FreeBSD/Linux Kernel Cross Reference
sys/geom/raid/md_ddf.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2012 Alexander Motin <mav@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/gsb_crc32.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/systm.h>
43 #include <sys/time.h>
44 #include <sys/clock.h>
45 #include <sys/disk.h>
46 #include <geom/geom.h>
47 #include <geom/geom_dbg.h>
48 #include "geom/raid/g_raid.h"
49 #include "geom/raid/md_ddf.h"
50 #include "g_raid_md_if.h"
51
52 static MALLOC_DEFINE(M_MD_DDF, "md_ddf_data", "GEOM_RAID DDF metadata");
53
54 #define DDF_MAX_DISKS_HARD 128
55
56 #define DDF_MAX_DISKS 16
57 #define DDF_MAX_VDISKS 7
58 #define DDF_MAX_PARTITIONS 1
59
60 #define DECADE (3600*24*(365*10+2)) /* 10 years in seconds. */
61
62 struct ddf_meta {
63 u_int sectorsize;
64 u_int bigendian;
65 struct ddf_header *hdr;
66 struct ddf_cd_record *cdr;
67 struct ddf_pd_record *pdr;
68 struct ddf_vd_record *vdr;
69 void *cr;
70 struct ddf_pdd_record *pdd;
71 struct ddf_bbm_log *bbm;
72 };
73
74 struct ddf_vol_meta {
75 u_int sectorsize;
76 u_int bigendian;
77 struct ddf_header *hdr;
78 struct ddf_cd_record *cdr;
79 struct ddf_vd_entry *vde;
80 struct ddf_vdc_record *vdc;
81 struct ddf_vdc_record *bvdc[DDF_MAX_DISKS_HARD];
82 };
83
84 struct g_raid_md_ddf_perdisk {
85 struct ddf_meta pd_meta;
86 };
87
88 struct g_raid_md_ddf_pervolume {
89 struct ddf_vol_meta pv_meta;
90 int pv_started;
91 struct callout pv_start_co; /* STARTING state timer. */
92 };
93
94 struct g_raid_md_ddf_object {
95 struct g_raid_md_object mdio_base;
96 u_int mdio_bigendian;
97 struct ddf_meta mdio_meta;
98 int mdio_starting;
99 struct callout mdio_start_co; /* STARTING state timer. */
100 int mdio_started;
101 struct root_hold_token *mdio_rootmount; /* Root mount delay token. */
102 };
103
104 static g_raid_md_create_req_t g_raid_md_create_req_ddf;
105 static g_raid_md_taste_t g_raid_md_taste_ddf;
106 static g_raid_md_event_t g_raid_md_event_ddf;
107 static g_raid_md_volume_event_t g_raid_md_volume_event_ddf;
108 static g_raid_md_ctl_t g_raid_md_ctl_ddf;
109 static g_raid_md_write_t g_raid_md_write_ddf;
110 static g_raid_md_fail_disk_t g_raid_md_fail_disk_ddf;
111 static g_raid_md_free_disk_t g_raid_md_free_disk_ddf;
112 static g_raid_md_free_volume_t g_raid_md_free_volume_ddf;
113 static g_raid_md_free_t g_raid_md_free_ddf;
114
115 static kobj_method_t g_raid_md_ddf_methods[] = {
116 KOBJMETHOD(g_raid_md_create_req, g_raid_md_create_req_ddf),
117 KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_ddf),
118 KOBJMETHOD(g_raid_md_event, g_raid_md_event_ddf),
119 KOBJMETHOD(g_raid_md_volume_event, g_raid_md_volume_event_ddf),
120 KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_ddf),
121 KOBJMETHOD(g_raid_md_write, g_raid_md_write_ddf),
122 KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_ddf),
123 KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_ddf),
124 KOBJMETHOD(g_raid_md_free_volume, g_raid_md_free_volume_ddf),
125 KOBJMETHOD(g_raid_md_free, g_raid_md_free_ddf),
126 { 0, 0 }
127 };
128
129 static struct g_raid_md_class g_raid_md_ddf_class = {
130 "DDF",
131 g_raid_md_ddf_methods,
132 sizeof(struct g_raid_md_ddf_object),
133 .mdc_enable = 1,
134 .mdc_priority = 100
135 };
136
137 #define GET8(m, f) ((m)->f)
138 #define GET16(m, f) ((m)->bigendian ? be16dec(&(m)->f) : le16dec(&(m)->f))
139 #define GET32(m, f) ((m)->bigendian ? be32dec(&(m)->f) : le32dec(&(m)->f))
140 #define GET64(m, f) ((m)->bigendian ? be64dec(&(m)->f) : le64dec(&(m)->f))
141 #define GET8D(m, f) (f)
142 #define GET16D(m, f) ((m)->bigendian ? be16dec(&f) : le16dec(&f))
143 #define GET32D(m, f) ((m)->bigendian ? be32dec(&f) : le32dec(&f))
144 #define GET64D(m, f) ((m)->bigendian ? be64dec(&f) : le64dec(&f))
145 #define GET8P(m, f) (*(f))
146 #define GET16P(m, f) ((m)->bigendian ? be16dec(f) : le16dec(f))
147 #define GET32P(m, f) ((m)->bigendian ? be32dec(f) : le32dec(f))
148 #define GET64P(m, f) ((m)->bigendian ? be64dec(f) : le64dec(f))
149
150 #define SET8P(m, f, v) \
151 (*(f) = (v))
152 #define SET16P(m, f, v) \
153 do { \
154 if ((m)->bigendian) \
155 be16enc((f), (v)); \
156 else \
157 le16enc((f), (v)); \
158 } while (0)
159 #define SET32P(m, f, v) \
160 do { \
161 if ((m)->bigendian) \
162 be32enc((f), (v)); \
163 else \
164 le32enc((f), (v)); \
165 } while (0)
166 #define SET64P(m, f, v) \
167 do { \
168 if ((m)->bigendian) \
169 be64enc((f), (v)); \
170 else \
171 le64enc((f), (v)); \
172 } while (0)
173 #define SET8(m, f, v) SET8P((m), &((m)->f), (v))
174 #define SET16(m, f, v) SET16P((m), &((m)->f), (v))
175 #define SET32(m, f, v) SET32P((m), &((m)->f), (v))
176 #define SET64(m, f, v) SET64P((m), &((m)->f), (v))
177 #define SET8D(m, f, v) SET8P((m), &(f), (v))
178 #define SET16D(m, f, v) SET16P((m), &(f), (v))
179 #define SET32D(m, f, v) SET32P((m), &(f), (v))
180 #define SET64D(m, f, v) SET64P((m), &(f), (v))
181
182 #define GETCRNUM(m) (GET32((m), hdr->cr_length) / \
183 GET16((m), hdr->Configuration_Record_Length))
184
185 #define GETVDCPTR(m, n) ((struct ddf_vdc_record *)((uint8_t *)(m)->cr + \
186 (n) * GET16((m), hdr->Configuration_Record_Length) * \
187 (m)->sectorsize))
188
189 #define GETSAPTR(m, n) ((struct ddf_sa_record *)((uint8_t *)(m)->cr + \
190 (n) * GET16((m), hdr->Configuration_Record_Length) * \
191 (m)->sectorsize))
192
193 static int
194 isff(uint8_t *buf, int size)
195 {
196 int i;
197
198 for (i = 0; i < size; i++)
199 if (buf[i] != 0xff)
200 return (0);
201 return (1);
202 }
203
204 static void
205 print_guid(uint8_t *buf)
206 {
207 int i, ascii;
208
209 ascii = 1;
210 for (i = 0; i < 24; i++) {
211 if (buf[i] != 0 && (buf[i] < ' ' || buf[i] > 127)) {
212 ascii = 0;
213 break;
214 }
215 }
216 if (ascii) {
217 printf("'%.24s'", buf);
218 } else {
219 for (i = 0; i < 24; i++)
220 printf("%02x", buf[i]);
221 }
222 }
223
224 static void
225 g_raid_md_ddf_print(struct ddf_meta *meta)
226 {
227 struct ddf_vdc_record *vdc;
228 struct ddf_vuc_record *vuc;
229 struct ddf_sa_record *sa;
230 uint64_t *val2;
231 uint32_t val;
232 int i, j, k, num, num2;
233
234 if (g_raid_debug < 1)
235 return;
236
237 printf("********* DDF Metadata *********\n");
238 printf("**** Header ****\n");
239 printf("DDF_Header_GUID ");
240 print_guid(meta->hdr->DDF_Header_GUID);
241 printf("\n");
242 printf("DDF_rev %8.8s\n", (char *)&meta->hdr->DDF_rev[0]);
243 printf("Sequence_Number 0x%08x\n", GET32(meta, hdr->Sequence_Number));
244 printf("TimeStamp 0x%08x\n", GET32(meta, hdr->TimeStamp));
245 printf("Open_Flag 0x%02x\n", GET16(meta, hdr->Open_Flag));
246 printf("Foreign_Flag 0x%02x\n", GET16(meta, hdr->Foreign_Flag));
247 printf("Diskgrouping 0x%02x\n", GET16(meta, hdr->Diskgrouping));
248 printf("Primary_Header_LBA %ju\n", GET64(meta, hdr->Primary_Header_LBA));
249 printf("Secondary_Header_LBA %ju\n", GET64(meta, hdr->Secondary_Header_LBA));
250 printf("WorkSpace_Length %u\n", GET32(meta, hdr->WorkSpace_Length));
251 printf("WorkSpace_LBA %ju\n", GET64(meta, hdr->WorkSpace_LBA));
252 printf("Max_PD_Entries %u\n", GET16(meta, hdr->Max_PD_Entries));
253 printf("Max_VD_Entries %u\n", GET16(meta, hdr->Max_VD_Entries));
254 printf("Max_Partitions %u\n", GET16(meta, hdr->Max_Partitions));
255 printf("Configuration_Record_Length %u\n", GET16(meta, hdr->Configuration_Record_Length));
256 printf("Max_Primary_Element_Entries %u\n", GET16(meta, hdr->Max_Primary_Element_Entries));
257 printf("Controller Data %u:%u\n", GET32(meta, hdr->cd_section), GET32(meta, hdr->cd_length));
258 printf("Physical Disk %u:%u\n", GET32(meta, hdr->pdr_section), GET32(meta, hdr->pdr_length));
259 printf("Virtual Disk %u:%u\n", GET32(meta, hdr->vdr_section), GET32(meta, hdr->vdr_length));
260 printf("Configuration Recs %u:%u\n", GET32(meta, hdr->cr_section), GET32(meta, hdr->cr_length));
261 printf("Physical Disk Recs %u:%u\n", GET32(meta, hdr->pdd_section), GET32(meta, hdr->pdd_length));
262 printf("BBM Log %u:%u\n", GET32(meta, hdr->bbmlog_section), GET32(meta, hdr->bbmlog_length));
263 printf("Diagnostic Space %u:%u\n", GET32(meta, hdr->Diagnostic_Space), GET32(meta, hdr->Diagnostic_Space_Length));
264 printf("Vendor_Specific_Logs %u:%u\n", GET32(meta, hdr->Vendor_Specific_Logs), GET32(meta, hdr->Vendor_Specific_Logs_Length));
265 printf("**** Controller Data ****\n");
266 printf("Controller_GUID ");
267 print_guid(meta->cdr->Controller_GUID);
268 printf("\n");
269 printf("Controller_Type 0x%04x%04x 0x%04x%04x\n",
270 GET16(meta, cdr->Controller_Type.Vendor_ID),
271 GET16(meta, cdr->Controller_Type.Device_ID),
272 GET16(meta, cdr->Controller_Type.SubVendor_ID),
273 GET16(meta, cdr->Controller_Type.SubDevice_ID));
274 printf("Product_ID '%.16s'\n", (char *)&meta->cdr->Product_ID[0]);
275 printf("**** Physical Disk Records ****\n");
276 printf("Populated_PDEs %u\n", GET16(meta, pdr->Populated_PDEs));
277 printf("Max_PDE_Supported %u\n", GET16(meta, pdr->Max_PDE_Supported));
278 for (j = 0; j < GET16(meta, pdr->Populated_PDEs); j++) {
279 if (isff(meta->pdr->entry[j].PD_GUID, 24))
280 continue;
281 if (GET32(meta, pdr->entry[j].PD_Reference) == 0xffffffff)
282 continue;
283 printf("PD_GUID ");
284 print_guid(meta->pdr->entry[j].PD_GUID);
285 printf("\n");
286 printf("PD_Reference 0x%08x\n",
287 GET32(meta, pdr->entry[j].PD_Reference));
288 printf("PD_Type 0x%04x\n",
289 GET16(meta, pdr->entry[j].PD_Type));
290 printf("PD_State 0x%04x\n",
291 GET16(meta, pdr->entry[j].PD_State));
292 printf("Configured_Size %ju\n",
293 GET64(meta, pdr->entry[j].Configured_Size));
294 printf("Block_Size %u\n",
295 GET16(meta, pdr->entry[j].Block_Size));
296 }
297 printf("**** Virtual Disk Records ****\n");
298 printf("Populated_VDEs %u\n", GET16(meta, vdr->Populated_VDEs));
299 printf("Max_VDE_Supported %u\n", GET16(meta, vdr->Max_VDE_Supported));
300 for (j = 0; j < GET16(meta, vdr->Populated_VDEs); j++) {
301 if (isff(meta->vdr->entry[j].VD_GUID, 24))
302 continue;
303 printf("VD_GUID ");
304 print_guid(meta->vdr->entry[j].VD_GUID);
305 printf("\n");
306 printf("VD_Number 0x%04x\n",
307 GET16(meta, vdr->entry[j].VD_Number));
308 printf("VD_Type 0x%04x\n",
309 GET16(meta, vdr->entry[j].VD_Type));
310 printf("VD_State 0x%02x\n",
311 GET8(meta, vdr->entry[j].VD_State));
312 printf("Init_State 0x%02x\n",
313 GET8(meta, vdr->entry[j].Init_State));
314 printf("Drive_Failures_Remaining %u\n",
315 GET8(meta, vdr->entry[j].Drive_Failures_Remaining));
316 printf("VD_Name '%.16s'\n",
317 (char *)&meta->vdr->entry[j].VD_Name);
318 }
319 printf("**** Configuration Records ****\n");
320 num = GETCRNUM(meta);
321 for (j = 0; j < num; j++) {
322 vdc = GETVDCPTR(meta, j);
323 val = GET32D(meta, vdc->Signature);
324 switch (val) {
325 case DDF_VDCR_SIGNATURE:
326 printf("** Virtual Disk Configuration **\n");
327 printf("VD_GUID ");
328 print_guid(vdc->VD_GUID);
329 printf("\n");
330 printf("Timestamp 0x%08x\n",
331 GET32D(meta, vdc->Timestamp));
332 printf("Sequence_Number 0x%08x\n",
333 GET32D(meta, vdc->Sequence_Number));
334 printf("Primary_Element_Count %u\n",
335 GET16D(meta, vdc->Primary_Element_Count));
336 printf("Stripe_Size %u\n",
337 GET8D(meta, vdc->Stripe_Size));
338 printf("Primary_RAID_Level 0x%02x\n",
339 GET8D(meta, vdc->Primary_RAID_Level));
340 printf("RLQ 0x%02x\n",
341 GET8D(meta, vdc->RLQ));
342 printf("Secondary_Element_Count %u\n",
343 GET8D(meta, vdc->Secondary_Element_Count));
344 printf("Secondary_Element_Seq %u\n",
345 GET8D(meta, vdc->Secondary_Element_Seq));
346 printf("Secondary_RAID_Level 0x%02x\n",
347 GET8D(meta, vdc->Secondary_RAID_Level));
348 printf("Block_Count %ju\n",
349 GET64D(meta, vdc->Block_Count));
350 printf("VD_Size %ju\n",
351 GET64D(meta, vdc->VD_Size));
352 printf("Block_Size %u\n",
353 GET16D(meta, vdc->Block_Size));
354 printf("Rotate_Parity_count %u\n",
355 GET8D(meta, vdc->Rotate_Parity_count));
356 printf("Associated_Spare_Disks");
357 for (i = 0; i < 8; i++) {
358 if (GET32D(meta, vdc->Associated_Spares[i]) != 0xffffffff)
359 printf(" 0x%08x", GET32D(meta, vdc->Associated_Spares[i]));
360 }
361 printf("\n");
362 printf("Cache_Flags %016jx\n",
363 GET64D(meta, vdc->Cache_Flags));
364 printf("BG_Rate %u\n",
365 GET8D(meta, vdc->BG_Rate));
366 printf("MDF_Parity_Disks %u\n",
367 GET8D(meta, vdc->MDF_Parity_Disks));
368 printf("MDF_Parity_Generator_Polynomial 0x%04x\n",
369 GET16D(meta, vdc->MDF_Parity_Generator_Polynomial));
370 printf("MDF_Constant_Generation_Method 0x%02x\n",
371 GET8D(meta, vdc->MDF_Constant_Generation_Method));
372 printf("Physical_Disks ");
373 num2 = GET16D(meta, vdc->Primary_Element_Count);
374 val2 = (uint64_t *)&(vdc->Physical_Disk_Sequence[GET16(meta, hdr->Max_Primary_Element_Entries)]);
375 for (i = 0; i < num2; i++)
376 printf(" 0x%08x @ %ju",
377 GET32D(meta, vdc->Physical_Disk_Sequence[i]),
378 GET64P(meta, val2 + i));
379 printf("\n");
380 break;
381 case DDF_VUCR_SIGNATURE:
382 printf("** Vendor Unique Configuration **\n");
383 vuc = (struct ddf_vuc_record *)vdc;
384 printf("VD_GUID ");
385 print_guid(vuc->VD_GUID);
386 printf("\n");
387 break;
388 case DDF_SA_SIGNATURE:
389 printf("** Spare Assignment Configuration **\n");
390 sa = (struct ddf_sa_record *)vdc;
391 printf("Timestamp 0x%08x\n",
392 GET32D(meta, sa->Timestamp));
393 printf("Spare_Type 0x%02x\n",
394 GET8D(meta, sa->Spare_Type));
395 printf("Populated_SAEs %u\n",
396 GET16D(meta, sa->Populated_SAEs));
397 printf("MAX_SAE_Supported %u\n",
398 GET16D(meta, sa->MAX_SAE_Supported));
399 for (i = 0; i < GET16D(meta, sa->Populated_SAEs); i++) {
400 if (isff(sa->entry[i].VD_GUID, 24))
401 continue;
402 printf("VD_GUID ");
403 for (k = 0; k < 24; k++)
404 printf("%02x", sa->entry[i].VD_GUID[k]);
405 printf("\n");
406 printf("Secondary_Element %u\n",
407 GET16D(meta, sa->entry[i].Secondary_Element));
408 }
409 break;
410 case 0x00000000:
411 case 0xFFFFFFFF:
412 break;
413 default:
414 printf("Unknown configuration signature %08x\n", val);
415 break;
416 }
417 }
418 printf("**** Physical Disk Data ****\n");
419 printf("PD_GUID ");
420 print_guid(meta->pdd->PD_GUID);
421 printf("\n");
422 printf("PD_Reference 0x%08x\n",
423 GET32(meta, pdd->PD_Reference));
424 printf("Forced_Ref_Flag 0x%02x\n",
425 GET8(meta, pdd->Forced_Ref_Flag));
426 printf("Forced_PD_GUID_Flag 0x%02x\n",
427 GET8(meta, pdd->Forced_PD_GUID_Flag));
428 }
429
430 static int
431 ddf_meta_find_pd(struct ddf_meta *meta, uint8_t *GUID, uint32_t PD_Reference)
432 {
433 int i;
434
435 for (i = 0; i < GET16(meta, pdr->Populated_PDEs); i++) {
436 if (GUID != NULL) {
437 if (memcmp(meta->pdr->entry[i].PD_GUID, GUID, 24) == 0)
438 return (i);
439 } else if (PD_Reference != 0xffffffff) {
440 if (GET32(meta, pdr->entry[i].PD_Reference) == PD_Reference)
441 return (i);
442 } else
443 if (isff(meta->pdr->entry[i].PD_GUID, 24))
444 return (i);
445 }
446 if (GUID == NULL && PD_Reference == 0xffffffff) {
447 if (i >= GET16(meta, pdr->Max_PDE_Supported))
448 return (-1);
449 SET16(meta, pdr->Populated_PDEs, i + 1);
450 return (i);
451 }
452 return (-1);
453 }
454
455 static int
456 ddf_meta_find_vd(struct ddf_meta *meta, uint8_t *GUID)
457 {
458 int i;
459
460 for (i = 0; i < GET16(meta, vdr->Populated_VDEs); i++) {
461 if (GUID != NULL) {
462 if (memcmp(meta->vdr->entry[i].VD_GUID, GUID, 24) == 0)
463 return (i);
464 } else
465 if (isff(meta->vdr->entry[i].VD_GUID, 24))
466 return (i);
467 }
468 if (GUID == NULL) {
469 if (i >= GET16(meta, vdr->Max_VDE_Supported))
470 return (-1);
471 SET16(meta, vdr->Populated_VDEs, i + 1);
472 return (i);
473 }
474 return (-1);
475 }
476
477 static struct ddf_vdc_record *
478 ddf_meta_find_vdc(struct ddf_meta *meta, uint8_t *GUID)
479 {
480 struct ddf_vdc_record *vdc;
481 int i, num;
482
483 num = GETCRNUM(meta);
484 for (i = 0; i < num; i++) {
485 vdc = GETVDCPTR(meta, i);
486 if (GUID != NULL) {
487 if (GET32D(meta, vdc->Signature) == DDF_VDCR_SIGNATURE &&
488 memcmp(vdc->VD_GUID, GUID, 24) == 0)
489 return (vdc);
490 } else
491 if (GET32D(meta, vdc->Signature) == 0xffffffff ||
492 GET32D(meta, vdc->Signature) == 0)
493 return (vdc);
494 }
495 return (NULL);
496 }
497
498 static int
499 ddf_meta_count_vdc(struct ddf_meta *meta, uint8_t *GUID)
500 {
501 struct ddf_vdc_record *vdc;
502 int i, num, cnt;
503
504 cnt = 0;
505 num = GETCRNUM(meta);
506 for (i = 0; i < num; i++) {
507 vdc = GETVDCPTR(meta, i);
508 if (GET32D(meta, vdc->Signature) != DDF_VDCR_SIGNATURE)
509 continue;
510 if (GUID == NULL || memcmp(vdc->VD_GUID, GUID, 24) == 0)
511 cnt++;
512 }
513 return (cnt);
514 }
515
516 static int
517 ddf_meta_find_disk(struct ddf_vol_meta *vmeta, uint32_t PD_Reference,
518 int *bvdp, int *posp)
519 {
520 int i, bvd, pos;
521
522 i = 0;
523 for (bvd = 0; bvd < GET8(vmeta, vdc->Secondary_Element_Count); bvd++) {
524 if (vmeta->bvdc[bvd] == NULL) {
525 i += GET16(vmeta, vdc->Primary_Element_Count); // XXX
526 continue;
527 }
528 for (pos = 0; pos < GET16(vmeta, bvdc[bvd]->Primary_Element_Count);
529 pos++, i++) {
530 if (GET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos]) ==
531 PD_Reference) {
532 if (bvdp != NULL)
533 *bvdp = bvd;
534 if (posp != NULL)
535 *posp = pos;
536 return (i);
537 }
538 }
539 }
540 return (-1);
541 }
542
543 static struct ddf_sa_record *
544 ddf_meta_find_sa(struct ddf_meta *meta, int create)
545 {
546 struct ddf_sa_record *sa;
547 int i, num;
548
549 num = GETCRNUM(meta);
550 for (i = 0; i < num; i++) {
551 sa = GETSAPTR(meta, i);
552 if (GET32D(meta, sa->Signature) == DDF_SA_SIGNATURE)
553 return (sa);
554 }
555 if (create) {
556 for (i = 0; i < num; i++) {
557 sa = GETSAPTR(meta, i);
558 if (GET32D(meta, sa->Signature) == 0xffffffff ||
559 GET32D(meta, sa->Signature) == 0)
560 return (sa);
561 }
562 }
563 return (NULL);
564 }
565
566 static void
567 ddf_meta_create(struct g_raid_disk *disk, struct ddf_meta *sample)
568 {
569 struct timespec ts;
570 struct clocktime ct;
571 struct g_raid_md_ddf_perdisk *pd;
572 struct g_raid_md_ddf_object *mdi;
573 struct ddf_meta *meta;
574 struct ddf_pd_entry *pde;
575 off_t anchorlba;
576 u_int ss, pos, size;
577 int len, error;
578 char serial_buffer[DISK_IDENT_SIZE];
579
580 if (sample->hdr == NULL)
581 sample = NULL;
582
583 mdi = (struct g_raid_md_ddf_object *)disk->d_softc->sc_md;
584 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
585 meta = &pd->pd_meta;
586 ss = disk->d_consumer->provider->sectorsize;
587 anchorlba = disk->d_consumer->provider->mediasize / ss - 1;
588
589 meta->sectorsize = ss;
590 meta->bigendian = sample ? sample->bigendian : mdi->mdio_bigendian;
591 getnanotime(&ts);
592 clock_ts_to_ct(&ts, &ct);
593
594 /* Header */
595 meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
596 memset(meta->hdr, 0xff, ss);
597 if (sample) {
598 memcpy(meta->hdr, sample->hdr, sizeof(struct ddf_header));
599 if (ss != sample->sectorsize) {
600 SET32(meta, hdr->WorkSpace_Length,
601 howmany(GET32(sample, hdr->WorkSpace_Length) *
602 sample->sectorsize, ss));
603 SET16(meta, hdr->Configuration_Record_Length,
604 howmany(GET16(sample,
605 hdr->Configuration_Record_Length) *
606 sample->sectorsize, ss));
607 SET32(meta, hdr->cd_length,
608 howmany(GET32(sample, hdr->cd_length) *
609 sample->sectorsize, ss));
610 SET32(meta, hdr->pdr_length,
611 howmany(GET32(sample, hdr->pdr_length) *
612 sample->sectorsize, ss));
613 SET32(meta, hdr->vdr_length,
614 howmany(GET32(sample, hdr->vdr_length) *
615 sample->sectorsize, ss));
616 SET32(meta, hdr->cr_length,
617 howmany(GET32(sample, hdr->cr_length) *
618 sample->sectorsize, ss));
619 SET32(meta, hdr->pdd_length,
620 howmany(GET32(sample, hdr->pdd_length) *
621 sample->sectorsize, ss));
622 SET32(meta, hdr->bbmlog_length,
623 howmany(GET32(sample, hdr->bbmlog_length) *
624 sample->sectorsize, ss));
625 SET32(meta, hdr->Diagnostic_Space,
626 howmany(GET32(sample, hdr->bbmlog_length) *
627 sample->sectorsize, ss));
628 SET32(meta, hdr->Vendor_Specific_Logs,
629 howmany(GET32(sample, hdr->bbmlog_length) *
630 sample->sectorsize, ss));
631 }
632 } else {
633 SET32(meta, hdr->Signature, DDF_HEADER_SIGNATURE);
634 snprintf(meta->hdr->DDF_Header_GUID, 25, "FreeBSD %08x%08x",
635 (u_int)(ts.tv_sec - DECADE), arc4random());
636 memcpy(meta->hdr->DDF_rev, "02.00.00", 8);
637 SET32(meta, hdr->TimeStamp, (ts.tv_sec - DECADE));
638 SET32(meta, hdr->WorkSpace_Length, 16 * 1024 * 1024 / ss);
639 SET16(meta, hdr->Max_PD_Entries, DDF_MAX_DISKS - 1);
640 SET16(meta, hdr->Max_VD_Entries, DDF_MAX_VDISKS);
641 SET16(meta, hdr->Max_Partitions, DDF_MAX_PARTITIONS);
642 SET16(meta, hdr->Max_Primary_Element_Entries, DDF_MAX_DISKS);
643 SET16(meta, hdr->Configuration_Record_Length,
644 howmany(sizeof(struct ddf_vdc_record) + (4 + 8) *
645 GET16(meta, hdr->Max_Primary_Element_Entries), ss));
646 SET32(meta, hdr->cd_length,
647 howmany(sizeof(struct ddf_cd_record), ss));
648 SET32(meta, hdr->pdr_length,
649 howmany(sizeof(struct ddf_pd_record) +
650 sizeof(struct ddf_pd_entry) * GET16(meta,
651 hdr->Max_PD_Entries), ss));
652 SET32(meta, hdr->vdr_length,
653 howmany(sizeof(struct ddf_vd_record) +
654 sizeof(struct ddf_vd_entry) *
655 GET16(meta, hdr->Max_VD_Entries), ss));
656 SET32(meta, hdr->cr_length,
657 GET16(meta, hdr->Configuration_Record_Length) *
658 (GET16(meta, hdr->Max_Partitions) + 1));
659 SET32(meta, hdr->pdd_length,
660 howmany(sizeof(struct ddf_pdd_record), ss));
661 SET32(meta, hdr->bbmlog_length, 0);
662 SET32(meta, hdr->Diagnostic_Space_Length, 0);
663 SET32(meta, hdr->Vendor_Specific_Logs_Length, 0);
664 }
665 pos = 1;
666 SET32(meta, hdr->cd_section, pos);
667 pos += GET32(meta, hdr->cd_length);
668 SET32(meta, hdr->pdr_section, pos);
669 pos += GET32(meta, hdr->pdr_length);
670 SET32(meta, hdr->vdr_section, pos);
671 pos += GET32(meta, hdr->vdr_length);
672 SET32(meta, hdr->cr_section, pos);
673 pos += GET32(meta, hdr->cr_length);
674 SET32(meta, hdr->pdd_section, pos);
675 pos += GET32(meta, hdr->pdd_length);
676 SET32(meta, hdr->bbmlog_section,
677 GET32(meta, hdr->bbmlog_length) != 0 ? pos : 0xffffffff);
678 pos += GET32(meta, hdr->bbmlog_length);
679 SET32(meta, hdr->Diagnostic_Space,
680 GET32(meta, hdr->Diagnostic_Space_Length) != 0 ? pos : 0xffffffff);
681 pos += GET32(meta, hdr->Diagnostic_Space_Length);
682 SET32(meta, hdr->Vendor_Specific_Logs,
683 GET32(meta, hdr->Vendor_Specific_Logs_Length) != 0 ? pos : 0xffffffff);
684 pos += min(GET32(meta, hdr->Vendor_Specific_Logs_Length), 1);
685 SET64(meta, hdr->Primary_Header_LBA,
686 anchorlba - pos);
687 SET64(meta, hdr->Secondary_Header_LBA,
688 0xffffffffffffffffULL);
689 SET64(meta, hdr->WorkSpace_LBA,
690 anchorlba + 1 - 32 * 1024 * 1024 / ss);
691
692 /* Controller Data */
693 size = GET32(meta, hdr->cd_length) * ss;
694 meta->cdr = malloc(size, M_MD_DDF, M_WAITOK);
695 memset(meta->cdr, 0xff, size);
696 SET32(meta, cdr->Signature, DDF_CONTROLLER_DATA_SIGNATURE);
697 memcpy(meta->cdr->Controller_GUID, "FreeBSD GEOM RAID SERIAL", 24);
698 memcpy(meta->cdr->Product_ID, "FreeBSD GEOMRAID", 16);
699
700 /* Physical Drive Records. */
701 size = GET32(meta, hdr->pdr_length) * ss;
702 meta->pdr = malloc(size, M_MD_DDF, M_WAITOK);
703 memset(meta->pdr, 0xff, size);
704 SET32(meta, pdr->Signature, DDF_PDR_SIGNATURE);
705 SET16(meta, pdr->Populated_PDEs, 1);
706 SET16(meta, pdr->Max_PDE_Supported,
707 GET16(meta, hdr->Max_PD_Entries));
708
709 pde = &meta->pdr->entry[0];
710 len = sizeof(serial_buffer);
711 error = g_io_getattr("GEOM::ident", disk->d_consumer, &len, serial_buffer);
712 if (error == 0 && (len = strlen (serial_buffer)) >= 6 && len <= 20)
713 snprintf(pde->PD_GUID, 25, "DISK%20s", serial_buffer);
714 else
715 snprintf(pde->PD_GUID, 25, "DISK%04d%02d%02d%08x%04x",
716 ct.year, ct.mon, ct.day,
717 arc4random(), arc4random() & 0xffff);
718 SET32D(meta, pde->PD_Reference, arc4random());
719 SET16D(meta, pde->PD_Type, DDF_PDE_GUID_FORCE);
720 SET16D(meta, pde->PD_State, 0);
721 SET64D(meta, pde->Configured_Size,
722 anchorlba + 1 - 32 * 1024 * 1024 / ss);
723 SET16D(meta, pde->Block_Size, ss);
724
725 /* Virtual Drive Records. */
726 size = GET32(meta, hdr->vdr_length) * ss;
727 meta->vdr = malloc(size, M_MD_DDF, M_WAITOK);
728 memset(meta->vdr, 0xff, size);
729 SET32(meta, vdr->Signature, DDF_VD_RECORD_SIGNATURE);
730 SET32(meta, vdr->Populated_VDEs, 0);
731 SET16(meta, vdr->Max_VDE_Supported,
732 GET16(meta, hdr->Max_VD_Entries));
733
734 /* Configuration Records. */
735 size = GET32(meta, hdr->cr_length) * ss;
736 meta->cr = malloc(size, M_MD_DDF, M_WAITOK);
737 memset(meta->cr, 0xff, size);
738
739 /* Physical Disk Data. */
740 size = GET32(meta, hdr->pdd_length) * ss;
741 meta->pdd = malloc(size, M_MD_DDF, M_WAITOK);
742 memset(meta->pdd, 0xff, size);
743 SET32(meta, pdd->Signature, DDF_PDD_SIGNATURE);
744 memcpy(meta->pdd->PD_GUID, pde->PD_GUID, 24);
745 SET32(meta, pdd->PD_Reference, GET32D(meta, pde->PD_Reference));
746 SET8(meta, pdd->Forced_Ref_Flag, DDF_PDD_FORCED_REF);
747 SET8(meta, pdd->Forced_PD_GUID_Flag, DDF_PDD_FORCED_GUID);
748
749 /* Bad Block Management Log. */
750 if (GET32(meta, hdr->bbmlog_length) != 0) {
751 size = GET32(meta, hdr->bbmlog_length) * ss;
752 meta->bbm = malloc(size, M_MD_DDF, M_WAITOK);
753 memset(meta->bbm, 0xff, size);
754 SET32(meta, bbm->Signature, DDF_BBML_SIGNATURE);
755 SET32(meta, bbm->Entry_Count, 0);
756 SET32(meta, bbm->Spare_Block_Count, 0);
757 }
758 }
759
760 static void
761 ddf_meta_copy(struct ddf_meta *dst, struct ddf_meta *src)
762 {
763 u_int ss;
764
765 dst->bigendian = src->bigendian;
766 ss = dst->sectorsize = src->sectorsize;
767 dst->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
768 memcpy(dst->hdr, src->hdr, ss);
769 dst->cdr = malloc(GET32(src, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
770 memcpy(dst->cdr, src->cdr, GET32(src, hdr->cd_length) * ss);
771 dst->pdr = malloc(GET32(src, hdr->pdr_length) * ss, M_MD_DDF, M_WAITOK);
772 memcpy(dst->pdr, src->pdr, GET32(src, hdr->pdr_length) * ss);
773 dst->vdr = malloc(GET32(src, hdr->vdr_length) * ss, M_MD_DDF, M_WAITOK);
774 memcpy(dst->vdr, src->vdr, GET32(src, hdr->vdr_length) * ss);
775 dst->cr = malloc(GET32(src, hdr->cr_length) * ss, M_MD_DDF, M_WAITOK);
776 memcpy(dst->cr, src->cr, GET32(src, hdr->cr_length) * ss);
777 dst->pdd = malloc(GET32(src, hdr->pdd_length) * ss, M_MD_DDF, M_WAITOK);
778 memcpy(dst->pdd, src->pdd, GET32(src, hdr->pdd_length) * ss);
779 if (src->bbm != NULL) {
780 dst->bbm = malloc(GET32(src, hdr->bbmlog_length) * ss, M_MD_DDF, M_WAITOK);
781 memcpy(dst->bbm, src->bbm, GET32(src, hdr->bbmlog_length) * ss);
782 }
783 }
784
785 static void
786 ddf_meta_update(struct ddf_meta *meta, struct ddf_meta *src)
787 {
788 struct ddf_pd_entry *pde, *spde;
789 int i, j;
790
791 for (i = 0; i < GET16(src, pdr->Populated_PDEs); i++) {
792 spde = &src->pdr->entry[i];
793 if (isff(spde->PD_GUID, 24))
794 continue;
795 j = ddf_meta_find_pd(meta, NULL,
796 GET32(src, pdr->entry[i].PD_Reference));
797 if (j < 0) {
798 j = ddf_meta_find_pd(meta, NULL, 0xffffffff);
799 pde = &meta->pdr->entry[j];
800 memcpy(pde, spde, sizeof(*pde));
801 } else {
802 pde = &meta->pdr->entry[j];
803 SET16D(meta, pde->PD_State,
804 GET16D(meta, pde->PD_State) |
805 GET16D(src, pde->PD_State));
806 }
807 }
808 }
809
810 static void
811 ddf_meta_free(struct ddf_meta *meta)
812 {
813
814 if (meta->hdr != NULL) {
815 free(meta->hdr, M_MD_DDF);
816 meta->hdr = NULL;
817 }
818 if (meta->cdr != NULL) {
819 free(meta->cdr, M_MD_DDF);
820 meta->cdr = NULL;
821 }
822 if (meta->pdr != NULL) {
823 free(meta->pdr, M_MD_DDF);
824 meta->pdr = NULL;
825 }
826 if (meta->vdr != NULL) {
827 free(meta->vdr, M_MD_DDF);
828 meta->vdr = NULL;
829 }
830 if (meta->cr != NULL) {
831 free(meta->cr, M_MD_DDF);
832 meta->cr = NULL;
833 }
834 if (meta->pdd != NULL) {
835 free(meta->pdd, M_MD_DDF);
836 meta->pdd = NULL;
837 }
838 if (meta->bbm != NULL) {
839 free(meta->bbm, M_MD_DDF);
840 meta->bbm = NULL;
841 }
842 }
843
844 static void
845 ddf_vol_meta_create(struct ddf_vol_meta *meta, struct ddf_meta *sample)
846 {
847 struct timespec ts;
848 struct clocktime ct;
849 u_int ss, size;
850
851 meta->bigendian = sample->bigendian;
852 ss = meta->sectorsize = sample->sectorsize;
853 meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
854 memcpy(meta->hdr, sample->hdr, ss);
855 meta->cdr = malloc(GET32(sample, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
856 memcpy(meta->cdr, sample->cdr, GET32(sample, hdr->cd_length) * ss);
857 meta->vde = malloc(sizeof(struct ddf_vd_entry), M_MD_DDF, M_WAITOK);
858 memset(meta->vde, 0xff, sizeof(struct ddf_vd_entry));
859 getnanotime(&ts);
860 clock_ts_to_ct(&ts, &ct);
861 snprintf(meta->vde->VD_GUID, 25, "FreeBSD%04d%02d%02d%08x%01x",
862 ct.year, ct.mon, ct.day,
863 arc4random(), arc4random() & 0xf);
864 size = GET16(sample, hdr->Configuration_Record_Length) * ss;
865 meta->vdc = malloc(size, M_MD_DDF, M_WAITOK);
866 memset(meta->vdc, 0xff, size);
867 SET32(meta, vdc->Signature, DDF_VDCR_SIGNATURE);
868 memcpy(meta->vdc->VD_GUID, meta->vde->VD_GUID, 24);
869 SET32(meta, vdc->Sequence_Number, 0);
870 }
871
872 static void
873 ddf_vol_meta_update(struct ddf_vol_meta *dst, struct ddf_meta *src,
874 uint8_t *GUID, int started)
875 {
876 struct ddf_vd_entry *vde;
877 struct ddf_vdc_record *vdc;
878 int vnew, bvnew, bvd, size;
879 u_int ss;
880
881 vde = &src->vdr->entry[ddf_meta_find_vd(src, GUID)];
882 vdc = ddf_meta_find_vdc(src, GUID);
883 if (GET8D(src, vdc->Secondary_Element_Count) == 1)
884 bvd = 0;
885 else
886 bvd = GET8D(src, vdc->Secondary_Element_Seq);
887 size = GET16(src, hdr->Configuration_Record_Length) * src->sectorsize;
888
889 if (dst->vdc == NULL ||
890 (!started && ((int32_t)(GET32D(src, vdc->Sequence_Number) -
891 GET32(dst, vdc->Sequence_Number))) > 0))
892 vnew = 1;
893 else
894 vnew = 0;
895
896 if (dst->bvdc[bvd] == NULL ||
897 (!started && ((int32_t)(GET32D(src, vdc->Sequence_Number) -
898 GET32(dst, bvdc[bvd]->Sequence_Number))) > 0))
899 bvnew = 1;
900 else
901 bvnew = 0;
902
903 if (vnew) {
904 dst->bigendian = src->bigendian;
905 ss = dst->sectorsize = src->sectorsize;
906 if (dst->hdr != NULL)
907 free(dst->hdr, M_MD_DDF);
908 dst->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
909 memcpy(dst->hdr, src->hdr, ss);
910 if (dst->cdr != NULL)
911 free(dst->cdr, M_MD_DDF);
912 dst->cdr = malloc(GET32(src, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
913 memcpy(dst->cdr, src->cdr, GET32(src, hdr->cd_length) * ss);
914 if (dst->vde != NULL)
915 free(dst->vde, M_MD_DDF);
916 dst->vde = malloc(sizeof(struct ddf_vd_entry), M_MD_DDF, M_WAITOK);
917 memcpy(dst->vde, vde, sizeof(struct ddf_vd_entry));
918 if (dst->vdc != NULL)
919 free(dst->vdc, M_MD_DDF);
920 dst->vdc = malloc(size, M_MD_DDF, M_WAITOK);
921 memcpy(dst->vdc, vdc, size);
922 }
923 if (bvnew) {
924 if (dst->bvdc[bvd] != NULL)
925 free(dst->bvdc[bvd], M_MD_DDF);
926 dst->bvdc[bvd] = malloc(size, M_MD_DDF, M_WAITOK);
927 memcpy(dst->bvdc[bvd], vdc, size);
928 }
929 }
930
931 static void
932 ddf_vol_meta_free(struct ddf_vol_meta *meta)
933 {
934 int i;
935
936 if (meta->hdr != NULL) {
937 free(meta->hdr, M_MD_DDF);
938 meta->hdr = NULL;
939 }
940 if (meta->cdr != NULL) {
941 free(meta->cdr, M_MD_DDF);
942 meta->cdr = NULL;
943 }
944 if (meta->vde != NULL) {
945 free(meta->vde, M_MD_DDF);
946 meta->vde = NULL;
947 }
948 if (meta->vdc != NULL) {
949 free(meta->vdc, M_MD_DDF);
950 meta->vdc = NULL;
951 }
952 for (i = 0; i < DDF_MAX_DISKS_HARD; i++) {
953 if (meta->bvdc[i] != NULL) {
954 free(meta->bvdc[i], M_MD_DDF);
955 meta->bvdc[i] = NULL;
956 }
957 }
958 }
959
960 static int
961 ddf_meta_unused_range(struct ddf_meta *meta, off_t *off, off_t *size)
962 {
963 struct ddf_vdc_record *vdc;
964 off_t beg[32], end[32], beg1, end1;
965 uint64_t *offp;
966 int i, j, n, num, pos;
967 uint32_t ref;
968
969 *off = 0;
970 *size = 0;
971 ref = GET32(meta, pdd->PD_Reference);
972 pos = ddf_meta_find_pd(meta, NULL, ref);
973 beg[0] = 0;
974 end[0] = GET64(meta, pdr->entry[pos].Configured_Size);
975 n = 1;
976 num = GETCRNUM(meta);
977 for (i = 0; i < num; i++) {
978 vdc = GETVDCPTR(meta, i);
979 if (GET32D(meta, vdc->Signature) != DDF_VDCR_SIGNATURE)
980 continue;
981 for (pos = 0; pos < GET16D(meta, vdc->Primary_Element_Count); pos++)
982 if (GET32D(meta, vdc->Physical_Disk_Sequence[pos]) == ref)
983 break;
984 if (pos == GET16D(meta, vdc->Primary_Element_Count))
985 continue;
986 offp = (uint64_t *)&(vdc->Physical_Disk_Sequence[
987 GET16(meta, hdr->Max_Primary_Element_Entries)]);
988 beg1 = GET64P(meta, offp + pos);
989 end1 = beg1 + GET64D(meta, vdc->Block_Count);
990 for (j = 0; j < n; j++) {
991 if (beg[j] >= end1 || end[j] <= beg1 )
992 continue;
993 if (beg[j] < beg1 && end[j] > end1) {
994 beg[n] = end1;
995 end[n] = end[j];
996 end[j] = beg1;
997 n++;
998 } else if (beg[j] < beg1)
999 end[j] = beg1;
1000 else
1001 beg[j] = end1;
1002 }
1003 }
1004 for (j = 0; j < n; j++) {
1005 if (end[j] - beg[j] > *size) {
1006 *off = beg[j];
1007 *size = end[j] - beg[j];
1008 }
1009 }
1010 return ((*size > 0) ? 1 : 0);
1011 }
1012
1013 static void
1014 ddf_meta_get_name(struct ddf_meta *meta, int num, char *buf)
1015 {
1016 const char *b;
1017 int i;
1018
1019 b = meta->vdr->entry[num].VD_Name;
1020 for (i = 15; i >= 0; i--)
1021 if (b[i] != 0x20)
1022 break;
1023 memcpy(buf, b, i + 1);
1024 buf[i + 1] = 0;
1025 }
1026
1027 static void
1028 ddf_meta_put_name(struct ddf_vol_meta *meta, char *buf)
1029 {
1030 int len;
1031
1032 len = min(strlen(buf), 16);
1033 memset(meta->vde->VD_Name, 0x20, 16);
1034 memcpy(meta->vde->VD_Name, buf, len);
1035 }
1036
1037 static int
1038 ddf_meta_read(struct g_consumer *cp, struct ddf_meta *meta)
1039 {
1040 struct g_provider *pp;
1041 struct ddf_header *ahdr, *hdr;
1042 char *abuf, *buf;
1043 off_t plba, slba, lba;
1044 int error, len, i;
1045 u_int ss;
1046 uint32_t val;
1047
1048 ddf_meta_free(meta);
1049 pp = cp->provider;
1050 ss = meta->sectorsize = pp->sectorsize;
1051 /* Read anchor block. */
1052 abuf = g_read_data(cp, pp->mediasize - ss, ss, &error);
1053 if (abuf == NULL) {
1054 G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
1055 pp->name, error);
1056 return (error);
1057 }
1058 ahdr = (struct ddf_header *)abuf;
1059
1060 /* Check if this is an DDF RAID struct */
1061 if (be32dec(&ahdr->Signature) == DDF_HEADER_SIGNATURE)
1062 meta->bigendian = 1;
1063 else if (le32dec(&ahdr->Signature) == DDF_HEADER_SIGNATURE)
1064 meta->bigendian = 0;
1065 else {
1066 G_RAID_DEBUG(1, "DDF signature check failed on %s", pp->name);
1067 error = EINVAL;
1068 goto done;
1069 }
1070 if (ahdr->Header_Type != DDF_HEADER_ANCHOR) {
1071 G_RAID_DEBUG(1, "DDF header type check failed on %s", pp->name);
1072 error = EINVAL;
1073 goto done;
1074 }
1075 meta->hdr = ahdr;
1076 plba = GET64(meta, hdr->Primary_Header_LBA);
1077 slba = GET64(meta, hdr->Secondary_Header_LBA);
1078 val = GET32(meta, hdr->CRC);
1079 SET32(meta, hdr->CRC, 0xffffffff);
1080 meta->hdr = NULL;
1081 if (crc32(ahdr, ss) != val) {
1082 G_RAID_DEBUG(1, "DDF CRC mismatch on %s", pp->name);
1083 error = EINVAL;
1084 goto done;
1085 }
1086 if ((plba + 6) * ss >= pp->mediasize) {
1087 G_RAID_DEBUG(1, "DDF primary header LBA is wrong on %s", pp->name);
1088 error = EINVAL;
1089 goto done;
1090 }
1091 if (slba != -1 && (slba + 6) * ss >= pp->mediasize) {
1092 G_RAID_DEBUG(1, "DDF secondary header LBA is wrong on %s", pp->name);
1093 error = EINVAL;
1094 goto done;
1095 }
1096 lba = plba;
1097
1098 doread:
1099 error = 0;
1100 ddf_meta_free(meta);
1101
1102 /* Read header block. */
1103 buf = g_read_data(cp, lba * ss, ss, &error);
1104 if (buf == NULL) {
1105 readerror:
1106 G_RAID_DEBUG(1, "DDF %s metadata read error on %s (error=%d).",
1107 (lba == plba) ? "primary" : "secondary", pp->name, error);
1108 if (lba == plba && slba != -1) {
1109 lba = slba;
1110 goto doread;
1111 }
1112 G_RAID_DEBUG(1, "DDF metadata read error on %s.", pp->name);
1113 goto done;
1114 }
1115 meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
1116 memcpy(meta->hdr, buf, ss);
1117 g_free(buf);
1118 hdr = meta->hdr;
1119 val = GET32(meta, hdr->CRC);
1120 SET32(meta, hdr->CRC, 0xffffffff);
1121 if (hdr->Signature != ahdr->Signature ||
1122 crc32(meta->hdr, ss) != val ||
1123 memcmp(hdr->DDF_Header_GUID, ahdr->DDF_Header_GUID, 24) ||
1124 GET64(meta, hdr->Primary_Header_LBA) != plba ||
1125 GET64(meta, hdr->Secondary_Header_LBA) != slba) {
1126 hdrerror:
1127 G_RAID_DEBUG(1, "DDF %s metadata check failed on %s",
1128 (lba == plba) ? "primary" : "secondary", pp->name);
1129 if (lba == plba && slba != -1) {
1130 lba = slba;
1131 goto doread;
1132 }
1133 G_RAID_DEBUG(1, "DDF metadata check failed on %s", pp->name);
1134 error = EINVAL;
1135 goto done;
1136 }
1137 if ((lba == plba && hdr->Header_Type != DDF_HEADER_PRIMARY) ||
1138 (lba == slba && hdr->Header_Type != DDF_HEADER_SECONDARY))
1139 goto hdrerror;
1140 len = 1;
1141 len = max(len, GET32(meta, hdr->cd_section) + GET32(meta, hdr->cd_length));
1142 len = max(len, GET32(meta, hdr->pdr_section) + GET32(meta, hdr->pdr_length));
1143 len = max(len, GET32(meta, hdr->vdr_section) + GET32(meta, hdr->vdr_length));
1144 len = max(len, GET32(meta, hdr->cr_section) + GET32(meta, hdr->cr_length));
1145 len = max(len, GET32(meta, hdr->pdd_section) + GET32(meta, hdr->pdd_length));
1146 if ((val = GET32(meta, hdr->bbmlog_section)) != 0xffffffff)
1147 len = max(len, val + GET32(meta, hdr->bbmlog_length));
1148 if ((val = GET32(meta, hdr->Diagnostic_Space)) != 0xffffffff)
1149 len = max(len, val + GET32(meta, hdr->Diagnostic_Space_Length));
1150 if ((val = GET32(meta, hdr->Vendor_Specific_Logs)) != 0xffffffff)
1151 len = max(len, val + GET32(meta, hdr->Vendor_Specific_Logs_Length));
1152 if ((plba + len) * ss >= pp->mediasize)
1153 goto hdrerror;
1154 if (slba != -1 && (slba + len) * ss >= pp->mediasize)
1155 goto hdrerror;
1156 /* Workaround for Adaptec implementation. */
1157 if (GET16(meta, hdr->Max_Primary_Element_Entries) == 0xffff) {
1158 SET16(meta, hdr->Max_Primary_Element_Entries,
1159 min(GET16(meta, hdr->Max_PD_Entries),
1160 (GET16(meta, hdr->Configuration_Record_Length) * ss - 512) / 12));
1161 }
1162
1163 if (GET32(meta, hdr->cd_length) * ss >= maxphys ||
1164 GET32(meta, hdr->pdr_length) * ss >= maxphys ||
1165 GET32(meta, hdr->vdr_length) * ss >= maxphys ||
1166 GET32(meta, hdr->cr_length) * ss >= maxphys ||
1167 GET32(meta, hdr->pdd_length) * ss >= maxphys ||
1168 GET32(meta, hdr->bbmlog_length) * ss >= maxphys) {
1169 G_RAID_DEBUG(1, "%s: Blocksize is too big.", pp->name);
1170 goto hdrerror;
1171 }
1172
1173 /* Read controller data. */
1174 buf = g_read_data(cp, (lba + GET32(meta, hdr->cd_section)) * ss,
1175 GET32(meta, hdr->cd_length) * ss, &error);
1176 if (buf == NULL)
1177 goto readerror;
1178 meta->cdr = malloc(GET32(meta, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
1179 memcpy(meta->cdr, buf, GET32(meta, hdr->cd_length) * ss);
1180 g_free(buf);
1181 if (GET32(meta, cdr->Signature) != DDF_CONTROLLER_DATA_SIGNATURE)
1182 goto hdrerror;
1183
1184 /* Read physical disk records. */
1185 buf = g_read_data(cp, (lba + GET32(meta, hdr->pdr_section)) * ss,
1186 GET32(meta, hdr->pdr_length) * ss, &error);
1187 if (buf == NULL)
1188 goto readerror;
1189 meta->pdr = malloc(GET32(meta, hdr->pdr_length) * ss, M_MD_DDF, M_WAITOK);
1190 memcpy(meta->pdr, buf, GET32(meta, hdr->pdr_length) * ss);
1191 g_free(buf);
1192 if (GET32(meta, pdr->Signature) != DDF_PDR_SIGNATURE)
1193 goto hdrerror;
1194 /*
1195 * Workaround for reading metadata corrupted due to graid bug.
1196 * XXX: Remove this before we have disks above 128PB. :)
1197 */
1198 if (meta->bigendian) {
1199 for (i = 0; i < GET16(meta, pdr->Populated_PDEs); i++) {
1200 if (isff(meta->pdr->entry[i].PD_GUID, 24))
1201 continue;
1202 if (GET32(meta, pdr->entry[i].PD_Reference) ==
1203 0xffffffff)
1204 continue;
1205 if (GET64(meta, pdr->entry[i].Configured_Size) >=
1206 (1ULL << 48)) {
1207 SET16(meta, pdr->entry[i].PD_State,
1208 GET16(meta, pdr->entry[i].PD_State) &
1209 ~DDF_PDE_FAILED);
1210 SET64(meta, pdr->entry[i].Configured_Size,
1211 GET64(meta, pdr->entry[i].Configured_Size) &
1212 ((1ULL << 48) - 1));
1213 }
1214 }
1215 }
1216
1217 /* Read virtual disk records. */
1218 buf = g_read_data(cp, (lba + GET32(meta, hdr->vdr_section)) * ss,
1219 GET32(meta, hdr->vdr_length) * ss, &error);
1220 if (buf == NULL)
1221 goto readerror;
1222 meta->vdr = malloc(GET32(meta, hdr->vdr_length) * ss, M_MD_DDF, M_WAITOK);
1223 memcpy(meta->vdr, buf, GET32(meta, hdr->vdr_length) * ss);
1224 g_free(buf);
1225 if (GET32(meta, vdr->Signature) != DDF_VD_RECORD_SIGNATURE)
1226 goto hdrerror;
1227
1228 /* Read configuration records. */
1229 buf = g_read_data(cp, (lba + GET32(meta, hdr->cr_section)) * ss,
1230 GET32(meta, hdr->cr_length) * ss, &error);
1231 if (buf == NULL)
1232 goto readerror;
1233 meta->cr = malloc(GET32(meta, hdr->cr_length) * ss, M_MD_DDF, M_WAITOK);
1234 memcpy(meta->cr, buf, GET32(meta, hdr->cr_length) * ss);
1235 g_free(buf);
1236
1237 /* Read physical disk data. */
1238 buf = g_read_data(cp, (lba + GET32(meta, hdr->pdd_section)) * ss,
1239 GET32(meta, hdr->pdd_length) * ss, &error);
1240 if (buf == NULL)
1241 goto readerror;
1242 meta->pdd = malloc(GET32(meta, hdr->pdd_length) * ss, M_MD_DDF, M_WAITOK);
1243 memcpy(meta->pdd, buf, GET32(meta, hdr->pdd_length) * ss);
1244 g_free(buf);
1245 if (GET32(meta, pdd->Signature) != DDF_PDD_SIGNATURE)
1246 goto hdrerror;
1247 i = ddf_meta_find_pd(meta, NULL, GET32(meta, pdd->PD_Reference));
1248 if (i < 0)
1249 goto hdrerror;
1250
1251 /* Read BBM Log. */
1252 if (GET32(meta, hdr->bbmlog_section) != 0xffffffff &&
1253 GET32(meta, hdr->bbmlog_length) != 0) {
1254 buf = g_read_data(cp, (lba + GET32(meta, hdr->bbmlog_section)) * ss,
1255 GET32(meta, hdr->bbmlog_length) * ss, &error);
1256 if (buf == NULL)
1257 goto readerror;
1258 meta->bbm = malloc(GET32(meta, hdr->bbmlog_length) * ss, M_MD_DDF, M_WAITOK);
1259 memcpy(meta->bbm, buf, GET32(meta, hdr->bbmlog_length) * ss);
1260 g_free(buf);
1261 if (GET32(meta, bbm->Signature) != DDF_BBML_SIGNATURE)
1262 goto hdrerror;
1263 }
1264
1265 done:
1266 g_free(abuf);
1267 if (error != 0)
1268 ddf_meta_free(meta);
1269 return (error);
1270 }
1271
1272 static int
1273 ddf_meta_write(struct g_consumer *cp, struct ddf_meta *meta)
1274 {
1275 struct g_provider *pp;
1276 struct ddf_vdc_record *vdc;
1277 off_t alba, plba, slba, lba;
1278 u_int ss, size;
1279 int error, i, num;
1280
1281 pp = cp->provider;
1282 ss = pp->sectorsize;
1283 lba = alba = pp->mediasize / ss - 1;
1284 plba = GET64(meta, hdr->Primary_Header_LBA);
1285 slba = GET64(meta, hdr->Secondary_Header_LBA);
1286
1287 next:
1288 SET8(meta, hdr->Header_Type, (lba == alba) ? DDF_HEADER_ANCHOR :
1289 (lba == plba) ? DDF_HEADER_PRIMARY : DDF_HEADER_SECONDARY);
1290 SET32(meta, hdr->CRC, 0xffffffff);
1291 SET32(meta, hdr->CRC, crc32(meta->hdr, ss));
1292 error = g_write_data(cp, lba * ss, meta->hdr, ss);
1293 if (error != 0) {
1294 err:
1295 G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
1296 pp->name, error);
1297 if (lba != alba)
1298 goto done;
1299 }
1300 if (lba == alba) {
1301 lba = plba;
1302 goto next;
1303 }
1304
1305 size = GET32(meta, hdr->cd_length) * ss;
1306 SET32(meta, cdr->CRC, 0xffffffff);
1307 SET32(meta, cdr->CRC, crc32(meta->cdr, size));
1308 error = g_write_data(cp, (lba + GET32(meta, hdr->cd_section)) * ss,
1309 meta->cdr, size);
1310 if (error != 0)
1311 goto err;
1312
1313 size = GET32(meta, hdr->pdr_length) * ss;
1314 SET32(meta, pdr->CRC, 0xffffffff);
1315 SET32(meta, pdr->CRC, crc32(meta->pdr, size));
1316 error = g_write_data(cp, (lba + GET32(meta, hdr->pdr_section)) * ss,
1317 meta->pdr, size);
1318 if (error != 0)
1319 goto err;
1320
1321 size = GET32(meta, hdr->vdr_length) * ss;
1322 SET32(meta, vdr->CRC, 0xffffffff);
1323 SET32(meta, vdr->CRC, crc32(meta->vdr, size));
1324 error = g_write_data(cp, (lba + GET32(meta, hdr->vdr_section)) * ss,
1325 meta->vdr, size);
1326 if (error != 0)
1327 goto err;
1328
1329 size = GET16(meta, hdr->Configuration_Record_Length) * ss;
1330 num = GETCRNUM(meta);
1331 for (i = 0; i < num; i++) {
1332 vdc = GETVDCPTR(meta, i);
1333 SET32D(meta, vdc->CRC, 0xffffffff);
1334 SET32D(meta, vdc->CRC, crc32(vdc, size));
1335 }
1336 error = g_write_data(cp, (lba + GET32(meta, hdr->cr_section)) * ss,
1337 meta->cr, size * num);
1338 if (error != 0)
1339 goto err;
1340
1341 size = GET32(meta, hdr->pdd_length) * ss;
1342 SET32(meta, pdd->CRC, 0xffffffff);
1343 SET32(meta, pdd->CRC, crc32(meta->pdd, size));
1344 error = g_write_data(cp, (lba + GET32(meta, hdr->pdd_section)) * ss,
1345 meta->pdd, size);
1346 if (error != 0)
1347 goto err;
1348
1349 if (GET32(meta, hdr->bbmlog_length) != 0) {
1350 size = GET32(meta, hdr->bbmlog_length) * ss;
1351 SET32(meta, bbm->CRC, 0xffffffff);
1352 SET32(meta, bbm->CRC, crc32(meta->bbm, size));
1353 error = g_write_data(cp,
1354 (lba + GET32(meta, hdr->bbmlog_section)) * ss,
1355 meta->bbm, size);
1356 if (error != 0)
1357 goto err;
1358 }
1359
1360 done:
1361 if (lba == plba && slba != -1) {
1362 lba = slba;
1363 goto next;
1364 }
1365
1366 return (error);
1367 }
1368
1369 static int
1370 ddf_meta_erase(struct g_consumer *cp)
1371 {
1372 struct g_provider *pp;
1373 char *buf;
1374 int error;
1375
1376 pp = cp->provider;
1377 buf = malloc(pp->sectorsize, M_MD_DDF, M_WAITOK | M_ZERO);
1378 error = g_write_data(cp, pp->mediasize - pp->sectorsize,
1379 buf, pp->sectorsize);
1380 if (error != 0) {
1381 G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
1382 pp->name, error);
1383 }
1384 free(buf, M_MD_DDF);
1385 return (error);
1386 }
1387
1388 static struct g_raid_volume *
1389 g_raid_md_ddf_get_volume(struct g_raid_softc *sc, uint8_t *GUID)
1390 {
1391 struct g_raid_volume *vol;
1392 struct g_raid_md_ddf_pervolume *pv;
1393
1394 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1395 pv = vol->v_md_data;
1396 if (memcmp(pv->pv_meta.vde->VD_GUID, GUID, 24) == 0)
1397 break;
1398 }
1399 return (vol);
1400 }
1401
1402 static struct g_raid_disk *
1403 g_raid_md_ddf_get_disk(struct g_raid_softc *sc, uint8_t *GUID, uint32_t id)
1404 {
1405 struct g_raid_disk *disk;
1406 struct g_raid_md_ddf_perdisk *pd;
1407 struct ddf_meta *meta;
1408
1409 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1410 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1411 meta = &pd->pd_meta;
1412 if (GUID != NULL) {
1413 if (memcmp(meta->pdd->PD_GUID, GUID, 24) == 0)
1414 break;
1415 } else {
1416 if (GET32(meta, pdd->PD_Reference) == id)
1417 break;
1418 }
1419 }
1420 return (disk);
1421 }
1422
1423 static int
1424 g_raid_md_ddf_purge_volumes(struct g_raid_softc *sc)
1425 {
1426 struct g_raid_volume *vol, *tvol;
1427 int i, res;
1428
1429 res = 0;
1430 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tvol) {
1431 if (vol->v_stopping)
1432 continue;
1433 for (i = 0; i < vol->v_disks_count; i++) {
1434 if (vol->v_subdisks[i].sd_state != G_RAID_SUBDISK_S_NONE)
1435 break;
1436 }
1437 if (i >= vol->v_disks_count) {
1438 g_raid_destroy_volume(vol);
1439 res = 1;
1440 }
1441 }
1442 return (res);
1443 }
1444
1445 static int
1446 g_raid_md_ddf_purge_disks(struct g_raid_softc *sc)
1447 {
1448 #if 0
1449 struct g_raid_disk *disk, *tdisk;
1450 struct g_raid_volume *vol;
1451 struct g_raid_md_ddf_perdisk *pd;
1452 int i, j, res;
1453
1454 res = 0;
1455 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tdisk) {
1456 if (disk->d_state == G_RAID_DISK_S_SPARE)
1457 continue;
1458 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1459
1460 /* Scan for deleted volumes. */
1461 for (i = 0; i < pd->pd_subdisks; ) {
1462 vol = g_raid_md_ddf_get_volume(sc,
1463 pd->pd_meta[i]->volume_id);
1464 if (vol != NULL && !vol->v_stopping) {
1465 i++;
1466 continue;
1467 }
1468 free(pd->pd_meta[i], M_MD_DDF);
1469 for (j = i; j < pd->pd_subdisks - 1; j++)
1470 pd->pd_meta[j] = pd->pd_meta[j + 1];
1471 pd->pd_meta[DDF_MAX_SUBDISKS - 1] = NULL;
1472 pd->pd_subdisks--;
1473 pd->pd_updated = 1;
1474 }
1475
1476 /* If there is no metadata left - erase and delete disk. */
1477 if (pd->pd_subdisks == 0) {
1478 ddf_meta_erase(disk->d_consumer);
1479 g_raid_destroy_disk(disk);
1480 res = 1;
1481 }
1482 }
1483 return (res);
1484 #endif
1485 return (0);
1486 }
1487
1488 static int
1489 g_raid_md_ddf_supported(int level, int qual, int disks, int force)
1490 {
1491
1492 if (disks > DDF_MAX_DISKS_HARD)
1493 return (0);
1494 switch (level) {
1495 case G_RAID_VOLUME_RL_RAID0:
1496 if (qual != G_RAID_VOLUME_RLQ_NONE)
1497 return (0);
1498 if (disks < 1)
1499 return (0);
1500 if (!force && disks < 2)
1501 return (0);
1502 break;
1503 case G_RAID_VOLUME_RL_RAID1:
1504 if (disks < 1)
1505 return (0);
1506 if (qual == G_RAID_VOLUME_RLQ_R1SM) {
1507 if (!force && disks != 2)
1508 return (0);
1509 } else if (qual == G_RAID_VOLUME_RLQ_R1MM) {
1510 if (!force && disks != 3)
1511 return (0);
1512 } else
1513 return (0);
1514 break;
1515 case G_RAID_VOLUME_RL_RAID3:
1516 if (qual != G_RAID_VOLUME_RLQ_R3P0 &&
1517 qual != G_RAID_VOLUME_RLQ_R3PN)
1518 return (0);
1519 if (disks < 3)
1520 return (0);
1521 break;
1522 case G_RAID_VOLUME_RL_RAID4:
1523 if (qual != G_RAID_VOLUME_RLQ_R4P0 &&
1524 qual != G_RAID_VOLUME_RLQ_R4PN)
1525 return (0);
1526 if (disks < 3)
1527 return (0);
1528 break;
1529 case G_RAID_VOLUME_RL_RAID5:
1530 if (qual != G_RAID_VOLUME_RLQ_R5RA &&
1531 qual != G_RAID_VOLUME_RLQ_R5RS &&
1532 qual != G_RAID_VOLUME_RLQ_R5LA &&
1533 qual != G_RAID_VOLUME_RLQ_R5LS)
1534 return (0);
1535 if (disks < 3)
1536 return (0);
1537 break;
1538 case G_RAID_VOLUME_RL_RAID6:
1539 if (qual != G_RAID_VOLUME_RLQ_R6RA &&
1540 qual != G_RAID_VOLUME_RLQ_R6RS &&
1541 qual != G_RAID_VOLUME_RLQ_R6LA &&
1542 qual != G_RAID_VOLUME_RLQ_R6LS)
1543 return (0);
1544 if (disks < 4)
1545 return (0);
1546 break;
1547 case G_RAID_VOLUME_RL_RAIDMDF:
1548 if (qual != G_RAID_VOLUME_RLQ_RMDFRA &&
1549 qual != G_RAID_VOLUME_RLQ_RMDFRS &&
1550 qual != G_RAID_VOLUME_RLQ_RMDFLA &&
1551 qual != G_RAID_VOLUME_RLQ_RMDFLS)
1552 return (0);
1553 if (disks < 4)
1554 return (0);
1555 break;
1556 case G_RAID_VOLUME_RL_RAID1E:
1557 if (qual != G_RAID_VOLUME_RLQ_R1EA &&
1558 qual != G_RAID_VOLUME_RLQ_R1EO)
1559 return (0);
1560 if (disks < 3)
1561 return (0);
1562 break;
1563 case G_RAID_VOLUME_RL_SINGLE:
1564 if (qual != G_RAID_VOLUME_RLQ_NONE)
1565 return (0);
1566 if (disks != 1)
1567 return (0);
1568 break;
1569 case G_RAID_VOLUME_RL_CONCAT:
1570 if (qual != G_RAID_VOLUME_RLQ_NONE)
1571 return (0);
1572 if (disks < 2)
1573 return (0);
1574 break;
1575 case G_RAID_VOLUME_RL_RAID5E:
1576 if (qual != G_RAID_VOLUME_RLQ_R5ERA &&
1577 qual != G_RAID_VOLUME_RLQ_R5ERS &&
1578 qual != G_RAID_VOLUME_RLQ_R5ELA &&
1579 qual != G_RAID_VOLUME_RLQ_R5ELS)
1580 return (0);
1581 if (disks < 4)
1582 return (0);
1583 break;
1584 case G_RAID_VOLUME_RL_RAID5EE:
1585 if (qual != G_RAID_VOLUME_RLQ_R5EERA &&
1586 qual != G_RAID_VOLUME_RLQ_R5EERS &&
1587 qual != G_RAID_VOLUME_RLQ_R5EELA &&
1588 qual != G_RAID_VOLUME_RLQ_R5EELS)
1589 return (0);
1590 if (disks < 4)
1591 return (0);
1592 break;
1593 case G_RAID_VOLUME_RL_RAID5R:
1594 if (qual != G_RAID_VOLUME_RLQ_R5RRA &&
1595 qual != G_RAID_VOLUME_RLQ_R5RRS &&
1596 qual != G_RAID_VOLUME_RLQ_R5RLA &&
1597 qual != G_RAID_VOLUME_RLQ_R5RLS)
1598 return (0);
1599 if (disks < 3)
1600 return (0);
1601 break;
1602 default:
1603 return (0);
1604 }
1605 return (1);
1606 }
1607
1608 static int
1609 g_raid_md_ddf_start_disk(struct g_raid_disk *disk, struct g_raid_volume *vol)
1610 {
1611 struct g_raid_softc *sc;
1612 struct g_raid_subdisk *sd;
1613 struct g_raid_md_ddf_perdisk *pd;
1614 struct g_raid_md_ddf_pervolume *pv;
1615 struct g_raid_md_ddf_object *mdi;
1616 struct ddf_vol_meta *vmeta;
1617 struct ddf_meta *pdmeta, *gmeta;
1618 struct ddf_vdc_record *vdc1;
1619 struct ddf_sa_record *sa;
1620 off_t size, eoff = 0, esize = 0;
1621 uint64_t *val2;
1622 int disk_pos, md_disk_bvd = -1, md_disk_pos = -1, md_pde_pos;
1623 int i, resurrection = 0;
1624 uint32_t reference;
1625
1626 sc = disk->d_softc;
1627 mdi = (struct g_raid_md_ddf_object *)sc->sc_md;
1628 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1629 pdmeta = &pd->pd_meta;
1630 reference = GET32(&pd->pd_meta, pdd->PD_Reference);
1631
1632 pv = vol->v_md_data;
1633 vmeta = &pv->pv_meta;
1634 gmeta = &mdi->mdio_meta;
1635
1636 /* Find disk position in metadata by its reference. */
1637 disk_pos = ddf_meta_find_disk(vmeta, reference,
1638 &md_disk_bvd, &md_disk_pos);
1639 md_pde_pos = ddf_meta_find_pd(gmeta, NULL, reference);
1640
1641 if (disk_pos < 0) {
1642 G_RAID_DEBUG1(1, sc,
1643 "Disk %s is not a present part of the volume %s",
1644 g_raid_get_diskname(disk), vol->v_name);
1645
1646 /* Failed stale disk is useless for us. */
1647 if ((GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA) != 0) {
1648 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
1649 return (0);
1650 }
1651
1652 /* If disk has some metadata for this volume - erase. */
1653 if ((vdc1 = ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID)) != NULL)
1654 SET32D(pdmeta, vdc1->Signature, 0xffffffff);
1655
1656 /* If we are in the start process, that's all for now. */
1657 if (!pv->pv_started)
1658 goto nofit;
1659 /*
1660 * If we have already started - try to get use of the disk.
1661 * Try to replace OFFLINE disks first, then FAILED.
1662 */
1663 if (ddf_meta_count_vdc(&pd->pd_meta, NULL) >=
1664 GET16(&pd->pd_meta, hdr->Max_Partitions)) {
1665 G_RAID_DEBUG1(1, sc, "No free partitions on disk %s",
1666 g_raid_get_diskname(disk));
1667 goto nofit;
1668 }
1669 ddf_meta_unused_range(&pd->pd_meta, &eoff, &esize);
1670 if (esize == 0) {
1671 G_RAID_DEBUG1(1, sc, "No free space on disk %s",
1672 g_raid_get_diskname(disk));
1673 goto nofit;
1674 }
1675 eoff *= pd->pd_meta.sectorsize;
1676 esize *= pd->pd_meta.sectorsize;
1677 size = INT64_MAX;
1678 for (i = 0; i < vol->v_disks_count; i++) {
1679 sd = &vol->v_subdisks[i];
1680 if (sd->sd_state != G_RAID_SUBDISK_S_NONE)
1681 size = sd->sd_size;
1682 if (sd->sd_state <= G_RAID_SUBDISK_S_FAILED &&
1683 (disk_pos < 0 ||
1684 vol->v_subdisks[i].sd_state < sd->sd_state))
1685 disk_pos = i;
1686 }
1687 if (disk_pos >= 0 &&
1688 vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT &&
1689 esize < size) {
1690 G_RAID_DEBUG1(1, sc, "Disk %s free space "
1691 "is too small (%ju < %ju)",
1692 g_raid_get_diskname(disk), esize, size);
1693 disk_pos = -1;
1694 }
1695 if (disk_pos >= 0) {
1696 if (vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT)
1697 esize = size;
1698 md_disk_bvd = disk_pos / GET16(vmeta, vdc->Primary_Element_Count); // XXX
1699 md_disk_pos = disk_pos % GET16(vmeta, vdc->Primary_Element_Count); // XXX
1700 } else {
1701 nofit:
1702 if (disk->d_state == G_RAID_DISK_S_NONE)
1703 g_raid_change_disk_state(disk,
1704 G_RAID_DISK_S_STALE);
1705 return (0);
1706 }
1707
1708 /*
1709 * If spare is committable, delete spare record.
1710 * Othersize, mark it active and leave there.
1711 */
1712 sa = ddf_meta_find_sa(&pd->pd_meta, 0);
1713 if (sa != NULL) {
1714 if ((GET8D(&pd->pd_meta, sa->Spare_Type) &
1715 DDF_SAR_TYPE_REVERTIBLE) == 0) {
1716 SET32D(&pd->pd_meta, sa->Signature, 0xffffffff);
1717 } else {
1718 SET8D(&pd->pd_meta, sa->Spare_Type,
1719 GET8D(&pd->pd_meta, sa->Spare_Type) |
1720 DDF_SAR_TYPE_ACTIVE);
1721 }
1722 }
1723
1724 G_RAID_DEBUG1(1, sc, "Disk %s takes pos %d in the volume %s",
1725 g_raid_get_diskname(disk), disk_pos, vol->v_name);
1726 resurrection = 1;
1727 }
1728
1729 sd = &vol->v_subdisks[disk_pos];
1730
1731 if (resurrection && sd->sd_disk != NULL) {
1732 g_raid_change_disk_state(sd->sd_disk,
1733 G_RAID_DISK_S_STALE_FAILED);
1734 TAILQ_REMOVE(&sd->sd_disk->d_subdisks,
1735 sd, sd_next);
1736 }
1737 vol->v_subdisks[disk_pos].sd_disk = disk;
1738 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1739
1740 /* Welcome the new disk. */
1741 if (resurrection)
1742 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1743 else if (GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA)
1744 g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
1745 else
1746 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1747
1748 if (resurrection) {
1749 sd->sd_offset = eoff;
1750 sd->sd_size = esize;
1751 } else if (pdmeta->cr != NULL &&
1752 (vdc1 = ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID)) != NULL) {
1753 val2 = (uint64_t *)&(vdc1->Physical_Disk_Sequence[GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
1754 sd->sd_offset = (off_t)GET64P(pdmeta, val2 + md_disk_pos) * 512;
1755 sd->sd_size = (off_t)GET64D(pdmeta, vdc1->Block_Count) * 512;
1756 }
1757
1758 if (resurrection) {
1759 /* Stale disk, almost same as new. */
1760 g_raid_change_subdisk_state(sd,
1761 G_RAID_SUBDISK_S_NEW);
1762 } else if (GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA) {
1763 /* Failed disk. */
1764 g_raid_change_subdisk_state(sd,
1765 G_RAID_SUBDISK_S_FAILED);
1766 } else if ((GET16(gmeta, pdr->entry[md_pde_pos].PD_State) &
1767 (DDF_PDE_FAILED | DDF_PDE_REBUILD)) != 0) {
1768 /* Rebuilding disk. */
1769 g_raid_change_subdisk_state(sd,
1770 G_RAID_SUBDISK_S_REBUILD);
1771 sd->sd_rebuild_pos = 0;
1772 } else if ((GET8(vmeta, vde->VD_State) & DDF_VDE_DIRTY) != 0 ||
1773 (GET8(vmeta, vde->Init_State) & DDF_VDE_INIT_MASK) !=
1774 DDF_VDE_INIT_FULL) {
1775 /* Stale disk or dirty volume (unclean shutdown). */
1776 g_raid_change_subdisk_state(sd,
1777 G_RAID_SUBDISK_S_STALE);
1778 } else {
1779 /* Up to date disk. */
1780 g_raid_change_subdisk_state(sd,
1781 G_RAID_SUBDISK_S_ACTIVE);
1782 }
1783 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1784 G_RAID_EVENT_SUBDISK);
1785
1786 return (resurrection);
1787 }
1788
1789 static void
1790 g_raid_md_ddf_refill(struct g_raid_softc *sc)
1791 {
1792 struct g_raid_volume *vol;
1793 struct g_raid_subdisk *sd;
1794 struct g_raid_disk *disk;
1795 struct g_raid_md_object *md;
1796 struct g_raid_md_ddf_perdisk *pd;
1797 struct g_raid_md_ddf_pervolume *pv;
1798 int update, updated, i, bad;
1799
1800 md = sc->sc_md;
1801 restart:
1802 updated = 0;
1803 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1804 pv = vol->v_md_data;
1805 if (!pv->pv_started || vol->v_stopping)
1806 continue;
1807
1808 /* Search for subdisk that needs replacement. */
1809 bad = 0;
1810 for (i = 0; i < vol->v_disks_count; i++) {
1811 sd = &vol->v_subdisks[i];
1812 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
1813 sd->sd_state == G_RAID_SUBDISK_S_FAILED)
1814 bad = 1;
1815 }
1816 if (!bad)
1817 continue;
1818
1819 G_RAID_DEBUG1(1, sc, "Volume %s is not complete, "
1820 "trying to refill.", vol->v_name);
1821
1822 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1823 /* Skip failed. */
1824 if (disk->d_state < G_RAID_DISK_S_SPARE)
1825 continue;
1826 /* Skip already used by this volume. */
1827 for (i = 0; i < vol->v_disks_count; i++) {
1828 sd = &vol->v_subdisks[i];
1829 if (sd->sd_disk == disk)
1830 break;
1831 }
1832 if (i < vol->v_disks_count)
1833 continue;
1834
1835 /* Try to use disk if it has empty extents. */
1836 pd = disk->d_md_data;
1837 if (ddf_meta_count_vdc(&pd->pd_meta, NULL) <
1838 GET16(&pd->pd_meta, hdr->Max_Partitions)) {
1839 update = g_raid_md_ddf_start_disk(disk, vol);
1840 } else
1841 update = 0;
1842 if (update) {
1843 updated = 1;
1844 g_raid_md_write_ddf(md, vol, NULL, disk);
1845 break;
1846 }
1847 }
1848 }
1849 if (updated)
1850 goto restart;
1851 }
1852
1853 static void
1854 g_raid_md_ddf_start(struct g_raid_volume *vol)
1855 {
1856 struct g_raid_softc *sc;
1857 struct g_raid_subdisk *sd;
1858 struct g_raid_disk *disk;
1859 struct g_raid_md_object *md;
1860 struct g_raid_md_ddf_perdisk *pd;
1861 struct g_raid_md_ddf_pervolume *pv;
1862 struct g_raid_md_ddf_object *mdi;
1863 struct ddf_vol_meta *vmeta;
1864 uint64_t *val2;
1865 int i, j, bvd;
1866
1867 sc = vol->v_softc;
1868 md = sc->sc_md;
1869 mdi = (struct g_raid_md_ddf_object *)md;
1870 pv = vol->v_md_data;
1871 vmeta = &pv->pv_meta;
1872
1873 vol->v_raid_level = GET8(vmeta, vdc->Primary_RAID_Level);
1874 vol->v_raid_level_qualifier = GET8(vmeta, vdc->RLQ);
1875 if (GET8(vmeta, vdc->Secondary_Element_Count) > 1 &&
1876 vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 &&
1877 GET8(vmeta, vdc->Secondary_RAID_Level) == 0)
1878 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1879 vol->v_sectorsize = GET16(vmeta, vdc->Block_Size);
1880 if (vol->v_sectorsize == 0xffff)
1881 vol->v_sectorsize = vmeta->sectorsize;
1882 vol->v_strip_size = vol->v_sectorsize << GET8(vmeta, vdc->Stripe_Size);
1883 vol->v_disks_count = GET16(vmeta, vdc->Primary_Element_Count) *
1884 GET8(vmeta, vdc->Secondary_Element_Count);
1885 vol->v_mdf_pdisks = GET8(vmeta, vdc->MDF_Parity_Disks);
1886 vol->v_mdf_polynomial = GET16(vmeta, vdc->MDF_Parity_Generator_Polynomial);
1887 vol->v_mdf_method = GET8(vmeta, vdc->MDF_Constant_Generation_Method);
1888 if (GET8(vmeta, vdc->Rotate_Parity_count) > 31)
1889 vol->v_rotate_parity = 1;
1890 else
1891 vol->v_rotate_parity = 1 << GET8(vmeta, vdc->Rotate_Parity_count);
1892 vol->v_mediasize = GET64(vmeta, vdc->VD_Size) * vol->v_sectorsize;
1893 for (i = 0, j = 0, bvd = 0; i < vol->v_disks_count; i++, j++) {
1894 if (j == GET16(vmeta, vdc->Primary_Element_Count)) {
1895 j = 0;
1896 bvd++;
1897 }
1898 sd = &vol->v_subdisks[i];
1899 if (vmeta->bvdc[bvd] == NULL) {
1900 sd->sd_offset = 0;
1901 sd->sd_size = GET64(vmeta, vdc->Block_Count) *
1902 vol->v_sectorsize;
1903 continue;
1904 }
1905 val2 = (uint64_t *)&(vmeta->bvdc[bvd]->Physical_Disk_Sequence[
1906 GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
1907 sd->sd_offset = GET64P(vmeta, val2 + j) * vol->v_sectorsize;
1908 sd->sd_size = GET64(vmeta, bvdc[bvd]->Block_Count) *
1909 vol->v_sectorsize;
1910 }
1911 g_raid_start_volume(vol);
1912
1913 /* Make all disks found till the moment take their places. */
1914 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1915 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1916 if (ddf_meta_find_vdc(&pd->pd_meta, vmeta->vdc->VD_GUID) != NULL)
1917 g_raid_md_ddf_start_disk(disk, vol);
1918 }
1919
1920 pv->pv_started = 1;
1921 mdi->mdio_starting--;
1922 callout_stop(&pv->pv_start_co);
1923 G_RAID_DEBUG1(0, sc, "Volume started.");
1924 g_raid_md_write_ddf(md, vol, NULL, NULL);
1925
1926 /* Pickup any STALE/SPARE disks to refill array if needed. */
1927 g_raid_md_ddf_refill(sc);
1928
1929 g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME);
1930 }
1931
1932 static void
1933 g_raid_ddf_go(void *arg)
1934 {
1935 struct g_raid_volume *vol;
1936 struct g_raid_softc *sc;
1937 struct g_raid_md_ddf_pervolume *pv;
1938
1939 vol = arg;
1940 pv = vol->v_md_data;
1941 sc = vol->v_softc;
1942 if (!pv->pv_started) {
1943 G_RAID_DEBUG1(0, sc, "Force volume start due to timeout.");
1944 g_raid_event_send(vol, G_RAID_VOLUME_E_STARTMD,
1945 G_RAID_EVENT_VOLUME);
1946 }
1947 }
1948
1949 static void
1950 g_raid_md_ddf_new_disk(struct g_raid_disk *disk)
1951 {
1952 struct g_raid_softc *sc;
1953 struct g_raid_md_object *md;
1954 struct g_raid_md_ddf_perdisk *pd;
1955 struct g_raid_md_ddf_pervolume *pv;
1956 struct g_raid_md_ddf_object *mdi;
1957 struct g_raid_volume *vol;
1958 struct ddf_meta *pdmeta;
1959 struct ddf_vol_meta *vmeta;
1960 struct ddf_vdc_record *vdc;
1961 struct ddf_vd_entry *vde;
1962 int i, j, k, num, have, need, cnt, spare;
1963 uint32_t val;
1964 char buf[17];
1965
1966 sc = disk->d_softc;
1967 md = sc->sc_md;
1968 mdi = (struct g_raid_md_ddf_object *)md;
1969 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1970 pdmeta = &pd->pd_meta;
1971 spare = -1;
1972
1973 if (mdi->mdio_meta.hdr == NULL)
1974 ddf_meta_copy(&mdi->mdio_meta, pdmeta);
1975 else
1976 ddf_meta_update(&mdi->mdio_meta, pdmeta);
1977
1978 num = GETCRNUM(pdmeta);
1979 for (j = 0; j < num; j++) {
1980 vdc = GETVDCPTR(pdmeta, j);
1981 val = GET32D(pdmeta, vdc->Signature);
1982
1983 if (val == DDF_SA_SIGNATURE && spare == -1)
1984 spare = 1;
1985
1986 if (val != DDF_VDCR_SIGNATURE)
1987 continue;
1988 spare = 0;
1989 k = ddf_meta_find_vd(pdmeta, vdc->VD_GUID);
1990 if (k < 0)
1991 continue;
1992 vde = &pdmeta->vdr->entry[k];
1993
1994 /* Look for volume with matching ID. */
1995 vol = g_raid_md_ddf_get_volume(sc, vdc->VD_GUID);
1996 if (vol == NULL) {
1997 ddf_meta_get_name(pdmeta, k, buf);
1998 vol = g_raid_create_volume(sc, buf,
1999 GET16D(pdmeta, vde->VD_Number));
2000 pv = malloc(sizeof(*pv), M_MD_DDF, M_WAITOK | M_ZERO);
2001 vol->v_md_data = pv;
2002 callout_init(&pv->pv_start_co, 1);
2003 callout_reset(&pv->pv_start_co,
2004 g_raid_start_timeout * hz,
2005 g_raid_ddf_go, vol);
2006 mdi->mdio_starting++;
2007 } else
2008 pv = vol->v_md_data;
2009
2010 /* If we haven't started yet - check metadata freshness. */
2011 vmeta = &pv->pv_meta;
2012 ddf_vol_meta_update(vmeta, pdmeta, vdc->VD_GUID, pv->pv_started);
2013 }
2014
2015 if (spare == 1) {
2016 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
2017 g_raid_md_ddf_refill(sc);
2018 }
2019
2020 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2021 pv = vol->v_md_data;
2022 vmeta = &pv->pv_meta;
2023
2024 if (ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID) == NULL)
2025 continue;
2026
2027 if (pv->pv_started) {
2028 if (g_raid_md_ddf_start_disk(disk, vol))
2029 g_raid_md_write_ddf(md, vol, NULL, NULL);
2030 continue;
2031 }
2032
2033 /* If we collected all needed disks - start array. */
2034 need = 0;
2035 have = 0;
2036 for (k = 0; k < GET8(vmeta, vdc->Secondary_Element_Count); k++) {
2037 if (vmeta->bvdc[k] == NULL) {
2038 need += GET16(vmeta, vdc->Primary_Element_Count);
2039 continue;
2040 }
2041 cnt = GET16(vmeta, bvdc[k]->Primary_Element_Count);
2042 need += cnt;
2043 for (i = 0; i < cnt; i++) {
2044 val = GET32(vmeta, bvdc[k]->Physical_Disk_Sequence[i]);
2045 if (g_raid_md_ddf_get_disk(sc, NULL, val) != NULL)
2046 have++;
2047 }
2048 }
2049 G_RAID_DEBUG1(1, sc, "Volume %s now has %d of %d disks",
2050 vol->v_name, have, need);
2051 if (have == need)
2052 g_raid_md_ddf_start(vol);
2053 }
2054 }
2055
2056 static int
2057 g_raid_md_create_req_ddf(struct g_raid_md_object *md, struct g_class *mp,
2058 struct gctl_req *req, struct g_geom **gp)
2059 {
2060 struct g_geom *geom;
2061 struct g_raid_softc *sc;
2062 struct g_raid_md_ddf_object *mdi, *mdi1;
2063 char name[16];
2064 const char *fmtopt;
2065 int be = 1;
2066
2067 mdi = (struct g_raid_md_ddf_object *)md;
2068 fmtopt = gctl_get_asciiparam(req, "fmtopt");
2069 if (fmtopt == NULL || strcasecmp(fmtopt, "BE") == 0)
2070 be = 1;
2071 else if (strcasecmp(fmtopt, "LE") == 0)
2072 be = 0;
2073 else {
2074 gctl_error(req, "Incorrect fmtopt argument.");
2075 return (G_RAID_MD_TASTE_FAIL);
2076 }
2077
2078 /* Search for existing node. */
2079 LIST_FOREACH(geom, &mp->geom, geom) {
2080 sc = geom->softc;
2081 if (sc == NULL)
2082 continue;
2083 if (sc->sc_stopping != 0)
2084 continue;
2085 if (sc->sc_md->mdo_class != md->mdo_class)
2086 continue;
2087 mdi1 = (struct g_raid_md_ddf_object *)sc->sc_md;
2088 if (mdi1->mdio_bigendian != be)
2089 continue;
2090 break;
2091 }
2092 if (geom != NULL) {
2093 *gp = geom;
2094 return (G_RAID_MD_TASTE_EXISTING);
2095 }
2096
2097 /* Create new one if not found. */
2098 mdi->mdio_bigendian = be;
2099 snprintf(name, sizeof(name), "DDF%s", be ? "" : "-LE");
2100 sc = g_raid_create_node(mp, name, md);
2101 if (sc == NULL)
2102 return (G_RAID_MD_TASTE_FAIL);
2103 md->mdo_softc = sc;
2104 *gp = sc->sc_geom;
2105 return (G_RAID_MD_TASTE_NEW);
2106 }
2107
2108 static int
2109 g_raid_md_taste_ddf(struct g_raid_md_object *md, struct g_class *mp,
2110 struct g_consumer *cp, struct g_geom **gp)
2111 {
2112 struct g_consumer *rcp;
2113 struct g_provider *pp;
2114 struct g_raid_softc *sc;
2115 struct g_raid_disk *disk;
2116 struct ddf_meta meta;
2117 struct g_raid_md_ddf_perdisk *pd;
2118 struct g_raid_md_ddf_object *mdi;
2119 struct g_geom *geom;
2120 int error, result, be;
2121 char name[16];
2122
2123 G_RAID_DEBUG(1, "Tasting DDF on %s", cp->provider->name);
2124 mdi = (struct g_raid_md_ddf_object *)md;
2125 pp = cp->provider;
2126
2127 /* Read metadata from device. */
2128 g_topology_unlock();
2129 bzero(&meta, sizeof(meta));
2130 error = ddf_meta_read(cp, &meta);
2131 g_topology_lock();
2132 if (error != 0)
2133 return (G_RAID_MD_TASTE_FAIL);
2134 be = meta.bigendian;
2135
2136 /* Metadata valid. Print it. */
2137 g_raid_md_ddf_print(&meta);
2138
2139 /* Search for matching node. */
2140 sc = NULL;
2141 LIST_FOREACH(geom, &mp->geom, geom) {
2142 sc = geom->softc;
2143 if (sc == NULL)
2144 continue;
2145 if (sc->sc_stopping != 0)
2146 continue;
2147 if (sc->sc_md->mdo_class != md->mdo_class)
2148 continue;
2149 mdi = (struct g_raid_md_ddf_object *)sc->sc_md;
2150 if (mdi->mdio_bigendian != be)
2151 continue;
2152 break;
2153 }
2154
2155 /* Found matching node. */
2156 if (geom != NULL) {
2157 G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
2158 result = G_RAID_MD_TASTE_EXISTING;
2159
2160 } else { /* Not found matching node -- create one. */
2161 result = G_RAID_MD_TASTE_NEW;
2162 mdi->mdio_bigendian = be;
2163 snprintf(name, sizeof(name), "DDF%s", be ? "" : "-LE");
2164 sc = g_raid_create_node(mp, name, md);
2165 md->mdo_softc = sc;
2166 geom = sc->sc_geom;
2167 }
2168
2169 /* There is no return after this point, so we close passed consumer. */
2170 g_access(cp, -1, 0, 0);
2171
2172 rcp = g_new_consumer(geom);
2173 rcp->flags |= G_CF_DIRECT_RECEIVE;
2174 g_attach(rcp, pp);
2175 if (g_access(rcp, 1, 1, 1) != 0)
2176 ; //goto fail1;
2177
2178 g_topology_unlock();
2179 sx_xlock(&sc->sc_lock);
2180
2181 pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2182 pd->pd_meta = meta;
2183 disk = g_raid_create_disk(sc);
2184 disk->d_md_data = (void *)pd;
2185 disk->d_consumer = rcp;
2186 rcp->private = disk;
2187
2188 g_raid_get_disk_info(disk);
2189
2190 g_raid_md_ddf_new_disk(disk);
2191
2192 sx_xunlock(&sc->sc_lock);
2193 g_topology_lock();
2194 *gp = geom;
2195 return (result);
2196 }
2197
2198 static int
2199 g_raid_md_event_ddf(struct g_raid_md_object *md,
2200 struct g_raid_disk *disk, u_int event)
2201 {
2202 struct g_raid_softc *sc;
2203
2204 sc = md->mdo_softc;
2205 if (disk == NULL)
2206 return (-1);
2207 switch (event) {
2208 case G_RAID_DISK_E_DISCONNECTED:
2209 /* Delete disk. */
2210 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
2211 g_raid_destroy_disk(disk);
2212 g_raid_md_ddf_purge_volumes(sc);
2213
2214 /* Write updated metadata to all disks. */
2215 g_raid_md_write_ddf(md, NULL, NULL, NULL);
2216
2217 /* Check if anything left. */
2218 if (g_raid_ndisks(sc, -1) == 0)
2219 g_raid_destroy_node(sc, 0);
2220 else
2221 g_raid_md_ddf_refill(sc);
2222 return (0);
2223 }
2224 return (-2);
2225 }
2226
2227 static int
2228 g_raid_md_volume_event_ddf(struct g_raid_md_object *md,
2229 struct g_raid_volume *vol, u_int event)
2230 {
2231 struct g_raid_md_ddf_pervolume *pv;
2232
2233 pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2234 switch (event) {
2235 case G_RAID_VOLUME_E_STARTMD:
2236 if (!pv->pv_started)
2237 g_raid_md_ddf_start(vol);
2238 return (0);
2239 }
2240 return (-2);
2241 }
2242
2243 static int
2244 g_raid_md_ctl_ddf(struct g_raid_md_object *md,
2245 struct gctl_req *req)
2246 {
2247 struct g_raid_softc *sc;
2248 struct g_raid_volume *vol, *vol1;
2249 struct g_raid_subdisk *sd;
2250 struct g_raid_disk *disk, *disks[DDF_MAX_DISKS_HARD];
2251 struct g_raid_md_ddf_perdisk *pd;
2252 struct g_raid_md_ddf_pervolume *pv;
2253 struct g_raid_md_ddf_object *mdi;
2254 struct ddf_sa_record *sa;
2255 struct g_consumer *cp;
2256 struct g_provider *pp;
2257 char arg[16];
2258 const char *nodename, *verb, *volname, *levelname, *diskname;
2259 char *tmp;
2260 int *nargs, *force;
2261 off_t size, sectorsize, strip, offs[DDF_MAX_DISKS_HARD], esize;
2262 intmax_t *sizearg, *striparg;
2263 int i, numdisks, len, level, qual;
2264 int error;
2265
2266 sc = md->mdo_softc;
2267 mdi = (struct g_raid_md_ddf_object *)md;
2268 verb = gctl_get_param(req, "verb", NULL);
2269 nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
2270 error = 0;
2271
2272 if (strcmp(verb, "label") == 0) {
2273 if (*nargs < 4) {
2274 gctl_error(req, "Invalid number of arguments.");
2275 return (-1);
2276 }
2277 volname = gctl_get_asciiparam(req, "arg1");
2278 if (volname == NULL) {
2279 gctl_error(req, "No volume name.");
2280 return (-2);
2281 }
2282 levelname = gctl_get_asciiparam(req, "arg2");
2283 if (levelname == NULL) {
2284 gctl_error(req, "No RAID level.");
2285 return (-3);
2286 }
2287 if (g_raid_volume_str2level(levelname, &level, &qual)) {
2288 gctl_error(req, "Unknown RAID level '%s'.", levelname);
2289 return (-4);
2290 }
2291 numdisks = *nargs - 3;
2292 force = gctl_get_paraml(req, "force", sizeof(*force));
2293 if (!g_raid_md_ddf_supported(level, qual, numdisks,
2294 force ? *force : 0)) {
2295 gctl_error(req, "Unsupported RAID level "
2296 "(0x%02x/0x%02x), or number of disks (%d).",
2297 level, qual, numdisks);
2298 return (-5);
2299 }
2300
2301 /* Search for disks, connect them and probe. */
2302 size = INT64_MAX;
2303 sectorsize = 0;
2304 bzero(disks, sizeof(disks));
2305 bzero(offs, sizeof(offs));
2306 for (i = 0; i < numdisks; i++) {
2307 snprintf(arg, sizeof(arg), "arg%d", i + 3);
2308 diskname = gctl_get_asciiparam(req, arg);
2309 if (diskname == NULL) {
2310 gctl_error(req, "No disk name (%s).", arg);
2311 error = -6;
2312 break;
2313 }
2314 if (strcmp(diskname, "NONE") == 0)
2315 continue;
2316
2317 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2318 if (disk->d_consumer != NULL &&
2319 disk->d_consumer->provider != NULL &&
2320 strcmp(disk->d_consumer->provider->name,
2321 diskname) == 0)
2322 break;
2323 }
2324 if (disk != NULL) {
2325 if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2326 gctl_error(req, "Disk '%s' is in a "
2327 "wrong state (%s).", diskname,
2328 g_raid_disk_state2str(disk->d_state));
2329 error = -7;
2330 break;
2331 }
2332 pd = disk->d_md_data;
2333 if (ddf_meta_count_vdc(&pd->pd_meta, NULL) >=
2334 GET16(&pd->pd_meta, hdr->Max_Partitions)) {
2335 gctl_error(req, "No free partitions "
2336 "on disk '%s'.",
2337 diskname);
2338 error = -7;
2339 break;
2340 }
2341 pp = disk->d_consumer->provider;
2342 disks[i] = disk;
2343 ddf_meta_unused_range(&pd->pd_meta,
2344 &offs[i], &esize);
2345 offs[i] *= pp->sectorsize;
2346 size = MIN(size, (off_t)esize * pp->sectorsize);
2347 sectorsize = MAX(sectorsize, pp->sectorsize);
2348 continue;
2349 }
2350
2351 g_topology_lock();
2352 cp = g_raid_open_consumer(sc, diskname);
2353 if (cp == NULL) {
2354 gctl_error(req, "Can't open disk '%s'.",
2355 diskname);
2356 g_topology_unlock();
2357 error = -8;
2358 break;
2359 }
2360 pp = cp->provider;
2361 pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2362 disk = g_raid_create_disk(sc);
2363 disk->d_md_data = (void *)pd;
2364 disk->d_consumer = cp;
2365 disks[i] = disk;
2366 cp->private = disk;
2367 ddf_meta_create(disk, &mdi->mdio_meta);
2368 if (mdi->mdio_meta.hdr == NULL)
2369 ddf_meta_copy(&mdi->mdio_meta, &pd->pd_meta);
2370 else
2371 ddf_meta_update(&mdi->mdio_meta, &pd->pd_meta);
2372 g_topology_unlock();
2373
2374 g_raid_get_disk_info(disk);
2375
2376 /* Reserve some space for metadata. */
2377 size = MIN(size, GET64(&pd->pd_meta,
2378 pdr->entry[0].Configured_Size) * pp->sectorsize);
2379 sectorsize = MAX(sectorsize, pp->sectorsize);
2380 }
2381 if (error != 0) {
2382 for (i = 0; i < numdisks; i++) {
2383 if (disks[i] != NULL &&
2384 disks[i]->d_state == G_RAID_DISK_S_NONE)
2385 g_raid_destroy_disk(disks[i]);
2386 }
2387 return (error);
2388 }
2389
2390 if (sectorsize <= 0) {
2391 gctl_error(req, "Can't get sector size.");
2392 return (-8);
2393 }
2394
2395 /* Handle size argument. */
2396 len = sizeof(*sizearg);
2397 sizearg = gctl_get_param(req, "size", &len);
2398 if (sizearg != NULL && len == sizeof(*sizearg) &&
2399 *sizearg > 0) {
2400 if (*sizearg > size) {
2401 gctl_error(req, "Size too big %lld > %lld.",
2402 (long long)*sizearg, (long long)size);
2403 return (-9);
2404 }
2405 size = *sizearg;
2406 }
2407
2408 /* Handle strip argument. */
2409 strip = 131072;
2410 len = sizeof(*striparg);
2411 striparg = gctl_get_param(req, "strip", &len);
2412 if (striparg != NULL && len == sizeof(*striparg) &&
2413 *striparg > 0) {
2414 if (*striparg < sectorsize) {
2415 gctl_error(req, "Strip size too small.");
2416 return (-10);
2417 }
2418 if (*striparg % sectorsize != 0) {
2419 gctl_error(req, "Incorrect strip size.");
2420 return (-11);
2421 }
2422 strip = *striparg;
2423 }
2424
2425 /* Round size down to strip or sector. */
2426 if (level == G_RAID_VOLUME_RL_RAID1 ||
2427 level == G_RAID_VOLUME_RL_RAID3 ||
2428 level == G_RAID_VOLUME_RL_SINGLE ||
2429 level == G_RAID_VOLUME_RL_CONCAT)
2430 size -= (size % sectorsize);
2431 else if (level == G_RAID_VOLUME_RL_RAID1E &&
2432 (numdisks & 1) != 0)
2433 size -= (size % (2 * strip));
2434 else
2435 size -= (size % strip);
2436 if (size <= 0) {
2437 gctl_error(req, "Size too small.");
2438 return (-13);
2439 }
2440
2441 /* We have all we need, create things: volume, ... */
2442 pv = malloc(sizeof(*pv), M_MD_DDF, M_WAITOK | M_ZERO);
2443 ddf_vol_meta_create(&pv->pv_meta, &mdi->mdio_meta);
2444 pv->pv_started = 1;
2445 vol = g_raid_create_volume(sc, volname, -1);
2446 vol->v_md_data = pv;
2447 vol->v_raid_level = level;
2448 vol->v_raid_level_qualifier = qual;
2449 vol->v_strip_size = strip;
2450 vol->v_disks_count = numdisks;
2451 if (level == G_RAID_VOLUME_RL_RAID0 ||
2452 level == G_RAID_VOLUME_RL_CONCAT ||
2453 level == G_RAID_VOLUME_RL_SINGLE)
2454 vol->v_mediasize = size * numdisks;
2455 else if (level == G_RAID_VOLUME_RL_RAID1)
2456 vol->v_mediasize = size;
2457 else if (level == G_RAID_VOLUME_RL_RAID3 ||
2458 level == G_RAID_VOLUME_RL_RAID4 ||
2459 level == G_RAID_VOLUME_RL_RAID5)
2460 vol->v_mediasize = size * (numdisks - 1);
2461 else if (level == G_RAID_VOLUME_RL_RAID5R) {
2462 vol->v_mediasize = size * (numdisks - 1);
2463 vol->v_rotate_parity = 1024;
2464 } else if (level == G_RAID_VOLUME_RL_RAID6 ||
2465 level == G_RAID_VOLUME_RL_RAID5E ||
2466 level == G_RAID_VOLUME_RL_RAID5EE)
2467 vol->v_mediasize = size * (numdisks - 2);
2468 else if (level == G_RAID_VOLUME_RL_RAIDMDF) {
2469 if (numdisks < 5)
2470 vol->v_mdf_pdisks = 2;
2471 else
2472 vol->v_mdf_pdisks = 3;
2473 vol->v_mdf_polynomial = 0x11d;
2474 vol->v_mdf_method = 0x00;
2475 vol->v_mediasize = size * (numdisks - vol->v_mdf_pdisks);
2476 } else { /* RAID1E */
2477 vol->v_mediasize = ((size * numdisks) / strip / 2) *
2478 strip;
2479 }
2480 vol->v_sectorsize = sectorsize;
2481 g_raid_start_volume(vol);
2482
2483 /* , and subdisks. */
2484 for (i = 0; i < numdisks; i++) {
2485 disk = disks[i];
2486 sd = &vol->v_subdisks[i];
2487 sd->sd_disk = disk;
2488 sd->sd_offset = offs[i];
2489 sd->sd_size = size;
2490 if (disk == NULL)
2491 continue;
2492 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
2493 g_raid_change_disk_state(disk,
2494 G_RAID_DISK_S_ACTIVE);
2495 g_raid_change_subdisk_state(sd,
2496 G_RAID_SUBDISK_S_ACTIVE);
2497 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
2498 G_RAID_EVENT_SUBDISK);
2499 }
2500
2501 /* Write metadata based on created entities. */
2502 G_RAID_DEBUG1(0, sc, "Array started.");
2503 g_raid_md_write_ddf(md, vol, NULL, NULL);
2504
2505 /* Pickup any STALE/SPARE disks to refill array if needed. */
2506 g_raid_md_ddf_refill(sc);
2507
2508 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
2509 G_RAID_EVENT_VOLUME);
2510 return (0);
2511 }
2512 if (strcmp(verb, "add") == 0) {
2513 gctl_error(req, "`add` command is not applicable, "
2514 "use `label` instead.");
2515 return (-99);
2516 }
2517 if (strcmp(verb, "delete") == 0) {
2518 nodename = gctl_get_asciiparam(req, "arg0");
2519 if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
2520 nodename = NULL;
2521
2522 /* Full node destruction. */
2523 if (*nargs == 1 && nodename != NULL) {
2524 /* Check if some volume is still open. */
2525 force = gctl_get_paraml(req, "force", sizeof(*force));
2526 if (force != NULL && *force == 0 &&
2527 g_raid_nopens(sc) != 0) {
2528 gctl_error(req, "Some volume is still open.");
2529 return (-4);
2530 }
2531
2532 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2533 if (disk->d_consumer)
2534 ddf_meta_erase(disk->d_consumer);
2535 }
2536 g_raid_destroy_node(sc, 0);
2537 return (0);
2538 }
2539
2540 /* Destroy specified volume. If it was last - all node. */
2541 if (*nargs > 2) {
2542 gctl_error(req, "Invalid number of arguments.");
2543 return (-1);
2544 }
2545 volname = gctl_get_asciiparam(req,
2546 nodename != NULL ? "arg1" : "arg0");
2547 if (volname == NULL) {
2548 gctl_error(req, "No volume name.");
2549 return (-2);
2550 }
2551
2552 /* Search for volume. */
2553 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2554 if (strcmp(vol->v_name, volname) == 0)
2555 break;
2556 pp = vol->v_provider;
2557 if (pp == NULL)
2558 continue;
2559 if (strcmp(pp->name, volname) == 0)
2560 break;
2561 if (strncmp(pp->name, "raid/", 5) == 0 &&
2562 strcmp(pp->name + 5, volname) == 0)
2563 break;
2564 }
2565 if (vol == NULL) {
2566 i = strtol(volname, &tmp, 10);
2567 if (verb != volname && tmp[0] == 0) {
2568 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2569 if (vol->v_global_id == i)
2570 break;
2571 }
2572 }
2573 }
2574 if (vol == NULL) {
2575 gctl_error(req, "Volume '%s' not found.", volname);
2576 return (-3);
2577 }
2578
2579 /* Check if volume is still open. */
2580 force = gctl_get_paraml(req, "force", sizeof(*force));
2581 if (force != NULL && *force == 0 &&
2582 vol->v_provider_open != 0) {
2583 gctl_error(req, "Volume is still open.");
2584 return (-4);
2585 }
2586
2587 /* Destroy volume and potentially node. */
2588 i = 0;
2589 TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
2590 i++;
2591 if (i >= 2) {
2592 g_raid_destroy_volume(vol);
2593 g_raid_md_ddf_purge_disks(sc);
2594 g_raid_md_write_ddf(md, NULL, NULL, NULL);
2595 } else {
2596 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2597 if (disk->d_consumer)
2598 ddf_meta_erase(disk->d_consumer);
2599 }
2600 g_raid_destroy_node(sc, 0);
2601 }
2602 return (0);
2603 }
2604 if (strcmp(verb, "remove") == 0 ||
2605 strcmp(verb, "fail") == 0) {
2606 if (*nargs < 2) {
2607 gctl_error(req, "Invalid number of arguments.");
2608 return (-1);
2609 }
2610 for (i = 1; i < *nargs; i++) {
2611 snprintf(arg, sizeof(arg), "arg%d", i);
2612 diskname = gctl_get_asciiparam(req, arg);
2613 if (diskname == NULL) {
2614 gctl_error(req, "No disk name (%s).", arg);
2615 error = -2;
2616 break;
2617 }
2618 if (strncmp(diskname, _PATH_DEV, 5) == 0)
2619 diskname += 5;
2620
2621 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2622 if (disk->d_consumer != NULL &&
2623 disk->d_consumer->provider != NULL &&
2624 strcmp(disk->d_consumer->provider->name,
2625 diskname) == 0)
2626 break;
2627 }
2628 if (disk == NULL) {
2629 gctl_error(req, "Disk '%s' not found.",
2630 diskname);
2631 error = -3;
2632 break;
2633 }
2634
2635 if (strcmp(verb, "fail") == 0) {
2636 g_raid_md_fail_disk_ddf(md, NULL, disk);
2637 continue;
2638 }
2639
2640 /* Erase metadata on deleting disk and destroy it. */
2641 ddf_meta_erase(disk->d_consumer);
2642 g_raid_destroy_disk(disk);
2643 }
2644 g_raid_md_ddf_purge_volumes(sc);
2645
2646 /* Write updated metadata to remaining disks. */
2647 g_raid_md_write_ddf(md, NULL, NULL, NULL);
2648
2649 /* Check if anything left. */
2650 if (g_raid_ndisks(sc, -1) == 0)
2651 g_raid_destroy_node(sc, 0);
2652 else
2653 g_raid_md_ddf_refill(sc);
2654 return (error);
2655 }
2656 if (strcmp(verb, "insert") == 0) {
2657 if (*nargs < 2) {
2658 gctl_error(req, "Invalid number of arguments.");
2659 return (-1);
2660 }
2661 for (i = 1; i < *nargs; i++) {
2662 /* Get disk name. */
2663 snprintf(arg, sizeof(arg), "arg%d", i);
2664 diskname = gctl_get_asciiparam(req, arg);
2665 if (diskname == NULL) {
2666 gctl_error(req, "No disk name (%s).", arg);
2667 error = -3;
2668 break;
2669 }
2670
2671 /* Try to find provider with specified name. */
2672 g_topology_lock();
2673 cp = g_raid_open_consumer(sc, diskname);
2674 if (cp == NULL) {
2675 gctl_error(req, "Can't open disk '%s'.",
2676 diskname);
2677 g_topology_unlock();
2678 error = -4;
2679 break;
2680 }
2681 pp = cp->provider;
2682 g_topology_unlock();
2683
2684 pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2685
2686 disk = g_raid_create_disk(sc);
2687 disk->d_consumer = cp;
2688 disk->d_md_data = (void *)pd;
2689 cp->private = disk;
2690
2691 g_raid_get_disk_info(disk);
2692
2693 /* Welcome the "new" disk. */
2694 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
2695 ddf_meta_create(disk, &mdi->mdio_meta);
2696 sa = ddf_meta_find_sa(&pd->pd_meta, 1);
2697 if (sa != NULL) {
2698 SET32D(&pd->pd_meta, sa->Signature,
2699 DDF_SA_SIGNATURE);
2700 SET8D(&pd->pd_meta, sa->Spare_Type, 0);
2701 SET16D(&pd->pd_meta, sa->Populated_SAEs, 0);
2702 SET16D(&pd->pd_meta, sa->MAX_SAE_Supported,
2703 (GET16(&pd->pd_meta, hdr->Configuration_Record_Length) *
2704 pd->pd_meta.sectorsize -
2705 sizeof(struct ddf_sa_record)) /
2706 sizeof(struct ddf_sa_entry));
2707 }
2708 if (mdi->mdio_meta.hdr == NULL)
2709 ddf_meta_copy(&mdi->mdio_meta, &pd->pd_meta);
2710 else
2711 ddf_meta_update(&mdi->mdio_meta, &pd->pd_meta);
2712 g_raid_md_write_ddf(md, NULL, NULL, NULL);
2713 g_raid_md_ddf_refill(sc);
2714 }
2715 return (error);
2716 }
2717 return (-100);
2718 }
2719
2720 static int
2721 g_raid_md_write_ddf(struct g_raid_md_object *md, struct g_raid_volume *tvol,
2722 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2723 {
2724 struct g_raid_softc *sc;
2725 struct g_raid_volume *vol;
2726 struct g_raid_subdisk *sd;
2727 struct g_raid_disk *disk;
2728 struct g_raid_md_ddf_perdisk *pd;
2729 struct g_raid_md_ddf_pervolume *pv;
2730 struct g_raid_md_ddf_object *mdi;
2731 struct ddf_meta *gmeta;
2732 struct ddf_vol_meta *vmeta;
2733 struct ddf_vdc_record *vdc;
2734 struct ddf_sa_record *sa;
2735 uint64_t *val2;
2736 int i, j, pos, bvd, size;
2737
2738 sc = md->mdo_softc;
2739 mdi = (struct g_raid_md_ddf_object *)md;
2740 gmeta = &mdi->mdio_meta;
2741
2742 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2743 return (0);
2744
2745 /*
2746 * Clear disk flags to let only really needed ones to be reset.
2747 * Do it only if there are no volumes in starting state now,
2748 * as they can update disk statuses yet and we may kill innocent.
2749 */
2750 if (mdi->mdio_starting == 0) {
2751 for (i = 0; i < GET16(gmeta, pdr->Populated_PDEs); i++) {
2752 if (isff(gmeta->pdr->entry[i].PD_GUID, 24))
2753 continue;
2754 SET16(gmeta, pdr->entry[i].PD_Type,
2755 GET16(gmeta, pdr->entry[i].PD_Type) &
2756 ~(DDF_PDE_PARTICIPATING |
2757 DDF_PDE_GLOBAL_SPARE | DDF_PDE_CONFIG_SPARE));
2758 if ((GET16(gmeta, pdr->entry[i].PD_State) &
2759 DDF_PDE_PFA) == 0)
2760 SET16(gmeta, pdr->entry[i].PD_State, 0);
2761 }
2762 }
2763
2764 /* Generate/update new per-volume metadata. */
2765 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2766 pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2767 if (vol->v_stopping || !pv->pv_started)
2768 continue;
2769 vmeta = &pv->pv_meta;
2770
2771 SET32(vmeta, vdc->Sequence_Number,
2772 GET32(vmeta, vdc->Sequence_Number) + 1);
2773 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E &&
2774 vol->v_disks_count % 2 == 0)
2775 SET16(vmeta, vdc->Primary_Element_Count, 2);
2776 else
2777 SET16(vmeta, vdc->Primary_Element_Count,
2778 vol->v_disks_count);
2779 SET8(vmeta, vdc->Stripe_Size,
2780 ffs(vol->v_strip_size / vol->v_sectorsize) - 1);
2781 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E &&
2782 vol->v_disks_count % 2 == 0) {
2783 SET8(vmeta, vdc->Primary_RAID_Level,
2784 DDF_VDCR_RAID1);
2785 SET8(vmeta, vdc->RLQ, 0);
2786 SET8(vmeta, vdc->Secondary_Element_Count,
2787 vol->v_disks_count / 2);
2788 SET8(vmeta, vdc->Secondary_RAID_Level, 0);
2789 } else {
2790 SET8(vmeta, vdc->Primary_RAID_Level,
2791 vol->v_raid_level);
2792 SET8(vmeta, vdc->RLQ,
2793 vol->v_raid_level_qualifier);
2794 SET8(vmeta, vdc->Secondary_Element_Count, 1);
2795 SET8(vmeta, vdc->Secondary_RAID_Level, 0);
2796 }
2797 SET8(vmeta, vdc->Secondary_Element_Seq, 0);
2798 SET64(vmeta, vdc->Block_Count, 0);
2799 SET64(vmeta, vdc->VD_Size, vol->v_mediasize / vol->v_sectorsize);
2800 SET16(vmeta, vdc->Block_Size, vol->v_sectorsize);
2801 SET8(vmeta, vdc->Rotate_Parity_count,
2802 fls(vol->v_rotate_parity) - 1);
2803 SET8(vmeta, vdc->MDF_Parity_Disks, vol->v_mdf_pdisks);
2804 SET16(vmeta, vdc->MDF_Parity_Generator_Polynomial,
2805 vol->v_mdf_polynomial);
2806 SET8(vmeta, vdc->MDF_Constant_Generation_Method,
2807 vol->v_mdf_method);
2808
2809 SET16(vmeta, vde->VD_Number, vol->v_global_id);
2810 if (vol->v_state <= G_RAID_VOLUME_S_BROKEN)
2811 SET8(vmeta, vde->VD_State, DDF_VDE_FAILED);
2812 else if (vol->v_state <= G_RAID_VOLUME_S_DEGRADED)
2813 SET8(vmeta, vde->VD_State, DDF_VDE_DEGRADED);
2814 else if (vol->v_state <= G_RAID_VOLUME_S_SUBOPTIMAL)
2815 SET8(vmeta, vde->VD_State, DDF_VDE_PARTIAL);
2816 else
2817 SET8(vmeta, vde->VD_State, DDF_VDE_OPTIMAL);
2818 if (vol->v_dirty ||
2819 g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) > 0 ||
2820 g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC) > 0)
2821 SET8(vmeta, vde->VD_State,
2822 GET8(vmeta, vde->VD_State) | DDF_VDE_DIRTY);
2823 SET8(vmeta, vde->Init_State, DDF_VDE_INIT_FULL); // XXX
2824 ddf_meta_put_name(vmeta, vol->v_name);
2825
2826 for (i = 0; i < vol->v_disks_count; i++) {
2827 sd = &vol->v_subdisks[i];
2828 bvd = i / GET16(vmeta, vdc->Primary_Element_Count);
2829 pos = i % GET16(vmeta, vdc->Primary_Element_Count);
2830 disk = sd->sd_disk;
2831 if (disk != NULL) {
2832 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2833 if (vmeta->bvdc[bvd] == NULL) {
2834 size = GET16(vmeta,
2835 hdr->Configuration_Record_Length) *
2836 vmeta->sectorsize;
2837 vmeta->bvdc[bvd] = malloc(size,
2838 M_MD_DDF, M_WAITOK);
2839 memset(vmeta->bvdc[bvd], 0xff, size);
2840 }
2841 memcpy(vmeta->bvdc[bvd], vmeta->vdc,
2842 sizeof(struct ddf_vdc_record));
2843 SET8(vmeta, bvdc[bvd]->Secondary_Element_Seq, bvd);
2844 SET64(vmeta, bvdc[bvd]->Block_Count,
2845 sd->sd_size / vol->v_sectorsize);
2846 SET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos],
2847 GET32(&pd->pd_meta, pdd->PD_Reference));
2848 val2 = (uint64_t *)&(vmeta->bvdc[bvd]->Physical_Disk_Sequence[
2849 GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
2850 SET64P(vmeta, val2 + pos,
2851 sd->sd_offset / vol->v_sectorsize);
2852 }
2853 if (vmeta->bvdc[bvd] == NULL)
2854 continue;
2855
2856 j = ddf_meta_find_pd(gmeta, NULL,
2857 GET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos]));
2858 if (j < 0)
2859 continue;
2860 SET16(gmeta, pdr->entry[j].PD_Type,
2861 GET16(gmeta, pdr->entry[j].PD_Type) |
2862 DDF_PDE_PARTICIPATING);
2863 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
2864 SET16(gmeta, pdr->entry[j].PD_State,
2865 GET16(gmeta, pdr->entry[j].PD_State) |
2866 (DDF_PDE_FAILED | DDF_PDE_MISSING));
2867 else if (sd->sd_state == G_RAID_SUBDISK_S_FAILED)
2868 SET16(gmeta, pdr->entry[j].PD_State,
2869 GET16(gmeta, pdr->entry[j].PD_State) |
2870 (DDF_PDE_FAILED | DDF_PDE_PFA));
2871 else if (sd->sd_state <= G_RAID_SUBDISK_S_REBUILD)
2872 SET16(gmeta, pdr->entry[j].PD_State,
2873 GET16(gmeta, pdr->entry[j].PD_State) |
2874 DDF_PDE_REBUILD);
2875 else
2876 SET16(gmeta, pdr->entry[j].PD_State,
2877 GET16(gmeta, pdr->entry[j].PD_State) |
2878 DDF_PDE_ONLINE);
2879 }
2880 }
2881
2882 /* Mark spare and failed disks as such. */
2883 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2884 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2885 i = ddf_meta_find_pd(gmeta, NULL,
2886 GET32(&pd->pd_meta, pdd->PD_Reference));
2887 if (i < 0)
2888 continue;
2889 if (disk->d_state == G_RAID_DISK_S_FAILED) {
2890 SET16(gmeta, pdr->entry[i].PD_State,
2891 GET16(gmeta, pdr->entry[i].PD_State) |
2892 (DDF_PDE_FAILED | DDF_PDE_PFA));
2893 }
2894 if (disk->d_state != G_RAID_DISK_S_SPARE)
2895 continue;
2896 sa = ddf_meta_find_sa(&pd->pd_meta, 0);
2897 if (sa == NULL ||
2898 (GET8D(&pd->pd_meta, sa->Spare_Type) &
2899 DDF_SAR_TYPE_DEDICATED) == 0) {
2900 SET16(gmeta, pdr->entry[i].PD_Type,
2901 GET16(gmeta, pdr->entry[i].PD_Type) |
2902 DDF_PDE_GLOBAL_SPARE);
2903 } else {
2904 SET16(gmeta, pdr->entry[i].PD_Type,
2905 GET16(gmeta, pdr->entry[i].PD_Type) |
2906 DDF_PDE_CONFIG_SPARE);
2907 }
2908 SET16(gmeta, pdr->entry[i].PD_State,
2909 GET16(gmeta, pdr->entry[i].PD_State) |
2910 DDF_PDE_ONLINE);
2911 }
2912
2913 /* Remove disks without "participating" flag (unused). */
2914 for (i = 0, j = -1; i < GET16(gmeta, pdr->Populated_PDEs); i++) {
2915 if (isff(gmeta->pdr->entry[i].PD_GUID, 24))
2916 continue;
2917 if ((GET16(gmeta, pdr->entry[i].PD_Type) &
2918 (DDF_PDE_PARTICIPATING |
2919 DDF_PDE_GLOBAL_SPARE | DDF_PDE_CONFIG_SPARE)) != 0 ||
2920 g_raid_md_ddf_get_disk(sc,
2921 NULL, GET32(gmeta, pdr->entry[i].PD_Reference)) != NULL)
2922 j = i;
2923 else
2924 memset(&gmeta->pdr->entry[i], 0xff,
2925 sizeof(struct ddf_pd_entry));
2926 }
2927 SET16(gmeta, pdr->Populated_PDEs, j + 1);
2928
2929 /* Update per-disk metadata and write them. */
2930 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2931 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2932 if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
2933 disk->d_state != G_RAID_DISK_S_SPARE)
2934 continue;
2935 /* Update PDR. */
2936 memcpy(pd->pd_meta.pdr, gmeta->pdr,
2937 GET32(&pd->pd_meta, hdr->pdr_length) *
2938 pd->pd_meta.sectorsize);
2939 /* Update VDR. */
2940 SET16(&pd->pd_meta, vdr->Populated_VDEs, 0);
2941 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2942 if (vol->v_stopping)
2943 continue;
2944 pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2945 i = ddf_meta_find_vd(&pd->pd_meta,
2946 pv->pv_meta.vde->VD_GUID);
2947 if (i < 0)
2948 i = ddf_meta_find_vd(&pd->pd_meta, NULL);
2949 if (i >= 0)
2950 memcpy(&pd->pd_meta.vdr->entry[i],
2951 pv->pv_meta.vde,
2952 sizeof(struct ddf_vd_entry));
2953 }
2954 /* Update VDC. */
2955 if (mdi->mdio_starting == 0) {
2956 /* Remove all VDCs to restore needed later. */
2957 j = GETCRNUM(&pd->pd_meta);
2958 for (i = 0; i < j; i++) {
2959 vdc = GETVDCPTR(&pd->pd_meta, i);
2960 if (GET32D(&pd->pd_meta, vdc->Signature) !=
2961 DDF_VDCR_SIGNATURE)
2962 continue;
2963 SET32D(&pd->pd_meta, vdc->Signature, 0xffffffff);
2964 }
2965 }
2966 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2967 vol = sd->sd_volume;
2968 if (vol->v_stopping)
2969 continue;
2970 pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2971 vmeta = &pv->pv_meta;
2972 vdc = ddf_meta_find_vdc(&pd->pd_meta,
2973 vmeta->vde->VD_GUID);
2974 if (vdc == NULL)
2975 vdc = ddf_meta_find_vdc(&pd->pd_meta, NULL);
2976 if (vdc != NULL) {
2977 bvd = sd->sd_pos / GET16(vmeta,
2978 vdc->Primary_Element_Count);
2979 memcpy(vdc, vmeta->bvdc[bvd],
2980 GET16(&pd->pd_meta,
2981 hdr->Configuration_Record_Length) *
2982 pd->pd_meta.sectorsize);
2983 }
2984 }
2985 G_RAID_DEBUG(1, "Writing DDF metadata to %s",
2986 g_raid_get_diskname(disk));
2987 g_raid_md_ddf_print(&pd->pd_meta);
2988 ddf_meta_write(disk->d_consumer, &pd->pd_meta);
2989 }
2990 return (0);
2991 }
2992
2993 static int
2994 g_raid_md_fail_disk_ddf(struct g_raid_md_object *md,
2995 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2996 {
2997 struct g_raid_softc *sc;
2998 struct g_raid_md_ddf_perdisk *pd;
2999 struct g_raid_subdisk *sd;
3000 int i;
3001
3002 sc = md->mdo_softc;
3003 pd = (struct g_raid_md_ddf_perdisk *)tdisk->d_md_data;
3004
3005 /* We can't fail disk that is not a part of array now. */
3006 if (tdisk->d_state != G_RAID_DISK_S_ACTIVE)
3007 return (-1);
3008
3009 /*
3010 * Mark disk as failed in metadata and try to write that metadata
3011 * to the disk itself to prevent it's later resurrection as STALE.
3012 */
3013 G_RAID_DEBUG(1, "Writing DDF metadata to %s",
3014 g_raid_get_diskname(tdisk));
3015 i = ddf_meta_find_pd(&pd->pd_meta, NULL, GET32(&pd->pd_meta, pdd->PD_Reference));
3016 SET16(&pd->pd_meta, pdr->entry[i].PD_State, DDF_PDE_FAILED | DDF_PDE_PFA);
3017 if (tdisk->d_consumer != NULL)
3018 ddf_meta_write(tdisk->d_consumer, &pd->pd_meta);
3019
3020 /* Change states. */
3021 g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
3022 TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
3023 g_raid_change_subdisk_state(sd,
3024 G_RAID_SUBDISK_S_FAILED);
3025 g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
3026 G_RAID_EVENT_SUBDISK);
3027 }
3028
3029 /* Write updated metadata to remaining disks. */
3030 g_raid_md_write_ddf(md, NULL, NULL, tdisk);
3031
3032 g_raid_md_ddf_refill(sc);
3033 return (0);
3034 }
3035
3036 static int
3037 g_raid_md_free_disk_ddf(struct g_raid_md_object *md,
3038 struct g_raid_disk *disk)
3039 {
3040 struct g_raid_md_ddf_perdisk *pd;
3041
3042 pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
3043 ddf_meta_free(&pd->pd_meta);
3044 free(pd, M_MD_DDF);
3045 disk->d_md_data = NULL;
3046 return (0);
3047 }
3048
3049 static int
3050 g_raid_md_free_volume_ddf(struct g_raid_md_object *md,
3051 struct g_raid_volume *vol)
3052 {
3053 struct g_raid_md_ddf_object *mdi;
3054 struct g_raid_md_ddf_pervolume *pv;
3055
3056 mdi = (struct g_raid_md_ddf_object *)md;
3057 pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
3058 ddf_vol_meta_free(&pv->pv_meta);
3059 if (!pv->pv_started) {
3060 pv->pv_started = 1;
3061 mdi->mdio_starting--;
3062 callout_stop(&pv->pv_start_co);
3063 }
3064 free(pv, M_MD_DDF);
3065 vol->v_md_data = NULL;
3066 return (0);
3067 }
3068
3069 static int
3070 g_raid_md_free_ddf(struct g_raid_md_object *md)
3071 {
3072 struct g_raid_md_ddf_object *mdi;
3073
3074 mdi = (struct g_raid_md_ddf_object *)md;
3075 if (!mdi->mdio_started) {
3076 mdi->mdio_started = 0;
3077 callout_stop(&mdi->mdio_start_co);
3078 G_RAID_DEBUG1(1, md->mdo_softc,
3079 "root_mount_rel %p", mdi->mdio_rootmount);
3080 root_mount_rel(mdi->mdio_rootmount);
3081 mdi->mdio_rootmount = NULL;
3082 }
3083 ddf_meta_free(&mdi->mdio_meta);
3084 return (0);
3085 }
3086
3087 G_RAID_MD_DECLARE(ddf, "DDF");
Cache object: 114f9caa2e3dacffed92fe86a5ea873a
|