The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/raid/g_raid.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/kernel.h>
   33 #include <sys/module.h>
   34 #include <sys/limits.h>
   35 #include <sys/lock.h>
   36 #include <sys/mutex.h>
   37 #include <sys/bio.h>
   38 #include <sys/sbuf.h>
   39 #include <sys/sysctl.h>
   40 #include <sys/malloc.h>
   41 #include <sys/eventhandler.h>
   42 #include <vm/uma.h>
   43 #include <geom/geom.h>
   44 #include <sys/proc.h>
   45 #include <sys/kthread.h>
   46 #include <sys/sched.h>
   47 #include <geom/raid/g_raid.h>
   48 #include "g_raid_md_if.h"
   49 #include "g_raid_tr_if.h"
   50 
   51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
   52 
   53 SYSCTL_DECL(_kern_geom);
   54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
   55 int g_raid_enable = 1;
   56 TUNABLE_INT("kern.geom.raid.enable", &g_raid_enable);
   57 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RW,
   58     &g_raid_enable, 0, "Enable on-disk metadata taste");
   59 u_int g_raid_aggressive_spare = 0;
   60 TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare);
   61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW,
   62     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
   63 u_int g_raid_debug = 0;
   64 TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug);
   65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0,
   66     "Debug level");
   67 int g_raid_read_err_thresh = 10;
   68 TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh);
   69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW,
   70     &g_raid_read_err_thresh, 0,
   71     "Number of read errors equated to disk failure");
   72 u_int g_raid_start_timeout = 30;
   73 TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout);
   74 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW,
   75     &g_raid_start_timeout, 0,
   76     "Time to wait for all array components");
   77 static u_int g_raid_clean_time = 5;
   78 TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time);
   79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW,
   80     &g_raid_clean_time, 0, "Mark volume as clean when idling");
   81 static u_int g_raid_disconnect_on_failure = 1;
   82 TUNABLE_INT("kern.geom.raid.disconnect_on_failure",
   83     &g_raid_disconnect_on_failure);
   84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
   85     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
   86 static u_int g_raid_name_format = 0;
   87 TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format);
   88 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW,
   89     &g_raid_name_format, 0, "Providers name format.");
   90 static u_int g_raid_idle_threshold = 1000000;
   91 TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold);
   92 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW,
   93     &g_raid_idle_threshold, 1000000,
   94     "Time in microseconds to consider a volume idle.");
   95 static u_int ar_legacy_aliases = 1;
   96 SYSCTL_INT(_kern_geom_raid, OID_AUTO, legacy_aliases, CTLFLAG_RW,
   97            &ar_legacy_aliases, 0, "Create aliases named as the legacy ataraid style.");
   98 TUNABLE_INT("kern.geom_raid.legacy_aliases", &ar_legacy_aliases);
   99 
  100 
  101 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
  102         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
  103         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
  104         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
  105 } while (0)
  106 
  107 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
  108     LIST_HEAD_INITIALIZER(g_raid_md_classes);
  109 
  110 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
  111     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
  112 
  113 LIST_HEAD(, g_raid_volume) g_raid_volumes =
  114     LIST_HEAD_INITIALIZER(g_raid_volumes);
  115 
  116 static eventhandler_tag g_raid_post_sync = NULL;
  117 static int g_raid_started = 0;
  118 static int g_raid_shutdown = 0;
  119 
  120 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
  121     struct g_geom *gp);
  122 static g_taste_t g_raid_taste;
  123 static void g_raid_init(struct g_class *mp);
  124 static void g_raid_fini(struct g_class *mp);
  125 
  126 struct g_class g_raid_class = {
  127         .name = G_RAID_CLASS_NAME,
  128         .version = G_VERSION,
  129         .ctlreq = g_raid_ctl,
  130         .taste = g_raid_taste,
  131         .destroy_geom = g_raid_destroy_geom,
  132         .init = g_raid_init,
  133         .fini = g_raid_fini
  134 };
  135 
  136 static void g_raid_destroy_provider(struct g_raid_volume *vol);
  137 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
  138 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
  139 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
  140 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
  141 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
  142     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
  143 static void g_raid_start(struct bio *bp);
  144 static void g_raid_start_request(struct bio *bp);
  145 static void g_raid_disk_done(struct bio *bp);
  146 static void g_raid_poll(struct g_raid_softc *sc);
  147 
  148 static const char *
  149 g_raid_node_event2str(int event)
  150 {
  151 
  152         switch (event) {
  153         case G_RAID_NODE_E_WAKE:
  154                 return ("WAKE");
  155         case G_RAID_NODE_E_START:
  156                 return ("START");
  157         default:
  158                 return ("INVALID");
  159         }
  160 }
  161 
  162 const char *
  163 g_raid_disk_state2str(int state)
  164 {
  165 
  166         switch (state) {
  167         case G_RAID_DISK_S_NONE:
  168                 return ("NONE");
  169         case G_RAID_DISK_S_OFFLINE:
  170                 return ("OFFLINE");
  171         case G_RAID_DISK_S_DISABLED:
  172                 return ("DISABLED");
  173         case G_RAID_DISK_S_FAILED:
  174                 return ("FAILED");
  175         case G_RAID_DISK_S_STALE_FAILED:
  176                 return ("STALE_FAILED");
  177         case G_RAID_DISK_S_SPARE:
  178                 return ("SPARE");
  179         case G_RAID_DISK_S_STALE:
  180                 return ("STALE");
  181         case G_RAID_DISK_S_ACTIVE:
  182                 return ("ACTIVE");
  183         default:
  184                 return ("INVALID");
  185         }
  186 }
  187 
  188 static const char *
  189 g_raid_disk_event2str(int event)
  190 {
  191 
  192         switch (event) {
  193         case G_RAID_DISK_E_DISCONNECTED:
  194                 return ("DISCONNECTED");
  195         default:
  196                 return ("INVALID");
  197         }
  198 }
  199 
  200 const char *
  201 g_raid_subdisk_state2str(int state)
  202 {
  203 
  204         switch (state) {
  205         case G_RAID_SUBDISK_S_NONE:
  206                 return ("NONE");
  207         case G_RAID_SUBDISK_S_FAILED:
  208                 return ("FAILED");
  209         case G_RAID_SUBDISK_S_NEW:
  210                 return ("NEW");
  211         case G_RAID_SUBDISK_S_REBUILD:
  212                 return ("REBUILD");
  213         case G_RAID_SUBDISK_S_UNINITIALIZED:
  214                 return ("UNINITIALIZED");
  215         case G_RAID_SUBDISK_S_STALE:
  216                 return ("STALE");
  217         case G_RAID_SUBDISK_S_RESYNC:
  218                 return ("RESYNC");
  219         case G_RAID_SUBDISK_S_ACTIVE:
  220                 return ("ACTIVE");
  221         default:
  222                 return ("INVALID");
  223         }
  224 }
  225 
  226 static const char *
  227 g_raid_subdisk_event2str(int event)
  228 {
  229 
  230         switch (event) {
  231         case G_RAID_SUBDISK_E_NEW:
  232                 return ("NEW");
  233         case G_RAID_SUBDISK_E_FAILED:
  234                 return ("FAILED");
  235         case G_RAID_SUBDISK_E_DISCONNECTED:
  236                 return ("DISCONNECTED");
  237         default:
  238                 return ("INVALID");
  239         }
  240 }
  241 
  242 const char *
  243 g_raid_volume_state2str(int state)
  244 {
  245 
  246         switch (state) {
  247         case G_RAID_VOLUME_S_STARTING:
  248                 return ("STARTING");
  249         case G_RAID_VOLUME_S_BROKEN:
  250                 return ("BROKEN");
  251         case G_RAID_VOLUME_S_DEGRADED:
  252                 return ("DEGRADED");
  253         case G_RAID_VOLUME_S_SUBOPTIMAL:
  254                 return ("SUBOPTIMAL");
  255         case G_RAID_VOLUME_S_OPTIMAL:
  256                 return ("OPTIMAL");
  257         case G_RAID_VOLUME_S_UNSUPPORTED:
  258                 return ("UNSUPPORTED");
  259         case G_RAID_VOLUME_S_STOPPED:
  260                 return ("STOPPED");
  261         default:
  262                 return ("INVALID");
  263         }
  264 }
  265 
  266 static const char *
  267 g_raid_volume_event2str(int event)
  268 {
  269 
  270         switch (event) {
  271         case G_RAID_VOLUME_E_UP:
  272                 return ("UP");
  273         case G_RAID_VOLUME_E_DOWN:
  274                 return ("DOWN");
  275         case G_RAID_VOLUME_E_START:
  276                 return ("START");
  277         case G_RAID_VOLUME_E_STARTMD:
  278                 return ("STARTMD");
  279         default:
  280                 return ("INVALID");
  281         }
  282 }
  283 
  284 const char *
  285 g_raid_volume_level2str(int level, int qual)
  286 {
  287 
  288         switch (level) {
  289         case G_RAID_VOLUME_RL_RAID0:
  290                 return ("RAID0");
  291         case G_RAID_VOLUME_RL_RAID1:
  292                 return ("RAID1");
  293         case G_RAID_VOLUME_RL_RAID3:
  294                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
  295                         return ("RAID3-P0");
  296                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
  297                         return ("RAID3-PN");
  298                 return ("RAID3");
  299         case G_RAID_VOLUME_RL_RAID4:
  300                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
  301                         return ("RAID4-P0");
  302                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
  303                         return ("RAID4-PN");
  304                 return ("RAID4");
  305         case G_RAID_VOLUME_RL_RAID5:
  306                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
  307                         return ("RAID5-RA");
  308                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
  309                         return ("RAID5-RS");
  310                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
  311                         return ("RAID5-LA");
  312                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
  313                         return ("RAID5-LS");
  314                 return ("RAID5");
  315         case G_RAID_VOLUME_RL_RAID6:
  316                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
  317                         return ("RAID6-RA");
  318                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
  319                         return ("RAID6-RS");
  320                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
  321                         return ("RAID6-LA");
  322                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
  323                         return ("RAID6-LS");
  324                 return ("RAID6");
  325         case G_RAID_VOLUME_RL_RAIDMDF:
  326                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
  327                         return ("RAIDMDF-RA");
  328                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
  329                         return ("RAIDMDF-RS");
  330                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
  331                         return ("RAIDMDF-LA");
  332                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
  333                         return ("RAIDMDF-LS");
  334                 return ("RAIDMDF");
  335         case G_RAID_VOLUME_RL_RAID1E:
  336                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
  337                         return ("RAID1E-A");
  338                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
  339                         return ("RAID1E-O");
  340                 return ("RAID1E");
  341         case G_RAID_VOLUME_RL_SINGLE:
  342                 return ("SINGLE");
  343         case G_RAID_VOLUME_RL_CONCAT:
  344                 return ("CONCAT");
  345         case G_RAID_VOLUME_RL_RAID5E:
  346                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
  347                         return ("RAID5E-RA");
  348                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
  349                         return ("RAID5E-RS");
  350                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
  351                         return ("RAID5E-LA");
  352                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
  353                         return ("RAID5E-LS");
  354                 return ("RAID5E");
  355         case G_RAID_VOLUME_RL_RAID5EE:
  356                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
  357                         return ("RAID5EE-RA");
  358                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
  359                         return ("RAID5EE-RS");
  360                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
  361                         return ("RAID5EE-LA");
  362                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
  363                         return ("RAID5EE-LS");
  364                 return ("RAID5EE");
  365         case G_RAID_VOLUME_RL_RAID5R:
  366                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
  367                         return ("RAID5R-RA");
  368                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
  369                         return ("RAID5R-RS");
  370                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
  371                         return ("RAID5R-LA");
  372                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
  373                         return ("RAID5R-LS");
  374                 return ("RAID5E");
  375         default:
  376                 return ("UNKNOWN");
  377         }
  378 }
  379 
  380 int
  381 g_raid_volume_str2level(const char *str, int *level, int *qual)
  382 {
  383 
  384         *level = G_RAID_VOLUME_RL_UNKNOWN;
  385         *qual = G_RAID_VOLUME_RLQ_NONE;
  386         if (strcasecmp(str, "RAID0") == 0)
  387                 *level = G_RAID_VOLUME_RL_RAID0;
  388         else if (strcasecmp(str, "RAID1") == 0)
  389                 *level = G_RAID_VOLUME_RL_RAID1;
  390         else if (strcasecmp(str, "RAID3-P0") == 0) {
  391                 *level = G_RAID_VOLUME_RL_RAID3;
  392                 *qual = G_RAID_VOLUME_RLQ_R3P0;
  393         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
  394                    strcasecmp(str, "RAID3") == 0) {
  395                 *level = G_RAID_VOLUME_RL_RAID3;
  396                 *qual = G_RAID_VOLUME_RLQ_R3PN;
  397         } else if (strcasecmp(str, "RAID4-P0") == 0) {
  398                 *level = G_RAID_VOLUME_RL_RAID4;
  399                 *qual = G_RAID_VOLUME_RLQ_R4P0;
  400         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
  401                    strcasecmp(str, "RAID4") == 0) {
  402                 *level = G_RAID_VOLUME_RL_RAID4;
  403                 *qual = G_RAID_VOLUME_RLQ_R4PN;
  404         } else if (strcasecmp(str, "RAID5-RA") == 0) {
  405                 *level = G_RAID_VOLUME_RL_RAID5;
  406                 *qual = G_RAID_VOLUME_RLQ_R5RA;
  407         } else if (strcasecmp(str, "RAID5-RS") == 0) {
  408                 *level = G_RAID_VOLUME_RL_RAID5;
  409                 *qual = G_RAID_VOLUME_RLQ_R5RS;
  410         } else if (strcasecmp(str, "RAID5") == 0 ||
  411                    strcasecmp(str, "RAID5-LA") == 0) {
  412                 *level = G_RAID_VOLUME_RL_RAID5;
  413                 *qual = G_RAID_VOLUME_RLQ_R5LA;
  414         } else if (strcasecmp(str, "RAID5-LS") == 0) {
  415                 *level = G_RAID_VOLUME_RL_RAID5;
  416                 *qual = G_RAID_VOLUME_RLQ_R5LS;
  417         } else if (strcasecmp(str, "RAID6-RA") == 0) {
  418                 *level = G_RAID_VOLUME_RL_RAID6;
  419                 *qual = G_RAID_VOLUME_RLQ_R6RA;
  420         } else if (strcasecmp(str, "RAID6-RS") == 0) {
  421                 *level = G_RAID_VOLUME_RL_RAID6;
  422                 *qual = G_RAID_VOLUME_RLQ_R6RS;
  423         } else if (strcasecmp(str, "RAID6") == 0 ||
  424                    strcasecmp(str, "RAID6-LA") == 0) {
  425                 *level = G_RAID_VOLUME_RL_RAID6;
  426                 *qual = G_RAID_VOLUME_RLQ_R6LA;
  427         } else if (strcasecmp(str, "RAID6-LS") == 0) {
  428                 *level = G_RAID_VOLUME_RL_RAID6;
  429                 *qual = G_RAID_VOLUME_RLQ_R6LS;
  430         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
  431                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  432                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
  433         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
  434                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  435                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
  436         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
  437                    strcasecmp(str, "RAIDMDF-LA") == 0) {
  438                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  439                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
  440         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
  441                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  442                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
  443         } else if (strcasecmp(str, "RAID10") == 0 ||
  444                    strcasecmp(str, "RAID1E") == 0 ||
  445                    strcasecmp(str, "RAID1E-A") == 0) {
  446                 *level = G_RAID_VOLUME_RL_RAID1E;
  447                 *qual = G_RAID_VOLUME_RLQ_R1EA;
  448         } else if (strcasecmp(str, "RAID1E-O") == 0) {
  449                 *level = G_RAID_VOLUME_RL_RAID1E;
  450                 *qual = G_RAID_VOLUME_RLQ_R1EO;
  451         } else if (strcasecmp(str, "SINGLE") == 0)
  452                 *level = G_RAID_VOLUME_RL_SINGLE;
  453         else if (strcasecmp(str, "CONCAT") == 0)
  454                 *level = G_RAID_VOLUME_RL_CONCAT;
  455         else if (strcasecmp(str, "RAID5E-RA") == 0) {
  456                 *level = G_RAID_VOLUME_RL_RAID5E;
  457                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
  458         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
  459                 *level = G_RAID_VOLUME_RL_RAID5E;
  460                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
  461         } else if (strcasecmp(str, "RAID5E") == 0 ||
  462                    strcasecmp(str, "RAID5E-LA") == 0) {
  463                 *level = G_RAID_VOLUME_RL_RAID5E;
  464                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
  465         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
  466                 *level = G_RAID_VOLUME_RL_RAID5E;
  467                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
  468         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
  469                 *level = G_RAID_VOLUME_RL_RAID5EE;
  470                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
  471         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
  472                 *level = G_RAID_VOLUME_RL_RAID5EE;
  473                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
  474         } else if (strcasecmp(str, "RAID5EE") == 0 ||
  475                    strcasecmp(str, "RAID5EE-LA") == 0) {
  476                 *level = G_RAID_VOLUME_RL_RAID5EE;
  477                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
  478         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
  479                 *level = G_RAID_VOLUME_RL_RAID5EE;
  480                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
  481         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
  482                 *level = G_RAID_VOLUME_RL_RAID5R;
  483                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
  484         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
  485                 *level = G_RAID_VOLUME_RL_RAID5R;
  486                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
  487         } else if (strcasecmp(str, "RAID5R") == 0 ||
  488                    strcasecmp(str, "RAID5R-LA") == 0) {
  489                 *level = G_RAID_VOLUME_RL_RAID5R;
  490                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
  491         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
  492                 *level = G_RAID_VOLUME_RL_RAID5R;
  493                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
  494         } else
  495                 return (-1);
  496         return (0);
  497 }
  498 
  499 const char *
  500 g_raid_get_diskname(struct g_raid_disk *disk)
  501 {
  502 
  503         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
  504                 return ("[unknown]");
  505         return (disk->d_consumer->provider->name);
  506 }
  507 
  508 void
  509 g_raid_get_disk_info(struct g_raid_disk *disk)
  510 {
  511         struct g_consumer *cp = disk->d_consumer;
  512         int error, len;
  513 
  514         /* Read kernel dumping information. */
  515         disk->d_kd.offset = 0;
  516         disk->d_kd.length = OFF_MAX;
  517         len = sizeof(disk->d_kd);
  518         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
  519         if (error)
  520                 disk->d_kd.di.dumper = NULL;
  521         if (disk->d_kd.di.dumper == NULL)
  522                 G_RAID_DEBUG1(2, disk->d_softc,
  523                     "Dumping not supported by %s: %d.", 
  524                     cp->provider->name, error);
  525 
  526         /* Read BIO_DELETE support. */
  527         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
  528         if (error)
  529                 disk->d_candelete = 0;
  530         if (!disk->d_candelete)
  531                 G_RAID_DEBUG1(2, disk->d_softc,
  532                     "BIO_DELETE not supported by %s: %d.", 
  533                     cp->provider->name, error);
  534 }
  535 
  536 void
  537 g_raid_report_disk_state(struct g_raid_disk *disk)
  538 {
  539         struct g_raid_subdisk *sd;
  540         int len, state;
  541         uint32_t s;
  542 
  543         if (disk->d_consumer == NULL)
  544                 return;
  545         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
  546                 s = G_STATE_ACTIVE; /* XXX */
  547         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
  548             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
  549                 s = G_STATE_FAILED;
  550         } else {
  551                 state = G_RAID_SUBDISK_S_ACTIVE;
  552                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
  553                         if (sd->sd_state < state)
  554                                 state = sd->sd_state;
  555                 }
  556                 if (state == G_RAID_SUBDISK_S_FAILED)
  557                         s = G_STATE_FAILED;
  558                 else if (state == G_RAID_SUBDISK_S_NEW ||
  559                     state == G_RAID_SUBDISK_S_REBUILD)
  560                         s = G_STATE_REBUILD;
  561                 else if (state == G_RAID_SUBDISK_S_STALE ||
  562                     state == G_RAID_SUBDISK_S_RESYNC)
  563                         s = G_STATE_RESYNC;
  564                 else
  565                         s = G_STATE_ACTIVE;
  566         }
  567         len = sizeof(s);
  568         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
  569         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
  570             g_raid_get_diskname(disk), s);
  571 }
  572 
  573 void
  574 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
  575 {
  576 
  577         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
  578             g_raid_get_diskname(disk),
  579             g_raid_disk_state2str(disk->d_state),
  580             g_raid_disk_state2str(state));
  581         disk->d_state = state;
  582         g_raid_report_disk_state(disk);
  583 }
  584 
  585 void
  586 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
  587 {
  588 
  589         G_RAID_DEBUG1(0, sd->sd_softc,
  590             "Subdisk %s:%d-%s state changed from %s to %s.",
  591             sd->sd_volume->v_name, sd->sd_pos,
  592             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
  593             g_raid_subdisk_state2str(sd->sd_state),
  594             g_raid_subdisk_state2str(state));
  595         sd->sd_state = state;
  596         if (sd->sd_disk)
  597                 g_raid_report_disk_state(sd->sd_disk);
  598 }
  599 
  600 void
  601 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
  602 {
  603 
  604         G_RAID_DEBUG1(0, vol->v_softc,
  605             "Volume %s state changed from %s to %s.",
  606             vol->v_name,
  607             g_raid_volume_state2str(vol->v_state),
  608             g_raid_volume_state2str(state));
  609         vol->v_state = state;
  610 }
  611 
  612 /*
  613  * --- Events handling functions ---
  614  * Events in geom_raid are used to maintain subdisks and volumes status
  615  * from one thread to simplify locking.
  616  */
  617 static void
  618 g_raid_event_free(struct g_raid_event *ep)
  619 {
  620 
  621         free(ep, M_RAID);
  622 }
  623 
  624 int
  625 g_raid_event_send(void *arg, int event, int flags)
  626 {
  627         struct g_raid_softc *sc;
  628         struct g_raid_event *ep;
  629         int error;
  630 
  631         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
  632                 sc = ((struct g_raid_volume *)arg)->v_softc;
  633         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
  634                 sc = ((struct g_raid_disk *)arg)->d_softc;
  635         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
  636                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
  637         } else {
  638                 sc = arg;
  639         }
  640         ep = malloc(sizeof(*ep), M_RAID,
  641             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
  642         if (ep == NULL)
  643                 return (ENOMEM);
  644         ep->e_tgt = arg;
  645         ep->e_event = event;
  646         ep->e_flags = flags;
  647         ep->e_error = 0;
  648         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
  649         mtx_lock(&sc->sc_queue_mtx);
  650         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
  651         mtx_unlock(&sc->sc_queue_mtx);
  652         wakeup(sc);
  653 
  654         if ((flags & G_RAID_EVENT_WAIT) == 0)
  655                 return (0);
  656 
  657         sx_assert(&sc->sc_lock, SX_XLOCKED);
  658         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
  659         sx_xunlock(&sc->sc_lock);
  660         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
  661                 mtx_lock(&sc->sc_queue_mtx);
  662                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
  663                     hz * 5);
  664         }
  665         error = ep->e_error;
  666         g_raid_event_free(ep);
  667         sx_xlock(&sc->sc_lock);
  668         return (error);
  669 }
  670 
  671 static void
  672 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
  673 {
  674         struct g_raid_event *ep, *tmpep;
  675 
  676         sx_assert(&sc->sc_lock, SX_XLOCKED);
  677 
  678         mtx_lock(&sc->sc_queue_mtx);
  679         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
  680                 if (ep->e_tgt != tgt)
  681                         continue;
  682                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  683                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
  684                         g_raid_event_free(ep);
  685                 else {
  686                         ep->e_error = ECANCELED;
  687                         wakeup(ep);
  688                 }
  689         }
  690         mtx_unlock(&sc->sc_queue_mtx);
  691 }
  692 
  693 static int
  694 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
  695 {
  696         struct g_raid_event *ep;
  697         int     res = 0;
  698 
  699         sx_assert(&sc->sc_lock, SX_XLOCKED);
  700 
  701         mtx_lock(&sc->sc_queue_mtx);
  702         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
  703                 if (ep->e_tgt != tgt)
  704                         continue;
  705                 res = 1;
  706                 break;
  707         }
  708         mtx_unlock(&sc->sc_queue_mtx);
  709         return (res);
  710 }
  711 
  712 /*
  713  * Return the number of disks in given state.
  714  * If state is equal to -1, count all connected disks.
  715  */
  716 u_int
  717 g_raid_ndisks(struct g_raid_softc *sc, int state)
  718 {
  719         struct g_raid_disk *disk;
  720         u_int n;
  721 
  722         sx_assert(&sc->sc_lock, SX_LOCKED);
  723 
  724         n = 0;
  725         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
  726                 if (disk->d_state == state || state == -1)
  727                         n++;
  728         }
  729         return (n);
  730 }
  731 
  732 /*
  733  * Return the number of subdisks in given state.
  734  * If state is equal to -1, count all connected disks.
  735  */
  736 u_int
  737 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
  738 {
  739         struct g_raid_subdisk *subdisk;
  740         struct g_raid_softc *sc;
  741         u_int i, n ;
  742 
  743         sc = vol->v_softc;
  744         sx_assert(&sc->sc_lock, SX_LOCKED);
  745 
  746         n = 0;
  747         for (i = 0; i < vol->v_disks_count; i++) {
  748                 subdisk = &vol->v_subdisks[i];
  749                 if ((state == -1 &&
  750                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
  751                     subdisk->sd_state == state)
  752                         n++;
  753         }
  754         return (n);
  755 }
  756 
  757 /*
  758  * Return the first subdisk in given state.
  759  * If state is equal to -1, then the first connected disks.
  760  */
  761 struct g_raid_subdisk *
  762 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
  763 {
  764         struct g_raid_subdisk *sd;
  765         struct g_raid_softc *sc;
  766         u_int i;
  767 
  768         sc = vol->v_softc;
  769         sx_assert(&sc->sc_lock, SX_LOCKED);
  770 
  771         for (i = 0; i < vol->v_disks_count; i++) {
  772                 sd = &vol->v_subdisks[i];
  773                 if ((state == -1 &&
  774                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
  775                     sd->sd_state == state)
  776                         return (sd);
  777         }
  778         return (NULL);
  779 }
  780 
  781 struct g_consumer *
  782 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
  783 {
  784         struct g_consumer *cp;
  785         struct g_provider *pp;
  786 
  787         g_topology_assert();
  788 
  789         if (strncmp(name, "/dev/", 5) == 0)
  790                 name += 5;
  791         pp = g_provider_by_name(name);
  792         if (pp == NULL)
  793                 return (NULL);
  794         cp = g_new_consumer(sc->sc_geom);
  795         if (g_attach(cp, pp) != 0) {
  796                 g_destroy_consumer(cp);
  797                 return (NULL);
  798         }
  799         if (g_access(cp, 1, 1, 1) != 0) {
  800                 g_detach(cp);
  801                 g_destroy_consumer(cp);
  802                 return (NULL);
  803         }
  804         return (cp);
  805 }
  806 
  807 static u_int
  808 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
  809 {
  810         struct bio *bp;
  811         u_int nreqs = 0;
  812 
  813         mtx_lock(&sc->sc_queue_mtx);
  814         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
  815                 if (bp->bio_from == cp)
  816                         nreqs++;
  817         }
  818         mtx_unlock(&sc->sc_queue_mtx);
  819         return (nreqs);
  820 }
  821 
  822 u_int
  823 g_raid_nopens(struct g_raid_softc *sc)
  824 {
  825         struct g_raid_volume *vol;
  826         u_int opens;
  827 
  828         opens = 0;
  829         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
  830                 if (vol->v_provider_open != 0)
  831                         opens++;
  832         }
  833         return (opens);
  834 }
  835 
  836 static int
  837 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
  838 {
  839 
  840         if (cp->index > 0) {
  841                 G_RAID_DEBUG1(2, sc,
  842                     "I/O requests for %s exist, can't destroy it now.",
  843                     cp->provider->name);
  844                 return (1);
  845         }
  846         if (g_raid_nrequests(sc, cp) > 0) {
  847                 G_RAID_DEBUG1(2, sc,
  848                     "I/O requests for %s in queue, can't destroy it now.",
  849                     cp->provider->name);
  850                 return (1);
  851         }
  852         return (0);
  853 }
  854 
  855 static void
  856 g_raid_destroy_consumer(void *arg, int flags __unused)
  857 {
  858         struct g_consumer *cp;
  859 
  860         g_topology_assert();
  861 
  862         cp = arg;
  863         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
  864         g_detach(cp);
  865         g_destroy_consumer(cp);
  866 }
  867 
  868 void
  869 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
  870 {
  871         struct g_provider *pp;
  872         int retaste_wait;
  873 
  874         g_topology_assert_not();
  875 
  876         g_topology_lock();
  877         cp->private = NULL;
  878         if (g_raid_consumer_is_busy(sc, cp))
  879                 goto out;
  880         pp = cp->provider;
  881         retaste_wait = 0;
  882         if (cp->acw == 1) {
  883                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
  884                         retaste_wait = 1;
  885         }
  886         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
  887                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
  888         if (retaste_wait) {
  889                 /*
  890                  * After retaste event was send (inside g_access()), we can send
  891                  * event to detach and destroy consumer.
  892                  * A class, which has consumer to the given provider connected
  893                  * will not receive retaste event for the provider.
  894                  * This is the way how I ignore retaste events when I close
  895                  * consumers opened for write: I detach and destroy consumer
  896                  * after retaste event is sent.
  897                  */
  898                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
  899                 goto out;
  900         }
  901         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
  902         g_detach(cp);
  903         g_destroy_consumer(cp);
  904 out:
  905         g_topology_unlock();
  906 }
  907 
  908 static void
  909 g_raid_orphan(struct g_consumer *cp)
  910 {
  911         struct g_raid_disk *disk;
  912 
  913         g_topology_assert();
  914 
  915         disk = cp->private;
  916         if (disk == NULL)
  917                 return;
  918         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
  919             G_RAID_EVENT_DISK);
  920 }
  921 
  922 static void
  923 g_raid_clean(struct g_raid_volume *vol, int acw)
  924 {
  925         struct g_raid_softc *sc;
  926         int timeout;
  927 
  928         sc = vol->v_softc;
  929         g_topology_assert_not();
  930         sx_assert(&sc->sc_lock, SX_XLOCKED);
  931 
  932 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  933 //              return;
  934         if (!vol->v_dirty)
  935                 return;
  936         if (vol->v_writes > 0)
  937                 return;
  938         if (acw > 0 || (acw == -1 &&
  939             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
  940                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
  941                 if (!g_raid_shutdown && timeout > 0)
  942                         return;
  943         }
  944         vol->v_dirty = 0;
  945         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
  946             vol->v_name);
  947         g_raid_write_metadata(sc, vol, NULL, NULL);
  948 }
  949 
  950 static void
  951 g_raid_dirty(struct g_raid_volume *vol)
  952 {
  953         struct g_raid_softc *sc;
  954 
  955         sc = vol->v_softc;
  956         g_topology_assert_not();
  957         sx_assert(&sc->sc_lock, SX_XLOCKED);
  958 
  959 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  960 //              return;
  961         vol->v_dirty = 1;
  962         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
  963             vol->v_name);
  964         g_raid_write_metadata(sc, vol, NULL, NULL);
  965 }
  966 
  967 void
  968 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
  969 {
  970         struct g_raid_softc *sc;
  971         struct g_raid_volume *vol;
  972         struct g_raid_subdisk *sd;
  973         struct bio_queue_head queue;
  974         struct bio *cbp;
  975         int i;
  976 
  977         vol = tr->tro_volume;
  978         sc = vol->v_softc;
  979 
  980         /*
  981          * Allocate all bios before sending any request, so we can return
  982          * ENOMEM in nice and clean way.
  983          */
  984         bioq_init(&queue);
  985         for (i = 0; i < vol->v_disks_count; i++) {
  986                 sd = &vol->v_subdisks[i];
  987                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
  988                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
  989                         continue;
  990                 cbp = g_clone_bio(bp);
  991                 if (cbp == NULL)
  992                         goto failure;
  993                 cbp->bio_caller1 = sd;
  994                 bioq_insert_tail(&queue, cbp);
  995         }
  996         while ((cbp = bioq_takefirst(&queue)) != NULL) {
  997                 sd = cbp->bio_caller1;
  998                 cbp->bio_caller1 = NULL;
  999                 g_raid_subdisk_iostart(sd, cbp);
 1000         }
 1001         return;
 1002 failure:
 1003         while ((cbp = bioq_takefirst(&queue)) != NULL)
 1004                 g_destroy_bio(cbp);
 1005         if (bp->bio_error == 0)
 1006                 bp->bio_error = ENOMEM;
 1007         g_raid_iodone(bp, bp->bio_error);
 1008 }
 1009 
 1010 static void
 1011 g_raid_tr_kerneldump_common_done(struct bio *bp)
 1012 {
 1013 
 1014         bp->bio_flags |= BIO_DONE;
 1015 }
 1016 
 1017 int
 1018 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
 1019     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1020 {
 1021         struct g_raid_softc *sc;
 1022         struct g_raid_volume *vol;
 1023         struct bio bp;
 1024 
 1025         vol = tr->tro_volume;
 1026         sc = vol->v_softc;
 1027 
 1028         bzero(&bp, sizeof(bp));
 1029         bp.bio_cmd = BIO_WRITE;
 1030         bp.bio_done = g_raid_tr_kerneldump_common_done;
 1031         bp.bio_attribute = NULL;
 1032         bp.bio_offset = offset;
 1033         bp.bio_length = length;
 1034         bp.bio_data = virtual;
 1035         bp.bio_to = vol->v_provider;
 1036 
 1037         g_raid_start(&bp);
 1038         while (!(bp.bio_flags & BIO_DONE)) {
 1039                 G_RAID_DEBUG1(4, sc, "Poll...");
 1040                 g_raid_poll(sc);
 1041                 DELAY(10);
 1042         }
 1043 
 1044         return (bp.bio_error != 0 ? EIO : 0);
 1045 }
 1046 
 1047 static int
 1048 g_raid_dump(void *arg,
 1049     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1050 {
 1051         struct g_raid_volume *vol;
 1052         int error;
 1053 
 1054         vol = (struct g_raid_volume *)arg;
 1055         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
 1056             (long long unsigned)offset, (long long unsigned)length);
 1057 
 1058         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
 1059             virtual, physical, offset, length);
 1060         return (error);
 1061 }
 1062 
 1063 static void
 1064 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
 1065 {
 1066         struct g_kerneldump *gkd;
 1067         struct g_provider *pp;
 1068         struct g_raid_volume *vol;
 1069 
 1070         gkd = (struct g_kerneldump*)bp->bio_data;
 1071         pp = bp->bio_to;
 1072         vol = pp->private;
 1073         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
 1074                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
 1075         gkd->di.dumper = g_raid_dump;
 1076         gkd->di.priv = vol;
 1077         gkd->di.blocksize = vol->v_sectorsize;
 1078         gkd->di.maxiosize = DFLTPHYS;
 1079         gkd->di.mediaoffset = gkd->offset;
 1080         if ((gkd->offset + gkd->length) > vol->v_mediasize)
 1081                 gkd->length = vol->v_mediasize - gkd->offset;
 1082         gkd->di.mediasize = gkd->length;
 1083         g_io_deliver(bp, 0);
 1084 }
 1085 
 1086 static void
 1087 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
 1088 {
 1089         struct g_provider *pp;
 1090         struct g_raid_volume *vol;
 1091         struct g_raid_subdisk *sd;
 1092         int *val;
 1093         int i;
 1094 
 1095         val = (int *)bp->bio_data;
 1096         pp = bp->bio_to;
 1097         vol = pp->private;
 1098         *val = 0;
 1099         for (i = 0; i < vol->v_disks_count; i++) {
 1100                 sd = &vol->v_subdisks[i];
 1101                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1102                         continue;
 1103                 if (sd->sd_disk->d_candelete) {
 1104                         *val = 1;
 1105                         break;
 1106                 }
 1107         }
 1108         g_io_deliver(bp, 0);
 1109 }
 1110 
 1111 static void
 1112 g_raid_start(struct bio *bp)
 1113 {
 1114         struct g_raid_softc *sc;
 1115 
 1116         sc = bp->bio_to->geom->softc;
 1117         /*
 1118          * If sc == NULL or there are no valid disks, provider's error
 1119          * should be set and g_raid_start() should not be called at all.
 1120          */
 1121 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
 1122 //          ("Provider's error should be set (error=%d)(mirror=%s).",
 1123 //          bp->bio_to->error, bp->bio_to->name));
 1124         G_RAID_LOGREQ(3, bp, "Request received.");
 1125 
 1126         switch (bp->bio_cmd) {
 1127         case BIO_READ:
 1128         case BIO_WRITE:
 1129         case BIO_DELETE:
 1130         case BIO_FLUSH:
 1131                 break;
 1132         case BIO_GETATTR:
 1133                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
 1134                         g_raid_candelete(sc, bp);
 1135                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
 1136                         g_raid_kerneldump(sc, bp);
 1137                 else
 1138                         g_io_deliver(bp, EOPNOTSUPP);
 1139                 return;
 1140         default:
 1141                 g_io_deliver(bp, EOPNOTSUPP);
 1142                 return;
 1143         }
 1144         mtx_lock(&sc->sc_queue_mtx);
 1145         bioq_insert_tail(&sc->sc_queue, bp);
 1146         mtx_unlock(&sc->sc_queue_mtx);
 1147         if (!dumping) {
 1148                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
 1149                 wakeup(sc);
 1150         }
 1151 }
 1152 
 1153 static int
 1154 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
 1155 {
 1156         /*
 1157          * 5 cases:
 1158          * (1) bp entirely below NO
 1159          * (2) bp entirely above NO
 1160          * (3) bp start below, but end in range YES
 1161          * (4) bp entirely within YES
 1162          * (5) bp starts within, ends above YES
 1163          *
 1164          * lock range 10-19 (offset 10 length 10)
 1165          * (1) 1-5: first if kicks it out
 1166          * (2) 30-35: second if kicks it out
 1167          * (3) 5-15: passes both ifs
 1168          * (4) 12-14: passes both ifs
 1169          * (5) 19-20: passes both
 1170          */
 1171         off_t lend = lstart + len - 1;
 1172         off_t bstart = bp->bio_offset;
 1173         off_t bend = bp->bio_offset + bp->bio_length - 1;
 1174 
 1175         if (bend < lstart)
 1176                 return (0);
 1177         if (lend < bstart)
 1178                 return (0);
 1179         return (1);
 1180 }
 1181 
 1182 static int
 1183 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
 1184 {
 1185         struct g_raid_lock *lp;
 1186 
 1187         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
 1188 
 1189         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1190                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
 1191                         return (1);
 1192         }
 1193         return (0);
 1194 }
 1195 
 1196 static void
 1197 g_raid_start_request(struct bio *bp)
 1198 {
 1199         struct g_raid_softc *sc;
 1200         struct g_raid_volume *vol;
 1201 
 1202         sc = bp->bio_to->geom->softc;
 1203         sx_assert(&sc->sc_lock, SX_LOCKED);
 1204         vol = bp->bio_to->private;
 1205 
 1206         /*
 1207          * Check to see if this item is in a locked range.  If so,
 1208          * queue it to our locked queue and return.  We'll requeue
 1209          * it when the range is unlocked.  Internal I/O for the
 1210          * rebuild/rescan/recovery process is excluded from this
 1211          * check so we can actually do the recovery.
 1212          */
 1213         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
 1214             g_raid_is_in_locked_range(vol, bp)) {
 1215                 G_RAID_LOGREQ(3, bp, "Defer request.");
 1216                 bioq_insert_tail(&vol->v_locked, bp);
 1217                 return;
 1218         }
 1219 
 1220         /*
 1221          * If we're actually going to do the write/delete, then
 1222          * update the idle stats for the volume.
 1223          */
 1224         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1225                 if (!vol->v_dirty)
 1226                         g_raid_dirty(vol);
 1227                 vol->v_writes++;
 1228         }
 1229 
 1230         /*
 1231          * Put request onto inflight queue, so we can check if new
 1232          * synchronization requests don't collide with it.  Then tell
 1233          * the transformation layer to start the I/O.
 1234          */
 1235         bioq_insert_tail(&vol->v_inflight, bp);
 1236         G_RAID_LOGREQ(4, bp, "Request started");
 1237         G_RAID_TR_IOSTART(vol->v_tr, bp);
 1238 }
 1239 
 1240 static void
 1241 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
 1242 {
 1243         off_t off, len;
 1244         struct bio *nbp;
 1245         struct g_raid_lock *lp;
 1246 
 1247         vol->v_pending_lock = 0;
 1248         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1249                 if (lp->l_pending) {
 1250                         off = lp->l_offset;
 1251                         len = lp->l_length;
 1252                         lp->l_pending = 0;
 1253                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
 1254                                 if (g_raid_bio_overlaps(nbp, off, len))
 1255                                         lp->l_pending++;
 1256                         }
 1257                         if (lp->l_pending) {
 1258                                 vol->v_pending_lock = 1;
 1259                                 G_RAID_DEBUG1(4, vol->v_softc,
 1260                                     "Deferred lock(%jd, %jd) has %d pending",
 1261                                     (intmax_t)off, (intmax_t)(off + len),
 1262                                     lp->l_pending);
 1263                                 continue;
 1264                         }
 1265                         G_RAID_DEBUG1(4, vol->v_softc,
 1266                             "Deferred lock of %jd to %jd completed",
 1267                             (intmax_t)off, (intmax_t)(off + len));
 1268                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1269                 }
 1270         }
 1271 }
 1272 
 1273 void
 1274 g_raid_iodone(struct bio *bp, int error)
 1275 {
 1276         struct g_raid_softc *sc;
 1277         struct g_raid_volume *vol;
 1278 
 1279         sc = bp->bio_to->geom->softc;
 1280         sx_assert(&sc->sc_lock, SX_LOCKED);
 1281         vol = bp->bio_to->private;
 1282         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
 1283 
 1284         /* Update stats if we done write/delete. */
 1285         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1286                 vol->v_writes--;
 1287                 vol->v_last_write = time_uptime;
 1288         }
 1289 
 1290         bioq_remove(&vol->v_inflight, bp);
 1291         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
 1292                 g_raid_finish_with_locked_ranges(vol, bp);
 1293         getmicrouptime(&vol->v_last_done);
 1294         g_io_deliver(bp, error);
 1295 }
 1296 
 1297 int
 1298 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
 1299     struct bio *ignore, void *argp)
 1300 {
 1301         struct g_raid_softc *sc;
 1302         struct g_raid_lock *lp;
 1303         struct bio *bp;
 1304 
 1305         sc = vol->v_softc;
 1306         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
 1307         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
 1308         lp->l_offset = off;
 1309         lp->l_length = len;
 1310         lp->l_callback_arg = argp;
 1311 
 1312         lp->l_pending = 0;
 1313         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
 1314                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
 1315                         lp->l_pending++;
 1316         }       
 1317 
 1318         /*
 1319          * If there are any writes that are pending, we return EBUSY.  All
 1320          * callers will have to wait until all pending writes clear.
 1321          */
 1322         if (lp->l_pending > 0) {
 1323                 vol->v_pending_lock = 1;
 1324                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
 1325                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
 1326                 return (EBUSY);
 1327         }
 1328         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
 1329             (intmax_t)off, (intmax_t)(off+len));
 1330         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1331         return (0);
 1332 }
 1333 
 1334 int
 1335 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
 1336 {
 1337         struct g_raid_lock *lp;
 1338         struct g_raid_softc *sc;
 1339         struct bio *bp;
 1340 
 1341         sc = vol->v_softc;
 1342         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1343                 if (lp->l_offset == off && lp->l_length == len) {
 1344                         LIST_REMOVE(lp, l_next);
 1345                         /* XXX
 1346                          * Right now we just put them all back on the queue
 1347                          * and hope for the best.  We hope this because any
 1348                          * locked ranges will go right back on this list
 1349                          * when the worker thread runs.
 1350                          * XXX
 1351                          */
 1352                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
 1353                             (intmax_t)lp->l_offset,
 1354                             (intmax_t)(lp->l_offset+lp->l_length));
 1355                         mtx_lock(&sc->sc_queue_mtx);
 1356                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
 1357                                 bioq_insert_tail(&sc->sc_queue, bp);
 1358                         mtx_unlock(&sc->sc_queue_mtx);
 1359                         free(lp, M_RAID);
 1360                         return (0);
 1361                 }
 1362         }
 1363         return (EINVAL);
 1364 }
 1365 
 1366 void
 1367 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
 1368 {
 1369         struct g_consumer *cp;
 1370         struct g_raid_disk *disk, *tdisk;
 1371 
 1372         bp->bio_caller1 = sd;
 1373 
 1374         /*
 1375          * Make sure that the disk is present. Generally it is a task of
 1376          * transformation layers to not send requests to absent disks, but
 1377          * it is better to be safe and report situation then sorry.
 1378          */
 1379         if (sd->sd_disk == NULL) {
 1380                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
 1381 nodisk:
 1382                 bp->bio_from = NULL;
 1383                 bp->bio_to = NULL;
 1384                 bp->bio_error = ENXIO;
 1385                 g_raid_disk_done(bp);
 1386                 return;
 1387         }
 1388         disk = sd->sd_disk;
 1389         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
 1390             disk->d_state != G_RAID_DISK_S_FAILED) {
 1391                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
 1392                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 1393                 goto nodisk;
 1394         }
 1395 
 1396         cp = disk->d_consumer;
 1397         bp->bio_from = cp;
 1398         bp->bio_to = cp->provider;
 1399         cp->index++;
 1400 
 1401         /* Update average disks load. */
 1402         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
 1403                 if (tdisk->d_consumer == NULL)
 1404                         tdisk->d_load = 0;
 1405                 else
 1406                         tdisk->d_load = (tdisk->d_consumer->index *
 1407                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
 1408         }
 1409 
 1410         disk->d_last_offset = bp->bio_offset + bp->bio_length;
 1411         if (dumping) {
 1412                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
 1413                 if (bp->bio_cmd == BIO_WRITE) {
 1414                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
 1415                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
 1416                 } else
 1417                         bp->bio_error = EOPNOTSUPP;
 1418                 g_raid_disk_done(bp);
 1419         } else {
 1420                 bp->bio_done = g_raid_disk_done;
 1421                 bp->bio_offset += sd->sd_offset;
 1422                 G_RAID_LOGREQ(3, bp, "Sending request.");
 1423                 g_io_request(bp, cp);
 1424         }
 1425 }
 1426 
 1427 int
 1428 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
 1429     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1430 {
 1431 
 1432         if (sd->sd_disk == NULL)
 1433                 return (ENXIO);
 1434         if (sd->sd_disk->d_kd.di.dumper == NULL)
 1435                 return (EOPNOTSUPP);
 1436         return (dump_write(&sd->sd_disk->d_kd.di,
 1437             virtual, physical,
 1438             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
 1439             length));
 1440 }
 1441 
 1442 static void
 1443 g_raid_disk_done(struct bio *bp)
 1444 {
 1445         struct g_raid_softc *sc;
 1446         struct g_raid_subdisk *sd;
 1447 
 1448         sd = bp->bio_caller1;
 1449         sc = sd->sd_softc;
 1450         mtx_lock(&sc->sc_queue_mtx);
 1451         bioq_insert_tail(&sc->sc_queue, bp);
 1452         mtx_unlock(&sc->sc_queue_mtx);
 1453         if (!dumping)
 1454                 wakeup(sc);
 1455 }
 1456 
 1457 static void
 1458 g_raid_disk_done_request(struct bio *bp)
 1459 {
 1460         struct g_raid_softc *sc;
 1461         struct g_raid_disk *disk;
 1462         struct g_raid_subdisk *sd;
 1463         struct g_raid_volume *vol;
 1464 
 1465         g_topology_assert_not();
 1466 
 1467         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
 1468         sd = bp->bio_caller1;
 1469         sc = sd->sd_softc;
 1470         vol = sd->sd_volume;
 1471         if (bp->bio_from != NULL) {
 1472                 bp->bio_from->index--;
 1473                 disk = bp->bio_from->private;
 1474                 if (disk == NULL)
 1475                         g_raid_kill_consumer(sc, bp->bio_from);
 1476         }
 1477         bp->bio_offset -= sd->sd_offset;
 1478 
 1479         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
 1480 }
 1481 
 1482 static void
 1483 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
 1484 {
 1485 
 1486         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
 1487                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
 1488         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
 1489                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
 1490         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
 1491                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
 1492         else
 1493                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
 1494         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
 1495                 KASSERT(ep->e_error == 0,
 1496                     ("Error cannot be handled."));
 1497                 g_raid_event_free(ep);
 1498         } else {
 1499                 ep->e_flags |= G_RAID_EVENT_DONE;
 1500                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
 1501                 mtx_lock(&sc->sc_queue_mtx);
 1502                 wakeup(ep);
 1503                 mtx_unlock(&sc->sc_queue_mtx);
 1504         }
 1505 }
 1506 
 1507 /*
 1508  * Worker thread.
 1509  */
 1510 static void
 1511 g_raid_worker(void *arg)
 1512 {
 1513         struct g_raid_softc *sc;
 1514         struct g_raid_event *ep;
 1515         struct g_raid_volume *vol;
 1516         struct bio *bp;
 1517         struct timeval now, t;
 1518         int timeout, rv;
 1519 
 1520         sc = arg;
 1521         thread_lock(curthread);
 1522         sched_prio(curthread, PRIBIO);
 1523         thread_unlock(curthread);
 1524 
 1525         sx_xlock(&sc->sc_lock);
 1526         for (;;) {
 1527                 mtx_lock(&sc->sc_queue_mtx);
 1528                 /*
 1529                  * First take a look at events.
 1530                  * This is important to handle events before any I/O requests.
 1531                  */
 1532                 bp = NULL;
 1533                 vol = NULL;
 1534                 rv = 0;
 1535                 ep = TAILQ_FIRST(&sc->sc_events);
 1536                 if (ep != NULL)
 1537                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1538                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
 1539                         ;
 1540                 else {
 1541                         getmicrouptime(&now);
 1542                         t = now;
 1543                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1544                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1545                                     vol->v_tr &&
 1546                                     timevalcmp(&vol->v_last_done, &t, < ))
 1547                                         t = vol->v_last_done;
 1548                         }
 1549                         timevalsub(&t, &now);
 1550                         timeout = g_raid_idle_threshold +
 1551                             t.tv_sec * 1000000 + t.tv_usec;
 1552                         if (timeout > 0) {
 1553                                 /*
 1554                                  * Two steps to avoid overflows at HZ=1000
 1555                                  * and idle timeouts > 2.1s.  Some rounding
 1556                                  * errors can occur, but they are < 1tick,
 1557                                  * which is deemed to be close enough for
 1558                                  * this purpose.
 1559                                  */
 1560                                 int micpertic = 1000000 / hz;
 1561                                 timeout = (timeout + micpertic - 1) / micpertic;
 1562                                 sx_xunlock(&sc->sc_lock);
 1563                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
 1564                                     PRIBIO | PDROP, "-", timeout);
 1565                                 sx_xlock(&sc->sc_lock);
 1566                                 goto process;
 1567                         } else
 1568                                 rv = EWOULDBLOCK;
 1569                 }
 1570                 mtx_unlock(&sc->sc_queue_mtx);
 1571 process:
 1572                 if (ep != NULL) {
 1573                         g_raid_handle_event(sc, ep);
 1574                 } else if (bp != NULL) {
 1575                         if (bp->bio_to != NULL &&
 1576                             bp->bio_to->geom == sc->sc_geom)
 1577                                 g_raid_start_request(bp);
 1578                         else
 1579                                 g_raid_disk_done_request(bp);
 1580                 } else if (rv == EWOULDBLOCK) {
 1581                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1582                                 g_raid_clean(vol, -1);
 1583                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1584                                     vol->v_tr) {
 1585                                         t.tv_sec = g_raid_idle_threshold / 1000000;
 1586                                         t.tv_usec = g_raid_idle_threshold % 1000000;
 1587                                         timevaladd(&t, &vol->v_last_done);
 1588                                         getmicrouptime(&now);
 1589                                         if (timevalcmp(&t, &now, <= )) {
 1590                                                 G_RAID_TR_IDLE(vol->v_tr);
 1591                                                 vol->v_last_done = now;
 1592                                         }
 1593                                 }
 1594                         }
 1595                 }
 1596                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 1597                         g_raid_destroy_node(sc, 1);     /* May not return. */
 1598         }
 1599 }
 1600 
 1601 static void
 1602 g_raid_poll(struct g_raid_softc *sc)
 1603 {
 1604         struct g_raid_event *ep;
 1605         struct bio *bp;
 1606 
 1607         sx_xlock(&sc->sc_lock);
 1608         mtx_lock(&sc->sc_queue_mtx);
 1609         /*
 1610          * First take a look at events.
 1611          * This is important to handle events before any I/O requests.
 1612          */
 1613         ep = TAILQ_FIRST(&sc->sc_events);
 1614         if (ep != NULL) {
 1615                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1616                 mtx_unlock(&sc->sc_queue_mtx);
 1617                 g_raid_handle_event(sc, ep);
 1618                 goto out;
 1619         }
 1620         bp = bioq_takefirst(&sc->sc_queue);
 1621         if (bp != NULL) {
 1622                 mtx_unlock(&sc->sc_queue_mtx);
 1623                 if (bp->bio_from == NULL ||
 1624                     bp->bio_from->geom != sc->sc_geom)
 1625                         g_raid_start_request(bp);
 1626                 else
 1627                         g_raid_disk_done_request(bp);
 1628         }
 1629 out:
 1630         sx_xunlock(&sc->sc_lock);
 1631 }
 1632 
 1633 static void
 1634 g_raid_launch_provider(struct g_raid_volume *vol)
 1635 {
 1636         struct g_raid_disk *disk;
 1637         struct g_raid_subdisk *sd;
 1638         struct g_raid_softc *sc;
 1639         struct g_provider *pp;
 1640         char name[G_RAID_MAX_VOLUMENAME];
 1641         char   announce_buf[80], buf1[32];
 1642         off_t off;
 1643         int i;
 1644 
 1645         sc = vol->v_softc;
 1646         sx_assert(&sc->sc_lock, SX_LOCKED);
 1647 
 1648         g_topology_lock();
 1649         /* Try to name provider with volume name. */
 1650         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
 1651         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
 1652             g_provider_by_name(name) != NULL) {
 1653                 /* Otherwise use sequential volume number. */
 1654                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
 1655         }
 1656 
 1657         /*
 1658          * Create a /dev/ar%d that the old ataraid(4) stack once
 1659          * created as an alias for /dev/raid/r%d if requested.
 1660          * This helps going from stable/7 ataraid devices to newer
 1661          * FreeBSD releases. sbruno 07 MAY 2013
 1662          */
 1663 
 1664         if (ar_legacy_aliases) {
 1665                 snprintf(announce_buf, sizeof(announce_buf),
 1666                         "kern.devalias.%s", name);
 1667                 snprintf(buf1, sizeof(buf1),
 1668                         "ar%d", vol->v_global_id);
 1669                 setenv(announce_buf, buf1);
 1670         }
 1671 
 1672         pp = g_new_providerf(sc->sc_geom, "%s", name);
 1673         if (vol->v_tr->tro_class->trc_accept_unmapped) {
 1674                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
 1675                 for (i = 0; i < vol->v_disks_count; i++) {
 1676                         sd = &vol->v_subdisks[i];
 1677                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1678                                 continue;
 1679                         if ((sd->sd_disk->d_consumer->provider->flags &
 1680                             G_PF_ACCEPT_UNMAPPED) == 0)
 1681                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
 1682                 }
 1683         }
 1684         pp->private = vol;
 1685         pp->mediasize = vol->v_mediasize;
 1686         pp->sectorsize = vol->v_sectorsize;
 1687         pp->stripesize = 0;
 1688         pp->stripeoffset = 0;
 1689         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
 1690             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
 1691             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
 1692             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
 1693                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
 1694                     disk->d_consumer != NULL &&
 1695                     disk->d_consumer->provider != NULL) {
 1696                         pp->stripesize = disk->d_consumer->provider->stripesize;
 1697                         off = disk->d_consumer->provider->stripeoffset;
 1698                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
 1699                         if (off > 0)
 1700                                 pp->stripeoffset %= off;
 1701                 }
 1702                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
 1703                         pp->stripesize *= (vol->v_disks_count - 1);
 1704                         pp->stripeoffset *= (vol->v_disks_count - 1);
 1705                 }
 1706         } else
 1707                 pp->stripesize = vol->v_strip_size;
 1708         vol->v_provider = pp;
 1709         g_error_provider(pp, 0);
 1710         g_topology_unlock();
 1711         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
 1712             pp->name, vol->v_name);
 1713 }
 1714 
 1715 static void
 1716 g_raid_destroy_provider(struct g_raid_volume *vol)
 1717 {
 1718         struct g_raid_softc *sc;
 1719         struct g_provider *pp;
 1720         struct bio *bp, *tmp;
 1721 
 1722         g_topology_assert_not();
 1723         sc = vol->v_softc;
 1724         pp = vol->v_provider;
 1725         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
 1726 
 1727         g_topology_lock();
 1728         g_error_provider(pp, ENXIO);
 1729         mtx_lock(&sc->sc_queue_mtx);
 1730         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
 1731                 if (bp->bio_to != pp)
 1732                         continue;
 1733                 bioq_remove(&sc->sc_queue, bp);
 1734                 g_io_deliver(bp, ENXIO);
 1735         }
 1736         mtx_unlock(&sc->sc_queue_mtx);
 1737         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
 1738             pp->name, vol->v_name);
 1739         g_wither_provider(pp, ENXIO);
 1740         g_topology_unlock();
 1741         vol->v_provider = NULL;
 1742 }
 1743 
 1744 /*
 1745  * Update device state.
 1746  */
 1747 static int
 1748 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
 1749 {
 1750         struct g_raid_softc *sc;
 1751 
 1752         sc = vol->v_softc;
 1753         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1754 
 1755         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
 1756             g_raid_volume_event2str(event),
 1757             vol->v_name);
 1758         switch (event) {
 1759         case G_RAID_VOLUME_E_DOWN:
 1760                 if (vol->v_provider != NULL)
 1761                         g_raid_destroy_provider(vol);
 1762                 break;
 1763         case G_RAID_VOLUME_E_UP:
 1764                 if (vol->v_provider == NULL)
 1765                         g_raid_launch_provider(vol);
 1766                 break;
 1767         case G_RAID_VOLUME_E_START:
 1768                 if (vol->v_tr)
 1769                         G_RAID_TR_START(vol->v_tr);
 1770                 return (0);
 1771         default:
 1772                 if (sc->sc_md)
 1773                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
 1774                 return (0);
 1775         }
 1776 
 1777         /* Manage root mount release. */
 1778         if (vol->v_starting) {
 1779                 vol->v_starting = 0;
 1780                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
 1781                 root_mount_rel(vol->v_rootmount);
 1782                 vol->v_rootmount = NULL;
 1783         }
 1784         if (vol->v_stopping && vol->v_provider_open == 0)
 1785                 g_raid_destroy_volume(vol);
 1786         return (0);
 1787 }
 1788 
 1789 /*
 1790  * Update subdisk state.
 1791  */
 1792 static int
 1793 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
 1794 {
 1795         struct g_raid_softc *sc;
 1796         struct g_raid_volume *vol;
 1797 
 1798         sc = sd->sd_softc;
 1799         vol = sd->sd_volume;
 1800         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1801 
 1802         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
 1803             g_raid_subdisk_event2str(event),
 1804             vol->v_name, sd->sd_pos,
 1805             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
 1806         if (vol->v_tr)
 1807                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
 1808 
 1809         return (0);
 1810 }
 1811 
 1812 /*
 1813  * Update disk state.
 1814  */
 1815 static int
 1816 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
 1817 {
 1818         struct g_raid_softc *sc;
 1819 
 1820         sc = disk->d_softc;
 1821         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1822 
 1823         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
 1824             g_raid_disk_event2str(event),
 1825             g_raid_get_diskname(disk));
 1826 
 1827         if (sc->sc_md)
 1828                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
 1829         return (0);
 1830 }
 1831 
 1832 /*
 1833  * Node event.
 1834  */
 1835 static int
 1836 g_raid_update_node(struct g_raid_softc *sc, u_int event)
 1837 {
 1838         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1839 
 1840         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
 1841             g_raid_node_event2str(event));
 1842 
 1843         if (event == G_RAID_NODE_E_WAKE)
 1844                 return (0);
 1845         if (sc->sc_md)
 1846                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
 1847         return (0);
 1848 }
 1849 
 1850 static int
 1851 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
 1852 {
 1853         struct g_raid_volume *vol;
 1854         struct g_raid_softc *sc;
 1855         int dcw, opens, error = 0;
 1856 
 1857         g_topology_assert();
 1858         sc = pp->geom->softc;
 1859         vol = pp->private;
 1860         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
 1861         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
 1862 
 1863         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
 1864             acr, acw, ace);
 1865         dcw = pp->acw + acw;
 1866 
 1867         g_topology_unlock();
 1868         sx_xlock(&sc->sc_lock);
 1869         /* Deny new opens while dying. */
 1870         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
 1871                 error = ENXIO;
 1872                 goto out;
 1873         }
 1874         /* Deny write opens for read-only volumes. */
 1875         if (vol->v_read_only && acw > 0) {
 1876                 error = EROFS;
 1877                 goto out;
 1878         }
 1879         if (dcw == 0)
 1880                 g_raid_clean(vol, dcw);
 1881         vol->v_provider_open += acr + acw + ace;
 1882         /* Handle delayed node destruction. */
 1883         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
 1884             vol->v_provider_open == 0) {
 1885                 /* Count open volumes. */
 1886                 opens = g_raid_nopens(sc);
 1887                 if (opens == 0) {
 1888                         sc->sc_stopping = G_RAID_DESTROY_HARD;
 1889                         /* Wake up worker to make it selfdestruct. */
 1890                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 1891                 }
 1892         }
 1893         /* Handle open volume destruction. */
 1894         if (vol->v_stopping && vol->v_provider_open == 0)
 1895                 g_raid_destroy_volume(vol);
 1896 out:
 1897         sx_xunlock(&sc->sc_lock);
 1898         g_topology_lock();
 1899         return (error);
 1900 }
 1901 
 1902 struct g_raid_softc *
 1903 g_raid_create_node(struct g_class *mp,
 1904     const char *name, struct g_raid_md_object *md)
 1905 {
 1906         struct g_raid_softc *sc;
 1907         struct g_geom *gp;
 1908         int error;
 1909 
 1910         g_topology_assert();
 1911         G_RAID_DEBUG(1, "Creating array %s.", name);
 1912 
 1913         gp = g_new_geomf(mp, "%s", name);
 1914         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
 1915         gp->start = g_raid_start;
 1916         gp->orphan = g_raid_orphan;
 1917         gp->access = g_raid_access;
 1918         gp->dumpconf = g_raid_dumpconf;
 1919 
 1920         sc->sc_md = md;
 1921         sc->sc_geom = gp;
 1922         sc->sc_flags = 0;
 1923         TAILQ_INIT(&sc->sc_volumes);
 1924         TAILQ_INIT(&sc->sc_disks);
 1925         sx_init(&sc->sc_lock, "graid:lock");
 1926         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
 1927         TAILQ_INIT(&sc->sc_events);
 1928         bioq_init(&sc->sc_queue);
 1929         gp->softc = sc;
 1930         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
 1931             "g_raid %s", name);
 1932         if (error != 0) {
 1933                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
 1934                 mtx_destroy(&sc->sc_queue_mtx);
 1935                 sx_destroy(&sc->sc_lock);
 1936                 g_destroy_geom(sc->sc_geom);
 1937                 free(sc, M_RAID);
 1938                 return (NULL);
 1939         }
 1940 
 1941         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
 1942         return (sc);
 1943 }
 1944 
 1945 struct g_raid_volume *
 1946 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
 1947 {
 1948         struct g_raid_volume    *vol, *vol1;
 1949         int i;
 1950 
 1951         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
 1952         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
 1953         vol->v_softc = sc;
 1954         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
 1955         vol->v_state = G_RAID_VOLUME_S_STARTING;
 1956         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
 1957         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
 1958         vol->v_rotate_parity = 1;
 1959         bioq_init(&vol->v_inflight);
 1960         bioq_init(&vol->v_locked);
 1961         LIST_INIT(&vol->v_locks);
 1962         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 1963                 vol->v_subdisks[i].sd_softc = sc;
 1964                 vol->v_subdisks[i].sd_volume = vol;
 1965                 vol->v_subdisks[i].sd_pos = i;
 1966                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
 1967         }
 1968 
 1969         /* Find free ID for this volume. */
 1970         g_topology_lock();
 1971         vol1 = vol;
 1972         if (id >= 0) {
 1973                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1974                         if (vol1->v_global_id == id)
 1975                                 break;
 1976                 }
 1977         }
 1978         if (vol1 != NULL) {
 1979                 for (id = 0; ; id++) {
 1980                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1981                                 if (vol1->v_global_id == id)
 1982                                         break;
 1983                         }
 1984                         if (vol1 == NULL)
 1985                                 break;
 1986                 }
 1987         }
 1988         vol->v_global_id = id;
 1989         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
 1990         g_topology_unlock();
 1991 
 1992         /* Delay root mounting. */
 1993         vol->v_rootmount = root_mount_hold("GRAID");
 1994         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
 1995         vol->v_starting = 1;
 1996         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
 1997         return (vol);
 1998 }
 1999 
 2000 struct g_raid_disk *
 2001 g_raid_create_disk(struct g_raid_softc *sc)
 2002 {
 2003         struct g_raid_disk      *disk;
 2004 
 2005         G_RAID_DEBUG1(1, sc, "Creating disk.");
 2006         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
 2007         disk->d_softc = sc;
 2008         disk->d_state = G_RAID_DISK_S_NONE;
 2009         TAILQ_INIT(&disk->d_subdisks);
 2010         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
 2011         return (disk);
 2012 }
 2013 
 2014 int g_raid_start_volume(struct g_raid_volume *vol)
 2015 {
 2016         struct g_raid_tr_class *class;
 2017         struct g_raid_tr_object *obj;
 2018         int status;
 2019 
 2020         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
 2021         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
 2022                 if (!class->trc_enable)
 2023                         continue;
 2024                 G_RAID_DEBUG1(2, vol->v_softc,
 2025                     "Tasting volume %s for %s transformation.",
 2026                     vol->v_name, class->name);
 2027                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2028                     M_WAITOK);
 2029                 obj->tro_class = class;
 2030                 obj->tro_volume = vol;
 2031                 status = G_RAID_TR_TASTE(obj, vol);
 2032                 if (status != G_RAID_TR_TASTE_FAIL)
 2033                         break;
 2034                 kobj_delete((kobj_t)obj, M_RAID);
 2035         }
 2036         if (class == NULL) {
 2037                 G_RAID_DEBUG1(0, vol->v_softc,
 2038                     "No transformation module found for %s.",
 2039                     vol->v_name);
 2040                 vol->v_tr = NULL;
 2041                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
 2042                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
 2043                     G_RAID_EVENT_VOLUME);
 2044                 return (-1);
 2045         }
 2046         G_RAID_DEBUG1(2, vol->v_softc,
 2047             "Transformation module %s chosen for %s.",
 2048             class->name, vol->v_name);
 2049         vol->v_tr = obj;
 2050         return (0);
 2051 }
 2052 
 2053 int
 2054 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
 2055 {
 2056         struct g_raid_volume *vol, *tmpv;
 2057         struct g_raid_disk *disk, *tmpd;
 2058         int error = 0;
 2059 
 2060         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2061         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
 2062                 if (g_raid_destroy_volume(vol))
 2063                         error = EBUSY;
 2064         }
 2065         if (error)
 2066                 return (error);
 2067         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
 2068                 if (g_raid_destroy_disk(disk))
 2069                         error = EBUSY;
 2070         }
 2071         if (error)
 2072                 return (error);
 2073         if (sc->sc_md) {
 2074                 G_RAID_MD_FREE(sc->sc_md);
 2075                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
 2076                 sc->sc_md = NULL;
 2077         }
 2078         if (sc->sc_geom != NULL) {
 2079                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
 2080                 g_topology_lock();
 2081                 sc->sc_geom->softc = NULL;
 2082                 g_wither_geom(sc->sc_geom, ENXIO);
 2083                 g_topology_unlock();
 2084                 sc->sc_geom = NULL;
 2085         } else
 2086                 G_RAID_DEBUG(1, "Array destroyed.");
 2087         if (worker) {
 2088                 g_raid_event_cancel(sc, sc);
 2089                 mtx_destroy(&sc->sc_queue_mtx);
 2090                 sx_xunlock(&sc->sc_lock);
 2091                 sx_destroy(&sc->sc_lock);
 2092                 wakeup(&sc->sc_stopping);
 2093                 free(sc, M_RAID);
 2094                 curthread->td_pflags &= ~TDP_GEOM;
 2095                 G_RAID_DEBUG(1, "Thread exiting.");
 2096                 kproc_exit(0);
 2097         } else {
 2098                 /* Wake up worker to make it selfdestruct. */
 2099                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2100         }
 2101         return (0);
 2102 }
 2103 
 2104 int
 2105 g_raid_destroy_volume(struct g_raid_volume *vol)
 2106 {
 2107         struct g_raid_softc *sc;
 2108         struct g_raid_disk *disk;
 2109         int i;
 2110 
 2111         sc = vol->v_softc;
 2112         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
 2113         vol->v_stopping = 1;
 2114         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
 2115                 if (vol->v_tr) {
 2116                         G_RAID_TR_STOP(vol->v_tr);
 2117                         return (EBUSY);
 2118                 } else
 2119                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
 2120         }
 2121         if (g_raid_event_check(sc, vol) != 0)
 2122                 return (EBUSY);
 2123         if (vol->v_provider != NULL)
 2124                 return (EBUSY);
 2125         if (vol->v_provider_open != 0)
 2126                 return (EBUSY);
 2127         if (vol->v_tr) {
 2128                 G_RAID_TR_FREE(vol->v_tr);
 2129                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
 2130                 vol->v_tr = NULL;
 2131         }
 2132         if (vol->v_rootmount)
 2133                 root_mount_rel(vol->v_rootmount);
 2134         g_topology_lock();
 2135         LIST_REMOVE(vol, v_global_next);
 2136         g_topology_unlock();
 2137         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
 2138         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 2139                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
 2140                 disk = vol->v_subdisks[i].sd_disk;
 2141                 if (disk == NULL)
 2142                         continue;
 2143                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
 2144         }
 2145         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
 2146         if (sc->sc_md)
 2147                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
 2148         g_raid_event_cancel(sc, vol);
 2149         free(vol, M_RAID);
 2150         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
 2151                 /* Wake up worker to let it selfdestruct. */
 2152                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2153         }
 2154         return (0);
 2155 }
 2156 
 2157 int
 2158 g_raid_destroy_disk(struct g_raid_disk *disk)
 2159 {
 2160         struct g_raid_softc *sc;
 2161         struct g_raid_subdisk *sd, *tmp;
 2162 
 2163         sc = disk->d_softc;
 2164         G_RAID_DEBUG1(2, sc, "Destroying disk.");
 2165         if (disk->d_consumer) {
 2166                 g_raid_kill_consumer(sc, disk->d_consumer);
 2167                 disk->d_consumer = NULL;
 2168         }
 2169         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
 2170                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
 2171                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
 2172                     G_RAID_EVENT_SUBDISK);
 2173                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
 2174                 sd->sd_disk = NULL;
 2175         }
 2176         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
 2177         if (sc->sc_md)
 2178                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
 2179         g_raid_event_cancel(sc, disk);
 2180         free(disk, M_RAID);
 2181         return (0);
 2182 }
 2183 
 2184 int
 2185 g_raid_destroy(struct g_raid_softc *sc, int how)
 2186 {
 2187         int error, opens;
 2188 
 2189         g_topology_assert_not();
 2190         if (sc == NULL)
 2191                 return (ENXIO);
 2192         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2193 
 2194         /* Count open volumes. */
 2195         opens = g_raid_nopens(sc);
 2196 
 2197         /* React on some opened volumes. */
 2198         if (opens > 0) {
 2199                 switch (how) {
 2200                 case G_RAID_DESTROY_SOFT:
 2201                         G_RAID_DEBUG1(1, sc,
 2202                             "%d volumes are still open.",
 2203                             opens);
 2204                         sx_xunlock(&sc->sc_lock);
 2205                         return (EBUSY);
 2206                 case G_RAID_DESTROY_DELAYED:
 2207                         G_RAID_DEBUG1(1, sc,
 2208                             "Array will be destroyed on last close.");
 2209                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
 2210                         sx_xunlock(&sc->sc_lock);
 2211                         return (EBUSY);
 2212                 case G_RAID_DESTROY_HARD:
 2213                         G_RAID_DEBUG1(1, sc,
 2214                             "%d volumes are still open.",
 2215                             opens);
 2216                 }
 2217         }
 2218 
 2219         /* Mark node for destruction. */
 2220         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2221         /* Wake up worker to let it selfdestruct. */
 2222         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2223         /* Sleep until node destroyed. */
 2224         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
 2225             PRIBIO | PDROP, "r:destroy", hz * 3);
 2226         return (error == EWOULDBLOCK ? EBUSY : 0);
 2227 }
 2228 
 2229 static void
 2230 g_raid_taste_orphan(struct g_consumer *cp)
 2231 {
 2232 
 2233         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
 2234             cp->provider->name));
 2235 }
 2236 
 2237 static struct g_geom *
 2238 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
 2239 {
 2240         struct g_consumer *cp;
 2241         struct g_geom *gp, *geom;
 2242         struct g_raid_md_class *class;
 2243         struct g_raid_md_object *obj;
 2244         int status;
 2245 
 2246         g_topology_assert();
 2247         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
 2248         if (!g_raid_enable)
 2249                 return (NULL);
 2250         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
 2251 
 2252         geom = NULL;
 2253         status = G_RAID_MD_TASTE_FAIL;
 2254         gp = g_new_geomf(mp, "raid:taste");
 2255         /*
 2256          * This orphan function should be never called.
 2257          */
 2258         gp->orphan = g_raid_taste_orphan;
 2259         cp = g_new_consumer(gp);
 2260         g_attach(cp, pp);
 2261         if (g_access(cp, 1, 0, 0) != 0)
 2262                 goto ofail;
 2263 
 2264         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2265                 if (!class->mdc_enable)
 2266                         continue;
 2267                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
 2268                     pp->name, class->name);
 2269                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2270                     M_WAITOK);
 2271                 obj->mdo_class = class;
 2272                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
 2273                 if (status != G_RAID_MD_TASTE_NEW)
 2274                         kobj_delete((kobj_t)obj, M_RAID);
 2275                 if (status != G_RAID_MD_TASTE_FAIL)
 2276                         break;
 2277         }
 2278 
 2279         if (status == G_RAID_MD_TASTE_FAIL)
 2280                 (void)g_access(cp, -1, 0, 0);
 2281 ofail:
 2282         g_detach(cp);
 2283         g_destroy_consumer(cp);
 2284         g_destroy_geom(gp);
 2285         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
 2286         return (geom);
 2287 }
 2288 
 2289 int
 2290 g_raid_create_node_format(const char *format, struct gctl_req *req,
 2291     struct g_geom **gp)
 2292 {
 2293         struct g_raid_md_class *class;
 2294         struct g_raid_md_object *obj;
 2295         int status;
 2296 
 2297         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
 2298         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2299                 if (strcasecmp(class->name, format) == 0)
 2300                         break;
 2301         }
 2302         if (class == NULL) {
 2303                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
 2304                 return (G_RAID_MD_TASTE_FAIL);
 2305         }
 2306         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2307             M_WAITOK);
 2308         obj->mdo_class = class;
 2309         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
 2310         if (status != G_RAID_MD_TASTE_NEW)
 2311                 kobj_delete((kobj_t)obj, M_RAID);
 2312         return (status);
 2313 }
 2314 
 2315 static int
 2316 g_raid_destroy_geom(struct gctl_req *req __unused,
 2317     struct g_class *mp __unused, struct g_geom *gp)
 2318 {
 2319         struct g_raid_softc *sc;
 2320         int error;
 2321 
 2322         g_topology_unlock();
 2323         sc = gp->softc;
 2324         sx_xlock(&sc->sc_lock);
 2325         g_cancel_event(sc);
 2326         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
 2327         g_topology_lock();
 2328         return (error);
 2329 }
 2330 
 2331 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
 2332     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2333 {
 2334 
 2335         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 2336                 return;
 2337         if (sc->sc_md)
 2338                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
 2339 }
 2340 
 2341 void g_raid_fail_disk(struct g_raid_softc *sc,
 2342     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2343 {
 2344 
 2345         if (disk == NULL)
 2346                 disk = sd->sd_disk;
 2347         if (disk == NULL) {
 2348                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
 2349                 return;
 2350         }
 2351         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
 2352                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
 2353                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 2354                 return;
 2355         }
 2356         if (sc->sc_md)
 2357                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
 2358 }
 2359 
 2360 static void
 2361 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
 2362     struct g_consumer *cp, struct g_provider *pp)
 2363 {
 2364         struct g_raid_softc *sc;
 2365         struct g_raid_volume *vol;
 2366         struct g_raid_subdisk *sd;
 2367         struct g_raid_disk *disk;
 2368         int i, s;
 2369 
 2370         g_topology_assert();
 2371 
 2372         sc = gp->softc;
 2373         if (sc == NULL)
 2374                 return;
 2375         if (pp != NULL) {
 2376                 vol = pp->private;
 2377                 g_topology_unlock();
 2378                 sx_xlock(&sc->sc_lock);
 2379                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
 2380                     sc->sc_md->mdo_class->name,
 2381                     g_raid_volume_level2str(vol->v_raid_level,
 2382                     vol->v_raid_level_qualifier));
 2383                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
 2384                     vol->v_name);
 2385                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
 2386                     g_raid_volume_level2str(vol->v_raid_level,
 2387                     vol->v_raid_level_qualifier));
 2388                 sbuf_printf(sb,
 2389                     "%s<Transformation>%s</Transformation>\n", indent,
 2390                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
 2391                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
 2392                     vol->v_disks_count);
 2393                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
 2394                     vol->v_strip_size);
 2395                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2396                     g_raid_volume_state2str(vol->v_state));
 2397                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
 2398                     vol->v_dirty ? "Yes" : "No");
 2399                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2400                 for (i = 0; i < vol->v_disks_count; i++) {
 2401                         sd = &vol->v_subdisks[i];
 2402                         if (sd->sd_disk != NULL &&
 2403                             sd->sd_disk->d_consumer != NULL) {
 2404                                 sbuf_printf(sb, "%s ",
 2405                                     g_raid_get_diskname(sd->sd_disk));
 2406                         } else {
 2407                                 sbuf_printf(sb, "NONE ");
 2408                         }
 2409                         sbuf_printf(sb, "(%s",
 2410                             g_raid_subdisk_state2str(sd->sd_state));
 2411                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2412                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2413                                 sbuf_printf(sb, " %d%%",
 2414                                     (int)(sd->sd_rebuild_pos * 100 /
 2415                                      sd->sd_size));
 2416                         }
 2417                         sbuf_printf(sb, ")");
 2418                         if (i + 1 < vol->v_disks_count)
 2419                                 sbuf_printf(sb, ", ");
 2420                 }
 2421                 sbuf_printf(sb, "</Subdisks>\n");
 2422                 sx_xunlock(&sc->sc_lock);
 2423                 g_topology_lock();
 2424         } else if (cp != NULL) {
 2425                 disk = cp->private;
 2426                 if (disk == NULL)
 2427                         return;
 2428                 g_topology_unlock();
 2429                 sx_xlock(&sc->sc_lock);
 2430                 sbuf_printf(sb, "%s<State>%s", indent,
 2431                     g_raid_disk_state2str(disk->d_state));
 2432                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
 2433                         sbuf_printf(sb, " (");
 2434                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2435                                 sbuf_printf(sb, "%s",
 2436                                     g_raid_subdisk_state2str(sd->sd_state));
 2437                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2438                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2439                                         sbuf_printf(sb, " %d%%",
 2440                                             (int)(sd->sd_rebuild_pos * 100 /
 2441                                              sd->sd_size));
 2442                                 }
 2443                                 if (TAILQ_NEXT(sd, sd_next))
 2444                                         sbuf_printf(sb, ", ");
 2445                         }
 2446                         sbuf_printf(sb, ")");
 2447                 }
 2448                 sbuf_printf(sb, "</State>\n");
 2449                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2450                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2451                         sbuf_printf(sb, "r%d(%s):%d@%ju",
 2452                             sd->sd_volume->v_global_id,
 2453                             sd->sd_volume->v_name,
 2454                             sd->sd_pos, sd->sd_offset);
 2455                         if (TAILQ_NEXT(sd, sd_next))
 2456                                 sbuf_printf(sb, ", ");
 2457                 }
 2458                 sbuf_printf(sb, "</Subdisks>\n");
 2459                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
 2460                     disk->d_read_errs);
 2461                 sx_xunlock(&sc->sc_lock);
 2462                 g_topology_lock();
 2463         } else {
 2464                 g_topology_unlock();
 2465                 sx_xlock(&sc->sc_lock);
 2466                 if (sc->sc_md) {
 2467                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
 2468                             sc->sc_md->mdo_class->name);
 2469                 }
 2470                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
 2471                         s = 0xff;
 2472                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 2473                                 if (vol->v_state < s)
 2474                                         s = vol->v_state;
 2475                         }
 2476                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2477                             g_raid_volume_state2str(s));
 2478                 }
 2479                 sx_xunlock(&sc->sc_lock);
 2480                 g_topology_lock();
 2481         }
 2482 }
 2483 
 2484 static void
 2485 g_raid_shutdown_post_sync(void *arg, int howto)
 2486 {
 2487         struct g_class *mp;
 2488         struct g_geom *gp, *gp2;
 2489         struct g_raid_softc *sc;
 2490         struct g_raid_volume *vol;
 2491 
 2492         mp = arg;
 2493         DROP_GIANT();
 2494         g_topology_lock();
 2495         g_raid_shutdown = 1;
 2496         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
 2497                 if ((sc = gp->softc) == NULL)
 2498                         continue;
 2499                 g_topology_unlock();
 2500                 sx_xlock(&sc->sc_lock);
 2501                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
 2502                         g_raid_clean(vol, -1);
 2503                 g_cancel_event(sc);
 2504                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
 2505                 g_topology_lock();
 2506         }
 2507         g_topology_unlock();
 2508         PICKUP_GIANT();
 2509 }
 2510 
 2511 static void
 2512 g_raid_init(struct g_class *mp)
 2513 {
 2514 
 2515         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
 2516             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
 2517         if (g_raid_post_sync == NULL)
 2518                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
 2519         g_raid_started = 1;
 2520 }
 2521 
 2522 static void
 2523 g_raid_fini(struct g_class *mp)
 2524 {
 2525 
 2526         if (g_raid_post_sync != NULL)
 2527                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
 2528         g_raid_started = 0;
 2529 }
 2530 
 2531 int
 2532 g_raid_md_modevent(module_t mod, int type, void *arg)
 2533 {
 2534         struct g_raid_md_class *class, *c, *nc;
 2535         int error;
 2536 
 2537         error = 0;
 2538         class = arg;
 2539         switch (type) {
 2540         case MOD_LOAD:
 2541                 c = LIST_FIRST(&g_raid_md_classes);
 2542                 if (c == NULL || c->mdc_priority > class->mdc_priority)
 2543                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
 2544                 else {
 2545                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
 2546                             nc->mdc_priority < class->mdc_priority)
 2547                                 c = nc;
 2548                         LIST_INSERT_AFTER(c, class, mdc_list);
 2549                 }
 2550                 if (g_raid_started)
 2551                         g_retaste(&g_raid_class);
 2552                 break;
 2553         case MOD_UNLOAD:
 2554                 LIST_REMOVE(class, mdc_list);
 2555                 break;
 2556         default:
 2557                 error = EOPNOTSUPP;
 2558                 break;
 2559         }
 2560 
 2561         return (error);
 2562 }
 2563 
 2564 int
 2565 g_raid_tr_modevent(module_t mod, int type, void *arg)
 2566 {
 2567         struct g_raid_tr_class *class, *c, *nc;
 2568         int error;
 2569 
 2570         error = 0;
 2571         class = arg;
 2572         switch (type) {
 2573         case MOD_LOAD:
 2574                 c = LIST_FIRST(&g_raid_tr_classes);
 2575                 if (c == NULL || c->trc_priority > class->trc_priority)
 2576                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
 2577                 else {
 2578                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
 2579                             nc->trc_priority < class->trc_priority)
 2580                                 c = nc;
 2581                         LIST_INSERT_AFTER(c, class, trc_list);
 2582                 }
 2583                 break;
 2584         case MOD_UNLOAD:
 2585                 LIST_REMOVE(class, trc_list);
 2586                 break;
 2587         default:
 2588                 error = EOPNOTSUPP;
 2589                 break;
 2590         }
 2591 
 2592         return (error);
 2593 }
 2594 
 2595 /*
 2596  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
 2597  * to reduce module priority, allowing submodules to register them first.
 2598  */
 2599 static moduledata_t g_raid_mod = {
 2600         "g_raid",
 2601         g_modevent,
 2602         &g_raid_class
 2603 };
 2604 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
 2605 MODULE_VERSION(geom_raid, 0);

Cache object: ecb862ede2095489e8761f9edaac3d14


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.