shutdown = 0;
  113 
  114 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
  115     struct g_geom *gp);
  116 static g_taste_t g_raid_taste;
  117 static void g_raid_init(struct g_class *mp);
  118 static void g_raid_fini(struct g_class *mp);
  119 
  120 struct g_class g_raid_class = {
  121         .name = G_RAID_CLASS_NAME,
  122         .version = G_VERSION,
  123         .ctlreq = g_raid_ctl,
  124         .taste = g_raid_taste,
  125         .destroy_geom = g_raid_destroy_geom,
  126         .init = g_raid_init,
  127         .fini = g_raid_fini
  128 };
  129 
  130 static void g_raid_destroy_provider(struct g_raid_volume *vol);
  131 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
  132 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
  133 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
  134 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
  135 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
  136     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
  137 static void g_raid_start(struct bio *bp);
  138 static void g_raid_start_request(struct bio *bp);
  139 static void g_raid_disk_done(struct bio *bp);
  140 static void g_raid_poll(struct g_raid_softc *sc);
  141 
  142 static const char *
  143 g_raid_node_event2str(int event)
  144 {
  145 
  146         switch (event) {
  147         case G_RAID_NODE_E_WAKE:
  148                 return ("WAKE");
  149         case G_RAID_NODE_E_START:
  150                 return ("START");
  151         default:
  152                 return ("INVALID");
  153         }
  154 }
  155 
  156 const char *
  157 g_raid_disk_state2str(int state)
  158 {
  159 
  160         switch (state) {
  161         case G_RAID_DISK_S_NONE:
  162                 return ("NONE");
  163         case G_RAID_DISK_S_OFFLINE:
  164                 return ("OFFLINE");
  165         case G_RAID_DISK_S_DISABLED:
  166                 return ("DISABLED");
  167         case G_RAID_DISK_S_FAILED:
  168                 return ("FAILED");
  169         case G_RAID_DISK_S_STALE_FAILED:
  170                 return ("STALE_FAILED");
  171         case G_RAID_DISK_S_SPARE:
  172                 return ("SPARE");
  173         case G_RAID_DISK_S_STALE:
  174                 return ("STALE");
  175         case G_RAID_DISK_S_ACTIVE:
  176                 return ("ACTIVE");
  177         default:
  178                 return ("INVALID");
  179         }
  180 }
  181 
  182 static const char *
  183 g_raid_disk_event2str(int event)
  184 {
  185 
  186         switch (event) {
  187         case G_RAID_DISK_E_DISCONNECTED:
  188                 return ("DISCONNECTED");
  189         default:
  190                 return ("INVALID");
  191         }
  192 }
  193 
  194 const char *
  195 g_raid_subdisk_state2str(int state)
  196 {
  197 
  198         switch (state) {
  199         case G_RAID_SUBDISK_S_NONE:
  200                 return ("NONE");
  201         case G_RAID_SUBDISK_S_FAILED:
  202                 return ("FAILED");
  203         case G_RAID_SUBDISK_S_NEW:
  204                 return ("NEW");
  205         case G_RAID_SUBDISK_S_REBUILD:
  206                 return ("REBUILD");
  207         case G_RAID_SUBDISK_S_UNINITIALIZED:
  208                 return ("UNINITIALIZED");
  209         case G_RAID_SUBDISK_S_STALE:
  210                 return ("STALE");
  211         case G_RAID_SUBDISK_S_RESYNC:
  212                 return ("RESYNC");
  213         case G_RAID_SUBDISK_S_ACTIVE:
  214                 return ("ACTIVE");
  215         default:
  216                 return ("INVALID");
  217         }
  218 }
  219 
  220 static const char *
  221 g_raid_subdisk_event2str(int event)
  222 {
  223 
  224         switch (event) {
  225         case G_RAID_SUBDISK_E_NEW:
  226                 return ("NEW");
  227         case G_RAID_SUBDISK_E_FAILED:
  228                 return ("FAILED");
  229         case G_RAID_SUBDISK_E_DISCONNECTED:
  230                 return ("DISCONNECTED");
  231         default:
  232                 return ("INVALID");
  233         }
  234 }
  235 
  236 const char *
  237 g_raid_volume_state2str(int state)
  238 {
  239 
  240         switch (state) {
  241         case G_RAID_VOLUME_S_STARTING:
  242                 return ("STARTING");
  243         case G_RAID_VOLUME_S_BROKEN:
  244                 return ("BROKEN");
  245         case G_RAID_VOLUME_S_DEGRADED:
  246                 return ("DEGRADED");
  247         case G_RAID_VOLUME_S_SUBOPTIMAL:
  248                 return ("SUBOPTIMAL");
  249         case G_RAID_VOLUME_S_OPTIMAL:
  250                 return ("OPTIMAL");
  251         case G_RAID_VOLUME_S_UNSUPPORTED:
  252                 return ("UNSUPPORTED");
  253         case G_RAID_VOLUME_S_STOPPED:
  254                 return ("STOPPED");
  255         default:
  256                 return ("INVALID");
  257         }
  258 }
  259 
  260 static const char *
  261 g_raid_volume_event2str(int event)
  262 {
  263 
  264         switch (event) {
  265         case G_RAID_VOLUME_E_UP:
  266                 return ("UP");
  267         case G_RAID_VOLUME_E_DOWN:
  268                 return ("DOWN");
  269         case G_RAID_VOLUME_E_START:
  270                 return ("START");
  271         case G_RAID_VOLUME_E_STARTMD:
  272                 return ("STARTMD");
  273         default:
  274                 return ("INVALID");
  275         }
  276 }
  277 
  278 const char *
  279 g_raid_volume_level2str(int level, int qual)
  280 {
  281 
  282         switch (level) {
  283         case G_RAID_VOLUME_RL_RAID0:
  284                 return ("RAID0");
  285         case G_RAID_VOLUME_RL_RAID1:
  286                 return ("RAID1");
  287         case G_RAID_VOLUME_RL_RAID3:
  288                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
  289                         return ("RAID3-P0");
  290                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
  291                         return ("RAID3-PN");
  292                 return ("RAID3");
  293         case G_RAID_VOLUME_RL_RAID4:
  294                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
  295                         return ("RAID4-P0");
  296                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
  297                         return ("RAID4-PN");
  298                 return ("RAID4");
  299         case G_RAID_VOLUME_RL_RAID5:
  300                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
  301                         return ("RAID5-RA");
  302                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
  303                         return ("RAID5-RS");
  304                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
  305                         return ("RAID5-LA");
  306                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
  307                         return ("RAID5-LS");
  308                 return ("RAID5");
  309         case G_RAID_VOLUME_RL_RAID6:
  310                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
  311                         return ("RAID6-RA");
  312                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
  313                         return ("RAID6-RS");
  314                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
  315                         return ("RAID6-LA");
  316                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
  317                         return ("RAID6-LS");
  318                 return ("RAID6");
  319         case G_RAID_VOLUME_RL_RAIDMDF:
  320                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
  321                         return ("RAIDMDF-RA");
  322                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
  323                         return ("RAIDMDF-RS");
  324                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
  325                         return ("RAIDMDF-LA");
  326                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
  327                         return ("RAIDMDF-LS");
  328                 return ("RAIDMDF");
  329         case G_RAID_VOLUME_RL_RAID1E:
  330                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
  331                         return ("RAID1E-A");
  332                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
  333                         return ("RAID1E-O");
  334                 return ("RAID1E");
  335         case G_RAID_VOLUME_RL_SINGLE:
  336                 return ("SINGLE");
  337         case G_RAID_VOLUME_RL_CONCAT:
  338                 return ("CONCAT");
  339         case G_RAID_VOLUME_RL_RAID5E:
  340                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
  341                         return ("RAID5E-RA");
  342                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
  343                         return ("RAID5E-RS");
  344                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
  345                         return ("RAID5E-LA");
  346                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
  347                         return ("RAID5E-LS");
  348                 return ("RAID5E");
  349         case G_RAID_VOLUME_RL_RAID5EE:
  350                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
  351                         return ("RAID5EE-RA");
  352                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
  353                         return ("RAID5EE-RS");
  354                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
  355                         return ("RAID5EE-LA");
  356                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
  357                         return ("RAID5EE-LS");
  358                 return ("RAID5EE");
  359         case G_RAID_VOLUME_RL_RAID5R:
  360                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
  361                         return ("RAID5R-RA");
  362                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
  363                         return ("RAID5R-RS");
  364                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
  365                         return ("RAID5R-LA");
  366                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
  367                         return ("RAID5R-LS");
  368                 return ("RAID5E");
  369         default:
  370                 return ("UNKNOWN");
  371         }
  372 }
  373 
  374 int
  375 g_raid_volume_str2level(const char *str, int *level, int *qual)
  376 {
  377 
  378         *level = G_RAID_VOLUME_RL_UNKNOWN;
  379         *qual = G_RAID_VOLUME_RLQ_NONE;
  380         if (strcasecmp(str, "RAID0") == 0)
  381                 *level = G_RAID_VOLUME_RL_RAID0;
  382         else if (strcasecmp(str, "RAID1") == 0)
  383                 *level = G_RAID_VOLUME_RL_RAID1;
  384         else if (strcasecmp(str, "RAID3-P0") == 0) {
  385                 *level = G_RAID_VOLUME_RL_RAID3;
  386                 *qual = G_RAID_VOLUME_RLQ_R3P0;
  387         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
  388                    strcasecmp(str, "RAID3") == 0) {
  389                 *level = G_RAID_VOLUME_RL_RAID3;
  390                 *qual = G_RAID_VOLUME_RLQ_R3PN;
  391         } else if (strcasecmp(str, "RAID4-P0") == 0) {
  392                 *level = G_RAID_VOLUME_RL_RAID4;
  393                 *qual = G_RAID_VOLUME_RLQ_R4P0;
  394         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
  395                    strcasecmp(str, "RAID4") == 0) {
  396                 *level = G_RAID_VOLUME_RL_RAID4;
  397                 *qual = G_RAID_VOLUME_RLQ_R4PN;
  398         } else if (strcasecmp(str, "RAID5-RA") == 0) {
  399                 *level = G_RAID_VOLUME_RL_RAID5;
  400                 *qual = G_RAID_VOLUME_RLQ_R5RA;
  401         } else if (strcasecmp(str, "RAID5-RS") == 0) {
  402                 *level = G_RAID_VOLUME_RL_RAID5;
  403                 *qual = G_RAID_VOLUME_RLQ_R5RS;
  404         } else if (strcasecmp(str, "RAID5") == 0 ||
  405                    strcasecmp(str, "RAID5-LA") == 0) {
  406                 *level = G_RAID_VOLUME_RL_RAID5;
  407                 *qual = G_RAID_VOLUME_RLQ_R5LA;
  408         } else if (strcasecmp(str, "RAID5-LS") == 0) {
  409                 *level = G_RAID_VOLUME_RL_RAID5;
  410                 *qual = G_RAID_VOLUME_RLQ_R5LS;
  411         } else if (strcasecmp(str, "RAID6-RA") == 0) {
  412                 *level = G_RAID_VOLUME_RL_RAID6;
  413                 *qual = G_RAID_VOLUME_RLQ_R6RA;
  414         } else if (strcasecmp(str, "RAID6-RS") == 0) {
  415                 *level = G_RAID_VOLUME_RL_RAID6;
  416                 *qual = G_RAID_VOLUME_RLQ_R6RS;
  417         } else if (strcasecmp(str, "RAID6") == 0 ||
  418                    strcasecmp(str, "RAID6-LA") == 0) {
  419                 *level = G_RAID_VOLUME_RL_RAID6;
  420                 *qual = G_RAID_VOLUME_RLQ_R6LA;
  421         } else if (strcasecmp(str, "RAID6-LS") == 0) {
  422                 *level = G_RAID_VOLUME_RL_RAID6;
  423                 *qual = G_RAID_VOLUME_RLQ_R6LS;
  424         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
  425                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  426                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
  427         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
  428                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  429                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
  430         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
  431                    strcasecmp(str, "RAIDMDF-LA") == 0) {
  432                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  433                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
  434         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
  435                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  436                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
  437         } else if (strcasecmp(str, "RAID10") == 0 ||
  438                    strcasecmp(str, "RAID1E") == 0 ||
  439                    strcasecmp(str, "RAID1E-A") == 0) {
  440                 *level = G_RAID_VOLUME_RL_RAID1E;
  441                 *qual = G_RAID_VOLUME_RLQ_R1EA;
  442         } else if (strcasecmp(str, "RAID1E-O") == 0) {
  443                 *level = G_RAID_VOLUME_RL_RAID1E;
  444                 *qual = G_RAID_VOLUME_RLQ_R1EO;
  445         } else if (strcasecmp(str, "SINGLE") == 0)
  446                 *level = G_RAID_VOLUME_RL_SINGLE;
  447         else if (strcasecmp(str, "CONCAT") == 0)
  448                 *level = G_RAID_VOLUME_RL_CONCAT;
  449         else if (strcasecmp(str, "RAID5E-RA") == 0) {
  450                 *level = G_RAID_VOLUME_RL_RAID5E;
  451                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
  452         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
  453                 *level = G_RAID_VOLUME_RL_RAID5E;
  454                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
  455         } else if (strcasecmp(str, "RAID5E") == 0 ||
  456                    strcasecmp(str, "RAID5E-LA") == 0) {
  457                 *level = G_RAID_VOLUME_RL_RAID5E;
  458                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
  459         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
  460                 *level = G_RAID_VOLUME_RL_RAID5E;
  461                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
  462         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
  463                 *level = G_RAID_VOLUME_RL_RAID5EE;
  464                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
  465         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
  466                 *level = G_RAID_VOLUME_RL_RAID5EE;
  467                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
  468         } else if (strcasecmp(str, "RAID5EE") == 0 ||
  469                    strcasecmp(str, "RAID5EE-LA") == 0) {
  470                 *level = G_RAID_VOLUME_RL_RAID5EE;
  471                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
  472         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
  473                 *level = G_RAID_VOLUME_RL_RAID5EE;
  474                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
  475         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
  476                 *level = G_RAID_VOLUME_RL_RAID5R;
  477                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
  478         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
  479                 *level = G_RAID_VOLUME_RL_RAID5R;
  480                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
  481         } else if (strcasecmp(str, "RAID5R") == 0 ||
  482                    strcasecmp(str, "RAID5R-LA") == 0) {
  483                 *level = G_RAID_VOLUME_RL_RAID5R;
  484                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
  485         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
  486                 *level = G_RAID_VOLUME_RL_RAID5R;
  487                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
  488         } else
  489                 return (-1);
  490         return (0);
  491 }
  492 
  493 const char *
  494 g_raid_get_diskname(struct g_raid_disk *disk)
  495 {
  496 
  497         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
  498                 return ("[unknown]");
  499         return (disk->d_consumer->provider->name);
  500 }
  501 
  502 void
  503 g_raid_get_disk_info(struct g_raid_disk *disk)
  504 {
  505         struct g_consumer *cp = disk->d_consumer;
  506         int error, len;
  507 
  508         /* Read kernel dumping information. */
  509         disk->d_kd.offset = 0;
  510         disk->d_kd.length = OFF_MAX;
  511         len = sizeof(disk->d_kd);
  512         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
  513         if (error)
  514                 disk->d_kd.di.dumper = NULL;
  515         if (disk->d_kd.di.dumper == NULL)
  516                 G_RAID_DEBUG1(2, disk->d_softc,
  517                     "Dumping not supported by %s: %d.", 
  518                     cp->provider->name, error);
  519 
  520         /* Read BIO_DELETE support. */
  521         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
  522         if (error)
  523                 disk->d_candelete = 0;
  524         if (!disk->d_candelete)
  525                 G_RAID_DEBUG1(2, disk->d_softc,
  526                     "BIO_DELETE not supported by %s: %d.", 
  527                     cp->provider->name, error);
  528 }
  529 
  530 void
  531 g_raid_report_disk_state(struct g_raid_disk *disk)
  532 {
  533         struct g_raid_subdisk *sd;
  534         int len, state;
  535         uint32_t s;
  536 
  537         if (disk->d_consumer == NULL)
  538                 return;
  539         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
  540                 s = G_STATE_ACTIVE; /* XXX */
  541         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
  542             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
  543                 s = G_STATE_FAILED;
  544         } else {
  545                 state = G_RAID_SUBDISK_S_ACTIVE;
  546                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
  547                         if (sd->sd_state < state)
  548                                 state = sd->sd_state;
  549                 }
  550                 if (state == G_RAID_SUBDISK_S_FAILED)
  551                         s = G_STATE_FAILED;
  552                 else if (state == G_RAID_SUBDISK_S_NEW ||
  553                     state == G_RAID_SUBDISK_S_REBUILD)
  554                         s = G_STATE_REBUILD;
  555                 else if (state == G_RAID_SUBDISK_S_STALE ||
  556                     state == G_RAID_SUBDISK_S_RESYNC)
  557                         s = G_STATE_RESYNC;
  558                 else
  559                         s = G_STATE_ACTIVE;
  560         }
  561         len = sizeof(s);
  562         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
  563         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
  564             g_raid_get_diskname(disk), s);
  565 }
  566 
  567 void
  568 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
  569 {
  570 
  571         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
  572             g_raid_get_diskname(disk),
  573             g_raid_disk_state2str(disk->d_state),
  574             g_raid_disk_state2str(state));
  575         disk->d_state = state;
  576         g_raid_report_disk_state(disk);
  577 }
  578 
  579 void
  580 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
  581 {
  582 
  583         G_RAID_DEBUG1(0, sd->sd_softc,
  584             "Subdisk %s:%d-%s state changed from %s to %s.",
  585             sd->sd_volume->v_name, sd->sd_pos,
  586             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
  587             g_raid_subdisk_state2str(sd->sd_state),
  588             g_raid_subdisk_state2str(state));
  589         sd->sd_state = state;
  590         if (sd->sd_disk)
  591                 g_raid_report_disk_state(sd->sd_disk);
  592 }
  593 
  594 void
  595 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
  596 {
  597 
  598         G_RAID_DEBUG1(0, vol->v_softc,
  599             "Volume %s state changed from %s to %s.",
  600             vol->v_name,
  601             g_raid_volume_state2str(vol->v_state),
  602             g_raid_volume_state2str(state));
  603         vol->v_state = state;
  604 }
  605 
  606 /*
  607  * --- Events handling functions ---
  608  * Events in geom_raid are used to maintain subdisks and volumes status
  609  * from one thread to simplify locking.
  610  */
  611 static void
  612 g_raid_event_free(struct g_raid_event *ep)
  613 {
  614 
  615         free(ep, M_RAID);
  616 }
  617 
  618 int
  619 g_raid_event_send(void *arg, int event, int flags)
  620 {
  621         struct g_raid_softc *sc;
  622         struct g_raid_event *ep;
  623         int error;
  624 
  625         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
  626                 sc = ((struct g_raid_volume *)arg)->v_softc;
  627         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
  628                 sc = ((struct g_raid_disk *)arg)->d_softc;
  629         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
  630                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
  631         } else {
  632                 sc = arg;
  633         }
  634         ep = malloc(sizeof(*ep), M_RAID,
  635             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
  636         if (ep == NULL)
  637                 return (ENOMEM);
  638         ep->e_tgt = arg;
  639         ep->e_event = event;
  640         ep->e_flags = flags;
  641         ep->e_error = 0;
  642         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
  643         mtx_lock(&sc->sc_queue_mtx);
  644         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
  645         mtx_unlock(&sc->sc_queue_mtx);
  646         wakeup(sc);
  647 
  648         if ((flags & G_RAID_EVENT_WAIT) == 0)
  649                 return (0);
  650 
  651         sx_assert(&sc->sc_lock, SX_XLOCKED);
  652         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
  653         sx_xunlock(&sc->sc_lock);
  654         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
  655                 mtx_lock(&sc->sc_queue_mtx);
  656                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
  657                     hz * 5);
  658         }
  659         error = ep->e_error;
  660         g_raid_event_free(ep);
  661         sx_xlock(&sc->sc_lock);
  662         return (error);
  663 }
  664 
  665 static void
  666 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
  667 {
  668         struct g_raid_event *ep, *tmpep;
  669 
  670         sx_assert(&sc->sc_lock, SX_XLOCKED);
  671 
  672         mtx_lock(&sc->sc_queue_mtx);
  673         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
  674                 if (ep->e_tgt != tgt)
  675                         continue;
  676                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  677                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
  678                         g_raid_event_free(ep);
  679                 else {
  680                         ep->e_error = ECANCELED;
  681                         wakeup(ep);
  682                 }
  683         }
  684         mtx_unlock(&sc->sc_queue_mtx);
  685 }
  686 
  687 static int
  688 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
  689 {
  690         struct g_raid_event *ep;
  691         int     res = 0;
  692 
  693         sx_assert(&sc->sc_lock, SX_XLOCKED);
  694 
  695         mtx_lock(&sc->sc_queue_mtx);
  696         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
  697                 if (ep->e_tgt != tgt)
  698                         continue;
  699                 res = 1;
  700                 break;
  701         }
  702         mtx_unlock(&sc->sc_queue_mtx);
  703         return (res);
  704 }
  705 
  706 /*
  707  * Return the number of disks in given state.
  708  * If state is equal to -1, count all connected disks.
  709  */
  710 u_int
  711 g_raid_ndisks(struct g_raid_softc *sc, int state)
  712 {
  713         struct g_raid_disk *disk;
  714         u_int n;
  715 
  716         sx_assert(&sc->sc_lock, SX_LOCKED);
  717 
  718         n = 0;
  719         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
  720                 if (disk->d_state == state || state == -1)
  721                         n++;
  722         }
  723         return (n);
  724 }
  725 
  726 /*
  727  * Return the number of subdisks in given state.
  728  * If state is equal to -1, count all connected disks.
  729  */
  730 u_int
  731 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
  732 {
  733         struct g_raid_subdisk *subdisk;
  734         struct g_raid_softc *sc;
  735         u_int i, n ;
  736 
  737         sc = vol->v_softc;
  738         sx_assert(&sc->sc_lock, SX_LOCKED);
  739 
  740         n = 0;
  741         for (i = 0; i < vol->v_disks_count; i++) {
  742                 subdisk = &vol->v_subdisks[i];
  743                 if ((state == -1 &&
  744                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
  745                     subdisk->sd_state == state)
  746                         n++;
  747         }
  748         return (n);
  749 }
  750 
  751 /*
  752  * Return the first subdisk in given state.
  753  * If state is equal to -1, then the first connected disks.
  754  */
  755 struct g_raid_subdisk *
  756 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
  757 {
  758         struct g_raid_subdisk *sd;
  759         struct g_raid_softc *sc;
  760         u_int i;
  761 
  762         sc = vol->v_softc;
  763         sx_assert(&sc->sc_lock, SX_LOCKED);
  764 
  765         for (i = 0; i < vol->v_disks_count; i++) {
  766                 sd = &vol->v_subdisks[i];
  767                 if ((state == -1 &&
  768                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
  769                     sd->sd_state == state)
  770                         return (sd);
  771         }
  772         return (NULL);
  773 }
  774 
  775 struct g_consumer *
  776 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
  777 {
  778         struct g_consumer *cp;
  779         struct g_provider *pp;
  780 
  781         g_topology_assert();
  782 
  783         if (strncmp(name, "/dev/", 5) == 0)
  784                 name += 5;
  785         pp = g_provider_by_name(name);
  786         if (pp == NULL)
  787                 return (NULL);
  788         cp = g_new_consumer(sc->sc_geom);
  789         if (g_attach(cp, pp) != 0) {
  790                 g_destroy_consumer(cp);
  791                 return (NULL);
  792         }
  793         if (g_access(cp, 1, 1, 1) != 0) {
  794                 g_detach(cp);
  795                 g_destroy_consumer(cp);
  796                 return (NULL);
  797         }
  798         return (cp);
  799 }
  800 
  801 static u_int
  802 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
  803 {
  804         struct bio *bp;
  805         u_int nreqs = 0;
  806 
  807         mtx_lock(&sc->sc_queue_mtx);
  808         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
  809                 if (bp->bio_from == cp)
  810                         nreqs++;
  811         }
  812         mtx_unlock(&sc->sc_queue_mtx);
  813         return (nreqs);
  814 }
  815 
  816 u_int
  817 g_raid_nopens(struct g_raid_softc *sc)
  818 {
  819         struct g_raid_volume *vol;
  820         u_int opens;
  821 
  822         opens = 0;
  823         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
  824                 if (vol->v_provider_open != 0)
  825                         opens++;
  826         }
  827         return (opens);
  828 }
  829 
  830 static int
  831 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
  832 {
  833 
  834         if (cp->index > 0) {
  835                 G_RAID_DEBUG1(2, sc,
  836                     "I/O requests for %s exist, can't destroy it now.",
  837                     cp->provider->name);
  838                 return (1);
  839         }
  840         if (g_raid_nrequests(sc, cp) > 0) {
  841                 G_RAID_DEBUG1(2, sc,
  842                     "I/O requests for %s in queue, can't destroy it now.",
  843                     cp->provider->name);
  844                 return (1);
  845         }
  846         return (0);
  847 }
  848 
  849 static void
  850 g_raid_destroy_consumer(void *arg, int flags __unused)
  851 {
  852         struct g_consumer *cp;
  853 
  854         g_topology_assert();
  855 
  856         cp = arg;
  857         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
  858         g_detach(cp);
  859         g_destroy_consumer(cp);
  860 }
  861 
  862 void
  863 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
  864 {
  865         struct g_provider *pp;
  866         int retaste_wait;
  867 
  868         g_topology_assert_not();
  869 
  870         g_topology_lock();
  871         cp->private = NULL;
  872         if (g_raid_consumer_is_busy(sc, cp))
  873                 goto out;
  874         pp = cp->provider;
  875         retaste_wait = 0;
  876         if (cp->acw == 1) {
  877                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
  878                         retaste_wait = 1;
  879         }
  880         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
  881                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
  882         if (retaste_wait) {
  883                 /*
  884                  * After retaste event was send (inside g_access()), we can send
  885                  * event to detach and destroy consumer.
  886                  * A class, which has consumer to the given provider connected
  887                  * will not receive retaste event for the provider.
  888                  * This is the way how I ignore retaste events when I close
  889                  * consumers opened for write: I detach and destroy consumer
  890                  * after retaste event is sent.
  891                  */
  892                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
  893                 goto out;
  894         }
  895         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
  896         g_detach(cp);
  897         g_destroy_consumer(cp);
  898 out:
  899         g_topology_unlock();
  900 }
  901 
  902 static void
  903 g_raid_orphan(struct g_consumer *cp)
  904 {
  905         struct g_raid_disk *disk;
  906 
  907         g_topology_assert();
  908 
  909         disk = cp->private;
  910         if (disk == NULL)
  911                 return;
  912         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
  913             G_RAID_EVENT_DISK);
  914 }
  915 
  916 static void
  917 g_raid_clean(struct g_raid_volume *vol, int acw)
  918 {
  919         struct g_raid_softc *sc;
  920         int timeout;
  921 
  922         sc = vol->v_softc;
  923         g_topology_assert_not();
  924         sx_assert(&sc->sc_lock, SX_XLOCKED);
  925 
  926 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  927 //              return;
  928         if (!vol->v_dirty)
  929                 return;
  930         if (vol->v_writes > 0)
  931                 return;
  932         if (acw > 0 || (acw == -1 &&
  933             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
  934                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
  935                 if (!g_raid_shutdown && timeout > 0)
  936                         return;
  937         }
  938         vol->v_dirty = 0;
  939         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
  940             vol->v_name);
  941         g_raid_write_metadata(sc, vol, NULL, NULL);
  942 }
  943 
  944 static void
  945 g_raid_dirty(struct g_raid_volume *vol)
  946 {
  947         struct g_raid_softc *sc;
  948 
  949         sc = vol->v_softc;
  950         g_topology_assert_not();
  951         sx_assert(&sc->sc_lock, SX_XLOCKED);
  952 
  953 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  954 //              return;
  955         vol->v_dirty = 1;
  956         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
  957             vol->v_name);
  958         g_raid_write_metadata(sc, vol, NULL, NULL);
  959 }
  960 
  961 void
  962 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
  963 {
  964         struct g_raid_softc *sc;
  965         struct g_raid_volume *vol;
  966         struct g_raid_subdisk *sd;
  967         struct bio_queue_head queue;
  968         struct bio *cbp;
  969         int i;
  970 
  971         vol = tr->tro_volume;
  972         sc = vol->v_softc;
  973 
  974         /*
  975          * Allocate all bios before sending any request, so we can return
  976          * ENOMEM in nice and clean way.
  977          */
  978         bioq_init(&queue);
  979         for (i = 0; i < vol->v_disks_count; i++) {
  980                 sd = &vol->v_subdisks[i];
  981                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
  982                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
  983                         continue;
  984                 cbp = g_clone_bio(bp);
  985                 if (cbp == NULL)
  986                         goto failure;
  987                 cbp->bio_caller1 = sd;
  988                 bioq_insert_tail(&queue, cbp);
  989         }
  990         for (cbp = bioq_first(&queue); cbp != NULL;
  991             cbp = bioq_first(&queue)) {
  992                 bioq_remove(&queue, cbp);
  993                 sd = cbp->bio_caller1;
  994                 cbp->bio_caller1 = NULL;
  995                 g_raid_subdisk_iostart(sd, cbp);
  996         }
  997         return;
  998 failure:
  999         for (cbp = bioq_first(&queue); cbp != NULL;
 1000             cbp = bioq_first(&queue)) {
 1001                 bioq_remove(&queue, cbp);
 1002                 g_destroy_bio(cbp);
 1003         }
 1004         if (bp->bio_error == 0)
 1005                 bp->bio_error = ENOMEM;
 1006         g_raid_iodone(bp, bp->bio_error);
 1007 }
 1008 
 1009 static void
 1010 g_raid_tr_kerneldump_common_done(struct bio *bp)
 1011 {
 1012 
 1013         bp->bio_flags |= BIO_DONE;
 1014 }
 1015 
 1016 int
 1017 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
 1018     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1019 {
 1020         struct g_raid_softc *sc;
 1021         struct g_raid_volume *vol;
 1022         struct bio bp;
 1023 
 1024         vol = tr->tro_volume;
 1025         sc = vol->v_softc;
 1026 
 1027         bzero(&bp, sizeof(bp));
 1028         bp.bio_cmd = BIO_WRITE;
 1029         bp.bio_done = g_raid_tr_kerneldump_common_done;
 1030         bp.bio_attribute = NULL;
 1031         bp.bio_offset = offset;
 1032         bp.bio_length = length;
 1033         bp.bio_data = virtual;
 1034         bp.bio_to = vol->v_provider;
 1035 
 1036         g_raid_start(&bp);
 1037         while (!(bp.bio_flags & BIO_DONE)) {
 1038                 G_RAID_DEBUG1(4, sc, "Poll...");
 1039                 g_raid_poll(sc);
 1040                 DELAY(10);
 1041         }
 1042 
 1043         return (bp.bio_error != 0 ? EIO : 0);
 1044 }
 1045 
 1046 static int
 1047 g_raid_dump(void *arg,
 1048     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1049 {
 1050         struct g_raid_volume *vol;
 1051         int error;
 1052 
 1053         vol = (struct g_raid_volume *)arg;
 1054         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
 1055             (long long unsigned)offset, (long long unsigned)length);
 1056 
 1057         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
 1058             virtual, physical, offset, length);
 1059         return (error);
 1060 }
 1061 
 1062 static void
 1063 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
 1064 {
 1065         struct g_kerneldump *gkd;
 1066         struct g_provider *pp;
 1067         struct g_raid_volume *vol;
 1068 
 1069         gkd = (struct g_kerneldump*)bp->bio_data;
 1070         pp = bp->bio_to;
 1071         vol = pp->private;
 1072         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
 1073                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
 1074         gkd->di.dumper = g_raid_dump;
 1075         gkd->di.priv = vol;
 1076         gkd->di.blocksize = vol->v_sectorsize;
 1077         gkd->di.maxiosize = DFLTPHYS;
 1078         gkd->di.mediaoffset = gkd->offset;
 1079         if ((gkd->offset + gkd->length) > vol->v_mediasize)
 1080                 gkd->length = vol->v_mediasize - gkd->offset;
 1081         gkd->di.mediasize = gkd->length;
 1082         g_io_deliver(bp, 0);
 1083 }
 1084 
 1085 static void
 1086 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
 1087 {
 1088         struct g_provider *pp;
 1089         struct g_raid_volume *vol;
 1090         struct g_raid_subdisk *sd;
 1091         int *val;
 1092         int i;
 1093 
 1094         val = (int *)bp->bio_data;
 1095         pp = bp->bio_to;
 1096         vol = pp->private;
 1097         *val = 0;
 1098         for (i = 0; i < vol->v_disks_count; i++) {
 1099                 sd = &vol->v_subdisks[i];
 1100                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1101                         continue;
 1102                 if (sd->sd_disk->d_candelete) {
 1103                         *val = 1;
 1104                         break;
 1105                 }
 1106         }
 1107         g_io_deliver(bp, 0);
 1108 }
 1109 
 1110 static void
 1111 g_raid_start(struct bio *bp)
 1112 {
 1113         struct g_raid_softc *sc;
 1114 
 1115         sc = bp->bio_to->geom->softc;
 1116         /*
 1117          * If sc == NULL or there are no valid disks, provider's error
 1118          * should be set and g_raid_start() should not be called at all.
 1119          */
 1120 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
 1121 //          ("Provider's error should be set (error=%d)(mirror=%s).",
 1122 //          bp->bio_to->error, bp->bio_to->name));
 1123         G_RAID_LOGREQ(3, bp, "Request received.");
 1124 
 1125         switch (bp->bio_cmd) {
 1126         case BIO_READ:
 1127         case BIO_WRITE:
 1128         case BIO_DELETE:
 1129         case BIO_FLUSH:
 1130                 break;
 1131         case BIO_GETATTR:
 1132                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
 1133                         g_raid_candelete(sc, bp);
 1134                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
 1135                         g_raid_kerneldump(sc, bp);
 1136                 else
 1137                         g_io_deliver(bp, EOPNOTSUPP);
 1138                 return;
 1139         default:
 1140                 g_io_deliver(bp, EOPNOTSUPP);
 1141                 return;
 1142         }
 1143         mtx_lock(&sc->sc_queue_mtx);
 1144         bioq_insert_tail(&sc->sc_queue, bp);
 1145         mtx_unlock(&sc->sc_queue_mtx);
 1146         if (!dumping) {
 1147                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
 1148                 wakeup(sc);
 1149         }
 1150 }
 1151 
 1152 static int
 1153 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
 1154 {
 1155         /*
 1156          * 5 cases:
 1157          * (1) bp entirely below NO
 1158          * (2) bp entirely above NO
 1159          * (3) bp start below, but end in range YES
 1160          * (4) bp entirely within YES
 1161          * (5) bp starts within, ends above YES
 1162          *
 1163          * lock range 10-19 (offset 10 length 10)
 1164          * (1) 1-5: first if kicks it out
 1165          * (2) 30-35: second if kicks it out
 1166          * (3) 5-15: passes both ifs
 1167          * (4) 12-14: passes both ifs
 1168          * (5) 19-20: passes both
 1169          */
 1170         off_t lend = lstart + len - 1;
 1171         off_t bstart = bp->bio_offset;
 1172         off_t bend = bp->bio_offset + bp->bio_length - 1;
 1173 
 1174         if (bend < lstart)
 1175                 return (0);
 1176         if (lend < bstart)
 1177                 return (0);
 1178         return (1);
 1179 }
 1180 
 1181 static int
 1182 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
 1183 {
 1184         struct g_raid_lock *lp;
 1185 
 1186         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
 1187 
 1188         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1189                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
 1190                         return (1);
 1191         }
 1192         return (0);
 1193 }
 1194 
 1195 static void
 1196 g_raid_start_request(struct bio *bp)
 1197 {
 1198         struct g_raid_softc *sc;
 1199         struct g_raid_volume *vol;
 1200 
 1201         sc = bp->bio_to->geom->softc;
 1202         sx_assert(&sc->sc_lock, SX_LOCKED);
 1203         vol = bp->bio_to->private;
 1204 
 1205         /*
 1206          * Check to see if this item is in a locked range.  If so,
 1207          * queue it to our locked queue and return.  We'll requeue
 1208          * it when the range is unlocked.  Internal I/O for the
 1209          * rebuild/rescan/recovery process is excluded from this
 1210          * check so we can actually do the recovery.
 1211          */
 1212         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
 1213             g_raid_is_in_locked_range(vol, bp)) {
 1214                 G_RAID_LOGREQ(3, bp, "Defer request.");
 1215                 bioq_insert_tail(&vol->v_locked, bp);
 1216                 return;
 1217         }
 1218 
 1219         /*
 1220          * If we're actually going to do the write/delete, then
 1221          * update the idle stats for the volume.
 1222          */
 1223         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1224                 if (!vol->v_dirty)
 1225                         g_raid_dirty(vol);
 1226                 vol->v_writes++;
 1227         }
 1228 
 1229         /*
 1230          * Put request onto inflight queue, so we can check if new
 1231          * synchronization requests don't collide with it.  Then tell
 1232          * the transformation layer to start the I/O.
 1233          */
 1234         bioq_insert_tail(&vol->v_inflight, bp);
 1235         G_RAID_LOGREQ(4, bp, "Request started");
 1236         G_RAID_TR_IOSTART(vol->v_tr, bp);
 1237 }
 1238 
 1239 static void
 1240 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
 1241 {
 1242         off_t off, len;
 1243         struct bio *nbp;
 1244         struct g_raid_lock *lp;
 1245 
 1246         vol->v_pending_lock = 0;
 1247         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1248                 if (lp->l_pending) {
 1249                         off = lp->l_offset;
 1250                         len = lp->l_length;
 1251                         lp->l_pending = 0;
 1252                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
 1253                                 if (g_raid_bio_overlaps(nbp, off, len))
 1254                                         lp->l_pending++;
 1255                         }
 1256                         if (lp->l_pending) {
 1257                                 vol->v_pending_lock = 1;
 1258                                 G_RAID_DEBUG1(4, vol->v_softc,
 1259                                     "Deferred lock(%jd, %jd) has %d pending",
 1260                                     (intmax_t)off, (intmax_t)(off + len),
 1261                                     lp->l_pending);
 1262                                 continue;
 1263                         }
 1264                         G_RAID_DEBUG1(4, vol->v_softc,
 1265                             "Deferred lock of %jd to %jd completed",
 1266                             (intmax_t)off, (intmax_t)(off + len));
 1267                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1268                 }
 1269         }
 1270 }
 1271 
 1272 void
 1273 g_raid_iodone(struct bio *bp, int error)
 1274 {
 1275         struct g_raid_softc *sc;
 1276         struct g_raid_volume *vol;
 1277 
 1278         sc = bp->bio_to->geom->softc;
 1279         sx_assert(&sc->sc_lock, SX_LOCKED);
 1280         vol = bp->bio_to->private;
 1281         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
 1282 
 1283         /* Update stats if we done write/delete. */
 1284         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1285                 vol->v_writes--;
 1286                 vol->v_last_write = time_uptime;
 1287         }
 1288 
 1289         bioq_remove(&vol->v_inflight, bp);
 1290         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
 1291                 g_raid_finish_with_locked_ranges(vol, bp);
 1292         getmicrouptime(&vol->v_last_done);
 1293         g_io_deliver(bp, error);
 1294 }
 1295 
 1296 int
 1297 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
 1298     struct bio *ignore, void *argp)
 1299 {
 1300         struct g_raid_softc *sc;
 1301         struct g_raid_lock *lp;
 1302         struct bio *bp;
 1303 
 1304         sc = vol->v_softc;
 1305         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
 1306         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
 1307         lp->l_offset = off;
 1308         lp->l_length = len;
 1309         lp->l_callback_arg = argp;
 1310 
 1311         lp->l_pending = 0;
 1312         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
 1313                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
 1314                         lp->l_pending++;
 1315         }       
 1316 
 1317         /*
 1318          * If there are any writes that are pending, we return EBUSY.  All
 1319          * callers will have to wait until all pending writes clear.
 1320          */
 1321         if (lp->l_pending > 0) {
 1322                 vol->v_pending_lock = 1;
 1323                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
 1324                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
 1325                 return (EBUSY);
 1326         }
 1327         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
 1328             (intmax_t)off, (intmax_t)(off+len));
 1329         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1330         return (0);
 1331 }
 1332 
 1333 int
 1334 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
 1335 {
 1336         struct g_raid_lock *lp;
 1337         struct g_raid_softc *sc;
 1338         struct bio *bp;
 1339 
 1340         sc = vol->v_softc;
 1341         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1342                 if (lp->l_offset == off && lp->l_length == len) {
 1343                         LIST_REMOVE(lp, l_next);
 1344                         /* XXX
 1345                          * Right now we just put them all back on the queue
 1346                          * and hope for the best.  We hope this because any
 1347                          * locked ranges will go right back on this list
 1348                          * when the worker thread runs.
 1349                          * XXX
 1350                          */
 1351                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
 1352                             (intmax_t)lp->l_offset,
 1353                             (intmax_t)(lp->l_offset+lp->l_length));
 1354                         mtx_lock(&sc->sc_queue_mtx);
 1355                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
 1356                                 bioq_insert_tail(&sc->sc_queue, bp);
 1357                         mtx_unlock(&sc->sc_queue_mtx);
 1358                         free(lp, M_RAID);
 1359                         return (0);
 1360                 }
 1361         }
 1362         return (EINVAL);
 1363 }
 1364 
 1365 void
 1366 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
 1367 {
 1368         struct g_consumer *cp;
 1369         struct g_raid_disk *disk, *tdisk;
 1370 
 1371         bp->bio_caller1 = sd;
 1372 
 1373         /*
 1374          * Make sure that the disk is present. Generally it is a task of
 1375          * transformation layers to not send requests to absent disks, but
 1376          * it is better to be safe and report situation then sorry.
 1377          */
 1378         if (sd->sd_disk == NULL) {
 1379                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
 1380 nodisk:
 1381                 bp->bio_from = NULL;
 1382                 bp->bio_to = NULL;
 1383                 bp->bio_error = ENXIO;
 1384                 g_raid_disk_done(bp);
 1385                 return;
 1386         }
 1387         disk = sd->sd_disk;
 1388         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
 1389             disk->d_state != G_RAID_DISK_S_FAILED) {
 1390                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
 1391                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 1392                 goto nodisk;
 1393         }
 1394 
 1395         cp = disk->d_consumer;
 1396         bp->bio_from = cp;
 1397         bp->bio_to = cp->provider;
 1398         cp->index++;
 1399 
 1400         /* Update average disks load. */
 1401         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
 1402                 if (tdisk->d_consumer == NULL)
 1403                         tdisk->d_load = 0;
 1404                 else
 1405                         tdisk->d_load = (tdisk->d_consumer->index *
 1406                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
 1407         }
 1408 
 1409         disk->d_last_offset = bp->bio_offset + bp->bio_length;
 1410         if (dumping) {
 1411                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
 1412                 if (bp->bio_cmd == BIO_WRITE) {
 1413                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
 1414                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
 1415                 } else
 1416                         bp->bio_error = EOPNOTSUPP;
 1417                 g_raid_disk_done(bp);
 1418         } else {
 1419                 bp->bio_done = g_raid_disk_done;
 1420                 bp->bio_offset += sd->sd_offset;
 1421                 G_RAID_LOGREQ(3, bp, "Sending request.");
 1422                 g_io_request(bp, cp);
 1423         }
 1424 }
 1425 
 1426 int
 1427 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
 1428     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1429 {
 1430 
 1431         if (sd->sd_disk == NULL)
 1432                 return (ENXIO);
 1433         if (sd->sd_disk->d_kd.di.dumper == NULL)
 1434                 return (EOPNOTSUPP);
 1435         return (dump_write(&sd->sd_disk->d_kd.di,
 1436             virtual, physical,
 1437             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
 1438             length));
 1439 }
 1440 
 1441 static void
 1442 g_raid_disk_done(struct bio *bp)
 1443 {
 1444         struct g_raid_softc *sc;
 1445         struct g_raid_subdisk *sd;
 1446 
 1447         sd = bp->bio_caller1;
 1448         sc = sd->sd_softc;
 1449         mtx_lock(&sc->sc_queue_mtx);
 1450         bioq_insert_tail(&sc->sc_queue, bp);
 1451         mtx_unlock(&sc->sc_queue_mtx);
 1452         if (!dumping)
 1453                 wakeup(sc);
 1454 }
 1455 
 1456 static void
 1457 g_raid_disk_done_request(struct bio *bp)
 1458 {
 1459         struct g_raid_softc *sc;
 1460         struct g_raid_disk *disk;
 1461         struct g_raid_subdisk *sd;
 1462         struct g_raid_volume *vol;
 1463 
 1464         g_topology_assert_not();
 1465 
 1466         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
 1467         sd = bp->bio_caller1;
 1468         sc = sd->sd_softc;
 1469         vol = sd->sd_volume;
 1470         if (bp->bio_from != NULL) {
 1471                 bp->bio_from->index--;
 1472                 disk = bp->bio_from->private;
 1473                 if (disk == NULL)
 1474                         g_raid_kill_consumer(sc, bp->bio_from);
 1475         }
 1476         bp->bio_offset -= sd->sd_offset;
 1477 
 1478         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
 1479 }
 1480 
 1481 static void
 1482 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
 1483 {
 1484 
 1485         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
 1486                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
 1487         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
 1488                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
 1489         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
 1490                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
 1491         else
 1492                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
 1493         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
 1494                 KASSERT(ep->e_error == 0,
 1495                     ("Error cannot be handled."));
 1496                 g_raid_event_free(ep);
 1497         } else {
 1498                 ep->e_flags |= G_RAID_EVENT_DONE;
 1499                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
 1500                 mtx_lock(&sc->sc_queue_mtx);
 1501                 wakeup(ep);
 1502                 mtx_unlock(&sc->sc_queue_mtx);
 1503         }
 1504 }
 1505 
 1506 /*
 1507  * Worker thread.
 1508  */
 1509 static void
 1510 g_raid_worker(void *arg)
 1511 {
 1512         struct g_raid_softc *sc;
 1513         struct g_raid_event *ep;
 1514         struct g_raid_volume *vol;
 1515         struct bio *bp;
 1516         struct timeval now, t;
 1517         int timeout, rv;
 1518 
 1519         sc = arg;
 1520         thread_lock(curthread);
 1521         sched_prio(curthread, PRIBIO);
 1522         thread_unlock(curthread);
 1523 
 1524         sx_xlock(&sc->sc_lock);
 1525         for (;;) {
 1526                 mtx_lock(&sc->sc_queue_mtx);
 1527                 /*
 1528                  * First take a look at events.
 1529                  * This is important to handle events before any I/O requests.
 1530                  */
 1531                 bp = NULL;
 1532                 vol = NULL;
 1533                 rv = 0;
 1534                 ep = TAILQ_FIRST(&sc->sc_events);
 1535                 if (ep != NULL)
 1536                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1537                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
 1538                         ;
 1539                 else {
 1540                         getmicrouptime(&now);
 1541                         t = now;
 1542                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1543                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1544                                     vol->v_tr &&
 1545                                     timevalcmp(&vol->v_last_done, &t, < ))
 1546                                         t = vol->v_last_done;
 1547                         }
 1548                         timevalsub(&t, &now);
 1549                         timeout = g_raid_idle_threshold +
 1550                             t.tv_sec * 1000000 + t.tv_usec;
 1551                         if (timeout > 0) {
 1552                                 /*
 1553                                  * Two steps to avoid overflows at HZ=1000
 1554                                  * and idle timeouts > 2.1s.  Some rounding
 1555                                  * errors can occur, but they are < 1tick,
 1556                                  * which is deemed to be close enough for
 1557                                  * this purpose.
 1558                                  */
 1559                                 int micpertic = 1000000 / hz;
 1560                                 timeout = (timeout + micpertic - 1) / micpertic;
 1561                                 sx_xunlock(&sc->sc_lock);
 1562                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
 1563                                     PRIBIO | PDROP, "-", timeout);
 1564                                 sx_xlock(&sc->sc_lock);
 1565                                 goto process;
 1566                         } else
 1567                                 rv = EWOULDBLOCK;
 1568                 }
 1569                 mtx_unlock(&sc->sc_queue_mtx);
 1570 process:
 1571                 if (ep != NULL) {
 1572                         g_raid_handle_event(sc, ep);
 1573                 } else if (bp != NULL) {
 1574                         if (bp->bio_to != NULL &&
 1575                             bp->bio_to->geom == sc->sc_geom)
 1576                                 g_raid_start_request(bp);
 1577                         else
 1578                                 g_raid_disk_done_request(bp);
 1579                 } else if (rv == EWOULDBLOCK) {
 1580                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1581                                 g_raid_clean(vol, -1);
 1582                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1583                                     vol->v_tr) {
 1584                                         t.tv_sec = g_raid_idle_threshold / 1000000;
 1585                                         t.tv_usec = g_raid_idle_threshold % 1000000;
 1586                                         timevaladd(&t, &vol->v_last_done);
 1587                                         getmicrouptime(&now);
 1588                                         if (timevalcmp(&t, &now, <= )) {
 1589                                                 G_RAID_TR_IDLE(vol->v_tr);
 1590                                                 vol->v_last_done = now;
 1591                                         }
 1592                                 }
 1593                         }
 1594                 }
 1595                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 1596                         g_raid_destroy_node(sc, 1);     /* May not return. */
 1597         }
 1598 }
 1599 
 1600 static void
 1601 g_raid_poll(struct g_raid_softc *sc)
 1602 {
 1603         struct g_raid_event *ep;
 1604         struct bio *bp;
 1605 
 1606         sx_xlock(&sc->sc_lock);
 1607         mtx_lock(&sc->sc_queue_mtx);
 1608         /*
 1609          * First take a look at events.
 1610          * This is important to handle events before any I/O requests.
 1611          */
 1612         ep = TAILQ_FIRST(&sc->sc_events);
 1613         if (ep != NULL) {
 1614                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1615                 mtx_unlock(&sc->sc_queue_mtx);
 1616                 g_raid_handle_event(sc, ep);
 1617                 goto out;
 1618         }
 1619         bp = bioq_takefirst(&sc->sc_queue);
 1620         if (bp != NULL) {
 1621                 mtx_unlock(&sc->sc_queue_mtx);
 1622                 if (bp->bio_from == NULL ||
 1623                     bp->bio_from->geom != sc->sc_geom)
 1624                         g_raid_start_request(bp);
 1625                 else
 1626                         g_raid_disk_done_request(bp);
 1627         }
 1628 out:
 1629         sx_xunlock(&sc->sc_lock);
 1630 }
 1631 
 1632 static void
 1633 g_raid_launch_provider(struct g_raid_volume *vol)
 1634 {
 1635         struct g_raid_disk *disk;
 1636         struct g_raid_softc *sc;
 1637         struct g_provider *pp;
 1638         char name[G_RAID_MAX_VOLUMENAME];
 1639         off_t off;
 1640 
 1641         sc = vol->v_softc;
 1642         sx_assert(&sc->sc_lock, SX_LOCKED);
 1643 
 1644         g_topology_lock();
 1645         /* Try to name provider with volume name. */
 1646         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
 1647         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
 1648             g_provider_by_name(name) != NULL) {
 1649                 /* Otherwise use sequential volume number. */
 1650                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
 1651         }
 1652         pp = g_new_providerf(sc->sc_geom, "%s", name);
 1653         pp->private = vol;
 1654         pp->mediasize = vol->v_mediasize;
 1655         pp->sectorsize = vol->v_sectorsize;
 1656         pp->stripesize = 0;
 1657         pp->stripeoffset = 0;
 1658         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
 1659             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
 1660             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
 1661             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
 1662                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
 1663                     disk->d_consumer != NULL &&
 1664                     disk->d_consumer->provider != NULL) {
 1665                         pp->stripesize = disk->d_consumer->provider->stripesize;
 1666                         off = disk->d_consumer->provider->stripeoffset;
 1667                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
 1668                         if (off > 0)
 1669                                 pp->stripeoffset %= off;
 1670                 }
 1671                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
 1672                         pp->stripesize *= (vol->v_disks_count - 1);
 1673                         pp->stripeoffset *= (vol->v_disks_count - 1);
 1674                 }
 1675         } else
 1676                 pp->stripesize = vol->v_strip_size;
 1677         vol->v_provider = pp;
 1678         g_error_provider(pp, 0);
 1679         g_topology_unlock();
 1680         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
 1681             pp->name, vol->v_name);
 1682 }
 1683 
 1684 static void
 1685 g_raid_destroy_provider(struct g_raid_volume *vol)
 1686 {
 1687         struct g_raid_softc *sc;
 1688         struct g_provider *pp;
 1689         struct bio *bp, *tmp;
 1690 
 1691         g_topology_assert_not();
 1692         sc = vol->v_softc;
 1693         pp = vol->v_provider;
 1694         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
 1695 
 1696         g_topology_lock();
 1697         g_error_provider(pp, ENXIO);
 1698         mtx_lock(&sc->sc_queue_mtx);
 1699         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
 1700                 if (bp->bio_to != pp)
 1701                         continue;
 1702                 bioq_remove(&sc->sc_queue, bp);
 1703                 g_io_deliver(bp, ENXIO);
 1704         }
 1705         mtx_unlock(&sc->sc_queue_mtx);
 1706         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
 1707             pp->name, vol->v_name);
 1708         g_wither_provider(pp, ENXIO);
 1709         g_topology_unlock();
 1710         vol->v_provider = NULL;
 1711 }
 1712 
 1713 /*
 1714  * Update device state.
 1715  */
 1716 static int
 1717 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
 1718 {
 1719         struct g_raid_softc *sc;
 1720 
 1721         sc = vol->v_softc;
 1722         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1723 
 1724         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
 1725             g_raid_volume_event2str(event),
 1726             vol->v_name);
 1727         switch (event) {
 1728         case G_RAID_VOLUME_E_DOWN:
 1729                 if (vol->v_provider != NULL)
 1730                         g_raid_destroy_provider(vol);
 1731                 break;
 1732         case G_RAID_VOLUME_E_UP:
 1733                 if (vol->v_provider == NULL)
 1734                         g_raid_launch_provider(vol);
 1735                 break;
 1736         case G_RAID_VOLUME_E_START:
 1737                 if (vol->v_tr)
 1738                         G_RAID_TR_START(vol->v_tr);
 1739                 return (0);
 1740         default:
 1741                 if (sc->sc_md)
 1742                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
 1743                 return (0);
 1744         }
 1745 
 1746         /* Manage root mount release. */
 1747         if (vol->v_starting) {
 1748                 vol->v_starting = 0;
 1749                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
 1750                 root_mount_rel(vol->v_rootmount);
 1751                 vol->v_rootmount = NULL;
 1752         }
 1753         if (vol->v_stopping && vol->v_provider_open == 0)
 1754                 g_raid_destroy_volume(vol);
 1755         return (0);
 1756 }
 1757 
 1758 /*
 1759  * Update subdisk state.
 1760  */
 1761 static int
 1762 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
 1763 {
 1764         struct g_raid_softc *sc;
 1765         struct g_raid_volume *vol;
 1766 
 1767         sc = sd->sd_softc;
 1768         vol = sd->sd_volume;
 1769         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1770 
 1771         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
 1772             g_raid_subdisk_event2str(event),
 1773             vol->v_name, sd->sd_pos,
 1774             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
 1775         if (vol->v_tr)
 1776                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
 1777 
 1778         return (0);
 1779 }
 1780 
 1781 /*
 1782  * Update disk state.
 1783  */
 1784 static int
 1785 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
 1786 {
 1787         struct g_raid_softc *sc;
 1788 
 1789         sc = disk->d_softc;
 1790         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1791 
 1792         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
 1793             g_raid_disk_event2str(event),
 1794             g_raid_get_diskname(disk));
 1795 
 1796         if (sc->sc_md)
 1797                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
 1798         return (0);
 1799 }
 1800 
 1801 /*
 1802  * Node event.
 1803  */
 1804 static int
 1805 g_raid_update_node(struct g_raid_softc *sc, u_int event)
 1806 {
 1807         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1808 
 1809         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
 1810             g_raid_node_event2str(event));
 1811 
 1812         if (event == G_RAID_NODE_E_WAKE)
 1813                 return (0);
 1814         if (sc->sc_md)
 1815                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
 1816         return (0);
 1817 }
 1818 
 1819 static int
 1820 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
 1821 {
 1822         struct g_raid_volume *vol;
 1823         struct g_raid_softc *sc;
 1824         int dcw, opens, error = 0;
 1825 
 1826         g_topology_assert();
 1827         sc = pp->geom->softc;
 1828         vol = pp->private;
 1829         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
 1830         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
 1831 
 1832         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
 1833             acr, acw, ace);
 1834         dcw = pp->acw + acw;
 1835 
 1836         g_topology_unlock();
 1837         sx_xlock(&sc->sc_lock);
 1838         /* Deny new opens while dying. */
 1839         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
 1840                 error = ENXIO;
 1841                 goto out;
 1842         }
 1843         if (dcw == 0)
 1844                 g_raid_clean(vol, dcw);
 1845         vol->v_provider_open += acr + acw + ace;
 1846         /* Handle delayed node destruction. */
 1847         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
 1848             vol->v_provider_open == 0) {
 1849                 /* Count open volumes. */
 1850                 opens = g_raid_nopens(sc);
 1851                 if (opens == 0) {
 1852                         sc->sc_stopping = G_RAID_DESTROY_HARD;
 1853                         /* Wake up worker to make it selfdestruct. */
 1854                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 1855                 }
 1856         }
 1857         /* Handle open volume destruction. */
 1858         if (vol->v_stopping && vol->v_provider_open == 0)
 1859                 g_raid_destroy_volume(vol);
 1860 out:
 1861         sx_xunlock(&sc->sc_lock);
 1862         g_topology_lock();
 1863         return (error);
 1864 }
 1865 
 1866 struct g_raid_softc *
 1867 g_raid_create_node(struct g_class *mp,
 1868     const char *name, struct g_raid_md_object *md)
 1869 {
 1870         struct g_raid_softc *sc;
 1871         struct g_geom *gp;
 1872         int error;
 1873 
 1874         g_topology_assert();
 1875         G_RAID_DEBUG(1, "Creating array %s.", name);
 1876 
 1877         gp = g_new_geomf(mp, "%s", name);
 1878         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
 1879         gp->start = g_raid_start;
 1880         gp->orphan = g_raid_orphan;
 1881         gp->access = g_raid_access;
 1882         gp->dumpconf = g_raid_dumpconf;
 1883 
 1884         sc->sc_md = md;
 1885         sc->sc_geom = gp;
 1886         sc->sc_flags = 0;
 1887         TAILQ_INIT(&sc->sc_volumes);
 1888         TAILQ_INIT(&sc->sc_disks);
 1889         sx_init(&sc->sc_lock, "graid:lock");
 1890         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
 1891         TAILQ_INIT(&sc->sc_events);
 1892         bioq_init(&sc->sc_queue);
 1893         gp->softc = sc;
 1894         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
 1895             "g_raid %s", name);
 1896         if (error != 0) {
 1897                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
 1898                 mtx_destroy(&sc->sc_queue_mtx);
 1899                 sx_destroy(&sc->sc_lock);
 1900                 g_destroy_geom(sc->sc_geom);
 1901                 free(sc, M_RAID);
 1902                 return (NULL);
 1903         }
 1904 
 1905         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
 1906         return (sc);
 1907 }
 1908 
 1909 struct g_raid_volume *
 1910 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
 1911 {
 1912         struct g_raid_volume    *vol, *vol1;
 1913         int i;
 1914 
 1915         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
 1916         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
 1917         vol->v_softc = sc;
 1918         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
 1919         vol->v_state = G_RAID_VOLUME_S_STARTING;
 1920         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
 1921         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
 1922         vol->v_rotate_parity = 1;
 1923         bioq_init(&vol->v_inflight);
 1924         bioq_init(&vol->v_locked);
 1925         LIST_INIT(&vol->v_locks);
 1926         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 1927                 vol->v_subdisks[i].sd_softc = sc;
 1928                 vol->v_subdisks[i].sd_volume = vol;
 1929                 vol->v_subdisks[i].sd_pos = i;
 1930                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
 1931         }
 1932 
 1933         /* Find free ID for this volume. */
 1934         g_topology_lock();
 1935         vol1 = vol;
 1936         if (id >= 0) {
 1937                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1938                         if (vol1->v_global_id == id)
 1939                                 break;
 1940                 }
 1941         }
 1942         if (vol1 != NULL) {
 1943                 for (id = 0; ; id++) {
 1944                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1945                                 if (vol1->v_global_id == id)
 1946                                         break;
 1947                         }
 1948                         if (vol1 == NULL)
 1949                                 break;
 1950                 }
 1951         }
 1952         vol->v_global_id = id;
 1953         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
 1954         g_topology_unlock();
 1955 
 1956         /* Delay root mounting. */
 1957         vol->v_rootmount = root_mount_hold("GRAID");
 1958         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
 1959         vol->v_starting = 1;
 1960         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
 1961         return (vol);
 1962 }
 1963 
 1964 struct g_raid_disk *
 1965 g_raid_create_disk(struct g_raid_softc *sc)
 1966 {
 1967         struct g_raid_disk      *disk;
 1968 
 1969         G_RAID_DEBUG1(1, sc, "Creating disk.");
 1970         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
 1971         disk->d_softc = sc;
 1972         disk->d_state = G_RAID_DISK_S_NONE;
 1973         TAILQ_INIT(&disk->d_subdisks);
 1974         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
 1975         return (disk);
 1976 }
 1977 
 1978 int g_raid_start_volume(struct g_raid_volume *vol)
 1979 {
 1980         struct g_raid_tr_class *class;
 1981         struct g_raid_tr_object *obj;
 1982         int status;
 1983 
 1984         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
 1985         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
 1986                 if (!class->trc_enable)
 1987                         continue;
 1988                 G_RAID_DEBUG1(2, vol->v_softc,
 1989                     "Tasting volume %s for %s transformation.",
 1990                     vol->v_name, class->name);
 1991                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 1992                     M_WAITOK);
 1993                 obj->tro_class = class;
 1994                 obj->tro_volume = vol;
 1995                 status = G_RAID_TR_TASTE(obj, vol);
 1996                 if (status != G_RAID_TR_TASTE_FAIL)
 1997                         break;
 1998                 kobj_delete((kobj_t)obj, M_RAID);
 1999         }
 2000         if (class == NULL) {
 2001                 G_RAID_DEBUG1(0, vol->v_softc,
 2002                     "No transformation module found for %s.",
 2003                     vol->v_name);
 2004                 vol->v_tr = NULL;
 2005                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
 2006                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
 2007                     G_RAID_EVENT_VOLUME);
 2008                 return (-1);
 2009         }
 2010         G_RAID_DEBUG1(2, vol->v_softc,
 2011             "Transformation module %s chosen for %s.",
 2012             class->name, vol->v_name);
 2013         vol->v_tr = obj;
 2014         return (0);
 2015 }
 2016 
 2017 int
 2018 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
 2019 {
 2020         struct g_raid_volume *vol, *tmpv;
 2021         struct g_raid_disk *disk, *tmpd;
 2022         int error = 0;
 2023 
 2024         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2025         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
 2026                 if (g_raid_destroy_volume(vol))
 2027                         error = EBUSY;
 2028         }
 2029         if (error)
 2030                 return (error);
 2031         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
 2032                 if (g_raid_destroy_disk(disk))
 2033                         error = EBUSY;
 2034         }
 2035         if (error)
 2036                 return (error);
 2037         if (sc->sc_md) {
 2038                 G_RAID_MD_FREE(sc->sc_md);
 2039                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
 2040                 sc->sc_md = NULL;
 2041         }
 2042         if (sc->sc_geom != NULL) {
 2043                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
 2044                 g_topology_lock();
 2045                 sc->sc_geom->softc = NULL;
 2046                 g_wither_geom(sc->sc_geom, ENXIO);
 2047                 g_topology_unlock();
 2048                 sc->sc_geom = NULL;
 2049         } else
 2050                 G_RAID_DEBUG(1, "Array destroyed.");
 2051         if (worker) {
 2052                 g_raid_event_cancel(sc, sc);
 2053                 mtx_destroy(&sc->sc_queue_mtx);
 2054                 sx_xunlock(&sc->sc_lock);
 2055                 sx_destroy(&sc->sc_lock);
 2056                 wakeup(&sc->sc_stopping);
 2057                 free(sc, M_RAID);
 2058                 curthread->td_pflags &= ~TDP_GEOM;
 2059                 G_RAID_DEBUG(1, "Thread exiting.");
 2060                 kproc_exit(0);
 2061         } else {
 2062                 /* Wake up worker to make it selfdestruct. */
 2063                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2064         }
 2065         return (0);
 2066 }
 2067 
 2068 int
 2069 g_raid_destroy_volume(struct g_raid_volume *vol)
 2070 {
 2071         struct g_raid_softc *sc;
 2072         struct g_raid_disk *disk;
 2073         int i;
 2074 
 2075         sc = vol->v_softc;
 2076         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
 2077         vol->v_stopping = 1;
 2078         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
 2079                 if (vol->v_tr) {
 2080                         G_RAID_TR_STOP(vol->v_tr);
 2081                         return (EBUSY);
 2082                 } else
 2083                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
 2084         }
 2085         if (g_raid_event_check(sc, vol) != 0)
 2086                 return (EBUSY);
 2087         if (vol->v_provider != NULL)
 2088                 return (EBUSY);
 2089         if (vol->v_provider_open != 0)
 2090                 return (EBUSY);
 2091         if (vol->v_tr) {
 2092                 G_RAID_TR_FREE(vol->v_tr);
 2093                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
 2094                 vol->v_tr = NULL;
 2095         }
 2096         if (vol->v_rootmount)
 2097                 root_mount_rel(vol->v_rootmount);
 2098         g_topology_lock();
 2099         LIST_REMOVE(vol, v_global_next);
 2100         g_topology_unlock();
 2101         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
 2102         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 2103                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
 2104                 disk = vol->v_subdisks[i].sd_disk;
 2105                 if (disk == NULL)
 2106                         continue;
 2107                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
 2108         }
 2109         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
 2110         if (sc->sc_md)
 2111                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
 2112         g_raid_event_cancel(sc, vol);
 2113         free(vol, M_RAID);
 2114         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
 2115                 /* Wake up worker to let it selfdestruct. */
 2116                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2117         }
 2118         return (0);
 2119 }
 2120 
 2121 int
 2122 g_raid_destroy_disk(struct g_raid_disk *disk)
 2123 {
 2124         struct g_raid_softc *sc;
 2125         struct g_raid_subdisk *sd, *tmp;
 2126 
 2127         sc = disk->d_softc;
 2128         G_RAID_DEBUG1(2, sc, "Destroying disk.");
 2129         if (disk->d_consumer) {
 2130                 g_raid_kill_consumer(sc, disk->d_consumer);
 2131                 disk->d_consumer = NULL;
 2132         }
 2133         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
 2134                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
 2135                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
 2136                     G_RAID_EVENT_SUBDISK);
 2137                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
 2138                 sd->sd_disk = NULL;
 2139         }
 2140         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
 2141         if (sc->sc_md)
 2142                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
 2143         g_raid_event_cancel(sc, disk);
 2144         free(disk, M_RAID);
 2145         return (0);
 2146 }
 2147 
 2148 int
 2149 g_raid_destroy(struct g_raid_softc *sc, int how)
 2150 {
 2151         int opens;
 2152 
 2153         g_topology_assert_not();
 2154         if (sc == NULL)
 2155                 return (ENXIO);
 2156         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2157 
 2158         /* Count open volumes. */
 2159         opens = g_raid_nopens(sc);
 2160 
 2161         /* React on some opened volumes. */
 2162         if (opens > 0) {
 2163                 switch (how) {
 2164                 case G_RAID_DESTROY_SOFT:
 2165                         G_RAID_DEBUG1(1, sc,
 2166                             "%d volumes are still open.",
 2167                             opens);
 2168                         return (EBUSY);
 2169                 case G_RAID_DESTROY_DELAYED:
 2170                         G_RAID_DEBUG1(1, sc,
 2171                             "Array will be destroyed on last close.");
 2172                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
 2173                         return (EBUSY);
 2174                 case G_RAID_DESTROY_HARD:
 2175                         G_RAID_DEBUG1(1, sc,
 2176                             "%d volumes are still open.",
 2177                             opens);
 2178                 }
 2179         }
 2180 
 2181         /* Mark node for destruction. */
 2182         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2183         /* Wake up worker to let it selfdestruct. */
 2184         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2185         /* Sleep until node destroyed. */
 2186         sx_sleep(&sc->sc_stopping, &sc->sc_lock,
 2187             PRIBIO | PDROP, "r:destroy", 0);
 2188         return (0);
 2189 }
 2190 
 2191 static void
 2192 g_raid_taste_orphan(struct g_consumer *cp)
 2193 {
 2194 
 2195         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
 2196             cp->provider->name));
 2197 }
 2198 
 2199 static struct g_geom *
 2200 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
 2201 {
 2202         struct g_consumer *cp;
 2203         struct g_geom *gp, *geom;
 2204         struct g_raid_md_class *class;
 2205         struct g_raid_md_object *obj;
 2206         int status;
 2207 
 2208         g_topology_assert();
 2209         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
 2210         if (!g_raid_enable)
 2211                 return (NULL);
 2212         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
 2213 
 2214         gp = g_new_geomf(mp, "raid:taste");
 2215         /*
 2216          * This orphan function should be never called.
 2217          */
 2218         gp->orphan = g_raid_taste_orphan;
 2219         cp = g_new_consumer(gp);
 2220         g_attach(cp, pp);
 2221 
 2222         geom = NULL;
 2223         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2224                 if (!class->mdc_enable)
 2225                         continue;
 2226                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
 2227                     pp->name, class->name);
 2228                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2229                     M_WAITOK);
 2230                 obj->mdo_class = class;
 2231                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
 2232                 if (status != G_RAID_MD_TASTE_NEW)
 2233                         kobj_delete((kobj_t)obj, M_RAID);
 2234                 if (status != G_RAID_MD_TASTE_FAIL)
 2235                         break;
 2236         }
 2237 
 2238         g_detach(cp);
 2239         g_destroy_consumer(cp);
 2240         g_destroy_geom(gp);
 2241         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
 2242         return (geom);
 2243 }
 2244 
 2245 int
 2246 g_raid_create_node_format(const char *format, struct gctl_req *req,
 2247     struct g_geom **gp)
 2248 {
 2249         struct g_raid_md_class *class;
 2250         struct g_raid_md_object *obj;
 2251         int status;
 2252 
 2253         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
 2254         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2255                 if (strcasecmp(class->name, format) == 0)
 2256                         break;
 2257         }
 2258         if (class == NULL) {
 2259                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
 2260                 return (G_RAID_MD_TASTE_FAIL);
 2261         }
 2262         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2263             M_WAITOK);
 2264         obj->mdo_class = class;
 2265         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
 2266         if (status != G_RAID_MD_TASTE_NEW)
 2267                 kobj_delete((kobj_t)obj, M_RAID);
 2268         return (status);
 2269 }
 2270 
 2271 static int
 2272 g_raid_destroy_geom(struct gctl_req *req __unused,
 2273     struct g_class *mp __unused, struct g_geom *gp)
 2274 {
 2275         struct g_raid_softc *sc;
 2276         int error;
 2277 
 2278         g_topology_unlock();
 2279         sc = gp->softc;
 2280         sx_xlock(&sc->sc_lock);
 2281         g_cancel_event(sc);
 2282         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
 2283         if (error != 0)
 2284                 sx_xunlock(&sc->sc_lock);
 2285         g_topology_lock();
 2286         return (error);
 2287 }
 2288 
 2289 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
 2290     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2291 {
 2292 
 2293         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 2294                 return;
 2295         if (sc->sc_md)
 2296                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
 2297 }
 2298 
 2299 void g_raid_fail_disk(struct g_raid_softc *sc,
 2300     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2301 {
 2302 
 2303         if (disk == NULL)
 2304                 disk = sd->sd_disk;
 2305         if (disk == NULL) {
 2306                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
 2307                 return;
 2308         }
 2309         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
 2310                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
 2311                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 2312                 return;
 2313         }
 2314         if (sc->sc_md)
 2315                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
 2316 }
 2317 
 2318 static void
 2319 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
 2320     struct g_consumer *cp, struct g_provider *pp)
 2321 {
 2322         struct g_raid_softc *sc;
 2323         struct g_raid_volume *vol;
 2324         struct g_raid_subdisk *sd;
 2325         struct g_raid_disk *disk;
 2326         int i, s;
 2327 
 2328         g_topology_assert();
 2329 
 2330         sc = gp->softc;
 2331         if (sc == NULL)
 2332                 return;
 2333         if (pp != NULL) {
 2334                 vol = pp->private;
 2335                 g_topology_unlock();
 2336                 sx_xlock(&sc->sc_lock);
 2337                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
 2338                     vol->v_name);
 2339                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
 2340                     g_raid_volume_level2str(vol->v_raid_level,
 2341                     vol->v_raid_level_qualifier));
 2342                 sbuf_printf(sb,
 2343                     "%s<Transformation>%s</Transformation>\n", indent,
 2344                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
 2345                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
 2346                     vol->v_disks_count);
 2347                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
 2348                     vol->v_strip_size);
 2349                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2350                     g_raid_volume_state2str(vol->v_state));
 2351                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
 2352                     vol->v_dirty ? "Yes" : "No");
 2353                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2354                 for (i = 0; i < vol->v_disks_count; i++) {
 2355                         sd = &vol->v_subdisks[i];
 2356                         if (sd->sd_disk != NULL &&
 2357                             sd->sd_disk->d_consumer != NULL) {
 2358                                 sbuf_printf(sb, "%s ",
 2359                                     g_raid_get_diskname(sd->sd_disk));
 2360                         } else {
 2361                                 sbuf_printf(sb, "NONE ");
 2362                         }
 2363                         sbuf_printf(sb, "(%s",
 2364                             g_raid_subdisk_state2str(sd->sd_state));
 2365                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2366                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2367                                 sbuf_printf(sb, " %d%%",
 2368                                     (int)(sd->sd_rebuild_pos * 100 /
 2369                                      sd->sd_size));
 2370                         }
 2371                         sbuf_printf(sb, ")");
 2372                         if (i + 1 < vol->v_disks_count)
 2373                                 sbuf_printf(sb, ", ");
 2374                 }
 2375                 sbuf_printf(sb, "</Subdisks>\n");
 2376                 sx_xunlock(&sc->sc_lock);
 2377                 g_topology_lock();
 2378         } else if (cp != NULL) {
 2379                 disk = cp->private;
 2380                 if (disk == NULL)
 2381                         return;
 2382                 g_topology_unlock();
 2383                 sx_xlock(&sc->sc_lock);
 2384                 sbuf_printf(sb, "%s<State>%s", indent,
 2385                     g_raid_disk_state2str(disk->d_state));
 2386                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
 2387                         sbuf_printf(sb, " (");
 2388                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2389                                 sbuf_printf(sb, "%s",
 2390                                     g_raid_subdisk_state2str(sd->sd_state));
 2391                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2392                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2393                                         sbuf_printf(sb, " %d%%",
 2394                                             (int)(sd->sd_rebuild_pos * 100 /
 2395                                              sd->sd_size));
 2396                                 }
 2397                                 if (TAILQ_NEXT(sd, sd_next))
 2398                                         sbuf_printf(sb, ", ");
 2399                         }
 2400                         sbuf_printf(sb, ")");
 2401                 }
 2402                 sbuf_printf(sb, "</State>\n");
 2403                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2404                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2405                         sbuf_printf(sb, "r%d(%s):%d@%ju",
 2406                             sd->sd_volume->v_global_id,
 2407                             sd->sd_volume->v_name,
 2408                             sd->sd_pos, sd->sd_offset);
 2409                         if (TAILQ_NEXT(sd, sd_next))
 2410                                 sbuf_printf(sb, ", ");
 2411                 }
 2412                 sbuf_printf(sb, "</Subdisks>\n");
 2413                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
 2414                     disk->d_read_errs);
 2415                 sx_xunlock(&sc->sc_lock);
 2416                 g_topology_lock();
 2417         } else {
 2418                 g_topology_unlock();
 2419                 sx_xlock(&sc->sc_lock);
 2420                 if (sc->sc_md) {
 2421                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
 2422                             sc->sc_md->mdo_class->name);
 2423                 }
 2424                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
 2425                         s = 0xff;
 2426                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 2427                                 if (vol->v_state < s)
 2428                                         s = vol->v_state;
 2429                         }
 2430                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2431                             g_raid_volume_state2str(s));
 2432                 }
 2433                 sx_xunlock(&sc->sc_lock);
 2434                 g_topology_lock();
 2435         }
 2436 }
 2437 
 2438 static void
 2439 g_raid_shutdown_post_sync(void *arg, int howto)
 2440 {
 2441         struct g_class *mp;
 2442         struct g_geom *gp, *gp2;
 2443         struct g_raid_softc *sc;
 2444         struct g_raid_volume *vol;
 2445         int error;
 2446 
 2447         mp = arg;
 2448         DROP_GIANT();
 2449         g_topology_lock();
 2450         g_raid_shutdown = 1;
 2451         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
 2452                 if ((sc = gp->softc) == NULL)
 2453                         continue;
 2454                 g_topology_unlock();
 2455                 sx_xlock(&sc->sc_lock);
 2456                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
 2457                         g_raid_clean(vol, -1);
 2458                 g_cancel_event(sc);
 2459                 error = g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
 2460                 if (error != 0)
 2461                         sx_xunlock(&sc->sc_lock);
 2462                 g_topology_lock();
 2463         }
 2464         g_topology_unlock();
 2465         PICKUP_GIANT();
 2466 }
 2467 
 2468 static void
 2469 g_raid_init(struct g_class *mp)
 2470 {
 2471 
 2472         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
 2473             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
 2474         if (g_raid_post_sync == NULL)
 2475                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
 2476         g_raid_started = 1;
 2477 }
 2478 
 2479 static void
 2480 g_raid_fini(struct g_class *mp)
 2481 {
 2482 
 2483         if (g_raid_post_sync != NULL)
 2484                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
 2485         g_raid_started = 0;
 2486 }
 2487 
 2488 int
 2489 g_raid_md_modevent(module_t mod, int type, void *arg)
 2490 {
 2491         struct g_raid_md_class *class, *c, *nc;
 2492         int error;
 2493 
 2494         error = 0;
 2495         class = arg;
 2496         switch (type) {
 2497         case MOD_LOAD:
 2498                 c = LIST_FIRST(&g_raid_md_classes);
 2499                 if (c == NULL || c->mdc_priority > class->mdc_priority)
 2500                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
 2501                 else {
 2502                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
 2503                             nc->mdc_priority < class->mdc_priority)
 2504                                 c = nc;
 2505                         LIST_INSERT_AFTER(c, class, mdc_list);
 2506                 }
 2507                 if (g_raid_started)
 2508                         g_retaste(&g_raid_class);
 2509                 break;
 2510         case MOD_UNLOAD:
 2511                 LIST_REMOVE(class, mdc_list);
 2512                 break;
 2513         default:
 2514                 error = EOPNOTSUPP;
 2515                 break;
 2516         }
 2517 
 2518         return (error);
 2519 }
 2520 
 2521 int
 2522 g_raid_tr_modevent(module_t mod, int type, void *arg)
 2523 {
 2524         struct g_raid_tr_class *class, *c, *nc;
 2525         int error;
 2526 
 2527         error = 0;
 2528         class = arg;
 2529         switch (type) {
 2530         case MOD_LOAD:
 2531                 c = LIST_FIRST(&g_raid_tr_classes);
 2532                 if (c == NULL || c->trc_priority > class->trc_priority)
 2533                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
 2534                 else {
 2535                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
 2536                             nc->trc_priority < class->trc_priority)
 2537                                 c = nc;
 2538                         LIST_INSERT_AFTER(c, class, trc_list);
 2539                 }
 2540                 break;
 2541         case MOD_UNLOAD:
 2542                 LIST_REMOVE(class, trc_list);
 2543                 break;
 2544         default:
 2545                 error = EOPNOTSUPP;
 2546                 break;
 2547         }
 2548 
 2549         return (error);
 2550 }
 2551 
 2552 /*
 2553  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
 2554  * to reduce module priority, allowing submodules to register them first.
 2555  */
 2556 static moduledata_t g_raid_mod = {
 2557         "g_raid",
 2558         g_modevent,
 2559         &g_raid_class
 2560 };
 2561 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
 2562 MODULE_VERSION(geom_raid, 0);

Cache object: ee9faf97db661eefc5363f4dac383640


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.