The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/raid/g_raid.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/kernel.h>
   35 #include <sys/module.h>
   36 #include <sys/limits.h>
   37 #include <sys/lock.h>
   38 #include <sys/mutex.h>
   39 #include <sys/bio.h>
   40 #include <sys/sbuf.h>
   41 #include <sys/sysctl.h>
   42 #include <sys/malloc.h>
   43 #include <sys/eventhandler.h>
   44 #include <vm/uma.h>
   45 #include <geom/geom.h>
   46 #include <geom/geom_dbg.h>
   47 #include <sys/proc.h>
   48 #include <sys/kthread.h>
   49 #include <sys/sched.h>
   50 #include <geom/raid/g_raid.h>
   51 #include "g_raid_md_if.h"
   52 #include "g_raid_tr_if.h"
   53 
   54 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
   55 
   56 SYSCTL_DECL(_kern_geom);
   57 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   58     "GEOM_RAID stuff");
   59 int g_raid_enable = 1;
   60 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
   61     &g_raid_enable, 0, "Enable on-disk metadata taste");
   62 u_int g_raid_aggressive_spare = 0;
   63 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
   64     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
   65 u_int g_raid_debug = 0;
   66 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
   67     "Debug level");
   68 int g_raid_read_err_thresh = 10;
   69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
   70     &g_raid_read_err_thresh, 0,
   71     "Number of read errors equated to disk failure");
   72 u_int g_raid_start_timeout = 30;
   73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
   74     &g_raid_start_timeout, 0,
   75     "Time to wait for all array components");
   76 static u_int g_raid_clean_time = 5;
   77 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
   78     &g_raid_clean_time, 0, "Mark volume as clean when idling");
   79 static u_int g_raid_disconnect_on_failure = 1;
   80 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
   81     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
   82 static u_int g_raid_name_format = 0;
   83 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
   84     &g_raid_name_format, 0, "Providers name format.");
   85 static u_int g_raid_idle_threshold = 1000000;
   86 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
   87     &g_raid_idle_threshold, 1000000,
   88     "Time in microseconds to consider a volume idle.");
   89 
   90 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
   91         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
   92         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
   93         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
   94 } while (0)
   95 
   96 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
   97     LIST_HEAD_INITIALIZER(g_raid_md_classes);
   98 
   99 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
  100     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
  101 
  102 LIST_HEAD(, g_raid_volume) g_raid_volumes =
  103     LIST_HEAD_INITIALIZER(g_raid_volumes);
  104 
  105 static eventhandler_tag g_raid_post_sync = NULL;
  106 static int g_raid_started = 0;
  107 static int g_raid_shutdown = 0;
  108 
  109 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
  110     struct g_geom *gp);
  111 static g_taste_t g_raid_taste;
  112 static void g_raid_init(struct g_class *mp);
  113 static void g_raid_fini(struct g_class *mp);
  114 
  115 struct g_class g_raid_class = {
  116         .name = G_RAID_CLASS_NAME,
  117         .version = G_VERSION,
  118         .ctlreq = g_raid_ctl,
  119         .taste = g_raid_taste,
  120         .destroy_geom = g_raid_destroy_geom,
  121         .init = g_raid_init,
  122         .fini = g_raid_fini
  123 };
  124 
  125 static void g_raid_destroy_provider(struct g_raid_volume *vol);
  126 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
  127 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
  128 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
  129 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
  130 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
  131     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
  132 static void g_raid_start(struct bio *bp);
  133 static void g_raid_start_request(struct bio *bp);
  134 static void g_raid_disk_done(struct bio *bp);
  135 static void g_raid_poll(struct g_raid_softc *sc);
  136 
  137 static const char *
  138 g_raid_node_event2str(int event)
  139 {
  140 
  141         switch (event) {
  142         case G_RAID_NODE_E_WAKE:
  143                 return ("WAKE");
  144         case G_RAID_NODE_E_START:
  145                 return ("START");
  146         default:
  147                 return ("INVALID");
  148         }
  149 }
  150 
  151 const char *
  152 g_raid_disk_state2str(int state)
  153 {
  154 
  155         switch (state) {
  156         case G_RAID_DISK_S_NONE:
  157                 return ("NONE");
  158         case G_RAID_DISK_S_OFFLINE:
  159                 return ("OFFLINE");
  160         case G_RAID_DISK_S_DISABLED:
  161                 return ("DISABLED");
  162         case G_RAID_DISK_S_FAILED:
  163                 return ("FAILED");
  164         case G_RAID_DISK_S_STALE_FAILED:
  165                 return ("STALE_FAILED");
  166         case G_RAID_DISK_S_SPARE:
  167                 return ("SPARE");
  168         case G_RAID_DISK_S_STALE:
  169                 return ("STALE");
  170         case G_RAID_DISK_S_ACTIVE:
  171                 return ("ACTIVE");
  172         default:
  173                 return ("INVALID");
  174         }
  175 }
  176 
  177 static const char *
  178 g_raid_disk_event2str(int event)
  179 {
  180 
  181         switch (event) {
  182         case G_RAID_DISK_E_DISCONNECTED:
  183                 return ("DISCONNECTED");
  184         default:
  185                 return ("INVALID");
  186         }
  187 }
  188 
  189 const char *
  190 g_raid_subdisk_state2str(int state)
  191 {
  192 
  193         switch (state) {
  194         case G_RAID_SUBDISK_S_NONE:
  195                 return ("NONE");
  196         case G_RAID_SUBDISK_S_FAILED:
  197                 return ("FAILED");
  198         case G_RAID_SUBDISK_S_NEW:
  199                 return ("NEW");
  200         case G_RAID_SUBDISK_S_REBUILD:
  201                 return ("REBUILD");
  202         case G_RAID_SUBDISK_S_UNINITIALIZED:
  203                 return ("UNINITIALIZED");
  204         case G_RAID_SUBDISK_S_STALE:
  205                 return ("STALE");
  206         case G_RAID_SUBDISK_S_RESYNC:
  207                 return ("RESYNC");
  208         case G_RAID_SUBDISK_S_ACTIVE:
  209                 return ("ACTIVE");
  210         default:
  211                 return ("INVALID");
  212         }
  213 }
  214 
  215 static const char *
  216 g_raid_subdisk_event2str(int event)
  217 {
  218 
  219         switch (event) {
  220         case G_RAID_SUBDISK_E_NEW:
  221                 return ("NEW");
  222         case G_RAID_SUBDISK_E_FAILED:
  223                 return ("FAILED");
  224         case G_RAID_SUBDISK_E_DISCONNECTED:
  225                 return ("DISCONNECTED");
  226         default:
  227                 return ("INVALID");
  228         }
  229 }
  230 
  231 const char *
  232 g_raid_volume_state2str(int state)
  233 {
  234 
  235         switch (state) {
  236         case G_RAID_VOLUME_S_STARTING:
  237                 return ("STARTING");
  238         case G_RAID_VOLUME_S_BROKEN:
  239                 return ("BROKEN");
  240         case G_RAID_VOLUME_S_DEGRADED:
  241                 return ("DEGRADED");
  242         case G_RAID_VOLUME_S_SUBOPTIMAL:
  243                 return ("SUBOPTIMAL");
  244         case G_RAID_VOLUME_S_OPTIMAL:
  245                 return ("OPTIMAL");
  246         case G_RAID_VOLUME_S_UNSUPPORTED:
  247                 return ("UNSUPPORTED");
  248         case G_RAID_VOLUME_S_STOPPED:
  249                 return ("STOPPED");
  250         default:
  251                 return ("INVALID");
  252         }
  253 }
  254 
  255 static const char *
  256 g_raid_volume_event2str(int event)
  257 {
  258 
  259         switch (event) {
  260         case G_RAID_VOLUME_E_UP:
  261                 return ("UP");
  262         case G_RAID_VOLUME_E_DOWN:
  263                 return ("DOWN");
  264         case G_RAID_VOLUME_E_START:
  265                 return ("START");
  266         case G_RAID_VOLUME_E_STARTMD:
  267                 return ("STARTMD");
  268         default:
  269                 return ("INVALID");
  270         }
  271 }
  272 
  273 const char *
  274 g_raid_volume_level2str(int level, int qual)
  275 {
  276 
  277         switch (level) {
  278         case G_RAID_VOLUME_RL_RAID0:
  279                 return ("RAID0");
  280         case G_RAID_VOLUME_RL_RAID1:
  281                 return ("RAID1");
  282         case G_RAID_VOLUME_RL_RAID3:
  283                 if (qual == G_RAID_VOLUME_RLQ_R3P0)
  284                         return ("RAID3-P0");
  285                 if (qual == G_RAID_VOLUME_RLQ_R3PN)
  286                         return ("RAID3-PN");
  287                 return ("RAID3");
  288         case G_RAID_VOLUME_RL_RAID4:
  289                 if (qual == G_RAID_VOLUME_RLQ_R4P0)
  290                         return ("RAID4-P0");
  291                 if (qual == G_RAID_VOLUME_RLQ_R4PN)
  292                         return ("RAID4-PN");
  293                 return ("RAID4");
  294         case G_RAID_VOLUME_RL_RAID5:
  295                 if (qual == G_RAID_VOLUME_RLQ_R5RA)
  296                         return ("RAID5-RA");
  297                 if (qual == G_RAID_VOLUME_RLQ_R5RS)
  298                         return ("RAID5-RS");
  299                 if (qual == G_RAID_VOLUME_RLQ_R5LA)
  300                         return ("RAID5-LA");
  301                 if (qual == G_RAID_VOLUME_RLQ_R5LS)
  302                         return ("RAID5-LS");
  303                 return ("RAID5");
  304         case G_RAID_VOLUME_RL_RAID6:
  305                 if (qual == G_RAID_VOLUME_RLQ_R6RA)
  306                         return ("RAID6-RA");
  307                 if (qual == G_RAID_VOLUME_RLQ_R6RS)
  308                         return ("RAID6-RS");
  309                 if (qual == G_RAID_VOLUME_RLQ_R6LA)
  310                         return ("RAID6-LA");
  311                 if (qual == G_RAID_VOLUME_RLQ_R6LS)
  312                         return ("RAID6-LS");
  313                 return ("RAID6");
  314         case G_RAID_VOLUME_RL_RAIDMDF:
  315                 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
  316                         return ("RAIDMDF-RA");
  317                 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
  318                         return ("RAIDMDF-RS");
  319                 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
  320                         return ("RAIDMDF-LA");
  321                 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
  322                         return ("RAIDMDF-LS");
  323                 return ("RAIDMDF");
  324         case G_RAID_VOLUME_RL_RAID1E:
  325                 if (qual == G_RAID_VOLUME_RLQ_R1EA)
  326                         return ("RAID1E-A");
  327                 if (qual == G_RAID_VOLUME_RLQ_R1EO)
  328                         return ("RAID1E-O");
  329                 return ("RAID1E");
  330         case G_RAID_VOLUME_RL_SINGLE:
  331                 return ("SINGLE");
  332         case G_RAID_VOLUME_RL_CONCAT:
  333                 return ("CONCAT");
  334         case G_RAID_VOLUME_RL_RAID5E:
  335                 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
  336                         return ("RAID5E-RA");
  337                 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
  338                         return ("RAID5E-RS");
  339                 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
  340                         return ("RAID5E-LA");
  341                 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
  342                         return ("RAID5E-LS");
  343                 return ("RAID5E");
  344         case G_RAID_VOLUME_RL_RAID5EE:
  345                 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
  346                         return ("RAID5EE-RA");
  347                 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
  348                         return ("RAID5EE-RS");
  349                 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
  350                         return ("RAID5EE-LA");
  351                 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
  352                         return ("RAID5EE-LS");
  353                 return ("RAID5EE");
  354         case G_RAID_VOLUME_RL_RAID5R:
  355                 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
  356                         return ("RAID5R-RA");
  357                 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
  358                         return ("RAID5R-RS");
  359                 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
  360                         return ("RAID5R-LA");
  361                 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
  362                         return ("RAID5R-LS");
  363                 return ("RAID5E");
  364         default:
  365                 return ("UNKNOWN");
  366         }
  367 }
  368 
  369 int
  370 g_raid_volume_str2level(const char *str, int *level, int *qual)
  371 {
  372 
  373         *level = G_RAID_VOLUME_RL_UNKNOWN;
  374         *qual = G_RAID_VOLUME_RLQ_NONE;
  375         if (strcasecmp(str, "RAID0") == 0)
  376                 *level = G_RAID_VOLUME_RL_RAID0;
  377         else if (strcasecmp(str, "RAID1") == 0)
  378                 *level = G_RAID_VOLUME_RL_RAID1;
  379         else if (strcasecmp(str, "RAID3-P0") == 0) {
  380                 *level = G_RAID_VOLUME_RL_RAID3;
  381                 *qual = G_RAID_VOLUME_RLQ_R3P0;
  382         } else if (strcasecmp(str, "RAID3-PN") == 0 ||
  383                    strcasecmp(str, "RAID3") == 0) {
  384                 *level = G_RAID_VOLUME_RL_RAID3;
  385                 *qual = G_RAID_VOLUME_RLQ_R3PN;
  386         } else if (strcasecmp(str, "RAID4-P0") == 0) {
  387                 *level = G_RAID_VOLUME_RL_RAID4;
  388                 *qual = G_RAID_VOLUME_RLQ_R4P0;
  389         } else if (strcasecmp(str, "RAID4-PN") == 0 ||
  390                    strcasecmp(str, "RAID4") == 0) {
  391                 *level = G_RAID_VOLUME_RL_RAID4;
  392                 *qual = G_RAID_VOLUME_RLQ_R4PN;
  393         } else if (strcasecmp(str, "RAID5-RA") == 0) {
  394                 *level = G_RAID_VOLUME_RL_RAID5;
  395                 *qual = G_RAID_VOLUME_RLQ_R5RA;
  396         } else if (strcasecmp(str, "RAID5-RS") == 0) {
  397                 *level = G_RAID_VOLUME_RL_RAID5;
  398                 *qual = G_RAID_VOLUME_RLQ_R5RS;
  399         } else if (strcasecmp(str, "RAID5") == 0 ||
  400                    strcasecmp(str, "RAID5-LA") == 0) {
  401                 *level = G_RAID_VOLUME_RL_RAID5;
  402                 *qual = G_RAID_VOLUME_RLQ_R5LA;
  403         } else if (strcasecmp(str, "RAID5-LS") == 0) {
  404                 *level = G_RAID_VOLUME_RL_RAID5;
  405                 *qual = G_RAID_VOLUME_RLQ_R5LS;
  406         } else if (strcasecmp(str, "RAID6-RA") == 0) {
  407                 *level = G_RAID_VOLUME_RL_RAID6;
  408                 *qual = G_RAID_VOLUME_RLQ_R6RA;
  409         } else if (strcasecmp(str, "RAID6-RS") == 0) {
  410                 *level = G_RAID_VOLUME_RL_RAID6;
  411                 *qual = G_RAID_VOLUME_RLQ_R6RS;
  412         } else if (strcasecmp(str, "RAID6") == 0 ||
  413                    strcasecmp(str, "RAID6-LA") == 0) {
  414                 *level = G_RAID_VOLUME_RL_RAID6;
  415                 *qual = G_RAID_VOLUME_RLQ_R6LA;
  416         } else if (strcasecmp(str, "RAID6-LS") == 0) {
  417                 *level = G_RAID_VOLUME_RL_RAID6;
  418                 *qual = G_RAID_VOLUME_RLQ_R6LS;
  419         } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
  420                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  421                 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
  422         } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
  423                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  424                 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
  425         } else if (strcasecmp(str, "RAIDMDF") == 0 ||
  426                    strcasecmp(str, "RAIDMDF-LA") == 0) {
  427                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  428                 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
  429         } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
  430                 *level = G_RAID_VOLUME_RL_RAIDMDF;
  431                 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
  432         } else if (strcasecmp(str, "RAID10") == 0 ||
  433                    strcasecmp(str, "RAID1E") == 0 ||
  434                    strcasecmp(str, "RAID1E-A") == 0) {
  435                 *level = G_RAID_VOLUME_RL_RAID1E;
  436                 *qual = G_RAID_VOLUME_RLQ_R1EA;
  437         } else if (strcasecmp(str, "RAID1E-O") == 0) {
  438                 *level = G_RAID_VOLUME_RL_RAID1E;
  439                 *qual = G_RAID_VOLUME_RLQ_R1EO;
  440         } else if (strcasecmp(str, "SINGLE") == 0)
  441                 *level = G_RAID_VOLUME_RL_SINGLE;
  442         else if (strcasecmp(str, "CONCAT") == 0)
  443                 *level = G_RAID_VOLUME_RL_CONCAT;
  444         else if (strcasecmp(str, "RAID5E-RA") == 0) {
  445                 *level = G_RAID_VOLUME_RL_RAID5E;
  446                 *qual = G_RAID_VOLUME_RLQ_R5ERA;
  447         } else if (strcasecmp(str, "RAID5E-RS") == 0) {
  448                 *level = G_RAID_VOLUME_RL_RAID5E;
  449                 *qual = G_RAID_VOLUME_RLQ_R5ERS;
  450         } else if (strcasecmp(str, "RAID5E") == 0 ||
  451                    strcasecmp(str, "RAID5E-LA") == 0) {
  452                 *level = G_RAID_VOLUME_RL_RAID5E;
  453                 *qual = G_RAID_VOLUME_RLQ_R5ELA;
  454         } else if (strcasecmp(str, "RAID5E-LS") == 0) {
  455                 *level = G_RAID_VOLUME_RL_RAID5E;
  456                 *qual = G_RAID_VOLUME_RLQ_R5ELS;
  457         } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
  458                 *level = G_RAID_VOLUME_RL_RAID5EE;
  459                 *qual = G_RAID_VOLUME_RLQ_R5EERA;
  460         } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
  461                 *level = G_RAID_VOLUME_RL_RAID5EE;
  462                 *qual = G_RAID_VOLUME_RLQ_R5EERS;
  463         } else if (strcasecmp(str, "RAID5EE") == 0 ||
  464                    strcasecmp(str, "RAID5EE-LA") == 0) {
  465                 *level = G_RAID_VOLUME_RL_RAID5EE;
  466                 *qual = G_RAID_VOLUME_RLQ_R5EELA;
  467         } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
  468                 *level = G_RAID_VOLUME_RL_RAID5EE;
  469                 *qual = G_RAID_VOLUME_RLQ_R5EELS;
  470         } else if (strcasecmp(str, "RAID5R-RA") == 0) {
  471                 *level = G_RAID_VOLUME_RL_RAID5R;
  472                 *qual = G_RAID_VOLUME_RLQ_R5RRA;
  473         } else if (strcasecmp(str, "RAID5R-RS") == 0) {
  474                 *level = G_RAID_VOLUME_RL_RAID5R;
  475                 *qual = G_RAID_VOLUME_RLQ_R5RRS;
  476         } else if (strcasecmp(str, "RAID5R") == 0 ||
  477                    strcasecmp(str, "RAID5R-LA") == 0) {
  478                 *level = G_RAID_VOLUME_RL_RAID5R;
  479                 *qual = G_RAID_VOLUME_RLQ_R5RLA;
  480         } else if (strcasecmp(str, "RAID5R-LS") == 0) {
  481                 *level = G_RAID_VOLUME_RL_RAID5R;
  482                 *qual = G_RAID_VOLUME_RLQ_R5RLS;
  483         } else
  484                 return (-1);
  485         return (0);
  486 }
  487 
  488 const char *
  489 g_raid_get_diskname(struct g_raid_disk *disk)
  490 {
  491 
  492         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
  493                 return ("[unknown]");
  494         return (disk->d_consumer->provider->name);
  495 }
  496 
  497 void
  498 g_raid_get_disk_info(struct g_raid_disk *disk)
  499 {
  500         struct g_consumer *cp = disk->d_consumer;
  501         int error, len;
  502 
  503         /* Read kernel dumping information. */
  504         disk->d_kd.offset = 0;
  505         disk->d_kd.length = OFF_MAX;
  506         len = sizeof(disk->d_kd);
  507         error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
  508         if (error)
  509                 disk->d_kd.di.dumper = NULL;
  510         if (disk->d_kd.di.dumper == NULL)
  511                 G_RAID_DEBUG1(2, disk->d_softc,
  512                     "Dumping not supported by %s: %d.", 
  513                     cp->provider->name, error);
  514 
  515         /* Read BIO_DELETE support. */
  516         error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
  517         if (error)
  518                 disk->d_candelete = 0;
  519         if (!disk->d_candelete)
  520                 G_RAID_DEBUG1(2, disk->d_softc,
  521                     "BIO_DELETE not supported by %s: %d.", 
  522                     cp->provider->name, error);
  523 }
  524 
  525 void
  526 g_raid_report_disk_state(struct g_raid_disk *disk)
  527 {
  528         struct g_raid_subdisk *sd;
  529         int len, state;
  530         uint32_t s;
  531 
  532         if (disk->d_consumer == NULL)
  533                 return;
  534         if (disk->d_state == G_RAID_DISK_S_DISABLED) {
  535                 s = G_STATE_ACTIVE; /* XXX */
  536         } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
  537             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
  538                 s = G_STATE_FAILED;
  539         } else {
  540                 state = G_RAID_SUBDISK_S_ACTIVE;
  541                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
  542                         if (sd->sd_state < state)
  543                                 state = sd->sd_state;
  544                 }
  545                 if (state == G_RAID_SUBDISK_S_FAILED)
  546                         s = G_STATE_FAILED;
  547                 else if (state == G_RAID_SUBDISK_S_NEW ||
  548                     state == G_RAID_SUBDISK_S_REBUILD)
  549                         s = G_STATE_REBUILD;
  550                 else if (state == G_RAID_SUBDISK_S_STALE ||
  551                     state == G_RAID_SUBDISK_S_RESYNC)
  552                         s = G_STATE_RESYNC;
  553                 else
  554                         s = G_STATE_ACTIVE;
  555         }
  556         len = sizeof(s);
  557         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
  558         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
  559             g_raid_get_diskname(disk), s);
  560 }
  561 
  562 void
  563 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
  564 {
  565 
  566         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
  567             g_raid_get_diskname(disk),
  568             g_raid_disk_state2str(disk->d_state),
  569             g_raid_disk_state2str(state));
  570         disk->d_state = state;
  571         g_raid_report_disk_state(disk);
  572 }
  573 
  574 void
  575 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
  576 {
  577 
  578         G_RAID_DEBUG1(0, sd->sd_softc,
  579             "Subdisk %s:%d-%s state changed from %s to %s.",
  580             sd->sd_volume->v_name, sd->sd_pos,
  581             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
  582             g_raid_subdisk_state2str(sd->sd_state),
  583             g_raid_subdisk_state2str(state));
  584         sd->sd_state = state;
  585         if (sd->sd_disk)
  586                 g_raid_report_disk_state(sd->sd_disk);
  587 }
  588 
  589 void
  590 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
  591 {
  592 
  593         G_RAID_DEBUG1(0, vol->v_softc,
  594             "Volume %s state changed from %s to %s.",
  595             vol->v_name,
  596             g_raid_volume_state2str(vol->v_state),
  597             g_raid_volume_state2str(state));
  598         vol->v_state = state;
  599 }
  600 
  601 /*
  602  * --- Events handling functions ---
  603  * Events in geom_raid are used to maintain subdisks and volumes status
  604  * from one thread to simplify locking.
  605  */
  606 static void
  607 g_raid_event_free(struct g_raid_event *ep)
  608 {
  609 
  610         free(ep, M_RAID);
  611 }
  612 
  613 int
  614 g_raid_event_send(void *arg, int event, int flags)
  615 {
  616         struct g_raid_softc *sc;
  617         struct g_raid_event *ep;
  618         int error;
  619 
  620         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
  621                 sc = ((struct g_raid_volume *)arg)->v_softc;
  622         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
  623                 sc = ((struct g_raid_disk *)arg)->d_softc;
  624         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
  625                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
  626         } else {
  627                 sc = arg;
  628         }
  629         ep = malloc(sizeof(*ep), M_RAID,
  630             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
  631         if (ep == NULL)
  632                 return (ENOMEM);
  633         ep->e_tgt = arg;
  634         ep->e_event = event;
  635         ep->e_flags = flags;
  636         ep->e_error = 0;
  637         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
  638         mtx_lock(&sc->sc_queue_mtx);
  639         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
  640         mtx_unlock(&sc->sc_queue_mtx);
  641         wakeup(sc);
  642 
  643         if ((flags & G_RAID_EVENT_WAIT) == 0)
  644                 return (0);
  645 
  646         sx_assert(&sc->sc_lock, SX_XLOCKED);
  647         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
  648         sx_xunlock(&sc->sc_lock);
  649         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
  650                 mtx_lock(&sc->sc_queue_mtx);
  651                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
  652                     hz * 5);
  653         }
  654         error = ep->e_error;
  655         g_raid_event_free(ep);
  656         sx_xlock(&sc->sc_lock);
  657         return (error);
  658 }
  659 
  660 static void
  661 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
  662 {
  663         struct g_raid_event *ep, *tmpep;
  664 
  665         sx_assert(&sc->sc_lock, SX_XLOCKED);
  666 
  667         mtx_lock(&sc->sc_queue_mtx);
  668         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
  669                 if (ep->e_tgt != tgt)
  670                         continue;
  671                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  672                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
  673                         g_raid_event_free(ep);
  674                 else {
  675                         ep->e_error = ECANCELED;
  676                         wakeup(ep);
  677                 }
  678         }
  679         mtx_unlock(&sc->sc_queue_mtx);
  680 }
  681 
  682 static int
  683 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
  684 {
  685         struct g_raid_event *ep;
  686         int     res = 0;
  687 
  688         sx_assert(&sc->sc_lock, SX_XLOCKED);
  689 
  690         mtx_lock(&sc->sc_queue_mtx);
  691         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
  692                 if (ep->e_tgt != tgt)
  693                         continue;
  694                 res = 1;
  695                 break;
  696         }
  697         mtx_unlock(&sc->sc_queue_mtx);
  698         return (res);
  699 }
  700 
  701 /*
  702  * Return the number of disks in given state.
  703  * If state is equal to -1, count all connected disks.
  704  */
  705 u_int
  706 g_raid_ndisks(struct g_raid_softc *sc, int state)
  707 {
  708         struct g_raid_disk *disk;
  709         u_int n;
  710 
  711         sx_assert(&sc->sc_lock, SX_LOCKED);
  712 
  713         n = 0;
  714         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
  715                 if (disk->d_state == state || state == -1)
  716                         n++;
  717         }
  718         return (n);
  719 }
  720 
  721 /*
  722  * Return the number of subdisks in given state.
  723  * If state is equal to -1, count all connected disks.
  724  */
  725 u_int
  726 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
  727 {
  728         struct g_raid_subdisk *subdisk;
  729         struct g_raid_softc *sc;
  730         u_int i, n ;
  731 
  732         sc = vol->v_softc;
  733         sx_assert(&sc->sc_lock, SX_LOCKED);
  734 
  735         n = 0;
  736         for (i = 0; i < vol->v_disks_count; i++) {
  737                 subdisk = &vol->v_subdisks[i];
  738                 if ((state == -1 &&
  739                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
  740                     subdisk->sd_state == state)
  741                         n++;
  742         }
  743         return (n);
  744 }
  745 
  746 /*
  747  * Return the first subdisk in given state.
  748  * If state is equal to -1, then the first connected disks.
  749  */
  750 struct g_raid_subdisk *
  751 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
  752 {
  753         struct g_raid_subdisk *sd;
  754         struct g_raid_softc *sc;
  755         u_int i;
  756 
  757         sc = vol->v_softc;
  758         sx_assert(&sc->sc_lock, SX_LOCKED);
  759 
  760         for (i = 0; i < vol->v_disks_count; i++) {
  761                 sd = &vol->v_subdisks[i];
  762                 if ((state == -1 &&
  763                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
  764                     sd->sd_state == state)
  765                         return (sd);
  766         }
  767         return (NULL);
  768 }
  769 
  770 struct g_consumer *
  771 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
  772 {
  773         struct g_consumer *cp;
  774         struct g_provider *pp;
  775 
  776         g_topology_assert();
  777 
  778         if (strncmp(name, _PATH_DEV, 5) == 0)
  779                 name += 5;
  780         pp = g_provider_by_name(name);
  781         if (pp == NULL)
  782                 return (NULL);
  783         cp = g_new_consumer(sc->sc_geom);
  784         cp->flags |= G_CF_DIRECT_RECEIVE;
  785         if (g_attach(cp, pp) != 0) {
  786                 g_destroy_consumer(cp);
  787                 return (NULL);
  788         }
  789         if (g_access(cp, 1, 1, 1) != 0) {
  790                 g_detach(cp);
  791                 g_destroy_consumer(cp);
  792                 return (NULL);
  793         }
  794         return (cp);
  795 }
  796 
  797 static u_int
  798 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
  799 {
  800         struct bio *bp;
  801         u_int nreqs = 0;
  802 
  803         mtx_lock(&sc->sc_queue_mtx);
  804         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
  805                 if (bp->bio_from == cp)
  806                         nreqs++;
  807         }
  808         mtx_unlock(&sc->sc_queue_mtx);
  809         return (nreqs);
  810 }
  811 
  812 u_int
  813 g_raid_nopens(struct g_raid_softc *sc)
  814 {
  815         struct g_raid_volume *vol;
  816         u_int opens;
  817 
  818         opens = 0;
  819         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
  820                 if (vol->v_provider_open != 0)
  821                         opens++;
  822         }
  823         return (opens);
  824 }
  825 
  826 static int
  827 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
  828 {
  829 
  830         if (cp->index > 0) {
  831                 G_RAID_DEBUG1(2, sc,
  832                     "I/O requests for %s exist, can't destroy it now.",
  833                     cp->provider->name);
  834                 return (1);
  835         }
  836         if (g_raid_nrequests(sc, cp) > 0) {
  837                 G_RAID_DEBUG1(2, sc,
  838                     "I/O requests for %s in queue, can't destroy it now.",
  839                     cp->provider->name);
  840                 return (1);
  841         }
  842         return (0);
  843 }
  844 
  845 static void
  846 g_raid_destroy_consumer(void *arg, int flags __unused)
  847 {
  848         struct g_consumer *cp;
  849 
  850         g_topology_assert();
  851 
  852         cp = arg;
  853         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
  854         g_detach(cp);
  855         g_destroy_consumer(cp);
  856 }
  857 
  858 void
  859 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
  860 {
  861         struct g_provider *pp;
  862         int retaste_wait;
  863 
  864         g_topology_assert_not();
  865 
  866         g_topology_lock();
  867         cp->private = NULL;
  868         if (g_raid_consumer_is_busy(sc, cp))
  869                 goto out;
  870         pp = cp->provider;
  871         retaste_wait = 0;
  872         if (cp->acw == 1) {
  873                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
  874                         retaste_wait = 1;
  875         }
  876         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
  877                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
  878         if (retaste_wait) {
  879                 /*
  880                  * After retaste event was send (inside g_access()), we can send
  881                  * event to detach and destroy consumer.
  882                  * A class, which has consumer to the given provider connected
  883                  * will not receive retaste event for the provider.
  884                  * This is the way how I ignore retaste events when I close
  885                  * consumers opened for write: I detach and destroy consumer
  886                  * after retaste event is sent.
  887                  */
  888                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
  889                 goto out;
  890         }
  891         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
  892         g_detach(cp);
  893         g_destroy_consumer(cp);
  894 out:
  895         g_topology_unlock();
  896 }
  897 
  898 static void
  899 g_raid_orphan(struct g_consumer *cp)
  900 {
  901         struct g_raid_disk *disk;
  902 
  903         g_topology_assert();
  904 
  905         disk = cp->private;
  906         if (disk == NULL)
  907                 return;
  908         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
  909             G_RAID_EVENT_DISK);
  910 }
  911 
  912 static void
  913 g_raid_clean(struct g_raid_volume *vol, int acw)
  914 {
  915         struct g_raid_softc *sc;
  916         int timeout;
  917 
  918         sc = vol->v_softc;
  919         g_topology_assert_not();
  920         sx_assert(&sc->sc_lock, SX_XLOCKED);
  921 
  922 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  923 //              return;
  924         if (!vol->v_dirty)
  925                 return;
  926         if (vol->v_writes > 0)
  927                 return;
  928         if (acw > 0 || (acw == -1 &&
  929             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
  930                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
  931                 if (!g_raid_shutdown && timeout > 0)
  932                         return;
  933         }
  934         vol->v_dirty = 0;
  935         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
  936             vol->v_name);
  937         g_raid_write_metadata(sc, vol, NULL, NULL);
  938 }
  939 
  940 static void
  941 g_raid_dirty(struct g_raid_volume *vol)
  942 {
  943         struct g_raid_softc *sc;
  944 
  945         sc = vol->v_softc;
  946         g_topology_assert_not();
  947         sx_assert(&sc->sc_lock, SX_XLOCKED);
  948 
  949 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
  950 //              return;
  951         vol->v_dirty = 1;
  952         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
  953             vol->v_name);
  954         g_raid_write_metadata(sc, vol, NULL, NULL);
  955 }
  956 
  957 void
  958 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
  959 {
  960         struct g_raid_volume *vol;
  961         struct g_raid_subdisk *sd;
  962         struct bio_queue_head queue;
  963         struct bio *cbp;
  964         int i;
  965 
  966         vol = tr->tro_volume;
  967 
  968         /*
  969          * Allocate all bios before sending any request, so we can return
  970          * ENOMEM in nice and clean way.
  971          */
  972         bioq_init(&queue);
  973         for (i = 0; i < vol->v_disks_count; i++) {
  974                 sd = &vol->v_subdisks[i];
  975                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
  976                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
  977                         continue;
  978                 cbp = g_clone_bio(bp);
  979                 if (cbp == NULL)
  980                         goto failure;
  981                 cbp->bio_caller1 = sd;
  982                 bioq_insert_tail(&queue, cbp);
  983         }
  984         while ((cbp = bioq_takefirst(&queue)) != NULL) {
  985                 sd = cbp->bio_caller1;
  986                 cbp->bio_caller1 = NULL;
  987                 g_raid_subdisk_iostart(sd, cbp);
  988         }
  989         return;
  990 failure:
  991         while ((cbp = bioq_takefirst(&queue)) != NULL)
  992                 g_destroy_bio(cbp);
  993         if (bp->bio_error == 0)
  994                 bp->bio_error = ENOMEM;
  995         g_raid_iodone(bp, bp->bio_error);
  996 }
  997 
  998 static void
  999 g_raid_tr_kerneldump_common_done(struct bio *bp)
 1000 {
 1001 
 1002         bp->bio_flags |= BIO_DONE;
 1003 }
 1004 
 1005 int
 1006 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
 1007     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1008 {
 1009         struct g_raid_softc *sc;
 1010         struct g_raid_volume *vol;
 1011         struct bio bp;
 1012 
 1013         vol = tr->tro_volume;
 1014         sc = vol->v_softc;
 1015 
 1016         g_reset_bio(&bp);
 1017         bp.bio_cmd = BIO_WRITE;
 1018         bp.bio_done = g_raid_tr_kerneldump_common_done;
 1019         bp.bio_attribute = NULL;
 1020         bp.bio_offset = offset;
 1021         bp.bio_length = length;
 1022         bp.bio_data = virtual;
 1023         bp.bio_to = vol->v_provider;
 1024 
 1025         g_raid_start(&bp);
 1026         while (!(bp.bio_flags & BIO_DONE)) {
 1027                 G_RAID_DEBUG1(4, sc, "Poll...");
 1028                 g_raid_poll(sc);
 1029                 DELAY(10);
 1030         }
 1031 
 1032         return (bp.bio_error != 0 ? EIO : 0);
 1033 }
 1034 
 1035 static int
 1036 g_raid_dump(void *arg,
 1037     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1038 {
 1039         struct g_raid_volume *vol;
 1040         int error;
 1041 
 1042         vol = (struct g_raid_volume *)arg;
 1043         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
 1044             (long long unsigned)offset, (long long unsigned)length);
 1045 
 1046         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
 1047             virtual, physical, offset, length);
 1048         return (error);
 1049 }
 1050 
 1051 static void
 1052 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
 1053 {
 1054         struct g_kerneldump *gkd;
 1055         struct g_provider *pp;
 1056         struct g_raid_volume *vol;
 1057 
 1058         gkd = (struct g_kerneldump*)bp->bio_data;
 1059         pp = bp->bio_to;
 1060         vol = pp->private;
 1061         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
 1062                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
 1063         gkd->di.dumper = g_raid_dump;
 1064         gkd->di.priv = vol;
 1065         gkd->di.blocksize = vol->v_sectorsize;
 1066         gkd->di.maxiosize = DFLTPHYS;
 1067         gkd->di.mediaoffset = gkd->offset;
 1068         if ((gkd->offset + gkd->length) > vol->v_mediasize)
 1069                 gkd->length = vol->v_mediasize - gkd->offset;
 1070         gkd->di.mediasize = gkd->length;
 1071         g_io_deliver(bp, 0);
 1072 }
 1073 
 1074 static void
 1075 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
 1076 {
 1077         struct g_provider *pp;
 1078         struct g_raid_volume *vol;
 1079         struct g_raid_subdisk *sd;
 1080         int i, val;
 1081 
 1082         pp = bp->bio_to;
 1083         vol = pp->private;
 1084         for (i = 0; i < vol->v_disks_count; i++) {
 1085                 sd = &vol->v_subdisks[i];
 1086                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1087                         continue;
 1088                 if (sd->sd_disk->d_candelete)
 1089                         break;
 1090         }
 1091         val = i < vol->v_disks_count;
 1092         g_handleattr(bp, "GEOM::candelete", &val, sizeof(val));
 1093 }
 1094 
 1095 static void
 1096 g_raid_start(struct bio *bp)
 1097 {
 1098         struct g_raid_softc *sc;
 1099 
 1100         sc = bp->bio_to->geom->softc;
 1101         /*
 1102          * If sc == NULL or there are no valid disks, provider's error
 1103          * should be set and g_raid_start() should not be called at all.
 1104          */
 1105 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
 1106 //          ("Provider's error should be set (error=%d)(mirror=%s).",
 1107 //          bp->bio_to->error, bp->bio_to->name));
 1108         G_RAID_LOGREQ(3, bp, "Request received.");
 1109 
 1110         switch (bp->bio_cmd) {
 1111         case BIO_READ:
 1112         case BIO_WRITE:
 1113         case BIO_DELETE:
 1114         case BIO_FLUSH:
 1115         case BIO_SPEEDUP:
 1116                 break;
 1117         case BIO_GETATTR:
 1118                 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
 1119                         g_raid_candelete(sc, bp);
 1120                 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
 1121                         g_raid_kerneldump(sc, bp);
 1122                 else
 1123                         g_io_deliver(bp, EOPNOTSUPP);
 1124                 return;
 1125         default:
 1126                 g_io_deliver(bp, EOPNOTSUPP);
 1127                 return;
 1128         }
 1129         mtx_lock(&sc->sc_queue_mtx);
 1130         bioq_insert_tail(&sc->sc_queue, bp);
 1131         mtx_unlock(&sc->sc_queue_mtx);
 1132         if (!dumping) {
 1133                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
 1134                 wakeup(sc);
 1135         }
 1136 }
 1137 
 1138 static int
 1139 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
 1140 {
 1141         /*
 1142          * 5 cases:
 1143          * (1) bp entirely below NO
 1144          * (2) bp entirely above NO
 1145          * (3) bp start below, but end in range YES
 1146          * (4) bp entirely within YES
 1147          * (5) bp starts within, ends above YES
 1148          *
 1149          * lock range 10-19 (offset 10 length 10)
 1150          * (1) 1-5: first if kicks it out
 1151          * (2) 30-35: second if kicks it out
 1152          * (3) 5-15: passes both ifs
 1153          * (4) 12-14: passes both ifs
 1154          * (5) 19-20: passes both
 1155          */
 1156         off_t lend = lstart + len - 1;
 1157         off_t bstart = bp->bio_offset;
 1158         off_t bend = bp->bio_offset + bp->bio_length - 1;
 1159 
 1160         if (bend < lstart)
 1161                 return (0);
 1162         if (lend < bstart)
 1163                 return (0);
 1164         return (1);
 1165 }
 1166 
 1167 static int
 1168 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
 1169 {
 1170         struct g_raid_lock *lp;
 1171 
 1172         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
 1173 
 1174         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1175                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
 1176                         return (1);
 1177         }
 1178         return (0);
 1179 }
 1180 
 1181 static void
 1182 g_raid_start_request(struct bio *bp)
 1183 {
 1184         struct g_raid_softc *sc;
 1185         struct g_raid_volume *vol;
 1186 
 1187         sc = bp->bio_to->geom->softc;
 1188         sx_assert(&sc->sc_lock, SX_LOCKED);
 1189         vol = bp->bio_to->private;
 1190 
 1191         /*
 1192          * Check to see if this item is in a locked range.  If so,
 1193          * queue it to our locked queue and return.  We'll requeue
 1194          * it when the range is unlocked.  Internal I/O for the
 1195          * rebuild/rescan/recovery process is excluded from this
 1196          * check so we can actually do the recovery.
 1197          */
 1198         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
 1199             g_raid_is_in_locked_range(vol, bp)) {
 1200                 G_RAID_LOGREQ(3, bp, "Defer request.");
 1201                 bioq_insert_tail(&vol->v_locked, bp);
 1202                 return;
 1203         }
 1204 
 1205         /*
 1206          * If we're actually going to do the write/delete, then
 1207          * update the idle stats for the volume.
 1208          */
 1209         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1210                 if (!vol->v_dirty)
 1211                         g_raid_dirty(vol);
 1212                 vol->v_writes++;
 1213         }
 1214 
 1215         /*
 1216          * Put request onto inflight queue, so we can check if new
 1217          * synchronization requests don't collide with it.  Then tell
 1218          * the transformation layer to start the I/O.
 1219          */
 1220         bioq_insert_tail(&vol->v_inflight, bp);
 1221         G_RAID_LOGREQ(4, bp, "Request started");
 1222         G_RAID_TR_IOSTART(vol->v_tr, bp);
 1223 }
 1224 
 1225 static void
 1226 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
 1227 {
 1228         off_t off, len;
 1229         struct bio *nbp;
 1230         struct g_raid_lock *lp;
 1231 
 1232         vol->v_pending_lock = 0;
 1233         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1234                 if (lp->l_pending) {
 1235                         off = lp->l_offset;
 1236                         len = lp->l_length;
 1237                         lp->l_pending = 0;
 1238                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
 1239                                 if (g_raid_bio_overlaps(nbp, off, len))
 1240                                         lp->l_pending++;
 1241                         }
 1242                         if (lp->l_pending) {
 1243                                 vol->v_pending_lock = 1;
 1244                                 G_RAID_DEBUG1(4, vol->v_softc,
 1245                                     "Deferred lock(%jd, %jd) has %d pending",
 1246                                     (intmax_t)off, (intmax_t)(off + len),
 1247                                     lp->l_pending);
 1248                                 continue;
 1249                         }
 1250                         G_RAID_DEBUG1(4, vol->v_softc,
 1251                             "Deferred lock of %jd to %jd completed",
 1252                             (intmax_t)off, (intmax_t)(off + len));
 1253                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1254                 }
 1255         }
 1256 }
 1257 
 1258 void
 1259 g_raid_iodone(struct bio *bp, int error)
 1260 {
 1261         struct g_raid_softc *sc;
 1262         struct g_raid_volume *vol;
 1263 
 1264         sc = bp->bio_to->geom->softc;
 1265         sx_assert(&sc->sc_lock, SX_LOCKED);
 1266         vol = bp->bio_to->private;
 1267         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
 1268 
 1269         /* Update stats if we done write/delete. */
 1270         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
 1271                 vol->v_writes--;
 1272                 vol->v_last_write = time_uptime;
 1273         }
 1274 
 1275         bioq_remove(&vol->v_inflight, bp);
 1276         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
 1277                 g_raid_finish_with_locked_ranges(vol, bp);
 1278         getmicrouptime(&vol->v_last_done);
 1279         g_io_deliver(bp, error);
 1280 }
 1281 
 1282 int
 1283 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
 1284     struct bio *ignore, void *argp)
 1285 {
 1286         struct g_raid_softc *sc;
 1287         struct g_raid_lock *lp;
 1288         struct bio *bp;
 1289 
 1290         sc = vol->v_softc;
 1291         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
 1292         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
 1293         lp->l_offset = off;
 1294         lp->l_length = len;
 1295         lp->l_callback_arg = argp;
 1296 
 1297         lp->l_pending = 0;
 1298         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
 1299                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
 1300                         lp->l_pending++;
 1301         }       
 1302 
 1303         /*
 1304          * If there are any writes that are pending, we return EBUSY.  All
 1305          * callers will have to wait until all pending writes clear.
 1306          */
 1307         if (lp->l_pending > 0) {
 1308                 vol->v_pending_lock = 1;
 1309                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
 1310                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
 1311                 return (EBUSY);
 1312         }
 1313         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
 1314             (intmax_t)off, (intmax_t)(off+len));
 1315         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
 1316         return (0);
 1317 }
 1318 
 1319 int
 1320 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
 1321 {
 1322         struct g_raid_lock *lp;
 1323         struct g_raid_softc *sc;
 1324         struct bio *bp;
 1325 
 1326         sc = vol->v_softc;
 1327         LIST_FOREACH(lp, &vol->v_locks, l_next) {
 1328                 if (lp->l_offset == off && lp->l_length == len) {
 1329                         LIST_REMOVE(lp, l_next);
 1330                         /* XXX
 1331                          * Right now we just put them all back on the queue
 1332                          * and hope for the best.  We hope this because any
 1333                          * locked ranges will go right back on this list
 1334                          * when the worker thread runs.
 1335                          * XXX
 1336                          */
 1337                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
 1338                             (intmax_t)lp->l_offset,
 1339                             (intmax_t)(lp->l_offset+lp->l_length));
 1340                         mtx_lock(&sc->sc_queue_mtx);
 1341                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
 1342                                 bioq_insert_tail(&sc->sc_queue, bp);
 1343                         mtx_unlock(&sc->sc_queue_mtx);
 1344                         free(lp, M_RAID);
 1345                         return (0);
 1346                 }
 1347         }
 1348         return (EINVAL);
 1349 }
 1350 
 1351 void
 1352 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
 1353 {
 1354         struct g_consumer *cp;
 1355         struct g_raid_disk *disk, *tdisk;
 1356 
 1357         bp->bio_caller1 = sd;
 1358 
 1359         /*
 1360          * Make sure that the disk is present. Generally it is a task of
 1361          * transformation layers to not send requests to absent disks, but
 1362          * it is better to be safe and report situation then sorry.
 1363          */
 1364         if (sd->sd_disk == NULL) {
 1365                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
 1366 nodisk:
 1367                 bp->bio_from = NULL;
 1368                 bp->bio_to = NULL;
 1369                 bp->bio_error = ENXIO;
 1370                 g_raid_disk_done(bp);
 1371                 return;
 1372         }
 1373         disk = sd->sd_disk;
 1374         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
 1375             disk->d_state != G_RAID_DISK_S_FAILED) {
 1376                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
 1377                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 1378                 goto nodisk;
 1379         }
 1380 
 1381         cp = disk->d_consumer;
 1382         bp->bio_from = cp;
 1383         bp->bio_to = cp->provider;
 1384         cp->index++;
 1385 
 1386         /* Update average disks load. */
 1387         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
 1388                 if (tdisk->d_consumer == NULL)
 1389                         tdisk->d_load = 0;
 1390                 else
 1391                         tdisk->d_load = (tdisk->d_consumer->index *
 1392                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
 1393         }
 1394 
 1395         disk->d_last_offset = bp->bio_offset + bp->bio_length;
 1396         if (dumping) {
 1397                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
 1398                 if (bp->bio_cmd == BIO_WRITE) {
 1399                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
 1400                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
 1401                 } else
 1402                         bp->bio_error = EOPNOTSUPP;
 1403                 g_raid_disk_done(bp);
 1404         } else {
 1405                 bp->bio_done = g_raid_disk_done;
 1406                 bp->bio_offset += sd->sd_offset;
 1407                 G_RAID_LOGREQ(3, bp, "Sending request.");
 1408                 g_io_request(bp, cp);
 1409         }
 1410 }
 1411 
 1412 int
 1413 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
 1414     void *virtual, vm_offset_t physical, off_t offset, size_t length)
 1415 {
 1416 
 1417         if (sd->sd_disk == NULL)
 1418                 return (ENXIO);
 1419         if (sd->sd_disk->d_kd.di.dumper == NULL)
 1420                 return (EOPNOTSUPP);
 1421         return (dump_write(&sd->sd_disk->d_kd.di,
 1422             virtual, physical,
 1423             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
 1424             length));
 1425 }
 1426 
 1427 static void
 1428 g_raid_disk_done(struct bio *bp)
 1429 {
 1430         struct g_raid_softc *sc;
 1431         struct g_raid_subdisk *sd;
 1432 
 1433         sd = bp->bio_caller1;
 1434         sc = sd->sd_softc;
 1435         mtx_lock(&sc->sc_queue_mtx);
 1436         bioq_insert_tail(&sc->sc_queue, bp);
 1437         mtx_unlock(&sc->sc_queue_mtx);
 1438         if (!dumping)
 1439                 wakeup(sc);
 1440 }
 1441 
 1442 static void
 1443 g_raid_disk_done_request(struct bio *bp)
 1444 {
 1445         struct g_raid_softc *sc;
 1446         struct g_raid_disk *disk;
 1447         struct g_raid_subdisk *sd;
 1448         struct g_raid_volume *vol;
 1449 
 1450         g_topology_assert_not();
 1451 
 1452         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
 1453         sd = bp->bio_caller1;
 1454         sc = sd->sd_softc;
 1455         vol = sd->sd_volume;
 1456         if (bp->bio_from != NULL) {
 1457                 bp->bio_from->index--;
 1458                 disk = bp->bio_from->private;
 1459                 if (disk == NULL)
 1460                         g_raid_kill_consumer(sc, bp->bio_from);
 1461         }
 1462         bp->bio_offset -= sd->sd_offset;
 1463 
 1464         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
 1465 }
 1466 
 1467 static void
 1468 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
 1469 {
 1470 
 1471         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
 1472                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
 1473         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
 1474                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
 1475         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
 1476                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
 1477         else
 1478                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
 1479         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
 1480                 KASSERT(ep->e_error == 0,
 1481                     ("Error cannot be handled."));
 1482                 g_raid_event_free(ep);
 1483         } else {
 1484                 ep->e_flags |= G_RAID_EVENT_DONE;
 1485                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
 1486                 mtx_lock(&sc->sc_queue_mtx);
 1487                 wakeup(ep);
 1488                 mtx_unlock(&sc->sc_queue_mtx);
 1489         }
 1490 }
 1491 
 1492 /*
 1493  * Worker thread.
 1494  */
 1495 static void
 1496 g_raid_worker(void *arg)
 1497 {
 1498         struct g_raid_softc *sc;
 1499         struct g_raid_event *ep;
 1500         struct g_raid_volume *vol;
 1501         struct bio *bp;
 1502         struct timeval now, t;
 1503         int timeout, rv;
 1504 
 1505         sc = arg;
 1506         thread_lock(curthread);
 1507         sched_prio(curthread, PRIBIO);
 1508         thread_unlock(curthread);
 1509 
 1510         sx_xlock(&sc->sc_lock);
 1511         for (;;) {
 1512                 mtx_lock(&sc->sc_queue_mtx);
 1513                 /*
 1514                  * First take a look at events.
 1515                  * This is important to handle events before any I/O requests.
 1516                  */
 1517                 bp = NULL;
 1518                 vol = NULL;
 1519                 rv = 0;
 1520                 ep = TAILQ_FIRST(&sc->sc_events);
 1521                 if (ep != NULL)
 1522                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1523                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
 1524                         ;
 1525                 else {
 1526                         getmicrouptime(&now);
 1527                         t = now;
 1528                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1529                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1530                                     vol->v_tr &&
 1531                                     timevalcmp(&vol->v_last_done, &t, < ))
 1532                                         t = vol->v_last_done;
 1533                         }
 1534                         timevalsub(&t, &now);
 1535                         timeout = g_raid_idle_threshold +
 1536                             t.tv_sec * 1000000 + t.tv_usec;
 1537                         if (timeout > 0) {
 1538                                 /*
 1539                                  * Two steps to avoid overflows at HZ=1000
 1540                                  * and idle timeouts > 2.1s.  Some rounding
 1541                                  * errors can occur, but they are < 1tick,
 1542                                  * which is deemed to be close enough for
 1543                                  * this purpose.
 1544                                  */
 1545                                 int micpertic = 1000000 / hz;
 1546                                 timeout = (timeout + micpertic - 1) / micpertic;
 1547                                 sx_xunlock(&sc->sc_lock);
 1548                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
 1549                                     PRIBIO | PDROP, "-", timeout);
 1550                                 sx_xlock(&sc->sc_lock);
 1551                                 goto process;
 1552                         } else
 1553                                 rv = EWOULDBLOCK;
 1554                 }
 1555                 mtx_unlock(&sc->sc_queue_mtx);
 1556 process:
 1557                 if (ep != NULL) {
 1558                         g_raid_handle_event(sc, ep);
 1559                 } else if (bp != NULL) {
 1560                         if (bp->bio_to != NULL &&
 1561                             bp->bio_to->geom == sc->sc_geom)
 1562                                 g_raid_start_request(bp);
 1563                         else
 1564                                 g_raid_disk_done_request(bp);
 1565                 } else if (rv == EWOULDBLOCK) {
 1566                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1567                                 g_raid_clean(vol, -1);
 1568                                 if (bioq_first(&vol->v_inflight) == NULL &&
 1569                                     vol->v_tr) {
 1570                                         t.tv_sec = g_raid_idle_threshold / 1000000;
 1571                                         t.tv_usec = g_raid_idle_threshold % 1000000;
 1572                                         timevaladd(&t, &vol->v_last_done);
 1573                                         getmicrouptime(&now);
 1574                                         if (timevalcmp(&t, &now, <= )) {
 1575                                                 G_RAID_TR_IDLE(vol->v_tr);
 1576                                                 vol->v_last_done = now;
 1577                                         }
 1578                                 }
 1579                         }
 1580                 }
 1581                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 1582                         g_raid_destroy_node(sc, 1);     /* May not return. */
 1583         }
 1584 }
 1585 
 1586 static void
 1587 g_raid_poll(struct g_raid_softc *sc)
 1588 {
 1589         struct g_raid_event *ep;
 1590         struct bio *bp;
 1591 
 1592         sx_xlock(&sc->sc_lock);
 1593         mtx_lock(&sc->sc_queue_mtx);
 1594         /*
 1595          * First take a look at events.
 1596          * This is important to handle events before any I/O requests.
 1597          */
 1598         ep = TAILQ_FIRST(&sc->sc_events);
 1599         if (ep != NULL) {
 1600                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
 1601                 mtx_unlock(&sc->sc_queue_mtx);
 1602                 g_raid_handle_event(sc, ep);
 1603                 goto out;
 1604         }
 1605         bp = bioq_takefirst(&sc->sc_queue);
 1606         if (bp != NULL) {
 1607                 mtx_unlock(&sc->sc_queue_mtx);
 1608                 if (bp->bio_from == NULL ||
 1609                     bp->bio_from->geom != sc->sc_geom)
 1610                         g_raid_start_request(bp);
 1611                 else
 1612                         g_raid_disk_done_request(bp);
 1613         }
 1614 out:
 1615         sx_xunlock(&sc->sc_lock);
 1616 }
 1617 
 1618 static void
 1619 g_raid_launch_provider(struct g_raid_volume *vol)
 1620 {
 1621         struct g_raid_disk *disk;
 1622         struct g_raid_subdisk *sd;
 1623         struct g_raid_softc *sc;
 1624         struct g_provider *pp;
 1625         char name[G_RAID_MAX_VOLUMENAME];
 1626         off_t off;
 1627         int i;
 1628 
 1629         sc = vol->v_softc;
 1630         sx_assert(&sc->sc_lock, SX_LOCKED);
 1631 
 1632         g_topology_lock();
 1633         /* Try to name provider with volume name. */
 1634         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
 1635         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
 1636             g_provider_by_name(name) != NULL) {
 1637                 /* Otherwise use sequential volume number. */
 1638                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
 1639         }
 1640 
 1641         pp = g_new_providerf(sc->sc_geom, "%s", name);
 1642         pp->flags |= G_PF_DIRECT_RECEIVE;
 1643         if (vol->v_tr->tro_class->trc_accept_unmapped) {
 1644                 pp->flags |= G_PF_ACCEPT_UNMAPPED;
 1645                 for (i = 0; i < vol->v_disks_count; i++) {
 1646                         sd = &vol->v_subdisks[i];
 1647                         if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
 1648                                 continue;
 1649                         if ((sd->sd_disk->d_consumer->provider->flags &
 1650                             G_PF_ACCEPT_UNMAPPED) == 0)
 1651                                 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
 1652                 }
 1653         }
 1654         pp->private = vol;
 1655         pp->mediasize = vol->v_mediasize;
 1656         pp->sectorsize = vol->v_sectorsize;
 1657         pp->stripesize = 0;
 1658         pp->stripeoffset = 0;
 1659         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
 1660             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
 1661             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
 1662             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
 1663                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
 1664                     disk->d_consumer != NULL &&
 1665                     disk->d_consumer->provider != NULL) {
 1666                         pp->stripesize = disk->d_consumer->provider->stripesize;
 1667                         off = disk->d_consumer->provider->stripeoffset;
 1668                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
 1669                         if (off > 0)
 1670                                 pp->stripeoffset %= off;
 1671                 }
 1672                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
 1673                         pp->stripesize *= (vol->v_disks_count - 1);
 1674                         pp->stripeoffset *= (vol->v_disks_count - 1);
 1675                 }
 1676         } else
 1677                 pp->stripesize = vol->v_strip_size;
 1678         vol->v_provider = pp;
 1679         g_error_provider(pp, 0);
 1680         g_topology_unlock();
 1681         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
 1682             pp->name, vol->v_name);
 1683 }
 1684 
 1685 static void
 1686 g_raid_destroy_provider(struct g_raid_volume *vol)
 1687 {
 1688         struct g_raid_softc *sc;
 1689         struct g_provider *pp;
 1690         struct bio *bp, *tmp;
 1691 
 1692         g_topology_assert_not();
 1693         sc = vol->v_softc;
 1694         pp = vol->v_provider;
 1695         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
 1696 
 1697         g_topology_lock();
 1698         g_error_provider(pp, ENXIO);
 1699         mtx_lock(&sc->sc_queue_mtx);
 1700         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
 1701                 if (bp->bio_to != pp)
 1702                         continue;
 1703                 bioq_remove(&sc->sc_queue, bp);
 1704                 g_io_deliver(bp, ENXIO);
 1705         }
 1706         mtx_unlock(&sc->sc_queue_mtx);
 1707         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
 1708             pp->name, vol->v_name);
 1709         g_wither_provider(pp, ENXIO);
 1710         g_topology_unlock();
 1711         vol->v_provider = NULL;
 1712 }
 1713 
 1714 /*
 1715  * Update device state.
 1716  */
 1717 static int
 1718 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
 1719 {
 1720         struct g_raid_softc *sc;
 1721 
 1722         sc = vol->v_softc;
 1723         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1724 
 1725         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
 1726             g_raid_volume_event2str(event),
 1727             vol->v_name);
 1728         switch (event) {
 1729         case G_RAID_VOLUME_E_DOWN:
 1730                 if (vol->v_provider != NULL)
 1731                         g_raid_destroy_provider(vol);
 1732                 break;
 1733         case G_RAID_VOLUME_E_UP:
 1734                 if (vol->v_provider == NULL)
 1735                         g_raid_launch_provider(vol);
 1736                 break;
 1737         case G_RAID_VOLUME_E_START:
 1738                 if (vol->v_tr)
 1739                         G_RAID_TR_START(vol->v_tr);
 1740                 return (0);
 1741         default:
 1742                 if (sc->sc_md)
 1743                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
 1744                 return (0);
 1745         }
 1746 
 1747         /* Manage root mount release. */
 1748         if (vol->v_starting) {
 1749                 vol->v_starting = 0;
 1750                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
 1751                 root_mount_rel(vol->v_rootmount);
 1752                 vol->v_rootmount = NULL;
 1753         }
 1754         if (vol->v_stopping && vol->v_provider_open == 0)
 1755                 g_raid_destroy_volume(vol);
 1756         return (0);
 1757 }
 1758 
 1759 /*
 1760  * Update subdisk state.
 1761  */
 1762 static int
 1763 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
 1764 {
 1765         struct g_raid_softc *sc;
 1766         struct g_raid_volume *vol;
 1767 
 1768         sc = sd->sd_softc;
 1769         vol = sd->sd_volume;
 1770         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1771 
 1772         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
 1773             g_raid_subdisk_event2str(event),
 1774             vol->v_name, sd->sd_pos,
 1775             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
 1776         if (vol->v_tr)
 1777                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
 1778 
 1779         return (0);
 1780 }
 1781 
 1782 /*
 1783  * Update disk state.
 1784  */
 1785 static int
 1786 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
 1787 {
 1788         struct g_raid_softc *sc;
 1789 
 1790         sc = disk->d_softc;
 1791         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1792 
 1793         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
 1794             g_raid_disk_event2str(event),
 1795             g_raid_get_diskname(disk));
 1796 
 1797         if (sc->sc_md)
 1798                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
 1799         return (0);
 1800 }
 1801 
 1802 /*
 1803  * Node event.
 1804  */
 1805 static int
 1806 g_raid_update_node(struct g_raid_softc *sc, u_int event)
 1807 {
 1808         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1809 
 1810         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
 1811             g_raid_node_event2str(event));
 1812 
 1813         if (event == G_RAID_NODE_E_WAKE)
 1814                 return (0);
 1815         if (sc->sc_md)
 1816                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
 1817         return (0);
 1818 }
 1819 
 1820 static int
 1821 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
 1822 {
 1823         struct g_raid_volume *vol;
 1824         struct g_raid_softc *sc;
 1825         int dcw, opens, error = 0;
 1826 
 1827         g_topology_assert();
 1828         sc = pp->geom->softc;
 1829         vol = pp->private;
 1830         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
 1831         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
 1832 
 1833         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
 1834             acr, acw, ace);
 1835         dcw = pp->acw + acw;
 1836 
 1837         g_topology_unlock();
 1838         sx_xlock(&sc->sc_lock);
 1839         /* Deny new opens while dying. */
 1840         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
 1841                 error = ENXIO;
 1842                 goto out;
 1843         }
 1844         /* Deny write opens for read-only volumes. */
 1845         if (vol->v_read_only && acw > 0) {
 1846                 error = EROFS;
 1847                 goto out;
 1848         }
 1849         if (dcw == 0)
 1850                 g_raid_clean(vol, dcw);
 1851         vol->v_provider_open += acr + acw + ace;
 1852         /* Handle delayed node destruction. */
 1853         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
 1854             vol->v_provider_open == 0) {
 1855                 /* Count open volumes. */
 1856                 opens = g_raid_nopens(sc);
 1857                 if (opens == 0) {
 1858                         sc->sc_stopping = G_RAID_DESTROY_HARD;
 1859                         /* Wake up worker to make it selfdestruct. */
 1860                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 1861                 }
 1862         }
 1863         /* Handle open volume destruction. */
 1864         if (vol->v_stopping && vol->v_provider_open == 0)
 1865                 g_raid_destroy_volume(vol);
 1866 out:
 1867         sx_xunlock(&sc->sc_lock);
 1868         g_topology_lock();
 1869         return (error);
 1870 }
 1871 
 1872 struct g_raid_softc *
 1873 g_raid_create_node(struct g_class *mp,
 1874     const char *name, struct g_raid_md_object *md)
 1875 {
 1876         struct g_raid_softc *sc;
 1877         struct g_geom *gp;
 1878         int error;
 1879 
 1880         g_topology_assert();
 1881         G_RAID_DEBUG(1, "Creating array %s.", name);
 1882 
 1883         gp = g_new_geomf(mp, "%s", name);
 1884         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
 1885         gp->start = g_raid_start;
 1886         gp->orphan = g_raid_orphan;
 1887         gp->access = g_raid_access;
 1888         gp->dumpconf = g_raid_dumpconf;
 1889 
 1890         sc->sc_md = md;
 1891         sc->sc_geom = gp;
 1892         sc->sc_flags = 0;
 1893         TAILQ_INIT(&sc->sc_volumes);
 1894         TAILQ_INIT(&sc->sc_disks);
 1895         sx_init(&sc->sc_lock, "graid:lock");
 1896         mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
 1897         TAILQ_INIT(&sc->sc_events);
 1898         bioq_init(&sc->sc_queue);
 1899         gp->softc = sc;
 1900         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
 1901             "g_raid %s", name);
 1902         if (error != 0) {
 1903                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
 1904                 mtx_destroy(&sc->sc_queue_mtx);
 1905                 sx_destroy(&sc->sc_lock);
 1906                 g_destroy_geom(sc->sc_geom);
 1907                 free(sc, M_RAID);
 1908                 return (NULL);
 1909         }
 1910 
 1911         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
 1912         return (sc);
 1913 }
 1914 
 1915 struct g_raid_volume *
 1916 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
 1917 {
 1918         struct g_raid_volume    *vol, *vol1;
 1919         int i;
 1920 
 1921         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
 1922         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
 1923         vol->v_softc = sc;
 1924         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
 1925         vol->v_state = G_RAID_VOLUME_S_STARTING;
 1926         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
 1927         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
 1928         vol->v_rotate_parity = 1;
 1929         bioq_init(&vol->v_inflight);
 1930         bioq_init(&vol->v_locked);
 1931         LIST_INIT(&vol->v_locks);
 1932         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 1933                 vol->v_subdisks[i].sd_softc = sc;
 1934                 vol->v_subdisks[i].sd_volume = vol;
 1935                 vol->v_subdisks[i].sd_pos = i;
 1936                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
 1937         }
 1938 
 1939         /* Find free ID for this volume. */
 1940         g_topology_lock();
 1941         vol1 = vol;
 1942         if (id >= 0) {
 1943                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1944                         if (vol1->v_global_id == id)
 1945                                 break;
 1946                 }
 1947         }
 1948         if (vol1 != NULL) {
 1949                 for (id = 0; ; id++) {
 1950                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
 1951                                 if (vol1->v_global_id == id)
 1952                                         break;
 1953                         }
 1954                         if (vol1 == NULL)
 1955                                 break;
 1956                 }
 1957         }
 1958         vol->v_global_id = id;
 1959         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
 1960         g_topology_unlock();
 1961 
 1962         /* Delay root mounting. */
 1963         vol->v_rootmount = root_mount_hold("GRAID");
 1964         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
 1965         vol->v_starting = 1;
 1966         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
 1967         return (vol);
 1968 }
 1969 
 1970 struct g_raid_disk *
 1971 g_raid_create_disk(struct g_raid_softc *sc)
 1972 {
 1973         struct g_raid_disk      *disk;
 1974 
 1975         G_RAID_DEBUG1(1, sc, "Creating disk.");
 1976         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
 1977         disk->d_softc = sc;
 1978         disk->d_state = G_RAID_DISK_S_NONE;
 1979         TAILQ_INIT(&disk->d_subdisks);
 1980         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
 1981         return (disk);
 1982 }
 1983 
 1984 int g_raid_start_volume(struct g_raid_volume *vol)
 1985 {
 1986         struct g_raid_tr_class *class;
 1987         struct g_raid_tr_object *obj;
 1988         int status;
 1989 
 1990         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
 1991         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
 1992                 if (!class->trc_enable)
 1993                         continue;
 1994                 G_RAID_DEBUG1(2, vol->v_softc,
 1995                     "Tasting volume %s for %s transformation.",
 1996                     vol->v_name, class->name);
 1997                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 1998                     M_WAITOK);
 1999                 obj->tro_class = class;
 2000                 obj->tro_volume = vol;
 2001                 status = G_RAID_TR_TASTE(obj, vol);
 2002                 if (status != G_RAID_TR_TASTE_FAIL)
 2003                         break;
 2004                 kobj_delete((kobj_t)obj, M_RAID);
 2005         }
 2006         if (class == NULL) {
 2007                 G_RAID_DEBUG1(0, vol->v_softc,
 2008                     "No transformation module found for %s.",
 2009                     vol->v_name);
 2010                 vol->v_tr = NULL;
 2011                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
 2012                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
 2013                     G_RAID_EVENT_VOLUME);
 2014                 return (-1);
 2015         }
 2016         G_RAID_DEBUG1(2, vol->v_softc,
 2017             "Transformation module %s chosen for %s.",
 2018             class->name, vol->v_name);
 2019         vol->v_tr = obj;
 2020         return (0);
 2021 }
 2022 
 2023 int
 2024 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
 2025 {
 2026         struct g_raid_volume *vol, *tmpv;
 2027         struct g_raid_disk *disk, *tmpd;
 2028         int error = 0;
 2029 
 2030         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2031         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
 2032                 if (g_raid_destroy_volume(vol))
 2033                         error = EBUSY;
 2034         }
 2035         if (error)
 2036                 return (error);
 2037         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
 2038                 if (g_raid_destroy_disk(disk))
 2039                         error = EBUSY;
 2040         }
 2041         if (error)
 2042                 return (error);
 2043         if (sc->sc_md) {
 2044                 G_RAID_MD_FREE(sc->sc_md);
 2045                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
 2046                 sc->sc_md = NULL;
 2047         }
 2048         if (sc->sc_geom != NULL) {
 2049                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
 2050                 g_topology_lock();
 2051                 sc->sc_geom->softc = NULL;
 2052                 g_wither_geom(sc->sc_geom, ENXIO);
 2053                 g_topology_unlock();
 2054                 sc->sc_geom = NULL;
 2055         } else
 2056                 G_RAID_DEBUG(1, "Array destroyed.");
 2057         if (worker) {
 2058                 g_raid_event_cancel(sc, sc);
 2059                 mtx_destroy(&sc->sc_queue_mtx);
 2060                 sx_xunlock(&sc->sc_lock);
 2061                 sx_destroy(&sc->sc_lock);
 2062                 wakeup(&sc->sc_stopping);
 2063                 free(sc, M_RAID);
 2064                 curthread->td_pflags &= ~TDP_GEOM;
 2065                 G_RAID_DEBUG(1, "Thread exiting.");
 2066                 kproc_exit(0);
 2067         } else {
 2068                 /* Wake up worker to make it selfdestruct. */
 2069                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2070         }
 2071         return (0);
 2072 }
 2073 
 2074 int
 2075 g_raid_destroy_volume(struct g_raid_volume *vol)
 2076 {
 2077         struct g_raid_softc *sc;
 2078         struct g_raid_disk *disk;
 2079         int i;
 2080 
 2081         sc = vol->v_softc;
 2082         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
 2083         vol->v_stopping = 1;
 2084         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
 2085                 if (vol->v_tr) {
 2086                         G_RAID_TR_STOP(vol->v_tr);
 2087                         return (EBUSY);
 2088                 } else
 2089                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
 2090         }
 2091         if (g_raid_event_check(sc, vol) != 0)
 2092                 return (EBUSY);
 2093         if (vol->v_provider != NULL)
 2094                 return (EBUSY);
 2095         if (vol->v_provider_open != 0)
 2096                 return (EBUSY);
 2097         if (vol->v_tr) {
 2098                 G_RAID_TR_FREE(vol->v_tr);
 2099                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
 2100                 vol->v_tr = NULL;
 2101         }
 2102         if (vol->v_rootmount)
 2103                 root_mount_rel(vol->v_rootmount);
 2104         g_topology_lock();
 2105         LIST_REMOVE(vol, v_global_next);
 2106         g_topology_unlock();
 2107         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
 2108         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
 2109                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
 2110                 disk = vol->v_subdisks[i].sd_disk;
 2111                 if (disk == NULL)
 2112                         continue;
 2113                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
 2114         }
 2115         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
 2116         if (sc->sc_md)
 2117                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
 2118         g_raid_event_cancel(sc, vol);
 2119         free(vol, M_RAID);
 2120         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
 2121                 /* Wake up worker to let it selfdestruct. */
 2122                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2123         }
 2124         return (0);
 2125 }
 2126 
 2127 int
 2128 g_raid_destroy_disk(struct g_raid_disk *disk)
 2129 {
 2130         struct g_raid_softc *sc;
 2131         struct g_raid_subdisk *sd, *tmp;
 2132 
 2133         sc = disk->d_softc;
 2134         G_RAID_DEBUG1(2, sc, "Destroying disk.");
 2135         if (disk->d_consumer) {
 2136                 g_raid_kill_consumer(sc, disk->d_consumer);
 2137                 disk->d_consumer = NULL;
 2138         }
 2139         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
 2140                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
 2141                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
 2142                     G_RAID_EVENT_SUBDISK);
 2143                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
 2144                 sd->sd_disk = NULL;
 2145         }
 2146         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
 2147         if (sc->sc_md)
 2148                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
 2149         g_raid_event_cancel(sc, disk);
 2150         free(disk, M_RAID);
 2151         return (0);
 2152 }
 2153 
 2154 int
 2155 g_raid_destroy(struct g_raid_softc *sc, int how)
 2156 {
 2157         int error, opens;
 2158 
 2159         g_topology_assert_not();
 2160         if (sc == NULL)
 2161                 return (ENXIO);
 2162         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2163 
 2164         /* Count open volumes. */
 2165         opens = g_raid_nopens(sc);
 2166 
 2167         /* React on some opened volumes. */
 2168         if (opens > 0) {
 2169                 switch (how) {
 2170                 case G_RAID_DESTROY_SOFT:
 2171                         G_RAID_DEBUG1(1, sc,
 2172                             "%d volumes are still open.",
 2173                             opens);
 2174                         sx_xunlock(&sc->sc_lock);
 2175                         return (EBUSY);
 2176                 case G_RAID_DESTROY_DELAYED:
 2177                         G_RAID_DEBUG1(1, sc,
 2178                             "Array will be destroyed on last close.");
 2179                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
 2180                         sx_xunlock(&sc->sc_lock);
 2181                         return (EBUSY);
 2182                 case G_RAID_DESTROY_HARD:
 2183                         G_RAID_DEBUG1(1, sc,
 2184                             "%d volumes are still open.",
 2185                             opens);
 2186                 }
 2187         }
 2188 
 2189         /* Mark node for destruction. */
 2190         sc->sc_stopping = G_RAID_DESTROY_HARD;
 2191         /* Wake up worker to let it selfdestruct. */
 2192         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
 2193         /* Sleep until node destroyed. */
 2194         error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
 2195             PRIBIO | PDROP, "r:destroy", hz * 3);
 2196         return (error == EWOULDBLOCK ? EBUSY : 0);
 2197 }
 2198 
 2199 static void
 2200 g_raid_taste_orphan(struct g_consumer *cp)
 2201 {
 2202 
 2203         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
 2204             cp->provider->name));
 2205 }
 2206 
 2207 static struct g_geom *
 2208 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
 2209 {
 2210         struct g_consumer *cp;
 2211         struct g_geom *gp, *geom;
 2212         struct g_raid_md_class *class;
 2213         struct g_raid_md_object *obj;
 2214         int status;
 2215 
 2216         g_topology_assert();
 2217         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
 2218         if (!g_raid_enable)
 2219                 return (NULL);
 2220         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
 2221 
 2222         geom = NULL;
 2223         status = G_RAID_MD_TASTE_FAIL;
 2224         gp = g_new_geomf(mp, "raid:taste");
 2225         /*
 2226          * This orphan function should be never called.
 2227          */
 2228         gp->orphan = g_raid_taste_orphan;
 2229         cp = g_new_consumer(gp);
 2230         cp->flags |= G_CF_DIRECT_RECEIVE;
 2231         if (g_attach(cp, pp) != 0)
 2232                 goto ofail2;
 2233         if (g_access(cp, 1, 0, 0) != 0)
 2234                 goto ofail;
 2235 
 2236         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2237                 if (!class->mdc_enable)
 2238                         continue;
 2239                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
 2240                     pp->name, class->name);
 2241                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2242                     M_WAITOK);
 2243                 obj->mdo_class = class;
 2244                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
 2245                 if (status != G_RAID_MD_TASTE_NEW)
 2246                         kobj_delete((kobj_t)obj, M_RAID);
 2247                 if (status != G_RAID_MD_TASTE_FAIL)
 2248                         break;
 2249         }
 2250 
 2251         if (status == G_RAID_MD_TASTE_FAIL)
 2252                 (void)g_access(cp, -1, 0, 0);
 2253 ofail:
 2254         g_detach(cp);
 2255 ofail2:
 2256         g_destroy_consumer(cp);
 2257         g_destroy_geom(gp);
 2258         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
 2259         return (geom);
 2260 }
 2261 
 2262 int
 2263 g_raid_create_node_format(const char *format, struct gctl_req *req,
 2264     struct g_geom **gp)
 2265 {
 2266         struct g_raid_md_class *class;
 2267         struct g_raid_md_object *obj;
 2268         int status;
 2269 
 2270         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
 2271         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
 2272                 if (strcasecmp(class->name, format) == 0)
 2273                         break;
 2274         }
 2275         if (class == NULL) {
 2276                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
 2277                 return (G_RAID_MD_TASTE_FAIL);
 2278         }
 2279         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
 2280             M_WAITOK);
 2281         obj->mdo_class = class;
 2282         status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
 2283         if (status != G_RAID_MD_TASTE_NEW)
 2284                 kobj_delete((kobj_t)obj, M_RAID);
 2285         return (status);
 2286 }
 2287 
 2288 static int
 2289 g_raid_destroy_geom(struct gctl_req *req __unused,
 2290     struct g_class *mp __unused, struct g_geom *gp)
 2291 {
 2292         struct g_raid_softc *sc;
 2293         int error;
 2294 
 2295         g_topology_unlock();
 2296         sc = gp->softc;
 2297         sx_xlock(&sc->sc_lock);
 2298         g_cancel_event(sc);
 2299         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
 2300         g_topology_lock();
 2301         return (error);
 2302 }
 2303 
 2304 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
 2305     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2306 {
 2307 
 2308         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 2309                 return;
 2310         if (sc->sc_md)
 2311                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
 2312 }
 2313 
 2314 void g_raid_fail_disk(struct g_raid_softc *sc,
 2315     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
 2316 {
 2317 
 2318         if (disk == NULL)
 2319                 disk = sd->sd_disk;
 2320         if (disk == NULL) {
 2321                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
 2322                 return;
 2323         }
 2324         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
 2325                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
 2326                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
 2327                 return;
 2328         }
 2329         if (sc->sc_md)
 2330                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
 2331 }
 2332 
 2333 static void
 2334 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
 2335     struct g_consumer *cp, struct g_provider *pp)
 2336 {
 2337         struct g_raid_softc *sc;
 2338         struct g_raid_volume *vol;
 2339         struct g_raid_subdisk *sd;
 2340         struct g_raid_disk *disk;
 2341         int i, s;
 2342 
 2343         g_topology_assert();
 2344 
 2345         sc = gp->softc;
 2346         if (sc == NULL)
 2347                 return;
 2348         if (pp != NULL) {
 2349                 vol = pp->private;
 2350                 g_topology_unlock();
 2351                 sx_xlock(&sc->sc_lock);
 2352                 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
 2353                     sc->sc_md->mdo_class->name,
 2354                     g_raid_volume_level2str(vol->v_raid_level,
 2355                     vol->v_raid_level_qualifier));
 2356                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
 2357                     vol->v_name);
 2358                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
 2359                     g_raid_volume_level2str(vol->v_raid_level,
 2360                     vol->v_raid_level_qualifier));
 2361                 sbuf_printf(sb,
 2362                     "%s<Transformation>%s</Transformation>\n", indent,
 2363                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
 2364                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
 2365                     vol->v_disks_count);
 2366                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
 2367                     vol->v_strip_size);
 2368                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2369                     g_raid_volume_state2str(vol->v_state));
 2370                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
 2371                     vol->v_dirty ? "Yes" : "No");
 2372                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2373                 for (i = 0; i < vol->v_disks_count; i++) {
 2374                         sd = &vol->v_subdisks[i];
 2375                         if (sd->sd_disk != NULL &&
 2376                             sd->sd_disk->d_consumer != NULL) {
 2377                                 sbuf_printf(sb, "%s ",
 2378                                     g_raid_get_diskname(sd->sd_disk));
 2379                         } else {
 2380                                 sbuf_cat(sb, "NONE ");
 2381                         }
 2382                         sbuf_printf(sb, "(%s",
 2383                             g_raid_subdisk_state2str(sd->sd_state));
 2384                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2385                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2386                                 sbuf_printf(sb, " %d%%",
 2387                                     (int)(sd->sd_rebuild_pos * 100 /
 2388                                      sd->sd_size));
 2389                         }
 2390                         sbuf_cat(sb, ")");
 2391                         if (i + 1 < vol->v_disks_count)
 2392                                 sbuf_cat(sb, ", ");
 2393                 }
 2394                 sbuf_cat(sb, "</Subdisks>\n");
 2395                 sx_xunlock(&sc->sc_lock);
 2396                 g_topology_lock();
 2397         } else if (cp != NULL) {
 2398                 disk = cp->private;
 2399                 if (disk == NULL)
 2400                         return;
 2401                 g_topology_unlock();
 2402                 sx_xlock(&sc->sc_lock);
 2403                 sbuf_printf(sb, "%s<State>%s", indent,
 2404                     g_raid_disk_state2str(disk->d_state));
 2405                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
 2406                         sbuf_cat(sb, " (");
 2407                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2408                                 sbuf_printf(sb, "%s",
 2409                                     g_raid_subdisk_state2str(sd->sd_state));
 2410                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2411                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2412                                         sbuf_printf(sb, " %d%%",
 2413                                             (int)(sd->sd_rebuild_pos * 100 /
 2414                                              sd->sd_size));
 2415                                 }
 2416                                 if (TAILQ_NEXT(sd, sd_next))
 2417                                         sbuf_cat(sb, ", ");
 2418                         }
 2419                         sbuf_cat(sb, ")");
 2420                 }
 2421                 sbuf_cat(sb, "</State>\n");
 2422                 sbuf_printf(sb, "%s<Subdisks>", indent);
 2423                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2424                         sbuf_printf(sb, "r%d(%s):%d@%ju",
 2425                             sd->sd_volume->v_global_id,
 2426                             sd->sd_volume->v_name,
 2427                             sd->sd_pos, (uintmax_t)sd->sd_offset);
 2428                         if (TAILQ_NEXT(sd, sd_next))
 2429                                 sbuf_cat(sb, ", ");
 2430                 }
 2431                 sbuf_cat(sb, "</Subdisks>\n");
 2432                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
 2433                     disk->d_read_errs);
 2434                 sx_xunlock(&sc->sc_lock);
 2435                 g_topology_lock();
 2436         } else {
 2437                 g_topology_unlock();
 2438                 sx_xlock(&sc->sc_lock);
 2439                 if (sc->sc_md) {
 2440                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
 2441                             sc->sc_md->mdo_class->name);
 2442                 }
 2443                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
 2444                         s = 0xff;
 2445                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 2446                                 if (vol->v_state < s)
 2447                                         s = vol->v_state;
 2448                         }
 2449                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 2450                             g_raid_volume_state2str(s));
 2451                 }
 2452                 sx_xunlock(&sc->sc_lock);
 2453                 g_topology_lock();
 2454         }
 2455 }
 2456 
 2457 static void
 2458 g_raid_shutdown_post_sync(void *arg, int howto)
 2459 {
 2460         struct g_class *mp;
 2461         struct g_geom *gp, *gp2;
 2462         struct g_raid_softc *sc;
 2463         struct g_raid_volume *vol;
 2464 
 2465         mp = arg;
 2466         g_topology_lock();
 2467         g_raid_shutdown = 1;
 2468         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
 2469                 if ((sc = gp->softc) == NULL)
 2470                         continue;
 2471                 g_topology_unlock();
 2472                 sx_xlock(&sc->sc_lock);
 2473                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
 2474                         g_raid_clean(vol, -1);
 2475                 g_cancel_event(sc);
 2476                 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
 2477                 g_topology_lock();
 2478         }
 2479         g_topology_unlock();
 2480 }
 2481 
 2482 static void
 2483 g_raid_init(struct g_class *mp)
 2484 {
 2485 
 2486         g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
 2487             g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
 2488         if (g_raid_post_sync == NULL)
 2489                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
 2490         g_raid_started = 1;
 2491 }
 2492 
 2493 static void
 2494 g_raid_fini(struct g_class *mp)
 2495 {
 2496 
 2497         if (g_raid_post_sync != NULL)
 2498                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
 2499         g_raid_started = 0;
 2500 }
 2501 
 2502 int
 2503 g_raid_md_modevent(module_t mod, int type, void *arg)
 2504 {
 2505         struct g_raid_md_class *class, *c, *nc;
 2506         int error;
 2507 
 2508         error = 0;
 2509         class = arg;
 2510         switch (type) {
 2511         case MOD_LOAD:
 2512                 c = LIST_FIRST(&g_raid_md_classes);
 2513                 if (c == NULL || c->mdc_priority > class->mdc_priority)
 2514                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
 2515                 else {
 2516                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
 2517                             nc->mdc_priority < class->mdc_priority)
 2518                                 c = nc;
 2519                         LIST_INSERT_AFTER(c, class, mdc_list);
 2520                 }
 2521                 if (g_raid_started)
 2522                         g_retaste(&g_raid_class);
 2523                 break;
 2524         case MOD_UNLOAD:
 2525                 LIST_REMOVE(class, mdc_list);
 2526                 break;
 2527         default:
 2528                 error = EOPNOTSUPP;
 2529                 break;
 2530         }
 2531 
 2532         return (error);
 2533 }
 2534 
 2535 int
 2536 g_raid_tr_modevent(module_t mod, int type, void *arg)
 2537 {
 2538         struct g_raid_tr_class *class, *c, *nc;
 2539         int error;
 2540 
 2541         error = 0;
 2542         class = arg;
 2543         switch (type) {
 2544         case MOD_LOAD:
 2545                 c = LIST_FIRST(&g_raid_tr_classes);
 2546                 if (c == NULL || c->trc_priority > class->trc_priority)
 2547                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
 2548                 else {
 2549                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
 2550                             nc->trc_priority < class->trc_priority)
 2551                                 c = nc;
 2552                         LIST_INSERT_AFTER(c, class, trc_list);
 2553                 }
 2554                 break;
 2555         case MOD_UNLOAD:
 2556                 LIST_REMOVE(class, trc_list);
 2557                 break;
 2558         default:
 2559                 error = EOPNOTSUPP;
 2560                 break;
 2561         }
 2562 
 2563         return (error);
 2564 }
 2565 
 2566 /*
 2567  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
 2568  * to reduce module priority, allowing submodules to register them first.
 2569  */
 2570 static moduledata_t g_raid_mod = {
 2571         "g_raid",
 2572         g_modevent,
 2573         &g_raid_class
 2574 };
 2575 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
 2576 MODULE_VERSION(geom_raid, 0);

Cache object: a7f63693045f711ded40a9e9f33499c0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.