FreeBSD/Linux Kernel Cross Reference
sys/geom/raid/md_ddf.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2012 Alexander Motin <mav@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/gsb_crc32.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/systm.h>
43 #include <sys/time.h>
44 #include <sys/clock.h>
45 #include <sys/disk.h>
46 #include <geom/geom.h>
47 #include <geom/geom_dbg.h>
48 #include "geom/raid/g_raid.h"
49 #include "geom/raid/md_ddf.h"
50 #include "g_raid_md_if.h"
51
52 static MALLOC_DEFINE(M_MD_DDF, "md_ddf_data", "GEOM_RAID DDF metadata");
53
54 #define DDF_MAX_DISKS_HARD 128
55
56 #define DDF_MAX_DISKS 16
57 #define DDF_MAX_VDISKS 7
58 #define DDF_MAX_PARTITIONS 1
59
60 #define DECADE (3600*24*(365*10+2)) /* 10 years in seconds. */
61
62 struct ddf_meta {
63 u_int sectorsize;
64 u_int bigendian;
65 struct ddf_header *hdr;
66 struct ddf_cd_record *cdr;
67 struct ddf_pd_record *pdr;
68 struct ddf_vd_record *vdr;
69 void *cr;
70 struct ddf_pdd_record *pdd;
71 struct ddf_bbm_log *bbm;
72 };
73
74 struct ddf_vol_meta {
75 u_int sectorsize;
76 u_int bigendian;
77 struct ddf_header *hdr;
78 struct ddf_cd_record *cdr;
79 struct ddf_vd_entry *vde;
80 struct ddf_vdc_record *vdc;
81 struct ddf_vdc_record *bvdc[DDF_MAX_DISKS_HARD];
82 };
83
84 struct g_raid_md_ddf_perdisk {
85 struct ddf_meta pd_meta;
86 };
87
88 struct g_raid_md_ddf_pervolume {
89 struct ddf_vol_meta pv_meta;
90 int pv_started;
91 struct callout pv_start_co; /* STARTING state timer. */
92 };
93
94 struct g_raid_md_ddf_object {
95 struct g_raid_md_object mdio_base;
96 u_int mdio_bigendian;
97 struct ddf_meta mdio_meta;
98 int mdio_starting;
99 struct callout mdio_start_co; /* STARTING state timer. */
100 int mdio_started;
101 struct root_hold_token *mdio_rootmount; /* Root mount delay token. */
102 };
103
104 static g_raid_md_create_req_t g_raid_md_create_req_ddf;
105 static g_raid_md_taste_t g_raid_md_taste_ddf;
106 static g_raid_md_event_t g_raid_md_event_ddf;
107 static g_raid_md_volume_event_t g_raid_md_volume_event_ddf;
108 static g_raid_md_ctl_t g_raid_md_ctl_ddf;
109 static g_raid_md_write_t g_raid_md_write_ddf;
110 static g_raid_md_fail_disk_t g_raid_md_fail_disk_ddf;
111 static g_raid_md_free_disk_t g_raid_md_free_disk_ddf;
112 static g_raid_md_free_volume_t g_raid_md_free_volume_ddf;
113 static g_raid_md_free_t g_raid_md_free_ddf;
114
115 static kobj_method_t g_raid_md_ddf_methods[] = {
116 KOBJMETHOD(g_raid_md_create_req, g_raid_md_create_req_ddf),
117 KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_ddf),
118 KOBJMETHOD(g_raid_md_event, g_raid_md_event_ddf),
119 KOBJMETHOD(g_raid_md_volume_event, g_raid_md_volume_event_ddf),
120 KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_ddf),
121 KOBJMETHOD(g_raid_md_write, g_raid_md_write_ddf),
122 KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_ddf),
123 KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_ddf),
124 KOBJMETHOD(g_raid_md_free_volume, g_raid_md_free_volume_ddf),
125 KOBJMETHOD(g_raid_md_free, g_raid_md_free_ddf),
126 { 0, 0 }
127 };
128
129 static struct g_raid_md_class g_raid_md_ddf_class = {
130 "DDF",
131 g_raid_md_ddf_methods,
132 sizeof(struct g_raid_md_ddf_object),
133 .mdc_enable = 1,
134 .mdc_priority = 100
135 };
136
137 #define GET8(m, f) ((m)->f)
138 #define GET16(m, f) ((m)->bigendian ? be16dec(&(m)->f) : le16dec(&(m)->f))
139 #define GET32(m, f) ((m)->bigendian ? be32dec(&(m)->f) : le32dec(&(m)->f))
140 #define GET64(m, f) ((m)->bigendian ? be64dec(&(m)->f) : le64dec(&(m)->f))
141 #define GET8D(m, f) (f)
142 #define GET16D(m, f) ((m)->bigendian ? be16dec(&f) : le16dec(&f))
143 #define GET32D(m, f) ((m)->bigendian ? be32dec(&f) : le32dec(&f))
144 #define GET64D(m, f) ((m)->bigendian ? be64dec(&f) : le64dec(&f))
145 #define GET8P(m, f) (*(f))
146 #define GET16P(m, f) ((m)->bigendian ? be16dec(f) : le16dec(f))
147 #define GET32P(m, f) ((m)->bigendian ? be32dec(f) : le32dec(f))
148 #define GET64P(m, f) ((m)->bigendian ? be64dec(f) : le64dec(f))
149
150 #define SET8P(m, f, v) \
151 (*(f) = (v))
152 #define SET16P(m, f, v) \
153 do { \
154 if ((m)->bigendian) \
155 be16enc((f), (v)); \
156 else \
157 le16enc((f), (v)); \
158 } while (0)
159 #define SET32P(m, f, v) \
160 do { \
161 if ((m)->bigendian) \
162 be32enc((f), (v)); \
163 else \
164 le32enc((f), (v)); \
165 } while (0)
166 #define SET64P(m, f, v) \
167 do { \
168 if ((m)->bigendian) \
169 be64enc((f), (v)); \
170 else \
171 le64enc((f), (v)); \
172 } while (0)
173 #define SET8(m, f, v) SET8P((m), &((m)->f), (v))
174 #define SET16(m, f, v) SET16P((m), &((m)->f), (v))
175 #define SET32(m, f, v) SET32P((m), &((m)->f), (v))
176 #define SET64(m, f, v) SET64P((m), &((m)->f), (v))
177 #define SET8D(m, f, v) SET8P((m), &(f), (v))
178 #define SET16D(m, f, v) SET16P((m), &(f), (v))
179 #define SET32D(m, f, v) SET32P((m), &(f), (v))
180 #define SET64D(m, f, v) SET64P((m), &(f), (v))
181
182 #define GETCRNUM(m) (GET32((m), hdr->cr_length) / \
183 GET16((m), hdr->Configuration_Record_Length))
184
185 #define GETVDCPTR(m, n) ((struct ddf_vdc_record *)((uint8_t *)(m)->cr + \
186 (n) * GET16((m), hdr->Configuration_Record_Length) * \
187 (m)->sectorsize))
188
189 #define GETSAPTR(m, n) ((struct ddf_sa_record *)((uint8_t *)(m)->cr + \
190 (n) * GET16((m), hdr->Configuration_Record_Length) * \
191 (m)->sectorsize))
192
193 static int
194 isff(uint8_t *buf, int size)
195 {
196 int i;
197
198 for (i = 0; i < size; i++)
199 if (buf[i] != 0xff)
200 return (0);
201 return (1);
202 }
203
204 static void
205 print_guid(uint8_t *buf)
206 {
207 int i, ascii;
208
209 ascii = 1;
210 for (i = 0; i < 24; i++) {
211 if (buf[i] != 0 && (buf[i] < ' ' || buf[i] > 127)) {
212 ascii = 0;
213 break;
214 }
215 }
216 if (ascii) {
217 printf("'%.24s'", buf);
218 } else {
219 for (i = 0; i < 24; i++)
220 printf("%02x", buf[i]);
221 }
222 }
223
224 static void
225 g_raid_md_ddf_print(struct ddf_meta *meta)
226 {
227 struct ddf_vdc_record *vdc;
228 struct ddf_vuc_record *vuc;
229 struct ddf_sa_record *sa;
230 uint64_t *val2;
231 uint32_t val;
232 int i, j, k, num, num2;
233
234 if (g_raid_debug < 1)
235 return;
236
237 printf("********* DDF Metadata *********\n");
238 printf("**** Header ****\n");
239 printf("DDF_Header_GUID ");
240 print_guid(meta->hdr->DDF_Header_GUID);
241 printf("\n");
242 printf("DDF_rev %8.8s\n", (char *)&meta->hdr->DDF_rev[0]);
243 printf("Sequence_Number 0x%08x\n", GET32(meta, hdr->Sequence_Number));
244 printf("TimeStamp 0x%08x\n", GET32(meta, hdr->TimeStamp));
245 printf("Open_Flag 0x%02x\n", GET16(meta, hdr->Open_Flag));
246 printf("Foreign_Flag 0x%02x\n", GET16(meta, hdr->Foreign_Flag));
247 printf("Diskgrouping 0x%02x\n", GET16(meta, hdr->Diskgrouping));
248 printf("Primary_Header_LBA %ju\n", GET64(meta, hdr->Primary_Header_LBA));
249 printf("Secondary_Header_LBA %ju\n", GET64(meta, hdr->Secondary_Header_LBA));
250 printf("WorkSpace_Length %u\n", GET32(meta, hdr->WorkSpace_Length));
251 printf("WorkSpace_LBA %ju\n", GET64(meta, hdr->WorkSpace_LBA));
252 printf("Max_PD_Entries %u\n", GET16(meta, hdr->Max_PD_Entries));
253 printf("Max_VD_Entries %u\n", GET16(meta, hdr->Max_VD_Entries));
254 printf("Max_Partitions %u\n", GET16(meta, hdr->Max_Partitions));
255 printf("Configuration_Record_Length %u\n", GET16(meta, hdr->Configuration_Record_Length));
256 printf("Max_Primary_Element_Entries %u\n", GET16(meta, hdr->Max_Primary_Element_Entries));
257 printf("Controller Data %u:%u\n", GET32(meta, hdr->cd_section), GET32(meta, hdr->cd_length));
258 printf("Physical Disk %u:%u\n", GET32(meta, hdr->pdr_section), GET32(meta, hdr->pdr_length));
259 printf("Virtual Disk %u:%u\n", GET32(meta, hdr->vdr_section), GET32(meta, hdr->vdr_length));
260 printf("Configuration Recs %u:%u\n", GET32(meta, hdr->cr_section), GET32(meta, hdr->cr_length));
261 printf("Physical Disk Recs %u:%u\n", GET32(meta, hdr->pdd_section), GET32(meta, hdr->pdd_length));
262 printf("BBM Log %u:%u\n", GET32(meta, hdr->bbmlog_section), GET32(meta, hdr->bbmlog_length));
263 printf("Diagnostic Space %u:%u\n", GET32(meta, hdr->Diagnostic_Space), GET32(meta, hdr->Diagnostic_Space_Length));
264 printf("Vendor_Specific_Logs %u:%u\n", GET32(meta, hdr->Vendor_Specific_Logs), GET32(meta, hdr->Vendor_Specific_Logs_Length));
265 printf("**** Controller Data ****\n");
266 printf("Controller_GUID ");
267 print_guid(meta->cdr->Controller_GUID);
268 printf("\n");
269 printf("Controller_Type 0x%04x%04x 0x%04x%04x\n",
270 GET16(meta, cdr->Controller_Type.Vendor_ID),
271 GET16(meta, cdr->Controller_Type.Device_ID),
272 GET16(meta, cdr->Controller_Type.SubVendor_ID),
273 GET16(meta, cdr->Controller_Type.SubDevice_ID));
274 printf("Product_ID '%.16s'\n", (char *)&meta->cdr->Product_ID[0]);
275 printf("**** Physical Disk Records ****\n");
276 printf("Populated_PDEs %u\n", GET16(meta, pdr->Populated_PDEs));
277 printf("Max_PDE_Supported %u\n", GET16(meta, pdr->Max_PDE_Supported));
278 for (j = 0; j < GET16(meta, pdr->Populated_PDEs); j++) {
279 if (isff(meta->pdr->entry[j].PD_GUID, 24))
280 continue;
281 if (GET32(meta, pdr->entry[j].PD_Reference) == 0xffffffff)
282 continue;
283 printf("PD_GUID ");
284 print_guid(meta->pdr->entry[j].PD_GUID);
285 printf("\n");
286 printf("PD_Reference 0x%08x\n",
287 GET32(meta, pdr->entry[j].PD_Reference));
288 printf("PD_Type 0x%04x\n",
289 GET16(meta, pdr->entry[j].PD_Type));
290 printf("PD_State 0x%04x\n",
291 GET16(meta, pdr->entry[j].PD_State));
292 printf("Configured_Size %ju\n",
293 GET64(meta, pdr->entry[j].Configured_Size));
294 printf("Block_Size %u\n",
295 GET16(meta, pdr->entry[j].Block_Size));
296 }
297 printf("**** Virtual Disk Records ****\n");
298 printf("Populated_VDEs %u\n", GET16(meta, vdr->Populated_VDEs));
299 printf("Max_VDE_Supported %u\n", GET16(meta, vdr->Max_VDE_Supported));
300 for (j = 0; j < GET16(meta, vdr->Populated_VDEs); j++) {
301 if (isff(meta->vdr->entry[j].VD_GUID, 24))
302 continue;
303 printf("VD_GUID ");
304 print_guid(meta->vdr->entry[j].VD_GUID);
305 printf("\n");
306 printf("VD_Number 0x%04x\n",
307 GET16(meta, vdr->entry[j].VD_Number));
308 printf("VD_Type 0x%04x\n",
309 GET16(meta, vdr->entry[j].VD_Type));
310 printf("VD_State 0x%02x\n",
311 GET8(meta, vdr->entry[j].VD_State));
312 printf("Init_State 0x%02x\n",
313 GET8(meta, vdr->entry[j].Init_State));
314 printf("Drive_Failures_Remaining %u\n",
315 GET8(meta, vdr->entry[j].Drive_Failures_Remaining));
316 printf("VD_Name '%.16s'\n",
317 (char *)&meta->vdr->entry[j].VD_Name);
318 }
319 printf("**** Configuration Records ****\n");
320 num = GETCRNUM(meta);
321 for (j = 0; j < num; j++) {
322 vdc = GETVDCPTR(meta, j);
323 val = GET32D(meta, vdc->Signature);
324 switch (val) {
325 case DDF_VDCR_SIGNATURE:
326 printf("** Virtual Disk Configuration **\n");
327 printf("VD_GUID ");
328 print_guid(vdc->VD_GUID);
329 printf("\n");
330 printf("Timestamp 0x%08x\n",
331 GET32D(meta, vdc->Timestamp));
332 printf("Sequence_Number 0x%08x\n",
333 GET32D(meta, vdc->Sequence_Number));
334 printf("Primary_Element_Count %u\n",
335 GET16D(meta, vdc->Primary_Element_Count));
336 printf("Stripe_Size %u\n",
337 GET8D(meta, vdc->Stripe_Size));
338 printf("Primary_RAID_Level 0x%02x\n",
339 GET8D(meta, vdc->Primary_RAID_Level));
340 printf("RLQ 0x%02x\n",
341 GET8D(meta, vdc->RLQ));
342 printf("Secondary_Element_Count %u\n",
343 GET8D(meta, vdc->Secondary_Element_Count));
344 printf("Secondary_Element_Seq %u\n",
345 GET8D(meta, vdc->Secondary_Element_Seq));
346 printf("Secondary_RAID_Level 0x%02x\n",
347 GET8D(meta, vdc->Secondary_RAID_Level));
348 printf("Block_Count %ju\n",
349 GET64D(meta, vdc->Block_Count));
350 printf("VD_Size %ju\n",
351 GET64D(meta, vdc->VD_Size));
352 printf("Block_Size %u\n",
353 GET16D(meta, vdc->Block_Size));
354 printf("Rotate_Parity_count %u\n",
355 GET8D(meta, vdc->Rotate_Parity_count));
356 printf("Associated_Spare_Disks");
357 for (i = 0; i < 8; i++) {
358 if (GET32D(meta, vdc->Associated_Spares[i]) != 0xffffffff)
359 printf(" 0x%08x", GET32D(meta, vdc->Associated_Spares[i]));
360 }
361 printf("\n");
362 printf("Cache_Flags %016jx\n",
363 GET64D(meta, vdc->Cache_Flags));
364 printf("BG_Rate %u\n",
365 GET8D(meta, vdc->BG_Rate));
366 printf("MDF_Parity_Disks %u\n",
367 GET8D(meta, vdc->MDF_Parity_Disks));
368 printf("MDF_Parity_Generator_Polynomial 0x%04x\n",
369 GET16D(meta, vdc->MDF_Parity_Generator_Polynomial));
370 printf("MDF_Constant_Generation_Method 0x%02x\n",
371 GET8D(meta, vdc->MDF_Constant_Generation_Method));
372 printf("Physical_Disks ");
373 num2 = GET16D(meta, vdc->Primary_Element_Count);
374 val2 = (uint64_t *)&(vdc->Physical_Disk_Sequence[GET16(meta, hdr->Max_Primary_Element_Entries)]);
375 for (i = 0; i < num2; i++)
376 printf(" 0x%08x @ %ju",
377 GET32D(meta, vdc->Physical_Disk_Sequence[i]),
378 GET64P(meta, val2 + i));
379 printf("\n");
380 break;
381 case DDF_VUCR_SIGNATURE:
382 printf("** Vendor Unique Configuration **\n");
383 vuc = (struct ddf_vuc_record *)vdc;
384 printf("VD_GUID ");
385 print_guid(vuc->VD_GUID);
386 printf("\n");
387 break;
388 case DDF_SA_SIGNATURE:
389 printf("** Spare Assignment Configuration **\n");
390 sa = (struct ddf_sa_record *)vdc;
391 printf("Timestamp 0x%08x\n",
392 GET32D(meta, sa->Timestamp));
393 printf("Spare_Type 0x%02x\n",
394 GET8D(meta, sa->Spare_Type));
395 printf("Populated_SAEs %u\n",
396 GET16D(meta, sa->Populated_SAEs));
397 printf("MAX_SAE_Supported %u\n",
398 GET16D(meta, sa->MAX_SAE_Supported));
399 for (i = 0; i < GET16D(meta, sa->Populated_SAEs); i++) {
400 if (isff(sa->entry[i].VD_GUID, 24))
401 continue;
402 printf("VD_GUID ");
403 for (k = 0; k < 24; k++)
404 printf("%02x", sa->entry[i].VD_GUID[k]);
405 printf("\n");
406 printf("Secondary_Element %u\n",
407 GET16D(meta, sa->entry[i].Secondary_Element));
408 }
409 break;
410 case 0x00000000:
411 case 0xFFFFFFFF:
412 break;
413 default:
414 printf("Unknown configuration signature %08x\n", val);
415 break;
416 }
417 }
418 printf("**** Physical Disk Data ****\n");
419 printf("PD_GUID ");
420 print_guid(meta->pdd->PD_GUID);
421 printf("\n");
422 printf("PD_Reference 0x%08x\n",
423 GET32(meta, pdd->PD_Reference));
424 printf("Forced_Ref_Flag 0x%02x\n",
425 GET8(meta, pdd->Forced_Ref_Flag));
426 printf("Forced_PD_GUID_Flag 0x%02x\n",
427 GET8(meta, pdd->Forced_PD_GUID_Flag));
428 }
429
430 static int
431 ddf_meta_find_pd(struct ddf_meta *meta, uint8_t *GUID, uint32_t PD_Reference)
432 {
433 int i;
434
435 for (i = 0; i < GET16(meta, pdr->Populated_PDEs); i++) {
436 if (GUID != NULL) {
437 if (memcmp(meta->pdr->entry[i].PD_GUID, GUID, 24) == 0)
438 return (i);
439 } else if (PD_Reference != 0xffffffff) {
440 if (GET32(meta, pdr->entry[i].PD_Reference) == PD_Reference)
441 return (i);
442 } else
443 if (isff(meta->pdr->entry[i].PD_GUID, 24))
444 return (i);
445 }
446 if (GUID == NULL && PD_Reference == 0xffffffff) {
447 if (i >= GET16(meta, pdr->Max_PDE_Supported))
448 return (-1);
449 SET16(meta, pdr->Populated_PDEs, i + 1);
450 return (i);
451 }
452 return (-1);
453 }
454
455 static int
456 ddf_meta_find_vd(struct ddf_meta *meta, uint8_t *GUID)
457 {
458 int i;
459
460 for (i = 0; i < GET16(meta, vdr->Populated_VDEs); i++) {
461 if (GUID != NULL) {
462 if (memcmp(meta->vdr->entry[i].VD_GUID, GUID, 24) == 0)
463 return (i);
464 } else
465 if (isff(meta->vdr->entry[i].VD_GUID, 24))
466 return (i);
467 }
468 if (GUID == NULL) {
469 if (i >= GET16(meta, vdr->Max_VDE_Supported))
470 return (-1);
471 SET16(meta, vdr->Populated_VDEs, i + 1);
472 return (i);
473 }
474 return (-1);
475 }
476
477 static struct ddf_vdc_record *
478 ddf_meta_find_vdc(struct ddf_meta *meta, uint8_t *GUID)
479 {
480 struct ddf_vdc_record *vdc;
481 int i, num;
482
483 num = GETCRNUM(meta);
484 for (i = 0; i < num; i++) {
485 vdc = GETVDCPTR(meta, i);
486 if (GUID != NULL) {
487 if (GET32D(meta, vdc->Signature) == DDF_VDCR_SIGNATURE &&
488 memcmp(vdc->VD_GUID, GUID, 24) == 0)
489 return (vdc);
490 } else
491 if (GET32D(meta, vdc->Signature) == 0xffffffff ||
492 GET32D(meta, vdc->Signature) == 0)
493 return (vdc);
494 }
495 return (NULL);
496 }
497
498 static int
499 ddf_meta_count_vdc(struct ddf_meta *meta, uint8_t *GUID)
500 {
501 struct ddf_vdc_record *vdc;
502 int i, num, cnt;
503
504 cnt = 0;
505 num = GETCRNUM(meta);
506 for (i = 0; i < num; i++) {
507 vdc = GETVDCPTR(meta, i);
508 if (GET32D(meta, vdc->Signature) != DDF_VDCR_SIGNATURE)
509 continue;
510 if (GUID == NULL || memcmp(vdc->VD_GUID, GUID, 24) == 0)
511 cnt++;
512 }
513 return (cnt);
514 }
515
516 static int
517 ddf_meta_find_disk(struct ddf_vol_meta *vmeta, uint32_t PD_Reference,
518 int *bvdp, int *posp)
519 {
520 int i, bvd, pos;
521
522 i = 0;
523 for (bvd = 0; bvd < GET8(vmeta, vdc->Secondary_Element_Count); bvd++) {
524 if (vmeta->bvdc[bvd] == NULL) {
525 i += GET16(vmeta, vdc->Primary_Element_Count); // XXX
526 continue;
527 }
528 for (pos = 0; pos < GET16(vmeta, bvdc[bvd]->Primary_Element_Count);
529 pos++, i++) {
530 if (GET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos]) ==
531 PD_Reference) {
532 if (bvdp != NULL)
533 *bvdp = bvd;
534 if (posp != NULL)
535 *posp = pos;
536 return (i);
537 }
538 }
539 }
540 return (-1);
541 }
542
543 static struct ddf_sa_record *
544 ddf_meta_find_sa(struct ddf_meta *meta, int create)
545 {
546 struct ddf_sa_record *sa;
547 int i, num;
548
549 num = GETCRNUM(meta);
550 for (i = 0; i < num; i++) {
551 sa = GETSAPTR(meta, i);
552 if (GET32D(meta, sa->Signature) == DDF_SA_SIGNATURE)
553 return (sa);
554 }
555 if (create) {
556 for (i = 0; i < num; i++) {
557 sa = GETSAPTR(meta, i);
558 if (GET32D(meta, sa->Signature) == 0xffffffff ||
559 GET32D(meta, sa->Signature) == 0)
560 return (sa);
561 }
562 }
563 return (NULL);
564 }
565
566 static void
567 ddf_meta_create(struct g_raid_disk *disk, struct ddf_meta *sample)
568 {
569 struct timespec ts;
570 struct clocktime ct;
571 struct g_raid_md_ddf_perdisk *pd;
572 struct g_raid_md_ddf_object *mdi;
573 struct ddf_meta *meta;
574 struct ddf_pd_entry *pde;
575 off_t anchorlba;
576 u_int ss, pos, size;
577 int len, error;
578 char serial_buffer[DISK_IDENT_SIZE];
579
580 if (sample->hdr == NULL)
581 sample = NULL;
582
583 mdi = (struct g_raid_md_ddf_object *)disk->d_softc->sc_md;
584 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
585 meta = &pd->pd_meta;
586 ss = disk->d_consumer->provider->sectorsize;
587 anchorlba = disk->d_consumer->provider->mediasize / ss - 1;
588
589 meta->sectorsize = ss;
590 meta->bigendian = sample ? sample->bigendian : mdi->mdio_bigendian;
591 getnanotime(&ts);
592 clock_ts_to_ct(&ts, &ct);
593
594 /* Header */
595 meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
596 memset(meta->hdr, 0xff, ss);
597 if (sample) {
598 memcpy(meta->hdr, sample->hdr, sizeof(struct ddf_header));
599 if (ss != sample->sectorsize) {
600 SET32(meta, hdr->WorkSpace_Length,
601 howmany(GET32(sample, hdr->WorkSpace_Length) *
602 sample->sectorsize, ss));
603 SET16(meta, hdr->Configuration_Record_Length,
604 howmany(GET16(sample,
605 hdr->Configuration_Record_Length) *
606 sample->sectorsize, ss));
607 SET32(meta, hdr->cd_length,
608 howmany(GET32(sample, hdr->cd_length) *
609 sample->sectorsize, ss));
610 SET32(meta, hdr->pdr_length,
611 howmany(GET32(sample, hdr->pdr_length) *
612 sample->sectorsize, ss));
613 SET32(meta, hdr->vdr_length,
614 howmany(GET32(sample, hdr->vdr_length) *
615 sample->sectorsize, ss));
616 SET32(meta, hdr->cr_length,
617 howmany(GET32(sample, hdr->cr_length) *
618 sample->sectorsize, ss));
619 SET32(meta, hdr->pdd_length,
620 howmany(GET32(sample, hdr->pdd_length) *
621 sample->sectorsize, ss));
622 SET32(meta, hdr->bbmlog_length,
623 howmany(GET32(sample, hdr->bbmlog_length) *
624 sample->sectorsize, ss));
625 SET32(meta, hdr->Diagnostic_Space,
626 howmany(GET32(sample, hdr->bbmlog_length) *
627 sample->sectorsize, ss));
628 SET32(meta, hdr->Vendor_Specific_Logs,
629 howmany(GET32(sample, hdr->bbmlog_length) *
630 sample->sectorsize, ss));
631 }
632 } else {
633 SET32(meta, hdr->Signature, DDF_HEADER_SIGNATURE);
634 snprintf(meta->hdr->DDF_Header_GUID, 25, "FreeBSD %08x%08x",
635 (u_int)(ts.tv_sec - DECADE), arc4random());
636 memcpy(meta->hdr->DDF_rev, "02.00.00", 8);
637 SET32(meta, hdr->TimeStamp, (ts.tv_sec - DECADE));
638 SET32(meta, hdr->WorkSpace_Length, 16 * 1024 * 1024 / ss);
639 SET16(meta, hdr->Max_PD_Entries, DDF_MAX_DISKS - 1);
640 SET16(meta, hdr->Max_VD_Entries, DDF_MAX_VDISKS);
641 SET16(meta, hdr->Max_Partitions, DDF_MAX_PARTITIONS);
642 SET16(meta, hdr->Max_Primary_Element_Entries, DDF_MAX_DISKS);
643 SET16(meta, hdr->Configuration_Record_Length,
644 howmany(sizeof(struct ddf_vdc_record) + (4 + 8) *
645 GET16(meta, hdr->Max_Primary_Element_Entries), ss));
646 SET32(meta, hdr->cd_length,
647 howmany(sizeof(struct ddf_cd_record), ss));
648 SET32(meta, hdr->pdr_length,
649 howmany(sizeof(struct ddf_pd_record) +
650 sizeof(struct ddf_pd_entry) * GET16(meta,
651 hdr->Max_PD_Entries), ss));
652 SET32(meta, hdr->vdr_length,
653 howmany(sizeof(struct ddf_vd_record) +
654 sizeof(struct ddf_vd_entry) *
655 GET16(meta, hdr->Max_VD_Entries), ss));
656 SET32(meta, hdr->cr_length,
657 GET16(meta, hdr->Configuration_Record_Length) *
658 (GET16(meta, hdr->Max_Partitions) + 1));
659 SET32(meta, hdr->pdd_length,
660 howmany(sizeof(struct ddf_pdd_record), ss));
661 SET32(meta, hdr->bbmlog_length, 0);
662 SET32(meta, hdr->Diagnostic_Space_Length, 0);
663 SET32(meta, hdr->Vendor_Specific_Logs_Length, 0);
664 }
665 pos = 1;
666 SET32(meta, hdr->cd_section, pos);
667 pos += GET32(meta, hdr->cd_length);
668 SET32(meta, hdr->pdr_section, pos);
669 pos += GET32(meta, hdr->pdr_length);
670 SET32(meta, hdr->vdr_section, pos);
671 pos += GET32(meta, hdr->vdr_length);
672 SET32(meta, hdr->cr_section, pos);
673 pos += GET32(meta, hdr->cr_length);
674 SET32(meta, hdr->pdd_section, pos);
675 pos += GET32(meta, hdr->pdd_length);
676 SET32(meta, hdr->bbmlog_section,
677 GET32(meta, hdr->bbmlog_length) != 0 ? pos : 0xffffffff);
678 pos += GET32(meta, hdr->bbmlog_length);
679 SET32(meta, hdr->Diagnostic_Space,
680 GET32(meta, hdr->Diagnostic_Space_Length) != 0 ? pos : 0xffffffff);
681 pos += GET32(meta, hdr->Diagnostic_Space_Length);
682 SET32(meta, hdr->Vendor_Specific_Logs,
683 GET32(meta, hdr->Vendor_Specific_Logs_Length) != 0 ? pos : 0xffffffff);
684 pos += min(GET32(meta, hdr->Vendor_Specific_Logs_Length), 1);
685 SET64(meta, hdr->Primary_Header_LBA,
686 anchorlba - pos);
687 SET64(meta, hdr->Secondary_Header_LBA,
688 0xffffffffffffffffULL);
689 SET64(meta, hdr->WorkSpace_LBA,
690 anchorlba + 1 - 32 * 1024 * 1024 / ss);
691
692 /* Controller Data */
693 size = GET32(meta, hdr->cd_length) * ss;
694 meta->cdr = malloc(size, M_MD_DDF, M_WAITOK);
695 memset(meta->cdr, 0xff, size);
696 SET32(meta, cdr->Signature, DDF_CONTROLLER_DATA_SIGNATURE);
697 memcpy(meta->cdr->Controller_GUID, "FreeBSD GEOM RAID SERIAL", 24);
698 memcpy(meta->cdr->Product_ID, "FreeBSD GEOMRAID", 16);
699
700 /* Physical Drive Records. */
701 size = GET32(meta, hdr->pdr_length) * ss;
702 meta->pdr = malloc(size, M_MD_DDF, M_WAITOK);
703 memset(meta->pdr, 0xff, size);
704 SET32(meta, pdr->Signature, DDF_PDR_SIGNATURE);
705 SET16(meta, pdr->Populated_PDEs, 1);
706 SET16(meta, pdr->Max_PDE_Supported,
707 GET16(meta, hdr->Max_PD_Entries));
708
709 pde = &meta->pdr->entry[0];
710 len = sizeof(serial_buffer);
711 error = g_io_getattr("GEOM::ident", disk->d_consumer, &len, serial_buffer);
712 if (error == 0 && (len = strlen (serial_buffer)) >= 6 && len <= 20)
713 snprintf(pde->PD_GUID, 25, "DISK%20s", serial_buffer);
714 else
715 snprintf(pde->PD_GUID, 25, "DISK%04d%02d%02d%08x%04x",
716 ct.year, ct.mon, ct.day,
717 arc4random(), arc4random() & 0xffff);
718 SET32D(meta, pde->PD_Reference, arc4random());
719 SET16D(meta, pde->PD_Type, DDF_PDE_GUID_FORCE);
720 SET16D(meta, pde->PD_State, 0);
721 SET64D(meta, pde->Configured_Size,
722 anchorlba + 1 - 32 * 1024 * 1024 / ss);
723 SET16D(meta, pde->Block_Size, ss);
724
725 /* Virtual Drive Records. */
726 size = GET32(meta, hdr->vdr_length) * ss;
727 meta->vdr = malloc(size, M_MD_DDF, M_WAITOK);
728 memset(meta->vdr, 0xff, size);
729 SET32(meta, vdr->Signature, DDF_VD_RECORD_SIGNATURE);
730 SET32(meta, vdr->Populated_VDEs, 0);
731 SET16(meta, vdr->Max_VDE_Supported,
732 GET16(meta, hdr->Max_VD_Entries));
733
734 /* Configuration Records. */
735 size = GET32(meta, hdr->cr_length) * ss;
736 meta->cr = malloc(size, M_MD_DDF, M_WAITOK);
737 memset(meta->cr, 0xff, size);
738
739 /* Physical Disk Data. */
740 size = GET32(meta, hdr->pdd_length) * ss;
741 meta->pdd = malloc(size, M_MD_DDF, M_WAITOK);
742 memset(meta->pdd, 0xff, size);
743 SET32(meta, pdd->Signature, DDF_PDD_SIGNATURE);
744 memcpy(meta->pdd->PD_GUID, pde->PD_GUID, 24);
745 SET32(meta, pdd->PD_Reference, GET32D(meta, pde->PD_Reference));
746 SET8(meta, pdd->Forced_Ref_Flag, DDF_PDD_FORCED_REF);
747 SET8(meta, pdd->Forced_PD_GUID_Flag, DDF_PDD_FORCED_GUID);
748
749 /* Bad Block Management Log. */
750 if (GET32(meta, hdr->bbmlog_length) != 0) {
751 size = GET32(meta, hdr->bbmlog_length) * ss;
752 meta->bbm = malloc(size, M_MD_DDF, M_WAITOK);
753 memset(meta->bbm, 0xff, size);
754 SET32(meta, bbm->Signature, DDF_BBML_SIGNATURE);
755 SET32(meta, bbm->Entry_Count, 0);
756 SET32(meta, bbm->Spare_Block_Count, 0);
757 }
758 }
759
760 static void
761 ddf_meta_copy(struct ddf_meta *dst, struct ddf_meta *src)
762 {
763 u_int ss;
764
765 dst->bigendian = src->bigendian;
766 ss = dst->sectorsize = src->sectorsize;
767 dst->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
768 memcpy(dst->hdr, src->hdr, ss);
769 dst->cdr = malloc(GET32(src, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
770 memcpy(dst->cdr, src->cdr, GET32(src, hdr->cd_length) * ss);
771 dst->pdr = malloc(GET32(src, hdr->pdr_length) * ss, M_MD_DDF, M_WAITOK);
772 memcpy(dst->pdr, src->pdr, GET32(src, hdr->pdr_length) * ss);
773 dst->vdr = malloc(GET32(src, hdr->vdr_length) * ss, M_MD_DDF, M_WAITOK);
774 memcpy(dst->vdr, src->vdr, GET32(src, hdr->vdr_length) * ss);
775 dst->cr = malloc(GET32(src, hdr->cr_length) * ss, M_MD_DDF, M_WAITOK);
776 memcpy(dst->cr, src->cr, GET32(src, hdr->cr_length) * ss);
777 dst->pdd = malloc(GET32(src, hdr->pdd_length) * ss, M_MD_DDF, M_WAITOK);
778 memcpy(dst->pdd, src->pdd, GET32(src, hdr->pdd_length) * ss);
779 if (src->bbm != NULL) {
780 dst->bbm = malloc(GET32(src, hdr->bbmlog_length) * ss, M_MD_DDF, M_WAITOK);
781 memcpy(dst->bbm, src->bbm, GET32(src, hdr->bbmlog_length) * ss);
782 }
783 }
784
785 static void
786 ddf_meta_update(struct ddf_meta *meta, struct ddf_meta *src)
787 {
788 struct ddf_pd_entry *pde, *spde;
789 int i, j;
790
791 for (i = 0; i < GET16(src, pdr->Populated_PDEs); i++) {
792 spde = &src->pdr->entry[i];
793 if (isff(spde->PD_GUID, 24))
794 continue;
795 j = ddf_meta_find_pd(meta, NULL,
796 GET32(src, pdr->entry[i].PD_Reference));
797 if (j < 0) {
798 j = ddf_meta_find_pd(meta, NULL, 0xffffffff);
799 pde = &meta->pdr->entry[j];
800 memcpy(pde, spde, sizeof(*pde));
801 } else {
802 pde = &meta->pdr->entry[j];
803 SET16D(meta, pde->PD_State,
804 GET16D(meta, pde->PD_State) |
805 GET16D(src, pde->PD_State));
806 }
807 }
808 }
809
810 static void
811 ddf_meta_free(struct ddf_meta *meta)
812 {
813
814 if (meta->hdr != NULL) {
815 free(meta->hdr, M_MD_DDF);
816 meta->hdr = NULL;
817 }
818 if (meta->cdr != NULL) {
819 free(meta->cdr, M_MD_DDF);
820 meta->cdr = NULL;
821 }
822 if (meta->pdr != NULL) {
823 free(meta->pdr, M_MD_DDF);
824 meta->pdr = NULL;
825 }
826 if (meta->vdr != NULL) {
827 free(meta->vdr, M_MD_DDF);
828 meta->vdr = NULL;
829 }
830 if (meta->cr != NULL) {
831 free(meta->cr, M_MD_DDF);
832 meta->cr = NULL;
833 }
834 if (meta->pdd != NULL) {
835 free(meta->pdd, M_MD_DDF);
836 meta->pdd = NULL;
837 }
838 if (meta->bbm != NULL) {
839 free(meta->bbm, M_MD_DDF);
840 meta->bbm = NULL;
841 }
842 }
843
844 static void
845 ddf_vol_meta_create(struct ddf_vol_meta *meta, struct ddf_meta *sample)
846 {
847 struct timespec ts;
848 struct clocktime ct;
849 u_int ss, size;
850
851 meta->bigendian = sample->bigendian;
852 ss = meta->sectorsize = sample->sectorsize;
853 meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
854 memcpy(meta->hdr, sample->hdr, ss);
855 meta->cdr = malloc(GET32(sample, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
856 memcpy(meta->cdr, sample->cdr, GET32(sample, hdr->cd_length) * ss);
857 meta->vde = malloc(sizeof(struct ddf_vd_entry), M_MD_DDF, M_WAITOK);
858 memset(meta->vde, 0xff, sizeof(struct ddf_vd_entry));
859 getnanotime(&ts);
860 clock_ts_to_ct(&ts, &ct);
861 snprintf(meta->vde->VD_GUID, 25, "FreeBSD%04d%02d%02d%08x%01x",
862 ct.year, ct.mon, ct.day,
863 arc4random(), arc4random() & 0xf);
864 size = GET16(sample, hdr->Configuration_Record_Length) * ss;
865 meta->vdc = malloc(size, M_MD_DDF, M_WAITOK);
866 memset(meta->vdc, 0xff, size);
867 SET32(meta, vdc->Signature, DDF_VDCR_SIGNATURE);
868 memcpy(meta->vdc->VD_GUID, meta->vde->VD_GUID, 24);
869 SET32(meta, vdc->Sequence_Number, 0);
870 }
871
872 static void
873 ddf_vol_meta_update(struct ddf_vol_meta *dst, struct ddf_meta *src,
874 uint8_t *GUID, int started)
875 {
876 struct ddf_vd_entry *vde;
877 struct ddf_vdc_record *vdc;
878 int vnew, bvnew, bvd, size;
879 u_int ss;
880
881 vde = &src->vdr->entry[ddf_meta_find_vd(src, GUID)];
882 vdc = ddf_meta_find_vdc(src, GUID);
883 if (GET8D(src, vdc->Secondary_Element_Count) == 1)
884 bvd = 0;
885 else
886 bvd = GET8D(src, vdc->Secondary_Element_Seq);
887 size = GET16(src, hdr->Configuration_Record_Length) * src->sectorsize;
888
889 if (dst->vdc == NULL ||
890 (!started && ((int32_t)(GET32D(src, vdc->Sequence_Number) -
891 GET32(dst, vdc->Sequence_Number))) > 0))
892 vnew = 1;
893 else
894 vnew = 0;
895
896 if (dst->bvdc[bvd] == NULL ||
897 (!started && ((int32_t)(GET32D(src, vdc->Sequence_Number) -
898 GET32(dst, bvdc[bvd]->Sequence_Number))) > 0))
899 bvnew = 1;
900 else
901 bvnew = 0;
902
903 if (vnew) {
904 dst->bigendian = src->bigendian;
905 ss = dst->sectorsize = src->sectorsize;
906 if (dst->hdr != NULL)
907 free(dst->hdr, M_MD_DDF);
908 dst->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
909 memcpy(dst->hdr, src->hdr, ss);
910 if (dst->cdr != NULL)
911 free(dst->cdr, M_MD_DDF);
912 dst->cdr = malloc(GET32(src, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
913 memcpy(dst->cdr, src->cdr, GET32(src, hdr->cd_length) * ss);
914 if (dst->vde != NULL)
915 free(dst->vde, M_MD_DDF);
916 dst->vde = malloc(sizeof(struct ddf_vd_entry), M_MD_DDF, M_WAITOK);
917 memcpy(dst->vde, vde, sizeof(struct ddf_vd_entry));
918 if (dst->vdc != NULL)
919 free(dst->vdc, M_MD_DDF);
920 dst->vdc = malloc(size, M_MD_DDF, M_WAITOK);
921 memcpy(dst->vdc, vdc, size);
922 }
923 if (bvnew) {
924 if (dst->bvdc[bvd] != NULL)
925 free(dst->bvdc[bvd], M_MD_DDF);
926 dst->bvdc[bvd] = malloc(size, M_MD_DDF, M_WAITOK);
927 memcpy(dst->bvdc[bvd], vdc, size);
928 }
929 }
930
931 static void
932 ddf_vol_meta_free(struct ddf_vol_meta *meta)
933 {
934 int i;
935
936 if (meta->hdr != NULL) {
937 free(meta->hdr, M_MD_DDF);
938 meta->hdr = NULL;
939 }
940 if (meta->cdr != NULL) {
941 free(meta->cdr, M_MD_DDF);
942 meta->cdr = NULL;
943 }
944 if (meta->vde != NULL) {
945 free(meta->vde, M_MD_DDF);
946 meta->vde = NULL;
947 }
948 if (meta->vdc != NULL) {
949 free(meta->vdc, M_MD_DDF);
950 meta->vdc = NULL;
951 }
952 for (i = 0; i < DDF_MAX_DISKS_HARD; i++) {
953 if (meta->bvdc[i] != NULL) {
954 free(meta->bvdc[i], M_MD_DDF);
955 meta->bvdc[i] = NULL;
956 }
957 }
958 }
959
960 static int
961 ddf_meta_unused_range(struct ddf_meta *meta, off_t *off, off_t *size)
962 {
963 struct ddf_vdc_record *vdc;
964 off_t beg[32], end[32], beg1, end1;
965 uint64_t *offp;
966 int i, j, n, num, pos;
967 uint32_t ref;
968
969 *off = 0;
970 *size = 0;
971 ref = GET32(meta, pdd->PD_Reference);
972 pos = ddf_meta_find_pd(meta, NULL, ref);
973 beg[0] = 0;
974 end[0] = GET64(meta, pdr->entry[pos].Configured_Size);
975 n = 1;
976 num = GETCRNUM(meta);
977 for (i = 0; i < num; i++) {
978 vdc = GETVDCPTR(meta, i);
979 if (GET32D(meta, vdc->Signature) != DDF_VDCR_SIGNATURE)
980 continue;
981 for (pos = 0; pos < GET16D(meta, vdc->Primary_Element_Count); pos++)
982 if (GET32D(meta, vdc->Physical_Disk_Sequence[pos]) == ref)
983 break;
984 if (pos == GET16D(meta, vdc->Primary_Element_Count))
985 continue;
986 offp = (uint64_t *)&(vdc->Physical_Disk_Sequence[
987 GET16(meta, hdr->Max_Primary_Element_Entries)]);
988 beg1 = GET64P(meta, offp + pos);
989 end1 = beg1 + GET64D(meta, vdc->Block_Count);
990 for (j = 0; j < n; j++) {
991 if (beg[j] >= end1 || end[j] <= beg1 )
992 continue;
993 if (beg[j] < beg1 && end[j] > end1) {
994 beg[n] = end1;
995 end[n] = end[j];
996 end[j] = beg1;
997 n++;
998 } else if (beg[j] < beg1)
999 end[j] = beg1;
1000 else
1001 beg[j] = end1;
1002 }
1003 }
1004 for (j = 0; j < n; j++) {
1005 if (end[j] - beg[j] > *size) {
1006 *off = beg[j];
1007 *size = end[j] - beg[j];
1008 }
1009 }
1010 return ((*size > 0) ? 1 : 0);
1011 }
1012
1013 static void
1014 ddf_meta_get_name(struct ddf_meta *meta, int num, char *buf)
1015 {
1016 const char *b;
1017 int i;
1018
1019 b = meta->vdr->entry[num].VD_Name;
1020 for (i = 15; i >= 0; i--)
1021 if (b[i] != 0x20)
1022 break;
1023 memcpy(buf, b, i + 1);
1024 buf[i + 1] = 0;
1025 }
1026
1027 static void
1028 ddf_meta_put_name(struct ddf_vol_meta *meta, char *buf)
1029 {
1030 int len;
1031
1032 len = min(strlen(buf), 16);
1033 memset(meta->vde->VD_Name, 0x20, 16);
1034 memcpy(meta->vde->VD_Name, buf, len);
1035 }
1036
1037 static int
1038 ddf_meta_read(struct g_consumer *cp, struct ddf_meta *meta)
1039 {
1040 struct g_provider *pp;
1041 struct ddf_header *ahdr, *hdr;
1042 char *abuf, *buf;
1043 off_t plba, slba, lba;
1044 int error, len, i;
1045 u_int ss;
1046 uint32_t val;
1047
1048 ddf_meta_free(meta);
1049
1050 pp = cp->provider;
1051 ss = meta->sectorsize = pp->sectorsize;
1052 if (ss < sizeof(*hdr))
1053 return (ENXIO);
1054 /* Read anchor block. */
1055 abuf = g_read_data(cp, pp->mediasize - ss, ss, &error);
1056 if (abuf == NULL) {
1057 G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
1058 pp->name, error);
1059 return (error);
1060 }
1061 ahdr = (struct ddf_header *)abuf;
1062
1063 /* Check if this is an DDF RAID struct */
1064 if (be32dec(&ahdr->Signature) == DDF_HEADER_SIGNATURE)
1065 meta->bigendian = 1;
1066 else if (le32dec(&ahdr->Signature) == DDF_HEADER_SIGNATURE)
1067 meta->bigendian = 0;
1068 else {
1069 G_RAID_DEBUG(1, "DDF signature check failed on %s", pp->name);
1070 error = EINVAL;
1071 goto done;
1072 }
1073 if (ahdr->Header_Type != DDF_HEADER_ANCHOR) {
1074 G_RAID_DEBUG(1, "DDF header type check failed on %s", pp->name);
1075 error = EINVAL;
1076 goto done;
1077 }
1078 meta->hdr = ahdr;
1079 plba = GET64(meta, hdr->Primary_Header_LBA);
1080 slba = GET64(meta, hdr->Secondary_Header_LBA);
1081 val = GET32(meta, hdr->CRC);
1082 SET32(meta, hdr->CRC, 0xffffffff);
1083 meta->hdr = NULL;
1084 if (crc32(ahdr, ss) != val) {
1085 G_RAID_DEBUG(1, "DDF CRC mismatch on %s", pp->name);
1086 error = EINVAL;
1087 goto done;
1088 }
1089 if ((plba + 6) * ss >= pp->mediasize) {
1090 G_RAID_DEBUG(1, "DDF primary header LBA is wrong on %s", pp->name);
1091 error = EINVAL;
1092 goto done;
1093 }
1094 if (slba != -1 && (slba + 6) * ss >= pp->mediasize) {
1095 G_RAID_DEBUG(1, "DDF secondary header LBA is wrong on %s", pp->name);
1096 error = EINVAL;
1097 goto done;
1098 }
1099 lba = plba;
1100
1101 doread:
1102 error = 0;
1103 ddf_meta_free(meta);
1104
1105 /* Read header block. */
1106 buf = g_read_data(cp, lba * ss, ss, &error);
1107 if (buf == NULL) {
1108 readerror:
1109 G_RAID_DEBUG(1, "DDF %s metadata read error on %s (error=%d).",
1110 (lba == plba) ? "primary" : "secondary", pp->name, error);
1111 if (lba == plba && slba != -1) {
1112 lba = slba;
1113 goto doread;
1114 }
1115 G_RAID_DEBUG(1, "DDF metadata read error on %s.", pp->name);
1116 goto done;
1117 }
1118 meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
1119 memcpy(meta->hdr, buf, ss);
1120 g_free(buf);
1121 hdr = meta->hdr;
1122 val = GET32(meta, hdr->CRC);
1123 SET32(meta, hdr->CRC, 0xffffffff);
1124 if (hdr->Signature != ahdr->Signature ||
1125 crc32(meta->hdr, ss) != val ||
1126 memcmp(hdr->DDF_Header_GUID, ahdr->DDF_Header_GUID, 24) ||
1127 GET64(meta, hdr->Primary_Header_LBA) != plba ||
1128 GET64(meta, hdr->Secondary_Header_LBA) != slba) {
1129 hdrerror:
1130 G_RAID_DEBUG(1, "DDF %s metadata check failed on %s",
1131 (lba == plba) ? "primary" : "secondary", pp->name);
1132 if (lba == plba && slba != -1) {
1133 lba = slba;
1134 goto doread;
1135 }
1136 G_RAID_DEBUG(1, "DDF metadata check failed on %s", pp->name);
1137 error = EINVAL;
1138 goto done;
1139 }
1140 if ((lba == plba && hdr->Header_Type != DDF_HEADER_PRIMARY) ||
1141 (lba == slba && hdr->Header_Type != DDF_HEADER_SECONDARY))
1142 goto hdrerror;
1143 len = 1;
1144 len = max(len, GET32(meta, hdr->cd_section) + GET32(meta, hdr->cd_length));
1145 len = max(len, GET32(meta, hdr->pdr_section) + GET32(meta, hdr->pdr_length));
1146 len = max(len, GET32(meta, hdr->vdr_section) + GET32(meta, hdr->vdr_length));
1147 len = max(len, GET32(meta, hdr->cr_section) + GET32(meta, hdr->cr_length));
1148 len = max(len, GET32(meta, hdr->pdd_section) + GET32(meta, hdr->pdd_length));
1149 if ((val = GET32(meta, hdr->bbmlog_section)) != 0xffffffff)
1150 len = max(len, val + GET32(meta, hdr->bbmlog_length));
1151 if ((val = GET32(meta, hdr->Diagnostic_Space)) != 0xffffffff)
1152 len = max(len, val + GET32(meta, hdr->Diagnostic_Space_Length));
1153 if ((val = GET32(meta, hdr->Vendor_Specific_Logs)) != 0xffffffff)
1154 len = max(len, val + GET32(meta, hdr->Vendor_Specific_Logs_Length));
1155 if ((plba + len) * ss >= pp->mediasize)
1156 goto hdrerror;
1157 if (slba != -1 && (slba + len) * ss >= pp->mediasize)
1158 goto hdrerror;
1159 /* Workaround for Adaptec implementation. */
1160 if (GET16(meta, hdr->Max_Primary_Element_Entries) == 0xffff) {
1161 SET16(meta, hdr->Max_Primary_Element_Entries,
1162 min(GET16(meta, hdr->Max_PD_Entries),
1163 (GET16(meta, hdr->Configuration_Record_Length) * ss - 512) / 12));
1164 }
1165
1166 if (GET32(meta, hdr->cd_length) * ss >= maxphys ||
1167 GET32(meta, hdr->pdr_length) * ss >= maxphys ||
1168 GET32(meta, hdr->vdr_length) * ss >= maxphys ||
1169 GET32(meta, hdr->cr_length) * ss >= maxphys ||
1170 GET32(meta, hdr->pdd_length) * ss >= maxphys ||
1171 GET32(meta, hdr->bbmlog_length) * ss >= maxphys) {
1172 G_RAID_DEBUG(1, "%s: Blocksize is too big.", pp->name);
1173 goto hdrerror;
1174 }
1175
1176 /* Read controller data. */
1177 buf = g_read_data(cp, (lba + GET32(meta, hdr->cd_section)) * ss,
1178 GET32(meta, hdr->cd_length) * ss, &error);
1179 if (buf == NULL)
1180 goto readerror;
1181 meta->cdr = malloc(GET32(meta, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
1182 memcpy(meta->cdr, buf, GET32(meta, hdr->cd_length) * ss);
1183 g_free(buf);
1184 if (GET32(meta, cdr->Signature) != DDF_CONTROLLER_DATA_SIGNATURE)
1185 goto hdrerror;
1186
1187 /* Read physical disk records. */
1188 buf = g_read_data(cp, (lba + GET32(meta, hdr->pdr_section)) * ss,
1189 GET32(meta, hdr->pdr_length) * ss, &error);
1190 if (buf == NULL)
1191 goto readerror;
1192 meta->pdr = malloc(GET32(meta, hdr->pdr_length) * ss, M_MD_DDF, M_WAITOK);
1193 memcpy(meta->pdr, buf, GET32(meta, hdr->pdr_length) * ss);
1194 g_free(buf);
1195 if (GET32(meta, pdr->Signature) != DDF_PDR_SIGNATURE)
1196 goto hdrerror;
1197 /*
1198 * Workaround for reading metadata corrupted due to graid bug.
1199 * XXX: Remove this before we have disks above 128PB. :)
1200 */
1201 if (meta->bigendian) {
1202 for (i = 0; i < GET16(meta, pdr->Populated_PDEs); i++) {
1203 if (isff(meta->pdr->entry[i].PD_GUID, 24))
1204 continue;
1205 if (GET32(meta, pdr->entry[i].PD_Reference) ==
1206 0xffffffff)
1207 continue;
1208 if (GET64(meta, pdr->entry[i].Configured_Size) >=
1209 (1ULL << 48)) {
1210 SET16(meta, pdr->entry[i].PD_State,
1211 GET16(meta, pdr->entry[i].PD_State) &
1212 ~DDF_PDE_FAILED);
1213 SET64(meta, pdr->entry[i].Configured_Size,
1214 GET64(meta, pdr->entry[i].Configured_Size) &
1215 ((1ULL << 48) - 1));
1216 }
1217 }
1218 }
1219
1220 /* Read virtual disk records. */
1221 buf = g_read_data(cp, (lba + GET32(meta, hdr->vdr_section)) * ss,
1222 GET32(meta, hdr->vdr_length) * ss, &error);
1223 if (buf == NULL)
1224 goto readerror;
1225 meta->vdr = malloc(GET32(meta, hdr->vdr_length) * ss, M_MD_DDF, M_WAITOK);
1226 memcpy(meta->vdr, buf, GET32(meta, hdr->vdr_length) * ss);
1227 g_free(buf);
1228 if (GET32(meta, vdr->Signature) != DDF_VD_RECORD_SIGNATURE)
1229 goto hdrerror;
1230
1231 /* Read configuration records. */
1232 buf = g_read_data(cp, (lba + GET32(meta, hdr->cr_section)) * ss,
1233 GET32(meta, hdr->cr_length) * ss, &error);
1234 if (buf == NULL)
1235 goto readerror;
1236 meta->cr = malloc(GET32(meta, hdr->cr_length) * ss, M_MD_DDF, M_WAITOK);
1237 memcpy(meta->cr, buf, GET32(meta, hdr->cr_length) * ss);
1238 g_free(buf);
1239
1240 /* Read physical disk data. */
1241 buf = g_read_data(cp, (lba + GET32(meta, hdr->pdd_section)) * ss,
1242 GET32(meta, hdr->pdd_length) * ss, &error);
1243 if (buf == NULL)
1244 goto readerror;
1245 meta->pdd = malloc(GET32(meta, hdr->pdd_length) * ss, M_MD_DDF, M_WAITOK);
1246 memcpy(meta->pdd, buf, GET32(meta, hdr->pdd_length) * ss);
1247 g_free(buf);
1248 if (GET32(meta, pdd->Signature) != DDF_PDD_SIGNATURE)
1249 goto hdrerror;
1250 i = ddf_meta_find_pd(meta, NULL, GET32(meta, pdd->PD_Reference));
1251 if (i < 0)
1252 goto hdrerror;
1253
1254 /* Read BBM Log. */
1255 if (GET32(meta, hdr->bbmlog_section) != 0xffffffff &&
1256 GET32(meta, hdr->bbmlog_length) != 0) {
1257 buf = g_read_data(cp, (lba + GET32(meta, hdr->bbmlog_section)) * ss,
1258 GET32(meta, hdr->bbmlog_length) * ss, &error);
1259 if (buf == NULL)
1260 goto readerror;
1261 meta->bbm = malloc(GET32(meta, hdr->bbmlog_length) * ss, M_MD_DDF, M_WAITOK);
1262 memcpy(meta->bbm, buf, GET32(meta, hdr->bbmlog_length) * ss);
1263 g_free(buf);
1264 if (GET32(meta, bbm->Signature) != DDF_BBML_SIGNATURE)
1265 goto hdrerror;
1266 }
1267
1268 done:
1269 g_free(abuf);
1270 if (error != 0)
1271 ddf_meta_free(meta);
1272 return (error);
1273 }
1274
1275 static int
1276 ddf_meta_write(struct g_consumer *cp, struct ddf_meta *meta)
1277 {
1278 struct g_provider *pp;
1279 struct ddf_vdc_record *vdc;
1280 off_t alba, plba, slba, lba;
1281 u_int ss, size;
1282 int error, i, num;
1283
1284 pp = cp->provider;
1285 ss = pp->sectorsize;
1286 lba = alba = pp->mediasize / ss - 1;
1287 plba = GET64(meta, hdr->Primary_Header_LBA);
1288 slba = GET64(meta, hdr->Secondary_Header_LBA);
1289
1290 next:
1291 SET8(meta, hdr->Header_Type, (lba == alba) ? DDF_HEADER_ANCHOR :
1292 (lba == plba) ? DDF_HEADER_PRIMARY : DDF_HEADER_SECONDARY);
1293 SET32(meta, hdr->CRC, 0xffffffff);
1294 SET32(meta, hdr->CRC, crc32(meta->hdr, ss));
1295 error = g_write_data(cp, lba * ss, meta->hdr, ss);
1296 if (error != 0) {
1297 err:
1298 G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
1299 pp->name, error);
1300 if (lba != alba)
1301 goto done;
1302 }
1303 if (lba == alba) {
1304 lba = plba;
1305 goto next;
1306 }
1307
1308 size = GET32(meta, hdr->cd_length) * ss;
1309 SET32(meta, cdr->CRC, 0xffffffff);
1310 SET32(meta, cdr->CRC, crc32(meta->cdr, size));
1311 error = g_write_data(cp, (lba + GET32(meta, hdr->cd_section)) * ss,
1312 meta->cdr, size);
1313 if (error != 0)
1314 goto err;
1315
1316 size = GET32(meta, hdr->pdr_length) * ss;
1317 SET32(meta, pdr->CRC, 0xffffffff);
1318 SET32(meta, pdr->CRC, crc32(meta->pdr, size));
1319 error = g_write_data(cp, (lba + GET32(meta, hdr->pdr_section)) * ss,
1320 meta->pdr, size);
1321 if (error != 0)
1322 goto err;
1323
1324 size = GET32(meta, hdr->vdr_length) * ss;
1325 SET32(meta, vdr->CRC, 0xffffffff);
1326 SET32(meta, vdr->CRC, crc32(meta->vdr, size));
1327 error = g_write_data(cp, (lba + GET32(meta, hdr->vdr_section)) * ss,
1328 meta->vdr, size);
1329 if (error != 0)
1330 goto err;
1331
1332 size = GET16(meta, hdr->Configuration_Record_Length) * ss;
1333 num = GETCRNUM(meta);
1334 for (i = 0; i < num; i++) {
1335 vdc = GETVDCPTR(meta, i);
1336 SET32D(meta, vdc->CRC, 0xffffffff);
1337 SET32D(meta, vdc->CRC, crc32(vdc, size));
1338 }
1339 error = g_write_data(cp, (lba + GET32(meta, hdr->cr_section)) * ss,
1340 meta->cr, size * num);
1341 if (error != 0)
1342 goto err;
1343
1344 size = GET32(meta, hdr->pdd_length) * ss;
1345 SET32(meta, pdd->CRC, 0xffffffff);
1346 SET32(meta, pdd->CRC, crc32(meta->pdd, size));
1347 error = g_write_data(cp, (lba + GET32(meta, hdr->pdd_section)) * ss,
1348 meta->pdd, size);
1349 if (error != 0)
1350 goto err;
1351
1352 if (GET32(meta, hdr->bbmlog_length) != 0) {
1353 size = GET32(meta, hdr->bbmlog_length) * ss;
1354 SET32(meta, bbm->CRC, 0xffffffff);
1355 SET32(meta, bbm->CRC, crc32(meta->bbm, size));
1356 error = g_write_data(cp,
1357 (lba + GET32(meta, hdr->bbmlog_section)) * ss,
1358 meta->bbm, size);
1359 if (error != 0)
1360 goto err;
1361 }
1362
1363 done:
1364 if (lba == plba && slba != -1) {
1365 lba = slba;
1366 goto next;
1367 }
1368
1369 return (error);
1370 }
1371
1372 static int
1373 ddf_meta_erase(struct g_consumer *cp)
1374 {
1375 struct g_provider *pp;
1376 char *buf;
1377 int error;
1378
1379 pp = cp->provider;
1380 buf = malloc(pp->sectorsize, M_MD_DDF, M_WAITOK | M_ZERO);
1381 error = g_write_data(cp, pp->mediasize - pp->sectorsize,
1382 buf, pp->sectorsize);
1383 if (error != 0) {
1384 G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
1385 pp->name, error);
1386 }
1387 free(buf, M_MD_DDF);
1388 return (error);
1389 }
1390
1391 static struct g_raid_volume *
1392 g_raid_md_ddf_get_volume(struct g_raid_softc *sc, uint8_t *GUID)
1393 {
1394 struct g_raid_volume *vol;
1395 struct g_raid_md_ddf_pervolume *pv;
1396
1397 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1398 pv = vol->v_md_data;
1399 if (memcmp(pv->pv_meta.vde->VD_GUID, GUID, 24) == 0)
1400 break;
1401 }
1402 return (vol);
1403 }
1404
1405 static struct g_raid_disk *
1406 g_raid_md_ddf_get_disk(struct g_raid_softc *sc, uint8_t *GUID, uint32_t id)
1407 {
1408 struct g_raid_disk *disk;
1409 struct g_raid_md_ddf_perdisk *pd;
1410 struct ddf_meta *meta;
1411
1412 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1413 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1414 meta = &pd->pd_meta;
1415 if (GUID != NULL) {
1416 if (memcmp(meta->pdd->PD_GUID, GUID, 24) == 0)
1417 break;
1418 } else {
1419 if (GET32(meta, pdd->PD_Reference) == id)
1420 break;
1421 }
1422 }
1423 return (disk);
1424 }
1425
1426 static int
1427 g_raid_md_ddf_purge_volumes(struct g_raid_softc *sc)
1428 {
1429 struct g_raid_volume *vol, *tvol;
1430 int i, res;
1431
1432 res = 0;
1433 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tvol) {
1434 if (vol->v_stopping)
1435 continue;
1436 for (i = 0; i < vol->v_disks_count; i++) {
1437 if (vol->v_subdisks[i].sd_state != G_RAID_SUBDISK_S_NONE)
1438 break;
1439 }
1440 if (i >= vol->v_disks_count) {
1441 g_raid_destroy_volume(vol);
1442 res = 1;
1443 }
1444 }
1445 return (res);
1446 }
1447
1448 static int
1449 g_raid_md_ddf_purge_disks(struct g_raid_softc *sc)
1450 {
1451 #if 0
1452 struct g_raid_disk *disk, *tdisk;
1453 struct g_raid_volume *vol;
1454 struct g_raid_md_ddf_perdisk *pd;
1455 int i, j, res;
1456
1457 res = 0;
1458 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tdisk) {
1459 if (disk->d_state == G_RAID_DISK_S_SPARE)
1460 continue;
1461 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1462
1463 /* Scan for deleted volumes. */
1464 for (i = 0; i < pd->pd_subdisks; ) {
1465 vol = g_raid_md_ddf_get_volume(sc,
1466 pd->pd_meta[i]->volume_id);
1467 if (vol != NULL && !vol->v_stopping) {
1468 i++;
1469 continue;
1470 }
1471 free(pd->pd_meta[i], M_MD_DDF);
1472 for (j = i; j < pd->pd_subdisks - 1; j++)
1473 pd->pd_meta[j] = pd->pd_meta[j + 1];
1474 pd->pd_meta[DDF_MAX_SUBDISKS - 1] = NULL;
1475 pd->pd_subdisks--;
1476 pd->pd_updated = 1;
1477 }
1478
1479 /* If there is no metadata left - erase and delete disk. */
1480 if (pd->pd_subdisks == 0) {
1481 ddf_meta_erase(disk->d_consumer);
1482 g_raid_destroy_disk(disk);
1483 res = 1;
1484 }
1485 }
1486 return (res);
1487 #endif
1488 return (0);
1489 }
1490
1491 static int
1492 g_raid_md_ddf_supported(int level, int qual, int disks, int force)
1493 {
1494
1495 if (disks > DDF_MAX_DISKS_HARD)
1496 return (0);
1497 switch (level) {
1498 case G_RAID_VOLUME_RL_RAID0:
1499 if (qual != G_RAID_VOLUME_RLQ_NONE)
1500 return (0);
1501 if (disks < 1)
1502 return (0);
1503 if (!force && disks < 2)
1504 return (0);
1505 break;
1506 case G_RAID_VOLUME_RL_RAID1:
1507 if (disks < 1)
1508 return (0);
1509 if (qual == G_RAID_VOLUME_RLQ_R1SM) {
1510 if (!force && disks != 2)
1511 return (0);
1512 } else if (qual == G_RAID_VOLUME_RLQ_R1MM) {
1513 if (!force && disks != 3)
1514 return (0);
1515 } else
1516 return (0);
1517 break;
1518 case G_RAID_VOLUME_RL_RAID3:
1519 if (qual != G_RAID_VOLUME_RLQ_R3P0 &&
1520 qual != G_RAID_VOLUME_RLQ_R3PN)
1521 return (0);
1522 if (disks < 3)
1523 return (0);
1524 break;
1525 case G_RAID_VOLUME_RL_RAID4:
1526 if (qual != G_RAID_VOLUME_RLQ_R4P0 &&
1527 qual != G_RAID_VOLUME_RLQ_R4PN)
1528 return (0);
1529 if (disks < 3)
1530 return (0);
1531 break;
1532 case G_RAID_VOLUME_RL_RAID5:
1533 if (qual != G_RAID_VOLUME_RLQ_R5RA &&
1534 qual != G_RAID_VOLUME_RLQ_R5RS &&
1535 qual != G_RAID_VOLUME_RLQ_R5LA &&
1536 qual != G_RAID_VOLUME_RLQ_R5LS)
1537 return (0);
1538 if (disks < 3)
1539 return (0);
1540 break;
1541 case G_RAID_VOLUME_RL_RAID6:
1542 if (qual != G_RAID_VOLUME_RLQ_R6RA &&
1543 qual != G_RAID_VOLUME_RLQ_R6RS &&
1544 qual != G_RAID_VOLUME_RLQ_R6LA &&
1545 qual != G_RAID_VOLUME_RLQ_R6LS)
1546 return (0);
1547 if (disks < 4)
1548 return (0);
1549 break;
1550 case G_RAID_VOLUME_RL_RAIDMDF:
1551 if (qual != G_RAID_VOLUME_RLQ_RMDFRA &&
1552 qual != G_RAID_VOLUME_RLQ_RMDFRS &&
1553 qual != G_RAID_VOLUME_RLQ_RMDFLA &&
1554 qual != G_RAID_VOLUME_RLQ_RMDFLS)
1555 return (0);
1556 if (disks < 4)
1557 return (0);
1558 break;
1559 case G_RAID_VOLUME_RL_RAID1E:
1560 if (qual != G_RAID_VOLUME_RLQ_R1EA &&
1561 qual != G_RAID_VOLUME_RLQ_R1EO)
1562 return (0);
1563 if (disks < 3)
1564 return (0);
1565 break;
1566 case G_RAID_VOLUME_RL_SINGLE:
1567 if (qual != G_RAID_VOLUME_RLQ_NONE)
1568 return (0);
1569 if (disks != 1)
1570 return (0);
1571 break;
1572 case G_RAID_VOLUME_RL_CONCAT:
1573 if (qual != G_RAID_VOLUME_RLQ_NONE)
1574 return (0);
1575 if (disks < 2)
1576 return (0);
1577 break;
1578 case G_RAID_VOLUME_RL_RAID5E:
1579 if (qual != G_RAID_VOLUME_RLQ_R5ERA &&
1580 qual != G_RAID_VOLUME_RLQ_R5ERS &&
1581 qual != G_RAID_VOLUME_RLQ_R5ELA &&
1582 qual != G_RAID_VOLUME_RLQ_R5ELS)
1583 return (0);
1584 if (disks < 4)
1585 return (0);
1586 break;
1587 case G_RAID_VOLUME_RL_RAID5EE:
1588 if (qual != G_RAID_VOLUME_RLQ_R5EERA &&
1589 qual != G_RAID_VOLUME_RLQ_R5EERS &&
1590 qual != G_RAID_VOLUME_RLQ_R5EELA &&
1591 qual != G_RAID_VOLUME_RLQ_R5EELS)
1592 return (0);
1593 if (disks < 4)
1594 return (0);
1595 break;
1596 case G_RAID_VOLUME_RL_RAID5R:
1597 if (qual != G_RAID_VOLUME_RLQ_R5RRA &&
1598 qual != G_RAID_VOLUME_RLQ_R5RRS &&
1599 qual != G_RAID_VOLUME_RLQ_R5RLA &&
1600 qual != G_RAID_VOLUME_RLQ_R5RLS)
1601 return (0);
1602 if (disks < 3)
1603 return (0);
1604 break;
1605 default:
1606 return (0);
1607 }
1608 return (1);
1609 }
1610
1611 static int
1612 g_raid_md_ddf_start_disk(struct g_raid_disk *disk, struct g_raid_volume *vol)
1613 {
1614 struct g_raid_softc *sc;
1615 struct g_raid_subdisk *sd;
1616 struct g_raid_md_ddf_perdisk *pd;
1617 struct g_raid_md_ddf_pervolume *pv;
1618 struct g_raid_md_ddf_object *mdi;
1619 struct ddf_vol_meta *vmeta;
1620 struct ddf_meta *pdmeta, *gmeta;
1621 struct ddf_vdc_record *vdc1;
1622 struct ddf_sa_record *sa;
1623 off_t size, eoff = 0, esize = 0;
1624 uint64_t *val2;
1625 int disk_pos, md_disk_bvd = -1, md_disk_pos = -1, md_pde_pos;
1626 int i, resurrection = 0;
1627 uint32_t reference;
1628
1629 sc = disk->d_softc;
1630 mdi = (struct g_raid_md_ddf_object *)sc->sc_md;
1631 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1632 pdmeta = &pd->pd_meta;
1633 reference = GET32(&pd->pd_meta, pdd->PD_Reference);
1634
1635 pv = vol->v_md_data;
1636 vmeta = &pv->pv_meta;
1637 gmeta = &mdi->mdio_meta;
1638
1639 /* Find disk position in metadata by its reference. */
1640 disk_pos = ddf_meta_find_disk(vmeta, reference,
1641 &md_disk_bvd, &md_disk_pos);
1642 md_pde_pos = ddf_meta_find_pd(gmeta, NULL, reference);
1643
1644 if (disk_pos < 0) {
1645 G_RAID_DEBUG1(1, sc,
1646 "Disk %s is not a present part of the volume %s",
1647 g_raid_get_diskname(disk), vol->v_name);
1648
1649 /* Failed stale disk is useless for us. */
1650 if ((GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA) != 0) {
1651 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
1652 return (0);
1653 }
1654
1655 /* If disk has some metadata for this volume - erase. */
1656 if ((vdc1 = ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID)) != NULL)
1657 SET32D(pdmeta, vdc1->Signature, 0xffffffff);
1658
1659 /* If we are in the start process, that's all for now. */
1660 if (!pv->pv_started)
1661 goto nofit;
1662 /*
1663 * If we have already started - try to get use of the disk.
1664 * Try to replace OFFLINE disks first, then FAILED.
1665 */
1666 if (ddf_meta_count_vdc(&pd->pd_meta, NULL) >=
1667 GET16(&pd->pd_meta, hdr->Max_Partitions)) {
1668 G_RAID_DEBUG1(1, sc, "No free partitions on disk %s",
1669 g_raid_get_diskname(disk));
1670 goto nofit;
1671 }
1672 ddf_meta_unused_range(&pd->pd_meta, &eoff, &esize);
1673 if (esize == 0) {
1674 G_RAID_DEBUG1(1, sc, "No free space on disk %s",
1675 g_raid_get_diskname(disk));
1676 goto nofit;
1677 }
1678 eoff *= pd->pd_meta.sectorsize;
1679 esize *= pd->pd_meta.sectorsize;
1680 size = INT64_MAX;
1681 for (i = 0; i < vol->v_disks_count; i++) {
1682 sd = &vol->v_subdisks[i];
1683 if (sd->sd_state != G_RAID_SUBDISK_S_NONE)
1684 size = sd->sd_size;
1685 if (sd->sd_state <= G_RAID_SUBDISK_S_FAILED &&
1686 (disk_pos < 0 ||
1687 vol->v_subdisks[i].sd_state < sd->sd_state))
1688 disk_pos = i;
1689 }
1690 if (disk_pos >= 0 &&
1691 vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT &&
1692 esize < size) {
1693 G_RAID_DEBUG1(1, sc, "Disk %s free space "
1694 "is too small (%ju < %ju)",
1695 g_raid_get_diskname(disk), esize, size);
1696 disk_pos = -1;
1697 }
1698 if (disk_pos >= 0) {
1699 if (vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT)
1700 esize = size;
1701 md_disk_bvd = disk_pos / GET16(vmeta, vdc->Primary_Element_Count); // XXX
1702 md_disk_pos = disk_pos % GET16(vmeta, vdc->Primary_Element_Count); // XXX
1703 } else {
1704 nofit:
1705 if (disk->d_state == G_RAID_DISK_S_NONE)
1706 g_raid_change_disk_state(disk,
1707 G_RAID_DISK_S_STALE);
1708 return (0);
1709 }
1710
1711 /*
1712 * If spare is committable, delete spare record.
1713 * Othersize, mark it active and leave there.
1714 */
1715 sa = ddf_meta_find_sa(&pd->pd_meta, 0);
1716 if (sa != NULL) {
1717 if ((GET8D(&pd->pd_meta, sa->Spare_Type) &
1718 DDF_SAR_TYPE_REVERTIBLE) == 0) {
1719 SET32D(&pd->pd_meta, sa->Signature, 0xffffffff);
1720 } else {
1721 SET8D(&pd->pd_meta, sa->Spare_Type,
1722 GET8D(&pd->pd_meta, sa->Spare_Type) |
1723 DDF_SAR_TYPE_ACTIVE);
1724 }
1725 }
1726
1727 G_RAID_DEBUG1(1, sc, "Disk %s takes pos %d in the volume %s",
1728 g_raid_get_diskname(disk), disk_pos, vol->v_name);
1729 resurrection = 1;
1730 }
1731
1732 sd = &vol->v_subdisks[disk_pos];
1733
1734 if (resurrection && sd->sd_disk != NULL) {
1735 g_raid_change_disk_state(sd->sd_disk,
1736 G_RAID_DISK_S_STALE_FAILED);
1737 TAILQ_REMOVE(&sd->sd_disk->d_subdisks,
1738 sd, sd_next);
1739 }
1740 vol->v_subdisks[disk_pos].sd_disk = disk;
1741 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1742
1743 /* Welcome the new disk. */
1744 if (resurrection)
1745 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1746 else if (GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA)
1747 g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
1748 else
1749 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1750
1751 if (resurrection) {
1752 sd->sd_offset = eoff;
1753 sd->sd_size = esize;
1754 } else if (pdmeta->cr != NULL &&
1755 (vdc1 = ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID)) != NULL) {
1756 val2 = (uint64_t *)&(vdc1->Physical_Disk_Sequence[GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
1757 sd->sd_offset = (off_t)GET64P(pdmeta, val2 + md_disk_pos) * 512;
1758 sd->sd_size = (off_t)GET64D(pdmeta, vdc1->Block_Count) * 512;
1759 }
1760
1761 if (resurrection) {
1762 /* Stale disk, almost same as new. */
1763 g_raid_change_subdisk_state(sd,
1764 G_RAID_SUBDISK_S_NEW);
1765 } else if (GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA) {
1766 /* Failed disk. */
1767 g_raid_change_subdisk_state(sd,
1768 G_RAID_SUBDISK_S_FAILED);
1769 } else if ((GET16(gmeta, pdr->entry[md_pde_pos].PD_State) &
1770 (DDF_PDE_FAILED | DDF_PDE_REBUILD)) != 0) {
1771 /* Rebuilding disk. */
1772 g_raid_change_subdisk_state(sd,
1773 G_RAID_SUBDISK_S_REBUILD);
1774 sd->sd_rebuild_pos = 0;
1775 } else if ((GET8(vmeta, vde->VD_State) & DDF_VDE_DIRTY) != 0 ||
1776 (GET8(vmeta, vde->Init_State) & DDF_VDE_INIT_MASK) !=
1777 DDF_VDE_INIT_FULL) {
1778 /* Stale disk or dirty volume (unclean shutdown). */
1779 g_raid_change_subdisk_state(sd,
1780 G_RAID_SUBDISK_S_STALE);
1781 } else {
1782 /* Up to date disk. */
1783 g_raid_change_subdisk_state(sd,
1784 G_RAID_SUBDISK_S_ACTIVE);
1785 }
1786 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1787 G_RAID_EVENT_SUBDISK);
1788
1789 return (resurrection);
1790 }
1791
1792 static void
1793 g_raid_md_ddf_refill(struct g_raid_softc *sc)
1794 {
1795 struct g_raid_volume *vol;
1796 struct g_raid_subdisk *sd;
1797 struct g_raid_disk *disk;
1798 struct g_raid_md_object *md;
1799 struct g_raid_md_ddf_perdisk *pd;
1800 struct g_raid_md_ddf_pervolume *pv;
1801 int update, updated, i, bad;
1802
1803 md = sc->sc_md;
1804 restart:
1805 updated = 0;
1806 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1807 pv = vol->v_md_data;
1808 if (!pv->pv_started || vol->v_stopping)
1809 continue;
1810
1811 /* Search for subdisk that needs replacement. */
1812 bad = 0;
1813 for (i = 0; i < vol->v_disks_count; i++) {
1814 sd = &vol->v_subdisks[i];
1815 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
1816 sd->sd_state == G_RAID_SUBDISK_S_FAILED)
1817 bad = 1;
1818 }
1819 if (!bad)
1820 continue;
1821
1822 G_RAID_DEBUG1(1, sc, "Volume %s is not complete, "
1823 "trying to refill.", vol->v_name);
1824
1825 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1826 /* Skip failed. */
1827 if (disk->d_state < G_RAID_DISK_S_SPARE)
1828 continue;
1829 /* Skip already used by this volume. */
1830 for (i = 0; i < vol->v_disks_count; i++) {
1831 sd = &vol->v_subdisks[i];
1832 if (sd->sd_disk == disk)
1833 break;
1834 }
1835 if (i < vol->v_disks_count)
1836 continue;
1837
1838 /* Try to use disk if it has empty extents. */
1839 pd = disk->d_md_data;
1840 if (ddf_meta_count_vdc(&pd->pd_meta, NULL) <
1841 GET16(&pd->pd_meta, hdr->Max_Partitions)) {
1842 update = g_raid_md_ddf_start_disk(disk, vol);
1843 } else
1844 update = 0;
1845 if (update) {
1846 updated = 1;
1847 g_raid_md_write_ddf(md, vol, NULL, disk);
1848 break;
1849 }
1850 }
1851 }
1852 if (updated)
1853 goto restart;
1854 }
1855
1856 static void
1857 g_raid_md_ddf_start(struct g_raid_volume *vol)
1858 {
1859 struct g_raid_softc *sc;
1860 struct g_raid_subdisk *sd;
1861 struct g_raid_disk *disk;
1862 struct g_raid_md_object *md;
1863 struct g_raid_md_ddf_perdisk *pd;
1864 struct g_raid_md_ddf_pervolume *pv;
1865 struct g_raid_md_ddf_object *mdi;
1866 struct ddf_vol_meta *vmeta;
1867 uint64_t *val2;
1868 int i, j, bvd;
1869
1870 sc = vol->v_softc;
1871 md = sc->sc_md;
1872 mdi = (struct g_raid_md_ddf_object *)md;
1873 pv = vol->v_md_data;
1874 vmeta = &pv->pv_meta;
1875
1876 vol->v_raid_level = GET8(vmeta, vdc->Primary_RAID_Level);
1877 vol->v_raid_level_qualifier = GET8(vmeta, vdc->RLQ);
1878 if (GET8(vmeta, vdc->Secondary_Element_Count) > 1 &&
1879 vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 &&
1880 GET8(vmeta, vdc->Secondary_RAID_Level) == 0)
1881 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1882 vol->v_sectorsize = GET16(vmeta, vdc->Block_Size);
1883 if (vol->v_sectorsize == 0xffff)
1884 vol->v_sectorsize = vmeta->sectorsize;
1885 vol->v_strip_size = vol->v_sectorsize << GET8(vmeta, vdc->Stripe_Size);
1886 vol->v_disks_count = GET16(vmeta, vdc->Primary_Element_Count) *
1887 GET8(vmeta, vdc->Secondary_Element_Count);
1888 vol->v_mdf_pdisks = GET8(vmeta, vdc->MDF_Parity_Disks);
1889 vol->v_mdf_polynomial = GET16(vmeta, vdc->MDF_Parity_Generator_Polynomial);
1890 vol->v_mdf_method = GET8(vmeta, vdc->MDF_Constant_Generation_Method);
1891 if (GET8(vmeta, vdc->Rotate_Parity_count) > 31)
1892 vol->v_rotate_parity = 1;
1893 else
1894 vol->v_rotate_parity = 1 << GET8(vmeta, vdc->Rotate_Parity_count);
1895 vol->v_mediasize = GET64(vmeta, vdc->VD_Size) * vol->v_sectorsize;
1896 for (i = 0, j = 0, bvd = 0; i < vol->v_disks_count; i++, j++) {
1897 if (j == GET16(vmeta, vdc->Primary_Element_Count)) {
1898 j = 0;
1899 bvd++;
1900 }
1901 sd = &vol->v_subdisks[i];
1902 if (vmeta->bvdc[bvd] == NULL) {
1903 sd->sd_offset = 0;
1904 sd->sd_size = GET64(vmeta, vdc->Block_Count) *
1905 vol->v_sectorsize;
1906 continue;
1907 }
1908 val2 = (uint64_t *)&(vmeta->bvdc[bvd]->Physical_Disk_Sequence[
1909 GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
1910 sd->sd_offset = GET64P(vmeta, val2 + j) * vol->v_sectorsize;
1911 sd->sd_size = GET64(vmeta, bvdc[bvd]->Block_Count) *
1912 vol->v_sectorsize;
1913 }
1914 g_raid_start_volume(vol);
1915
1916 /* Make all disks found till the moment take their places. */
1917 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1918 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1919 if (ddf_meta_find_vdc(&pd->pd_meta, vmeta->vdc->VD_GUID) != NULL)
1920 g_raid_md_ddf_start_disk(disk, vol);
1921 }
1922
1923 pv->pv_started = 1;
1924 mdi->mdio_starting--;
1925 callout_stop(&pv->pv_start_co);
1926 G_RAID_DEBUG1(0, sc, "Volume started.");
1927 g_raid_md_write_ddf(md, vol, NULL, NULL);
1928
1929 /* Pickup any STALE/SPARE disks to refill array if needed. */
1930 g_raid_md_ddf_refill(sc);
1931
1932 g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME);
1933 }
1934
1935 static void
1936 g_raid_ddf_go(void *arg)
1937 {
1938 struct g_raid_volume *vol;
1939 struct g_raid_softc *sc;
1940 struct g_raid_md_ddf_pervolume *pv;
1941
1942 vol = arg;
1943 pv = vol->v_md_data;
1944 sc = vol->v_softc;
1945 if (!pv->pv_started) {
1946 G_RAID_DEBUG1(0, sc, "Force volume start due to timeout.");
1947 g_raid_event_send(vol, G_RAID_VOLUME_E_STARTMD,
1948 G_RAID_EVENT_VOLUME);
1949 }
1950 }
1951
1952 static void
1953 g_raid_md_ddf_new_disk(struct g_raid_disk *disk)
1954 {
1955 struct g_raid_softc *sc;
1956 struct g_raid_md_object *md;
1957 struct g_raid_md_ddf_perdisk *pd;
1958 struct g_raid_md_ddf_pervolume *pv;
1959 struct g_raid_md_ddf_object *mdi;
1960 struct g_raid_volume *vol;
1961 struct ddf_meta *pdmeta;
1962 struct ddf_vol_meta *vmeta;
1963 struct ddf_vdc_record *vdc;
1964 struct ddf_vd_entry *vde;
1965 int i, j, k, num, have, need, cnt, spare;
1966 uint32_t val;
1967 char buf[17];
1968
1969 sc = disk->d_softc;
1970 md = sc->sc_md;
1971 mdi = (struct g_raid_md_ddf_object *)md;
1972 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1973 pdmeta = &pd->pd_meta;
1974 spare = -1;
1975
1976 if (mdi->mdio_meta.hdr == NULL)
1977 ddf_meta_copy(&mdi->mdio_meta, pdmeta);
1978 else
1979 ddf_meta_update(&mdi->mdio_meta, pdmeta);
1980
1981 num = GETCRNUM(pdmeta);
1982 for (j = 0; j < num; j++) {
1983 vdc = GETVDCPTR(pdmeta, j);
1984 val = GET32D(pdmeta, vdc->Signature);
1985
1986 if (val == DDF_SA_SIGNATURE && spare == -1)
1987 spare = 1;
1988
1989 if (val != DDF_VDCR_SIGNATURE)
1990 continue;
1991 spare = 0;
1992 k = ddf_meta_find_vd(pdmeta, vdc->VD_GUID);
1993 if (k < 0)
1994 continue;
1995 vde = &pdmeta->vdr->entry[k];
1996
1997 /* Look for volume with matching ID. */
1998 vol = g_raid_md_ddf_get_volume(sc, vdc->VD_GUID);
1999 if (vol == NULL) {
2000 ddf_meta_get_name(pdmeta, k, buf);
2001 vol = g_raid_create_volume(sc, buf,
2002 GET16D(pdmeta, vde->VD_Number));
2003 pv = malloc(sizeof(*pv), M_MD_DDF, M_WAITOK | M_ZERO);
2004 vol->v_md_data = pv;
2005 callout_init(&pv->pv_start_co, 1);
2006 callout_reset(&pv->pv_start_co,
2007 g_raid_start_timeout * hz,
2008 g_raid_ddf_go, vol);
2009 mdi->mdio_starting++;
2010 } else
2011 pv = vol->v_md_data;
2012
2013 /* If we haven't started yet - check metadata freshness. */
2014 vmeta = &pv->pv_meta;
2015 ddf_vol_meta_update(vmeta, pdmeta, vdc->VD_GUID, pv->pv_started);
2016 }
2017
2018 if (spare == 1) {
2019 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
2020 g_raid_md_ddf_refill(sc);
2021 }
2022
2023 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2024 pv = vol->v_md_data;
2025 vmeta = &pv->pv_meta;
2026
2027 if (ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID) == NULL)
2028 continue;
2029
2030 if (pv->pv_started) {
2031 if (g_raid_md_ddf_start_disk(disk, vol))
2032 g_raid_md_write_ddf(md, vol, NULL, NULL);
2033 continue;
2034 }
2035
2036 /* If we collected all needed disks - start array. */
2037 need = 0;
2038 have = 0;
2039 for (k = 0; k < GET8(vmeta, vdc->Secondary_Element_Count); k++) {
2040 if (vmeta->bvdc[k] == NULL) {
2041 need += GET16(vmeta, vdc->Primary_Element_Count);
2042 continue;
2043 }
2044 cnt = GET16(vmeta, bvdc[k]->Primary_Element_Count);
2045 need += cnt;
2046 for (i = 0; i < cnt; i++) {
2047 val = GET32(vmeta, bvdc[k]->Physical_Disk_Sequence[i]);
2048 if (g_raid_md_ddf_get_disk(sc, NULL, val) != NULL)
2049 have++;
2050 }
2051 }
2052 G_RAID_DEBUG1(1, sc, "Volume %s now has %d of %d disks",
2053 vol->v_name, have, need);
2054 if (have == need)
2055 g_raid_md_ddf_start(vol);
2056 }
2057 }
2058
2059 static int
2060 g_raid_md_create_req_ddf(struct g_raid_md_object *md, struct g_class *mp,
2061 struct gctl_req *req, struct g_geom **gp)
2062 {
2063 struct g_geom *geom;
2064 struct g_raid_softc *sc;
2065 struct g_raid_md_ddf_object *mdi, *mdi1;
2066 char name[16];
2067 const char *fmtopt;
2068 int be = 1;
2069
2070 mdi = (struct g_raid_md_ddf_object *)md;
2071 fmtopt = gctl_get_asciiparam(req, "fmtopt");
2072 if (fmtopt == NULL || strcasecmp(fmtopt, "BE") == 0)
2073 be = 1;
2074 else if (strcasecmp(fmtopt, "LE") == 0)
2075 be = 0;
2076 else {
2077 gctl_error(req, "Incorrect fmtopt argument.");
2078 return (G_RAID_MD_TASTE_FAIL);
2079 }
2080
2081 /* Search for existing node. */
2082 LIST_FOREACH(geom, &mp->geom, geom) {
2083 sc = geom->softc;
2084 if (sc == NULL)
2085 continue;
2086 if (sc->sc_stopping != 0)
2087 continue;
2088 if (sc->sc_md->mdo_class != md->mdo_class)
2089 continue;
2090 mdi1 = (struct g_raid_md_ddf_object *)sc->sc_md;
2091 if (mdi1->mdio_bigendian != be)
2092 continue;
2093 break;
2094 }
2095 if (geom != NULL) {
2096 *gp = geom;
2097 return (G_RAID_MD_TASTE_EXISTING);
2098 }
2099
2100 /* Create new one if not found. */
2101 mdi->mdio_bigendian = be;
2102 snprintf(name, sizeof(name), "DDF%s", be ? "" : "-LE");
2103 sc = g_raid_create_node(mp, name, md);
2104 if (sc == NULL)
2105 return (G_RAID_MD_TASTE_FAIL);
2106 md->mdo_softc = sc;
2107 *gp = sc->sc_geom;
2108 return (G_RAID_MD_TASTE_NEW);
2109 }
2110
2111 static int
2112 g_raid_md_taste_ddf(struct g_raid_md_object *md, struct g_class *mp,
2113 struct g_consumer *cp, struct g_geom **gp)
2114 {
2115 struct g_consumer *rcp;
2116 struct g_provider *pp;
2117 struct g_raid_softc *sc;
2118 struct g_raid_disk *disk;
2119 struct ddf_meta meta;
2120 struct g_raid_md_ddf_perdisk *pd;
2121 struct g_raid_md_ddf_object *mdi;
2122 struct g_geom *geom;
2123 int error, result, be;
2124 char name[16];
2125
2126 G_RAID_DEBUG(1, "Tasting DDF on %s", cp->provider->name);
2127 mdi = (struct g_raid_md_ddf_object *)md;
2128 pp = cp->provider;
2129
2130 /* Read metadata from device. */
2131 g_topology_unlock();
2132 bzero(&meta, sizeof(meta));
2133 error = ddf_meta_read(cp, &meta);
2134 g_topology_lock();
2135 if (error != 0)
2136 return (G_RAID_MD_TASTE_FAIL);
2137 be = meta.bigendian;
2138
2139 /* Metadata valid. Print it. */
2140 g_raid_md_ddf_print(&meta);
2141
2142 /* Search for matching node. */
2143 sc = NULL;
2144 LIST_FOREACH(geom, &mp->geom, geom) {
2145 sc = geom->softc;
2146 if (sc == NULL)
2147 continue;
2148 if (sc->sc_stopping != 0)
2149 continue;
2150 if (sc->sc_md->mdo_class != md->mdo_class)
2151 continue;
2152 mdi = (struct g_raid_md_ddf_object *)sc->sc_md;
2153 if (mdi->mdio_bigendian != be)
2154 continue;
2155 break;
2156 }
2157
2158 /* Found matching node. */
2159 if (geom != NULL) {
2160 G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
2161 result = G_RAID_MD_TASTE_EXISTING;
2162
2163 } else { /* Not found matching node -- create one. */
2164 result = G_RAID_MD_TASTE_NEW;
2165 mdi->mdio_bigendian = be;
2166 snprintf(name, sizeof(name), "DDF%s", be ? "" : "-LE");
2167 sc = g_raid_create_node(mp, name, md);
2168 md->mdo_softc = sc;
2169 geom = sc->sc_geom;
2170 }
2171
2172 /* There is no return after this point, so we close passed consumer. */
2173 g_access(cp, -1, 0, 0);
2174
2175 rcp = g_new_consumer(geom);
2176 rcp->flags |= G_CF_DIRECT_RECEIVE;
2177 g_attach(rcp, pp);
2178 if (g_access(rcp, 1, 1, 1) != 0)
2179 ; //goto fail1;
2180
2181 g_topology_unlock();
2182 sx_xlock(&sc->sc_lock);
2183
2184 pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2185 pd->pd_meta = meta;
2186 disk = g_raid_create_disk(sc);
2187 disk->d_md_data = (void *)pd;
2188 disk->d_consumer = rcp;
2189 rcp->private = disk;
2190
2191 g_raid_get_disk_info(disk);
2192
2193 g_raid_md_ddf_new_disk(disk);
2194
2195 sx_xunlock(&sc->sc_lock);
2196 g_topology_lock();
2197 *gp = geom;
2198 return (result);
2199 }
2200
2201 static int
2202 g_raid_md_event_ddf(struct g_raid_md_object *md,
2203 struct g_raid_disk *disk, u_int event)
2204 {
2205 struct g_raid_softc *sc;
2206
2207 sc = md->mdo_softc;
2208 if (disk == NULL)
2209 return (-1);
2210 switch (event) {
2211 case G_RAID_DISK_E_DISCONNECTED:
2212 /* Delete disk. */
2213 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
2214 g_raid_destroy_disk(disk);
2215 g_raid_md_ddf_purge_volumes(sc);
2216
2217 /* Write updated metadata to all disks. */
2218 g_raid_md_write_ddf(md, NULL, NULL, NULL);
2219
2220 /* Check if anything left. */
2221 if (g_raid_ndisks(sc, -1) == 0)
2222 g_raid_destroy_node(sc, 0);
2223 else
2224 g_raid_md_ddf_refill(sc);
2225 return (0);
2226 }
2227 return (-2);
2228 }
2229
2230 static int
2231 g_raid_md_volume_event_ddf(struct g_raid_md_object *md,
2232 struct g_raid_volume *vol, u_int event)
2233 {
2234 struct g_raid_md_ddf_pervolume *pv;
2235
2236 pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2237 switch (event) {
2238 case G_RAID_VOLUME_E_STARTMD:
2239 if (!pv->pv_started)
2240 g_raid_md_ddf_start(vol);
2241 return (0);
2242 }
2243 return (-2);
2244 }
2245
2246 static int
2247 g_raid_md_ctl_ddf(struct g_raid_md_object *md,
2248 struct gctl_req *req)
2249 {
2250 struct g_raid_softc *sc;
2251 struct g_raid_volume *vol, *vol1;
2252 struct g_raid_subdisk *sd;
2253 struct g_raid_disk *disk, *disks[DDF_MAX_DISKS_HARD];
2254 struct g_raid_md_ddf_perdisk *pd;
2255 struct g_raid_md_ddf_pervolume *pv;
2256 struct g_raid_md_ddf_object *mdi;
2257 struct ddf_sa_record *sa;
2258 struct g_consumer *cp;
2259 struct g_provider *pp;
2260 char arg[16];
2261 const char *nodename, *verb, *volname, *levelname, *diskname;
2262 char *tmp;
2263 int *nargs, *force;
2264 off_t size, sectorsize, strip, offs[DDF_MAX_DISKS_HARD], esize;
2265 intmax_t *sizearg, *striparg;
2266 int i, numdisks, len, level, qual;
2267 int error;
2268
2269 sc = md->mdo_softc;
2270 mdi = (struct g_raid_md_ddf_object *)md;
2271 verb = gctl_get_param(req, "verb", NULL);
2272 nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
2273 error = 0;
2274
2275 if (strcmp(verb, "label") == 0) {
2276 if (*nargs < 4) {
2277 gctl_error(req, "Invalid number of arguments.");
2278 return (-1);
2279 }
2280 volname = gctl_get_asciiparam(req, "arg1");
2281 if (volname == NULL) {
2282 gctl_error(req, "No volume name.");
2283 return (-2);
2284 }
2285 levelname = gctl_get_asciiparam(req, "arg2");
2286 if (levelname == NULL) {
2287 gctl_error(req, "No RAID level.");
2288 return (-3);
2289 }
2290 if (g_raid_volume_str2level(levelname, &level, &qual)) {
2291 gctl_error(req, "Unknown RAID level '%s'.", levelname);
2292 return (-4);
2293 }
2294 numdisks = *nargs - 3;
2295 force = gctl_get_paraml(req, "force", sizeof(*force));
2296 if (!g_raid_md_ddf_supported(level, qual, numdisks,
2297 force ? *force : 0)) {
2298 gctl_error(req, "Unsupported RAID level "
2299 "(0x%02x/0x%02x), or number of disks (%d).",
2300 level, qual, numdisks);
2301 return (-5);
2302 }
2303
2304 /* Search for disks, connect them and probe. */
2305 size = INT64_MAX;
2306 sectorsize = 0;
2307 bzero(disks, sizeof(disks));
2308 bzero(offs, sizeof(offs));
2309 for (i = 0; i < numdisks; i++) {
2310 snprintf(arg, sizeof(arg), "arg%d", i + 3);
2311 diskname = gctl_get_asciiparam(req, arg);
2312 if (diskname == NULL) {
2313 gctl_error(req, "No disk name (%s).", arg);
2314 error = -6;
2315 break;
2316 }
2317 if (strcmp(diskname, "NONE") == 0)
2318 continue;
2319
2320 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2321 if (disk->d_consumer != NULL &&
2322 disk->d_consumer->provider != NULL &&
2323 strcmp(disk->d_consumer->provider->name,
2324 diskname) == 0)
2325 break;
2326 }
2327 if (disk != NULL) {
2328 if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2329 gctl_error(req, "Disk '%s' is in a "
2330 "wrong state (%s).", diskname,
2331 g_raid_disk_state2str(disk->d_state));
2332 error = -7;
2333 break;
2334 }
2335 pd = disk->d_md_data;
2336 if (ddf_meta_count_vdc(&pd->pd_meta, NULL) >=
2337 GET16(&pd->pd_meta, hdr->Max_Partitions)) {
2338 gctl_error(req, "No free partitions "
2339 "on disk '%s'.",
2340 diskname);
2341 error = -7;
2342 break;
2343 }
2344 pp = disk->d_consumer->provider;
2345 disks[i] = disk;
2346 ddf_meta_unused_range(&pd->pd_meta,
2347 &offs[i], &esize);
2348 offs[i] *= pp->sectorsize;
2349 size = MIN(size, (off_t)esize * pp->sectorsize);
2350 sectorsize = MAX(sectorsize, pp->sectorsize);
2351 continue;
2352 }
2353
2354 g_topology_lock();
2355 cp = g_raid_open_consumer(sc, diskname);
2356 if (cp == NULL) {
2357 gctl_error(req, "Can't open disk '%s'.",
2358 diskname);
2359 g_topology_unlock();
2360 error = -8;
2361 break;
2362 }
2363 pp = cp->provider;
2364 pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2365 disk = g_raid_create_disk(sc);
2366 disk->d_md_data = (void *)pd;
2367 disk->d_consumer = cp;
2368 disks[i] = disk;
2369 cp->private = disk;
2370 ddf_meta_create(disk, &mdi->mdio_meta);
2371 if (mdi->mdio_meta.hdr == NULL)
2372 ddf_meta_copy(&mdi->mdio_meta, &pd->pd_meta);
2373 else
2374 ddf_meta_update(&mdi->mdio_meta, &pd->pd_meta);
2375 g_topology_unlock();
2376
2377 g_raid_get_disk_info(disk);
2378
2379 /* Reserve some space for metadata. */
2380 size = MIN(size, GET64(&pd->pd_meta,
2381 pdr->entry[0].Configured_Size) * pp->sectorsize);
2382 sectorsize = MAX(sectorsize, pp->sectorsize);
2383 }
2384 if (error != 0) {
2385 for (i = 0; i < numdisks; i++) {
2386 if (disks[i] != NULL &&
2387 disks[i]->d_state == G_RAID_DISK_S_NONE)
2388 g_raid_destroy_disk(disks[i]);
2389 }
2390 return (error);
2391 }
2392
2393 if (sectorsize <= 0) {
2394 gctl_error(req, "Can't get sector size.");
2395 return (-8);
2396 }
2397
2398 /* Handle size argument. */
2399 len = sizeof(*sizearg);
2400 sizearg = gctl_get_param(req, "size", &len);
2401 if (sizearg != NULL && len == sizeof(*sizearg) &&
2402 *sizearg > 0) {
2403 if (*sizearg > size) {
2404 gctl_error(req, "Size too big %lld > %lld.",
2405 (long long)*sizearg, (long long)size);
2406 return (-9);
2407 }
2408 size = *sizearg;
2409 }
2410
2411 /* Handle strip argument. */
2412 strip = 131072;
2413 len = sizeof(*striparg);
2414 striparg = gctl_get_param(req, "strip", &len);
2415 if (striparg != NULL && len == sizeof(*striparg) &&
2416 *striparg > 0) {
2417 if (*striparg < sectorsize) {
2418 gctl_error(req, "Strip size too small.");
2419 return (-10);
2420 }
2421 if (*striparg % sectorsize != 0) {
2422 gctl_error(req, "Incorrect strip size.");
2423 return (-11);
2424 }
2425 strip = *striparg;
2426 }
2427
2428 /* Round size down to strip or sector. */
2429 if (level == G_RAID_VOLUME_RL_RAID1 ||
2430 level == G_RAID_VOLUME_RL_RAID3 ||
2431 level == G_RAID_VOLUME_RL_SINGLE ||
2432 level == G_RAID_VOLUME_RL_CONCAT)
2433 size -= (size % sectorsize);
2434 else if (level == G_RAID_VOLUME_RL_RAID1E &&
2435 (numdisks & 1) != 0)
2436 size -= (size % (2 * strip));
2437 else
2438 size -= (size % strip);
2439 if (size <= 0) {
2440 gctl_error(req, "Size too small.");
2441 return (-13);
2442 }
2443
2444 /* We have all we need, create things: volume, ... */
2445 pv = malloc(sizeof(*pv), M_MD_DDF, M_WAITOK | M_ZERO);
2446 ddf_vol_meta_create(&pv->pv_meta, &mdi->mdio_meta);
2447 pv->pv_started = 1;
2448 vol = g_raid_create_volume(sc, volname, -1);
2449 vol->v_md_data = pv;
2450 vol->v_raid_level = level;
2451 vol->v_raid_level_qualifier = qual;
2452 vol->v_strip_size = strip;
2453 vol->v_disks_count = numdisks;
2454 if (level == G_RAID_VOLUME_RL_RAID0 ||
2455 level == G_RAID_VOLUME_RL_CONCAT ||
2456 level == G_RAID_VOLUME_RL_SINGLE)
2457 vol->v_mediasize = size * numdisks;
2458 else if (level == G_RAID_VOLUME_RL_RAID1)
2459 vol->v_mediasize = size;
2460 else if (level == G_RAID_VOLUME_RL_RAID3 ||
2461 level == G_RAID_VOLUME_RL_RAID4 ||
2462 level == G_RAID_VOLUME_RL_RAID5)
2463 vol->v_mediasize = size * (numdisks - 1);
2464 else if (level == G_RAID_VOLUME_RL_RAID5R) {
2465 vol->v_mediasize = size * (numdisks - 1);
2466 vol->v_rotate_parity = 1024;
2467 } else if (level == G_RAID_VOLUME_RL_RAID6 ||
2468 level == G_RAID_VOLUME_RL_RAID5E ||
2469 level == G_RAID_VOLUME_RL_RAID5EE)
2470 vol->v_mediasize = size * (numdisks - 2);
2471 else if (level == G_RAID_VOLUME_RL_RAIDMDF) {
2472 if (numdisks < 5)
2473 vol->v_mdf_pdisks = 2;
2474 else
2475 vol->v_mdf_pdisks = 3;
2476 vol->v_mdf_polynomial = 0x11d;
2477 vol->v_mdf_method = 0x00;
2478 vol->v_mediasize = size * (numdisks - vol->v_mdf_pdisks);
2479 } else { /* RAID1E */
2480 vol->v_mediasize = ((size * numdisks) / strip / 2) *
2481 strip;
2482 }
2483 vol->v_sectorsize = sectorsize;
2484 g_raid_start_volume(vol);
2485
2486 /* , and subdisks. */
2487 for (i = 0; i < numdisks; i++) {
2488 disk = disks[i];
2489 sd = &vol->v_subdisks[i];
2490 sd->sd_disk = disk;
2491 sd->sd_offset = offs[i];
2492 sd->sd_size = size;
2493 if (disk == NULL)
2494 continue;
2495 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
2496 g_raid_change_disk_state(disk,
2497 G_RAID_DISK_S_ACTIVE);
2498 g_raid_change_subdisk_state(sd,
2499 G_RAID_SUBDISK_S_ACTIVE);
2500 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
2501 G_RAID_EVENT_SUBDISK);
2502 }
2503
2504 /* Write metadata based on created entities. */
2505 G_RAID_DEBUG1(0, sc, "Array started.");
2506 g_raid_md_write_ddf(md, vol, NULL, NULL);
2507
2508 /* Pickup any STALE/SPARE disks to refill array if needed. */
2509 g_raid_md_ddf_refill(sc);
2510
2511 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
2512 G_RAID_EVENT_VOLUME);
2513 return (0);
2514 }
2515 if (strcmp(verb, "add") == 0) {
2516 gctl_error(req, "`add` command is not applicable, "
2517 "use `label` instead.");
2518 return (-99);
2519 }
2520 if (strcmp(verb, "delete") == 0) {
2521 nodename = gctl_get_asciiparam(req, "arg0");
2522 if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
2523 nodename = NULL;
2524
2525 /* Full node destruction. */
2526 if (*nargs == 1 && nodename != NULL) {
2527 /* Check if some volume is still open. */
2528 force = gctl_get_paraml(req, "force", sizeof(*force));
2529 if (force != NULL && *force == 0 &&
2530 g_raid_nopens(sc) != 0) {
2531 gctl_error(req, "Some volume is still open.");
2532 return (-4);
2533 }
2534
2535 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2536 if (disk->d_consumer)
2537 ddf_meta_erase(disk->d_consumer);
2538 }
2539 g_raid_destroy_node(sc, 0);
2540 return (0);
2541 }
2542
2543 /* Destroy specified volume. If it was last - all node. */
2544 if (*nargs > 2) {
2545 gctl_error(req, "Invalid number of arguments.");
2546 return (-1);
2547 }
2548 volname = gctl_get_asciiparam(req,
2549 nodename != NULL ? "arg1" : "arg0");
2550 if (volname == NULL) {
2551 gctl_error(req, "No volume name.");
2552 return (-2);
2553 }
2554
2555 /* Search for volume. */
2556 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2557 if (strcmp(vol->v_name, volname) == 0)
2558 break;
2559 pp = vol->v_provider;
2560 if (pp == NULL)
2561 continue;
2562 if (strcmp(pp->name, volname) == 0)
2563 break;
2564 if (strncmp(pp->name, "raid/", 5) == 0 &&
2565 strcmp(pp->name + 5, volname) == 0)
2566 break;
2567 }
2568 if (vol == NULL) {
2569 i = strtol(volname, &tmp, 10);
2570 if (verb != volname && tmp[0] == 0) {
2571 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2572 if (vol->v_global_id == i)
2573 break;
2574 }
2575 }
2576 }
2577 if (vol == NULL) {
2578 gctl_error(req, "Volume '%s' not found.", volname);
2579 return (-3);
2580 }
2581
2582 /* Check if volume is still open. */
2583 force = gctl_get_paraml(req, "force", sizeof(*force));
2584 if (force != NULL && *force == 0 &&
2585 vol->v_provider_open != 0) {
2586 gctl_error(req, "Volume is still open.");
2587 return (-4);
2588 }
2589
2590 /* Destroy volume and potentially node. */
2591 i = 0;
2592 TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
2593 i++;
2594 if (i >= 2) {
2595 g_raid_destroy_volume(vol);
2596 g_raid_md_ddf_purge_disks(sc);
2597 g_raid_md_write_ddf(md, NULL, NULL, NULL);
2598 } else {
2599 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2600 if (disk->d_consumer)
2601 ddf_meta_erase(disk->d_consumer);
2602 }
2603 g_raid_destroy_node(sc, 0);
2604 }
2605 return (0);
2606 }
2607 if (strcmp(verb, "remove") == 0 ||
2608 strcmp(verb, "fail") == 0) {
2609 if (*nargs < 2) {
2610 gctl_error(req, "Invalid number of arguments.");
2611 return (-1);
2612 }
2613 for (i = 1; i < *nargs; i++) {
2614 snprintf(arg, sizeof(arg), "arg%d", i);
2615 diskname = gctl_get_asciiparam(req, arg);
2616 if (diskname == NULL) {
2617 gctl_error(req, "No disk name (%s).", arg);
2618 error = -2;
2619 break;
2620 }
2621 if (strncmp(diskname, _PATH_DEV, 5) == 0)
2622 diskname += 5;
2623
2624 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2625 if (disk->d_consumer != NULL &&
2626 disk->d_consumer->provider != NULL &&
2627 strcmp(disk->d_consumer->provider->name,
2628 diskname) == 0)
2629 break;
2630 }
2631 if (disk == NULL) {
2632 gctl_error(req, "Disk '%s' not found.",
2633 diskname);
2634 error = -3;
2635 break;
2636 }
2637
2638 if (strcmp(verb, "fail") == 0) {
2639 g_raid_md_fail_disk_ddf(md, NULL, disk);
2640 continue;
2641 }
2642
2643 /* Erase metadata on deleting disk and destroy it. */
2644 ddf_meta_erase(disk->d_consumer);
2645 g_raid_destroy_disk(disk);
2646 }
2647 g_raid_md_ddf_purge_volumes(sc);
2648
2649 /* Write updated metadata to remaining disks. */
2650 g_raid_md_write_ddf(md, NULL, NULL, NULL);
2651
2652 /* Check if anything left. */
2653 if (g_raid_ndisks(sc, -1) == 0)
2654 g_raid_destroy_node(sc, 0);
2655 else
2656 g_raid_md_ddf_refill(sc);
2657 return (error);
2658 }
2659 if (strcmp(verb, "insert") == 0) {
2660 if (*nargs < 2) {
2661 gctl_error(req, "Invalid number of arguments.");
2662 return (-1);
2663 }
2664 for (i = 1; i < *nargs; i++) {
2665 /* Get disk name. */
2666 snprintf(arg, sizeof(arg), "arg%d", i);
2667 diskname = gctl_get_asciiparam(req, arg);
2668 if (diskname == NULL) {
2669 gctl_error(req, "No disk name (%s).", arg);
2670 error = -3;
2671 break;
2672 }
2673
2674 /* Try to find provider with specified name. */
2675 g_topology_lock();
2676 cp = g_raid_open_consumer(sc, diskname);
2677 if (cp == NULL) {
2678 gctl_error(req, "Can't open disk '%s'.",
2679 diskname);
2680 g_topology_unlock();
2681 error = -4;
2682 break;
2683 }
2684 pp = cp->provider;
2685 g_topology_unlock();
2686
2687 pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2688
2689 disk = g_raid_create_disk(sc);
2690 disk->d_consumer = cp;
2691 disk->d_md_data = (void *)pd;
2692 cp->private = disk;
2693
2694 g_raid_get_disk_info(disk);
2695
2696 /* Welcome the "new" disk. */
2697 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
2698 ddf_meta_create(disk, &mdi->mdio_meta);
2699 sa = ddf_meta_find_sa(&pd->pd_meta, 1);
2700 if (sa != NULL) {
2701 SET32D(&pd->pd_meta, sa->Signature,
2702 DDF_SA_SIGNATURE);
2703 SET8D(&pd->pd_meta, sa->Spare_Type, 0);
2704 SET16D(&pd->pd_meta, sa->Populated_SAEs, 0);
2705 SET16D(&pd->pd_meta, sa->MAX_SAE_Supported,
2706 (GET16(&pd->pd_meta, hdr->Configuration_Record_Length) *
2707 pd->pd_meta.sectorsize -
2708 sizeof(struct ddf_sa_record)) /
2709 sizeof(struct ddf_sa_entry));
2710 }
2711 if (mdi->mdio_meta.hdr == NULL)
2712 ddf_meta_copy(&mdi->mdio_meta, &pd->pd_meta);
2713 else
2714 ddf_meta_update(&mdi->mdio_meta, &pd->pd_meta);
2715 g_raid_md_write_ddf(md, NULL, NULL, NULL);
2716 g_raid_md_ddf_refill(sc);
2717 }
2718 return (error);
2719 }
2720 return (-100);
2721 }
2722
2723 static int
2724 g_raid_md_write_ddf(struct g_raid_md_object *md, struct g_raid_volume *tvol,
2725 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2726 {
2727 struct g_raid_softc *sc;
2728 struct g_raid_volume *vol;
2729 struct g_raid_subdisk *sd;
2730 struct g_raid_disk *disk;
2731 struct g_raid_md_ddf_perdisk *pd;
2732 struct g_raid_md_ddf_pervolume *pv;
2733 struct g_raid_md_ddf_object *mdi;
2734 struct ddf_meta *gmeta;
2735 struct ddf_vol_meta *vmeta;
2736 struct ddf_vdc_record *vdc;
2737 struct ddf_sa_record *sa;
2738 uint64_t *val2;
2739 int i, j, pos, bvd, size;
2740
2741 sc = md->mdo_softc;
2742 mdi = (struct g_raid_md_ddf_object *)md;
2743 gmeta = &mdi->mdio_meta;
2744
2745 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2746 return (0);
2747
2748 /*
2749 * Clear disk flags to let only really needed ones to be reset.
2750 * Do it only if there are no volumes in starting state now,
2751 * as they can update disk statuses yet and we may kill innocent.
2752 */
2753 if (mdi->mdio_starting == 0) {
2754 for (i = 0; i < GET16(gmeta, pdr->Populated_PDEs); i++) {
2755 if (isff(gmeta->pdr->entry[i].PD_GUID, 24))
2756 continue;
2757 SET16(gmeta, pdr->entry[i].PD_Type,
2758 GET16(gmeta, pdr->entry[i].PD_Type) &
2759 ~(DDF_PDE_PARTICIPATING |
2760 DDF_PDE_GLOBAL_SPARE | DDF_PDE_CONFIG_SPARE));
2761 if ((GET16(gmeta, pdr->entry[i].PD_State) &
2762 DDF_PDE_PFA) == 0)
2763 SET16(gmeta, pdr->entry[i].PD_State, 0);
2764 }
2765 }
2766
2767 /* Generate/update new per-volume metadata. */
2768 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2769 pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2770 if (vol->v_stopping || !pv->pv_started)
2771 continue;
2772 vmeta = &pv->pv_meta;
2773
2774 SET32(vmeta, vdc->Sequence_Number,
2775 GET32(vmeta, vdc->Sequence_Number) + 1);
2776 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E &&
2777 vol->v_disks_count % 2 == 0)
2778 SET16(vmeta, vdc->Primary_Element_Count, 2);
2779 else
2780 SET16(vmeta, vdc->Primary_Element_Count,
2781 vol->v_disks_count);
2782 SET8(vmeta, vdc->Stripe_Size,
2783 ffs(vol->v_strip_size / vol->v_sectorsize) - 1);
2784 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E &&
2785 vol->v_disks_count % 2 == 0) {
2786 SET8(vmeta, vdc->Primary_RAID_Level,
2787 DDF_VDCR_RAID1);
2788 SET8(vmeta, vdc->RLQ, 0);
2789 SET8(vmeta, vdc->Secondary_Element_Count,
2790 vol->v_disks_count / 2);
2791 SET8(vmeta, vdc->Secondary_RAID_Level, 0);
2792 } else {
2793 SET8(vmeta, vdc->Primary_RAID_Level,
2794 vol->v_raid_level);
2795 SET8(vmeta, vdc->RLQ,
2796 vol->v_raid_level_qualifier);
2797 SET8(vmeta, vdc->Secondary_Element_Count, 1);
2798 SET8(vmeta, vdc->Secondary_RAID_Level, 0);
2799 }
2800 SET8(vmeta, vdc->Secondary_Element_Seq, 0);
2801 SET64(vmeta, vdc->Block_Count, 0);
2802 SET64(vmeta, vdc->VD_Size, vol->v_mediasize / vol->v_sectorsize);
2803 SET16(vmeta, vdc->Block_Size, vol->v_sectorsize);
2804 SET8(vmeta, vdc->Rotate_Parity_count,
2805 fls(vol->v_rotate_parity) - 1);
2806 SET8(vmeta, vdc->MDF_Parity_Disks, vol->v_mdf_pdisks);
2807 SET16(vmeta, vdc->MDF_Parity_Generator_Polynomial,
2808 vol->v_mdf_polynomial);
2809 SET8(vmeta, vdc->MDF_Constant_Generation_Method,
2810 vol->v_mdf_method);
2811
2812 SET16(vmeta, vde->VD_Number, vol->v_global_id);
2813 if (vol->v_state <= G_RAID_VOLUME_S_BROKEN)
2814 SET8(vmeta, vde->VD_State, DDF_VDE_FAILED);
2815 else if (vol->v_state <= G_RAID_VOLUME_S_DEGRADED)
2816 SET8(vmeta, vde->VD_State, DDF_VDE_DEGRADED);
2817 else if (vol->v_state <= G_RAID_VOLUME_S_SUBOPTIMAL)
2818 SET8(vmeta, vde->VD_State, DDF_VDE_PARTIAL);
2819 else
2820 SET8(vmeta, vde->VD_State, DDF_VDE_OPTIMAL);
2821 if (vol->v_dirty ||
2822 g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) > 0 ||
2823 g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC) > 0)
2824 SET8(vmeta, vde->VD_State,
2825 GET8(vmeta, vde->VD_State) | DDF_VDE_DIRTY);
2826 SET8(vmeta, vde->Init_State, DDF_VDE_INIT_FULL); // XXX
2827 ddf_meta_put_name(vmeta, vol->v_name);
2828
2829 for (i = 0; i < vol->v_disks_count; i++) {
2830 sd = &vol->v_subdisks[i];
2831 bvd = i / GET16(vmeta, vdc->Primary_Element_Count);
2832 pos = i % GET16(vmeta, vdc->Primary_Element_Count);
2833 disk = sd->sd_disk;
2834 if (disk != NULL) {
2835 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2836 if (vmeta->bvdc[bvd] == NULL) {
2837 size = GET16(vmeta,
2838 hdr->Configuration_Record_Length) *
2839 vmeta->sectorsize;
2840 vmeta->bvdc[bvd] = malloc(size,
2841 M_MD_DDF, M_WAITOK);
2842 memset(vmeta->bvdc[bvd], 0xff, size);
2843 }
2844 memcpy(vmeta->bvdc[bvd], vmeta->vdc,
2845 sizeof(struct ddf_vdc_record));
2846 SET8(vmeta, bvdc[bvd]->Secondary_Element_Seq, bvd);
2847 SET64(vmeta, bvdc[bvd]->Block_Count,
2848 sd->sd_size / vol->v_sectorsize);
2849 SET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos],
2850 GET32(&pd->pd_meta, pdd->PD_Reference));
2851 val2 = (uint64_t *)&(vmeta->bvdc[bvd]->Physical_Disk_Sequence[
2852 GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
2853 SET64P(vmeta, val2 + pos,
2854 sd->sd_offset / vol->v_sectorsize);
2855 }
2856 if (vmeta->bvdc[bvd] == NULL)
2857 continue;
2858
2859 j = ddf_meta_find_pd(gmeta, NULL,
2860 GET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos]));
2861 if (j < 0)
2862 continue;
2863 SET16(gmeta, pdr->entry[j].PD_Type,
2864 GET16(gmeta, pdr->entry[j].PD_Type) |
2865 DDF_PDE_PARTICIPATING);
2866 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
2867 SET16(gmeta, pdr->entry[j].PD_State,
2868 GET16(gmeta, pdr->entry[j].PD_State) |
2869 (DDF_PDE_FAILED | DDF_PDE_MISSING));
2870 else if (sd->sd_state == G_RAID_SUBDISK_S_FAILED)
2871 SET16(gmeta, pdr->entry[j].PD_State,
2872 GET16(gmeta, pdr->entry[j].PD_State) |
2873 (DDF_PDE_FAILED | DDF_PDE_PFA));
2874 else if (sd->sd_state <= G_RAID_SUBDISK_S_REBUILD)
2875 SET16(gmeta, pdr->entry[j].PD_State,
2876 GET16(gmeta, pdr->entry[j].PD_State) |
2877 DDF_PDE_REBUILD);
2878 else
2879 SET16(gmeta, pdr->entry[j].PD_State,
2880 GET16(gmeta, pdr->entry[j].PD_State) |
2881 DDF_PDE_ONLINE);
2882 }
2883 }
2884
2885 /* Mark spare and failed disks as such. */
2886 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2887 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2888 i = ddf_meta_find_pd(gmeta, NULL,
2889 GET32(&pd->pd_meta, pdd->PD_Reference));
2890 if (i < 0)
2891 continue;
2892 if (disk->d_state == G_RAID_DISK_S_FAILED) {
2893 SET16(gmeta, pdr->entry[i].PD_State,
2894 GET16(gmeta, pdr->entry[i].PD_State) |
2895 (DDF_PDE_FAILED | DDF_PDE_PFA));
2896 }
2897 if (disk->d_state != G_RAID_DISK_S_SPARE)
2898 continue;
2899 sa = ddf_meta_find_sa(&pd->pd_meta, 0);
2900 if (sa == NULL ||
2901 (GET8D(&pd->pd_meta, sa->Spare_Type) &
2902 DDF_SAR_TYPE_DEDICATED) == 0) {
2903 SET16(gmeta, pdr->entry[i].PD_Type,
2904 GET16(gmeta, pdr->entry[i].PD_Type) |
2905 DDF_PDE_GLOBAL_SPARE);
2906 } else {
2907 SET16(gmeta, pdr->entry[i].PD_Type,
2908 GET16(gmeta, pdr->entry[i].PD_Type) |
2909 DDF_PDE_CONFIG_SPARE);
2910 }
2911 SET16(gmeta, pdr->entry[i].PD_State,
2912 GET16(gmeta, pdr->entry[i].PD_State) |
2913 DDF_PDE_ONLINE);
2914 }
2915
2916 /* Remove disks without "participating" flag (unused). */
2917 for (i = 0, j = -1; i < GET16(gmeta, pdr->Populated_PDEs); i++) {
2918 if (isff(gmeta->pdr->entry[i].PD_GUID, 24))
2919 continue;
2920 if ((GET16(gmeta, pdr->entry[i].PD_Type) &
2921 (DDF_PDE_PARTICIPATING |
2922 DDF_PDE_GLOBAL_SPARE | DDF_PDE_CONFIG_SPARE)) != 0 ||
2923 g_raid_md_ddf_get_disk(sc,
2924 NULL, GET32(gmeta, pdr->entry[i].PD_Reference)) != NULL)
2925 j = i;
2926 else
2927 memset(&gmeta->pdr->entry[i], 0xff,
2928 sizeof(struct ddf_pd_entry));
2929 }
2930 SET16(gmeta, pdr->Populated_PDEs, j + 1);
2931
2932 /* Update per-disk metadata and write them. */
2933 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2934 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2935 if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
2936 disk->d_state != G_RAID_DISK_S_SPARE)
2937 continue;
2938 /* Update PDR. */
2939 memcpy(pd->pd_meta.pdr, gmeta->pdr,
2940 GET32(&pd->pd_meta, hdr->pdr_length) *
2941 pd->pd_meta.sectorsize);
2942 /* Update VDR. */
2943 SET16(&pd->pd_meta, vdr->Populated_VDEs, 0);
2944 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2945 if (vol->v_stopping)
2946 continue;
2947 pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2948 i = ddf_meta_find_vd(&pd->pd_meta,
2949 pv->pv_meta.vde->VD_GUID);
2950 if (i < 0)
2951 i = ddf_meta_find_vd(&pd->pd_meta, NULL);
2952 if (i >= 0)
2953 memcpy(&pd->pd_meta.vdr->entry[i],
2954 pv->pv_meta.vde,
2955 sizeof(struct ddf_vd_entry));
2956 }
2957 /* Update VDC. */
2958 if (mdi->mdio_starting == 0) {
2959 /* Remove all VDCs to restore needed later. */
2960 j = GETCRNUM(&pd->pd_meta);
2961 for (i = 0; i < j; i++) {
2962 vdc = GETVDCPTR(&pd->pd_meta, i);
2963 if (GET32D(&pd->pd_meta, vdc->Signature) !=
2964 DDF_VDCR_SIGNATURE)
2965 continue;
2966 SET32D(&pd->pd_meta, vdc->Signature, 0xffffffff);
2967 }
2968 }
2969 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2970 vol = sd->sd_volume;
2971 if (vol->v_stopping)
2972 continue;
2973 pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2974 vmeta = &pv->pv_meta;
2975 vdc = ddf_meta_find_vdc(&pd->pd_meta,
2976 vmeta->vde->VD_GUID);
2977 if (vdc == NULL)
2978 vdc = ddf_meta_find_vdc(&pd->pd_meta, NULL);
2979 if (vdc != NULL) {
2980 bvd = sd->sd_pos / GET16(vmeta,
2981 vdc->Primary_Element_Count);
2982 memcpy(vdc, vmeta->bvdc[bvd],
2983 GET16(&pd->pd_meta,
2984 hdr->Configuration_Record_Length) *
2985 pd->pd_meta.sectorsize);
2986 }
2987 }
2988 G_RAID_DEBUG(1, "Writing DDF metadata to %s",
2989 g_raid_get_diskname(disk));
2990 g_raid_md_ddf_print(&pd->pd_meta);
2991 ddf_meta_write(disk->d_consumer, &pd->pd_meta);
2992 }
2993 return (0);
2994 }
2995
2996 static int
2997 g_raid_md_fail_disk_ddf(struct g_raid_md_object *md,
2998 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2999 {
3000 struct g_raid_softc *sc;
3001 struct g_raid_md_ddf_perdisk *pd;
3002 struct g_raid_subdisk *sd;
3003 int i;
3004
3005 sc = md->mdo_softc;
3006 pd = (struct g_raid_md_ddf_perdisk *)tdisk->d_md_data;
3007
3008 /* We can't fail disk that is not a part of array now. */
3009 if (tdisk->d_state != G_RAID_DISK_S_ACTIVE)
3010 return (-1);
3011
3012 /*
3013 * Mark disk as failed in metadata and try to write that metadata
3014 * to the disk itself to prevent it's later resurrection as STALE.
3015 */
3016 G_RAID_DEBUG(1, "Writing DDF metadata to %s",
3017 g_raid_get_diskname(tdisk));
3018 i = ddf_meta_find_pd(&pd->pd_meta, NULL, GET32(&pd->pd_meta, pdd->PD_Reference));
3019 SET16(&pd->pd_meta, pdr->entry[i].PD_State, DDF_PDE_FAILED | DDF_PDE_PFA);
3020 if (tdisk->d_consumer != NULL)
3021 ddf_meta_write(tdisk->d_consumer, &pd->pd_meta);
3022
3023 /* Change states. */
3024 g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
3025 TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
3026 g_raid_change_subdisk_state(sd,
3027 G_RAID_SUBDISK_S_FAILED);
3028 g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
3029 G_RAID_EVENT_SUBDISK);
3030 }
3031
3032 /* Write updated metadata to remaining disks. */
3033 g_raid_md_write_ddf(md, NULL, NULL, tdisk);
3034
3035 g_raid_md_ddf_refill(sc);
3036 return (0);
3037 }
3038
3039 static int
3040 g_raid_md_free_disk_ddf(struct g_raid_md_object *md,
3041 struct g_raid_disk *disk)
3042 {
3043 struct g_raid_md_ddf_perdisk *pd;
3044
3045 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
3046 ddf_meta_free(&pd->pd_meta);
3047 free(pd, M_MD_DDF);
3048 disk->d_md_data = NULL;
3049 return (0);
3050 }
3051
3052 static int
3053 g_raid_md_free_volume_ddf(struct g_raid_md_object *md,
3054 struct g_raid_volume *vol)
3055 {
3056 struct g_raid_md_ddf_object *mdi;
3057 struct g_raid_md_ddf_pervolume *pv;
3058
3059 mdi = (struct g_raid_md_ddf_object *)md;
3060 pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
3061 ddf_vol_meta_free(&pv->pv_meta);
3062 if (!pv->pv_started) {
3063 pv->pv_started = 1;
3064 mdi->mdio_starting--;
3065 callout_stop(&pv->pv_start_co);
3066 }
3067 free(pv, M_MD_DDF);
3068 vol->v_md_data = NULL;
3069 return (0);
3070 }
3071
3072 static int
3073 g_raid_md_free_ddf(struct g_raid_md_object *md)
3074 {
3075 struct g_raid_md_ddf_object *mdi;
3076
3077 mdi = (struct g_raid_md_ddf_object *)md;
3078 if (!mdi->mdio_started) {
3079 mdi->mdio_started = 0;
3080 callout_stop(&mdi->mdio_start_co);
3081 G_RAID_DEBUG1(1, md->mdo_softc,
3082 "root_mount_rel %p", mdi->mdio_rootmount);
3083 root_mount_rel(mdi->mdio_rootmount);
3084 mdi->mdio_rootmount = NULL;
3085 }
3086 ddf_meta_free(&mdi->mdio_meta);
3087 return (0);
3088 }
3089
3090 G_RAID_MD_DECLARE(ddf, "DDF");
Cache object: da4010e1ada89ab8309ef3149bba92c9
|