The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/raid/md_intel.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
    5  * Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org>
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include <sys/param.h>
   34 #include <sys/bio.h>
   35 #include <sys/endian.h>
   36 #include <sys/kernel.h>
   37 #include <sys/kobj.h>
   38 #include <sys/limits.h>
   39 #include <sys/lock.h>
   40 #include <sys/malloc.h>
   41 #include <sys/mutex.h>
   42 #include <sys/systm.h>
   43 #include <sys/taskqueue.h>
   44 #include <sys/disk.h>
   45 #include <geom/geom.h>
   46 #include <geom/geom_dbg.h>
   47 #include "geom/raid/g_raid.h"
   48 #include "g_raid_md_if.h"
   49 
   50 static MALLOC_DEFINE(M_MD_INTEL, "md_intel_data", "GEOM_RAID Intel metadata");
   51 
   52 struct intel_raid_map {
   53         uint32_t        offset;
   54         uint32_t        disk_sectors;
   55         uint32_t        stripe_count;
   56         uint16_t        strip_sectors;
   57         uint8_t         status;
   58 #define INTEL_S_READY           0x00
   59 #define INTEL_S_UNINITIALIZED   0x01
   60 #define INTEL_S_DEGRADED        0x02
   61 #define INTEL_S_FAILURE         0x03
   62 
   63         uint8_t         type;
   64 #define INTEL_T_RAID0           0x00
   65 #define INTEL_T_RAID1           0x01
   66 #define INTEL_T_RAID5           0x05
   67 
   68         uint8_t         total_disks;
   69         uint8_t         total_domains;
   70         uint8_t         failed_disk_num;
   71         uint8_t         ddf;
   72         uint32_t        offset_hi;
   73         uint32_t        disk_sectors_hi;
   74         uint32_t        stripe_count_hi;
   75         uint32_t        filler_2[4];
   76         uint32_t        disk_idx[1];    /* total_disks entries. */
   77 #define INTEL_DI_IDX    0x00ffffff
   78 #define INTEL_DI_RBLD   0x01000000
   79 } __packed;
   80 
   81 struct intel_raid_vol {
   82         uint8_t         name[16];
   83         u_int64_t       total_sectors __packed;
   84         uint32_t        state;
   85 #define INTEL_ST_BOOTABLE               0x00000001
   86 #define INTEL_ST_BOOT_DEVICE            0x00000002
   87 #define INTEL_ST_READ_COALESCING        0x00000004
   88 #define INTEL_ST_WRITE_COALESCING       0x00000008
   89 #define INTEL_ST_LAST_SHUTDOWN_DIRTY    0x00000010
   90 #define INTEL_ST_HIDDEN_AT_BOOT         0x00000020
   91 #define INTEL_ST_CURRENTLY_HIDDEN       0x00000040
   92 #define INTEL_ST_VERIFY_AND_FIX         0x00000080
   93 #define INTEL_ST_MAP_STATE_UNINIT       0x00000100
   94 #define INTEL_ST_NO_AUTO_RECOVERY       0x00000200
   95 #define INTEL_ST_CLONE_N_GO             0x00000400
   96 #define INTEL_ST_CLONE_MAN_SYNC         0x00000800
   97 #define INTEL_ST_CNG_MASTER_DISK_NUM    0x00001000
   98         uint32_t        reserved;
   99         uint8_t         migr_priority;
  100         uint8_t         num_sub_vols;
  101         uint8_t         tid;
  102         uint8_t         cng_master_disk;
  103         uint16_t        cache_policy;
  104         uint8_t         cng_state;
  105 #define INTEL_CNGST_UPDATED             0
  106 #define INTEL_CNGST_NEEDS_UPDATE        1
  107 #define INTEL_CNGST_MASTER_MISSING      2
  108         uint8_t         cng_sub_state;
  109         uint32_t        filler_0[10];
  110 
  111         uint32_t        curr_migr_unit;
  112         uint32_t        checkpoint_id;
  113         uint8_t         migr_state;
  114         uint8_t         migr_type;
  115 #define INTEL_MT_INIT           0
  116 #define INTEL_MT_REBUILD        1
  117 #define INTEL_MT_VERIFY         2
  118 #define INTEL_MT_GEN_MIGR       3
  119 #define INTEL_MT_STATE_CHANGE   4
  120 #define INTEL_MT_REPAIR         5
  121         uint8_t         dirty;
  122         uint8_t         fs_state;
  123         uint16_t        verify_errors;
  124         uint16_t        bad_blocks;
  125         uint32_t        curr_migr_unit_hi;
  126         uint32_t        filler_1[3];
  127         struct intel_raid_map map[1];   /* 2 entries if migr_state != 0. */
  128 } __packed;
  129 
  130 struct intel_raid_disk {
  131 #define INTEL_SERIAL_LEN        16
  132         uint8_t         serial[INTEL_SERIAL_LEN];
  133         uint32_t        sectors;
  134         uint32_t        id;
  135         uint32_t        flags;
  136 #define INTEL_F_SPARE           0x01
  137 #define INTEL_F_ASSIGNED        0x02
  138 #define INTEL_F_FAILED          0x04
  139 #define INTEL_F_ONLINE          0x08
  140 #define INTEL_F_DISABLED        0x80
  141         uint32_t        owner_cfg_num;
  142         uint32_t        sectors_hi;
  143         uint32_t        filler[3];
  144 } __packed;
  145 
  146 struct intel_raid_conf {
  147         uint8_t         intel_id[24];
  148 #define INTEL_MAGIC             "Intel Raid ISM Cfg Sig. "
  149 
  150         uint8_t         version[6];
  151 #define INTEL_VERSION_1000      "1.0.00"        /* RAID0 */
  152 #define INTEL_VERSION_1100      "1.1.00"        /* RAID1 */
  153 #define INTEL_VERSION_1200      "1.2.00"        /* Many volumes */
  154 #define INTEL_VERSION_1201      "1.2.01"        /* 3 or 4 disks */
  155 #define INTEL_VERSION_1202      "1.2.02"        /* RAID5 */
  156 #define INTEL_VERSION_1204      "1.2.04"        /* 5 or 6 disks */
  157 #define INTEL_VERSION_1206      "1.2.06"        /* CNG */
  158 #define INTEL_VERSION_1300      "1.3.00"        /* Attributes */
  159 
  160         uint8_t         dummy_0[2];
  161         uint32_t        checksum;
  162         uint32_t        config_size;
  163         uint32_t        config_id;
  164         uint32_t        generation;
  165         uint32_t        error_log_size;
  166         uint32_t        attributes;
  167 #define INTEL_ATTR_RAID0        0x00000001
  168 #define INTEL_ATTR_RAID1        0x00000002
  169 #define INTEL_ATTR_RAID10       0x00000004
  170 #define INTEL_ATTR_RAID1E       0x00000008
  171 #define INTEL_ATTR_RAID5        0x00000010
  172 #define INTEL_ATTR_RAIDCNG      0x00000020
  173 #define INTEL_ATTR_EXT_STRIP    0x00000040
  174 #define INTEL_ATTR_NVM_CACHE    0x02000000
  175 #define INTEL_ATTR_2TB_DISK     0x04000000
  176 #define INTEL_ATTR_BBM          0x08000000
  177 #define INTEL_ATTR_NVM_CACHE2   0x10000000
  178 #define INTEL_ATTR_2TB          0x20000000
  179 #define INTEL_ATTR_PM           0x40000000
  180 #define INTEL_ATTR_CHECKSUM     0x80000000
  181 
  182         uint8_t         total_disks;
  183         uint8_t         total_volumes;
  184         uint8_t         error_log_pos;
  185         uint8_t         dummy_2[1];
  186         uint32_t        cache_size;
  187         uint32_t        orig_config_id;
  188         uint32_t        pwr_cycle_count;
  189         uint32_t        bbm_log_size;
  190         uint32_t        filler_0[35];
  191         struct intel_raid_disk  disk[1];        /* total_disks entries. */
  192         /* Here goes total_volumes of struct intel_raid_vol. */
  193 } __packed;
  194 
  195 #define INTEL_ATTR_SUPPORTED    ( INTEL_ATTR_RAID0 | INTEL_ATTR_RAID1 | \
  196     INTEL_ATTR_RAID10 | INTEL_ATTR_RAID1E | INTEL_ATTR_RAID5 |          \
  197     INTEL_ATTR_RAIDCNG | INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK |   \
  198     INTEL_ATTR_2TB | INTEL_ATTR_PM | INTEL_ATTR_CHECKSUM )
  199 
  200 #define INTEL_MAX_MD_SIZE(ndisks)                               \
  201     (sizeof(struct intel_raid_conf) +                           \
  202      sizeof(struct intel_raid_disk) * (ndisks - 1) +            \
  203      sizeof(struct intel_raid_vol) * 2 +                        \
  204      sizeof(struct intel_raid_map) * 2 +                        \
  205      sizeof(uint32_t) * (ndisks - 1) * 4)
  206 
  207 struct g_raid_md_intel_perdisk {
  208         struct intel_raid_conf  *pd_meta;
  209         int                      pd_disk_pos;
  210         struct intel_raid_disk   pd_disk_meta;
  211 };
  212 
  213 struct g_raid_md_intel_pervolume {
  214         int                      pv_volume_pos;
  215         int                      pv_cng;
  216         int                      pv_cng_man_sync;
  217         int                      pv_cng_master_disk;
  218 };
  219 
  220 struct g_raid_md_intel_object {
  221         struct g_raid_md_object  mdio_base;
  222         uint32_t                 mdio_config_id;
  223         uint32_t                 mdio_orig_config_id;
  224         uint32_t                 mdio_generation;
  225         struct intel_raid_conf  *mdio_meta;
  226         struct callout           mdio_start_co; /* STARTING state timer. */
  227         int                      mdio_disks_present;
  228         int                      mdio_started;
  229         int                      mdio_incomplete;
  230         struct root_hold_token  *mdio_rootmount; /* Root mount delay token. */
  231 };
  232 
  233 static g_raid_md_create_t g_raid_md_create_intel;
  234 static g_raid_md_taste_t g_raid_md_taste_intel;
  235 static g_raid_md_event_t g_raid_md_event_intel;
  236 static g_raid_md_ctl_t g_raid_md_ctl_intel;
  237 static g_raid_md_write_t g_raid_md_write_intel;
  238 static g_raid_md_fail_disk_t g_raid_md_fail_disk_intel;
  239 static g_raid_md_free_disk_t g_raid_md_free_disk_intel;
  240 static g_raid_md_free_volume_t g_raid_md_free_volume_intel;
  241 static g_raid_md_free_t g_raid_md_free_intel;
  242 
  243 static kobj_method_t g_raid_md_intel_methods[] = {
  244         KOBJMETHOD(g_raid_md_create,    g_raid_md_create_intel),
  245         KOBJMETHOD(g_raid_md_taste,     g_raid_md_taste_intel),
  246         KOBJMETHOD(g_raid_md_event,     g_raid_md_event_intel),
  247         KOBJMETHOD(g_raid_md_ctl,       g_raid_md_ctl_intel),
  248         KOBJMETHOD(g_raid_md_write,     g_raid_md_write_intel),
  249         KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_intel),
  250         KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_intel),
  251         KOBJMETHOD(g_raid_md_free_volume,       g_raid_md_free_volume_intel),
  252         KOBJMETHOD(g_raid_md_free,      g_raid_md_free_intel),
  253         { 0, 0 }
  254 };
  255 
  256 static struct g_raid_md_class g_raid_md_intel_class = {
  257         "Intel",
  258         g_raid_md_intel_methods,
  259         sizeof(struct g_raid_md_intel_object),
  260         .mdc_enable = 1,
  261         .mdc_priority = 100
  262 };
  263 
  264 static struct intel_raid_map *
  265 intel_get_map(struct intel_raid_vol *mvol, int i)
  266 {
  267         struct intel_raid_map *mmap;
  268 
  269         if (i > (mvol->migr_state ? 1 : 0))
  270                 return (NULL);
  271         mmap = &mvol->map[0];
  272         for (; i > 0; i--) {
  273                 mmap = (struct intel_raid_map *)
  274                     &mmap->disk_idx[mmap->total_disks];
  275         }
  276         return ((struct intel_raid_map *)mmap);
  277 }
  278 
  279 static struct intel_raid_vol *
  280 intel_get_volume(struct intel_raid_conf *meta, int i)
  281 {
  282         struct intel_raid_vol *mvol;
  283         struct intel_raid_map *mmap;
  284 
  285         if (i > 1)
  286                 return (NULL);
  287         mvol = (struct intel_raid_vol *)&meta->disk[meta->total_disks];
  288         for (; i > 0; i--) {
  289                 mmap = intel_get_map(mvol, mvol->migr_state ? 1 : 0);
  290                 mvol = (struct intel_raid_vol *)
  291                     &mmap->disk_idx[mmap->total_disks];
  292         }
  293         return (mvol);
  294 }
  295 
  296 static off_t
  297 intel_get_map_offset(struct intel_raid_map *mmap)
  298 {
  299         off_t offset = (off_t)mmap->offset_hi << 32;
  300 
  301         offset += mmap->offset;
  302         return (offset);
  303 }
  304 
  305 static void
  306 intel_set_map_offset(struct intel_raid_map *mmap, off_t offset)
  307 {
  308 
  309         mmap->offset = offset & 0xffffffff;
  310         mmap->offset_hi = offset >> 32;
  311 }
  312 
  313 static off_t
  314 intel_get_map_disk_sectors(struct intel_raid_map *mmap)
  315 {
  316         off_t disk_sectors = (off_t)mmap->disk_sectors_hi << 32;
  317 
  318         disk_sectors += mmap->disk_sectors;
  319         return (disk_sectors);
  320 }
  321 
  322 static void
  323 intel_set_map_disk_sectors(struct intel_raid_map *mmap, off_t disk_sectors)
  324 {
  325 
  326         mmap->disk_sectors = disk_sectors & 0xffffffff;
  327         mmap->disk_sectors_hi = disk_sectors >> 32;
  328 }
  329 
  330 static void
  331 intel_set_map_stripe_count(struct intel_raid_map *mmap, off_t stripe_count)
  332 {
  333 
  334         mmap->stripe_count = stripe_count & 0xffffffff;
  335         mmap->stripe_count_hi = stripe_count >> 32;
  336 }
  337 
  338 static off_t
  339 intel_get_disk_sectors(struct intel_raid_disk *disk)
  340 {
  341         off_t sectors = (off_t)disk->sectors_hi << 32;
  342 
  343         sectors += disk->sectors;
  344         return (sectors);
  345 }
  346 
  347 static void
  348 intel_set_disk_sectors(struct intel_raid_disk *disk, off_t sectors)
  349 {
  350 
  351         disk->sectors = sectors & 0xffffffff;
  352         disk->sectors_hi = sectors >> 32;
  353 }
  354 
  355 static off_t
  356 intel_get_vol_curr_migr_unit(struct intel_raid_vol *vol)
  357 {
  358         off_t curr_migr_unit = (off_t)vol->curr_migr_unit_hi << 32;
  359 
  360         curr_migr_unit += vol->curr_migr_unit;
  361         return (curr_migr_unit);
  362 }
  363 
  364 static void
  365 intel_set_vol_curr_migr_unit(struct intel_raid_vol *vol, off_t curr_migr_unit)
  366 {
  367 
  368         vol->curr_migr_unit = curr_migr_unit & 0xffffffff;
  369         vol->curr_migr_unit_hi = curr_migr_unit >> 32;
  370 }
  371 
  372 static char *
  373 intel_status2str(int status)
  374 {
  375 
  376         switch (status) {
  377         case INTEL_S_READY:
  378                 return ("READY");
  379         case INTEL_S_UNINITIALIZED:
  380                 return ("UNINITIALIZED");
  381         case INTEL_S_DEGRADED:
  382                 return ("DEGRADED");
  383         case INTEL_S_FAILURE:
  384                 return ("FAILURE");
  385         default:
  386                 return ("UNKNOWN");
  387         }
  388 }
  389 
  390 static char *
  391 intel_type2str(int type)
  392 {
  393 
  394         switch (type) {
  395         case INTEL_T_RAID0:
  396                 return ("RAID0");
  397         case INTEL_T_RAID1:
  398                 return ("RAID1");
  399         case INTEL_T_RAID5:
  400                 return ("RAID5");
  401         default:
  402                 return ("UNKNOWN");
  403         }
  404 }
  405 
  406 static char *
  407 intel_cngst2str(int cng_state)
  408 {
  409 
  410         switch (cng_state) {
  411         case INTEL_CNGST_UPDATED:
  412                 return ("UPDATED");
  413         case INTEL_CNGST_NEEDS_UPDATE:
  414                 return ("NEEDS_UPDATE");
  415         case INTEL_CNGST_MASTER_MISSING:
  416                 return ("MASTER_MISSING");
  417         default:
  418                 return ("UNKNOWN");
  419         }
  420 }
  421 
  422 static char *
  423 intel_mt2str(int type)
  424 {
  425 
  426         switch (type) {
  427         case INTEL_MT_INIT:
  428                 return ("INIT");
  429         case INTEL_MT_REBUILD:
  430                 return ("REBUILD");
  431         case INTEL_MT_VERIFY:
  432                 return ("VERIFY");
  433         case INTEL_MT_GEN_MIGR:
  434                 return ("GEN_MIGR");
  435         case INTEL_MT_STATE_CHANGE:
  436                 return ("STATE_CHANGE");
  437         case INTEL_MT_REPAIR:
  438                 return ("REPAIR");
  439         default:
  440                 return ("UNKNOWN");
  441         }
  442 }
  443 
  444 static void
  445 g_raid_md_intel_print(struct intel_raid_conf *meta)
  446 {
  447         struct intel_raid_vol *mvol;
  448         struct intel_raid_map *mmap;
  449         int i, j, k;
  450 
  451         if (g_raid_debug < 1)
  452                 return;
  453 
  454         printf("********* ATA Intel MatrixRAID Metadata *********\n");
  455         printf("intel_id            <%.24s>\n", meta->intel_id);
  456         printf("version             <%.6s>\n", meta->version);
  457         printf("checksum            0x%08x\n", meta->checksum);
  458         printf("config_size         0x%08x\n", meta->config_size);
  459         printf("config_id           0x%08x\n", meta->config_id);
  460         printf("generation          0x%08x\n", meta->generation);
  461         printf("error_log_size      %d\n", meta->error_log_size);
  462         printf("attributes          0x%b\n", meta->attributes,
  463                 "\020"
  464                 "\001RAID0"
  465                 "\002RAID1"
  466                 "\003RAID10"
  467                 "\004RAID1E"
  468                 "\005RAID15"
  469                 "\006RAIDCNG"
  470                 "\007EXT_STRIP"
  471                 "\032NVM_CACHE"
  472                 "\0332TB_DISK"
  473                 "\034BBM"
  474                 "\035NVM_CACHE"
  475                 "\0362TB"
  476                 "\037PM"
  477                 "\040CHECKSUM");
  478         printf("total_disks         %u\n", meta->total_disks);
  479         printf("total_volumes       %u\n", meta->total_volumes);
  480         printf("error_log_pos       %u\n", meta->error_log_pos);
  481         printf("cache_size          %u\n", meta->cache_size);
  482         printf("orig_config_id      0x%08x\n", meta->orig_config_id);
  483         printf("pwr_cycle_count     %u\n", meta->pwr_cycle_count);
  484         printf("bbm_log_size        %u\n", meta->bbm_log_size);
  485         printf("Flags: S - Spare, A - Assigned, F - Failed, O - Online, D - Disabled\n");
  486         printf("DISK#   serial disk_sectors disk_sectors_hi disk_id flags owner\n");
  487         for (i = 0; i < meta->total_disks; i++ ) {
  488                 printf("    %d   <%.16s> %u %u 0x%08x 0x%b %08x\n", i,
  489                     meta->disk[i].serial, meta->disk[i].sectors,
  490                     meta->disk[i].sectors_hi, meta->disk[i].id,
  491                     meta->disk[i].flags, "\2\01S\02A\03F\04O\05D",
  492                     meta->disk[i].owner_cfg_num);
  493         }
  494         for (i = 0; i < meta->total_volumes; i++) {
  495                 mvol = intel_get_volume(meta, i);
  496                 printf(" ****** Volume %d ******\n", i);
  497                 printf(" name               %.16s\n", mvol->name);
  498                 printf(" total_sectors      %ju\n", mvol->total_sectors);
  499                 printf(" state              0x%b\n", mvol->state,
  500                         "\020"
  501                         "\001BOOTABLE"
  502                         "\002BOOT_DEVICE"
  503                         "\003READ_COALESCING"
  504                         "\004WRITE_COALESCING"
  505                         "\005LAST_SHUTDOWN_DIRTY"
  506                         "\006HIDDEN_AT_BOOT"
  507                         "\007CURRENTLY_HIDDEN"
  508                         "\010VERIFY_AND_FIX"
  509                         "\011MAP_STATE_UNINIT"
  510                         "\012NO_AUTO_RECOVERY"
  511                         "\013CLONE_N_GO"
  512                         "\014CLONE_MAN_SYNC"
  513                         "\015CNG_MASTER_DISK_NUM");
  514                 printf(" reserved           %u\n", mvol->reserved);
  515                 printf(" migr_priority      %u\n", mvol->migr_priority);
  516                 printf(" num_sub_vols       %u\n", mvol->num_sub_vols);
  517                 printf(" tid                %u\n", mvol->tid);
  518                 printf(" cng_master_disk    %u\n", mvol->cng_master_disk);
  519                 printf(" cache_policy       %u\n", mvol->cache_policy);
  520                 printf(" cng_state          %u (%s)\n", mvol->cng_state,
  521                         intel_cngst2str(mvol->cng_state));
  522                 printf(" cng_sub_state      %u\n", mvol->cng_sub_state);
  523                 printf(" curr_migr_unit     %u\n", mvol->curr_migr_unit);
  524                 printf(" curr_migr_unit_hi  %u\n", mvol->curr_migr_unit_hi);
  525                 printf(" checkpoint_id      %u\n", mvol->checkpoint_id);
  526                 printf(" migr_state         %u\n", mvol->migr_state);
  527                 printf(" migr_type          %u (%s)\n", mvol->migr_type,
  528                         intel_mt2str(mvol->migr_type));
  529                 printf(" dirty              %u\n", mvol->dirty);
  530                 printf(" fs_state           %u\n", mvol->fs_state);
  531                 printf(" verify_errors      %u\n", mvol->verify_errors);
  532                 printf(" bad_blocks         %u\n", mvol->bad_blocks);
  533 
  534                 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
  535                         printf("  *** Map %d ***\n", j);
  536                         mmap = intel_get_map(mvol, j);
  537                         printf("  offset            %u\n", mmap->offset);
  538                         printf("  offset_hi         %u\n", mmap->offset_hi);
  539                         printf("  disk_sectors      %u\n", mmap->disk_sectors);
  540                         printf("  disk_sectors_hi   %u\n", mmap->disk_sectors_hi);
  541                         printf("  stripe_count      %u\n", mmap->stripe_count);
  542                         printf("  stripe_count_hi   %u\n", mmap->stripe_count_hi);
  543                         printf("  strip_sectors     %u\n", mmap->strip_sectors);
  544                         printf("  status            %u (%s)\n", mmap->status,
  545                                 intel_status2str(mmap->status));
  546                         printf("  type              %u (%s)\n", mmap->type,
  547                                 intel_type2str(mmap->type));
  548                         printf("  total_disks       %u\n", mmap->total_disks);
  549                         printf("  total_domains     %u\n", mmap->total_domains);
  550                         printf("  failed_disk_num   %u\n", mmap->failed_disk_num);
  551                         printf("  ddf               %u\n", mmap->ddf);
  552                         printf("  disk_idx         ");
  553                         for (k = 0; k < mmap->total_disks; k++)
  554                                 printf(" 0x%08x", mmap->disk_idx[k]);
  555                         printf("\n");
  556                 }
  557         }
  558         printf("=================================================\n");
  559 }
  560 
  561 static struct intel_raid_conf *
  562 intel_meta_copy(struct intel_raid_conf *meta)
  563 {
  564         struct intel_raid_conf *nmeta;
  565 
  566         nmeta = malloc(meta->config_size, M_MD_INTEL, M_WAITOK);
  567         memcpy(nmeta, meta, meta->config_size);
  568         return (nmeta);
  569 }
  570 
  571 static int
  572 intel_meta_find_disk(struct intel_raid_conf *meta, char *serial)
  573 {
  574         int pos;
  575 
  576         for (pos = 0; pos < meta->total_disks; pos++) {
  577                 if (strncmp(meta->disk[pos].serial,
  578                     serial, INTEL_SERIAL_LEN) == 0)
  579                         return (pos);
  580         }
  581         return (-1);
  582 }
  583 
  584 static struct intel_raid_conf *
  585 intel_meta_read(struct g_consumer *cp)
  586 {
  587         struct g_provider *pp;
  588         struct intel_raid_conf *meta;
  589         struct intel_raid_vol *mvol;
  590         struct intel_raid_map *mmap, *mmap1;
  591         char *buf;
  592         int error, i, j, k, left, size;
  593         uint32_t checksum, *ptr;
  594 
  595         pp = cp->provider;
  596 
  597         /* Read the anchor sector. */
  598         buf = g_read_data(cp,
  599             pp->mediasize - pp->sectorsize * 2, pp->sectorsize, &error);
  600         if (buf == NULL) {
  601                 G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
  602                     pp->name, error);
  603                 return (NULL);
  604         }
  605         meta = (struct intel_raid_conf *)buf;
  606 
  607         /* Check if this is an Intel RAID struct */
  608         if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
  609                 G_RAID_DEBUG(1, "Intel signature check failed on %s", pp->name);
  610                 g_free(buf);
  611                 return (NULL);
  612         }
  613         if (meta->config_size > 65536 ||
  614             meta->config_size < sizeof(struct intel_raid_conf)) {
  615                 G_RAID_DEBUG(1, "Intel metadata size looks wrong: %d",
  616                     meta->config_size);
  617                 g_free(buf);
  618                 return (NULL);
  619         }
  620         size = meta->config_size;
  621         meta = malloc(size, M_MD_INTEL, M_WAITOK);
  622         memcpy(meta, buf, min(size, pp->sectorsize));
  623         g_free(buf);
  624 
  625         /* Read all the rest, if needed. */
  626         if (meta->config_size > pp->sectorsize) {
  627                 left = (meta->config_size - 1) / pp->sectorsize;
  628                 buf = g_read_data(cp,
  629                     pp->mediasize - pp->sectorsize * (2 + left),
  630                     pp->sectorsize * left, &error);
  631                 if (buf == NULL) {
  632                         G_RAID_DEBUG(1, "Cannot read remaining metadata"
  633                             " part from %s (error=%d).",
  634                             pp->name, error);
  635                         free(meta, M_MD_INTEL);
  636                         return (NULL);
  637                 }
  638                 memcpy(((char *)meta) + pp->sectorsize, buf,
  639                     pp->sectorsize * left);
  640                 g_free(buf);
  641         }
  642 
  643         /* Check metadata checksum. */
  644         for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
  645             i < (meta->config_size / sizeof(uint32_t)); i++) {
  646                 checksum += *ptr++;
  647         }
  648         checksum -= meta->checksum;
  649         if (checksum != meta->checksum) {
  650                 G_RAID_DEBUG(1, "Intel checksum check failed on %s", pp->name);
  651                 free(meta, M_MD_INTEL);
  652                 return (NULL);
  653         }
  654 
  655         /* Validate metadata size. */
  656         size = sizeof(struct intel_raid_conf) +
  657             sizeof(struct intel_raid_disk) * (meta->total_disks - 1) +
  658             sizeof(struct intel_raid_vol) * meta->total_volumes;
  659         if (size > meta->config_size) {
  660 badsize:
  661                 G_RAID_DEBUG(1, "Intel metadata size incorrect %d < %d",
  662                     meta->config_size, size);
  663                 free(meta, M_MD_INTEL);
  664                 return (NULL);
  665         }
  666         for (i = 0; i < meta->total_volumes; i++) {
  667                 mvol = intel_get_volume(meta, i);
  668                 mmap = intel_get_map(mvol, 0);
  669                 size += 4 * (mmap->total_disks - 1);
  670                 if (size > meta->config_size)
  671                         goto badsize;
  672                 if (mvol->migr_state) {
  673                         size += sizeof(struct intel_raid_map);
  674                         if (size > meta->config_size)
  675                                 goto badsize;
  676                         mmap = intel_get_map(mvol, 1);
  677                         size += 4 * (mmap->total_disks - 1);
  678                         if (size > meta->config_size)
  679                                 goto badsize;
  680                 }
  681         }
  682 
  683         g_raid_md_intel_print(meta);
  684 
  685         if (strncmp(meta->version, INTEL_VERSION_1300, 6) > 0) {
  686                 G_RAID_DEBUG(1, "Intel unsupported version: '%.6s'",
  687                     meta->version);
  688                 free(meta, M_MD_INTEL);
  689                 return (NULL);
  690         }
  691 
  692         if (strncmp(meta->version, INTEL_VERSION_1300, 6) >= 0 &&
  693             (meta->attributes & ~INTEL_ATTR_SUPPORTED) != 0) {
  694                 G_RAID_DEBUG(1, "Intel unsupported attributes: 0x%08x",
  695                     meta->attributes & ~INTEL_ATTR_SUPPORTED);
  696                 free(meta, M_MD_INTEL);
  697                 return (NULL);
  698         }
  699 
  700         /* Validate disk indexes. */
  701         for (i = 0; i < meta->total_volumes; i++) {
  702                 mvol = intel_get_volume(meta, i);
  703                 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
  704                         mmap = intel_get_map(mvol, j);
  705                         for (k = 0; k < mmap->total_disks; k++) {
  706                                 if ((mmap->disk_idx[k] & INTEL_DI_IDX) >
  707                                     meta->total_disks) {
  708                                         G_RAID_DEBUG(1, "Intel metadata disk"
  709                                             " index %d too big (>%d)",
  710                                             mmap->disk_idx[k] & INTEL_DI_IDX,
  711                                             meta->total_disks);
  712                                         free(meta, M_MD_INTEL);
  713                                         return (NULL);
  714                                 }
  715                         }
  716                 }
  717         }
  718 
  719         /* Validate migration types. */
  720         for (i = 0; i < meta->total_volumes; i++) {
  721                 mvol = intel_get_volume(meta, i);
  722                 /* Deny unknown migration types. */
  723                 if (mvol->migr_state &&
  724                     mvol->migr_type != INTEL_MT_INIT &&
  725                     mvol->migr_type != INTEL_MT_REBUILD &&
  726                     mvol->migr_type != INTEL_MT_VERIFY &&
  727                     mvol->migr_type != INTEL_MT_GEN_MIGR &&
  728                     mvol->migr_type != INTEL_MT_REPAIR) {
  729                         G_RAID_DEBUG(1, "Intel metadata has unsupported"
  730                             " migration type %d", mvol->migr_type);
  731                         free(meta, M_MD_INTEL);
  732                         return (NULL);
  733                 }
  734                 /* Deny general migrations except SINGLE->RAID1. */
  735                 if (mvol->migr_state &&
  736                     mvol->migr_type == INTEL_MT_GEN_MIGR) {
  737                         mmap = intel_get_map(mvol, 0);
  738                         mmap1 = intel_get_map(mvol, 1);
  739                         if (mmap1->total_disks != 1 ||
  740                             mmap->type != INTEL_T_RAID1 ||
  741                             mmap->total_disks != 2 ||
  742                             mmap->offset != mmap1->offset ||
  743                             mmap->disk_sectors != mmap1->disk_sectors ||
  744                             mmap->total_domains != mmap->total_disks ||
  745                             mmap->offset_hi != mmap1->offset_hi ||
  746                             mmap->disk_sectors_hi != mmap1->disk_sectors_hi ||
  747                             (mmap->disk_idx[0] != mmap1->disk_idx[0] &&
  748                              mmap->disk_idx[0] != mmap1->disk_idx[1])) {
  749                                 G_RAID_DEBUG(1, "Intel metadata has unsupported"
  750                                     " variant of general migration");
  751                                 free(meta, M_MD_INTEL);
  752                                 return (NULL);
  753                         }
  754                 }
  755         }
  756 
  757         return (meta);
  758 }
  759 
  760 static int
  761 intel_meta_write(struct g_consumer *cp, struct intel_raid_conf *meta)
  762 {
  763         struct g_provider *pp;
  764         char *buf;
  765         int error, i, sectors;
  766         uint32_t checksum, *ptr;
  767 
  768         pp = cp->provider;
  769 
  770         /* Recalculate checksum for case if metadata were changed. */
  771         meta->checksum = 0;
  772         for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
  773             i < (meta->config_size / sizeof(uint32_t)); i++) {
  774                 checksum += *ptr++;
  775         }
  776         meta->checksum = checksum;
  777 
  778         /* Create and fill buffer. */
  779         sectors = howmany(meta->config_size, pp->sectorsize);
  780         buf = malloc(sectors * pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
  781         if (sectors > 1) {
  782                 memcpy(buf, ((char *)meta) + pp->sectorsize,
  783                     (sectors - 1) * pp->sectorsize);
  784         }
  785         memcpy(buf + (sectors - 1) * pp->sectorsize, meta, pp->sectorsize);
  786 
  787         error = g_write_data(cp,
  788             pp->mediasize - pp->sectorsize * (1 + sectors),
  789             buf, pp->sectorsize * sectors);
  790         if (error != 0) {
  791                 G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
  792                     pp->name, error);
  793         }
  794 
  795         free(buf, M_MD_INTEL);
  796         return (error);
  797 }
  798 
  799 static int
  800 intel_meta_erase(struct g_consumer *cp)
  801 {
  802         struct g_provider *pp;
  803         char *buf;
  804         int error;
  805 
  806         pp = cp->provider;
  807         buf = malloc(pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
  808         error = g_write_data(cp,
  809             pp->mediasize - 2 * pp->sectorsize,
  810             buf, pp->sectorsize);
  811         if (error != 0) {
  812                 G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
  813                     pp->name, error);
  814         }
  815         free(buf, M_MD_INTEL);
  816         return (error);
  817 }
  818 
  819 static int
  820 intel_meta_write_spare(struct g_consumer *cp, struct intel_raid_disk *d)
  821 {
  822         struct intel_raid_conf *meta;
  823         int error;
  824 
  825         /* Fill anchor and single disk. */
  826         meta = malloc(INTEL_MAX_MD_SIZE(1), M_MD_INTEL, M_WAITOK | M_ZERO);
  827         memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
  828         memcpy(&meta->version[0], INTEL_VERSION_1000,
  829             sizeof(INTEL_VERSION_1000) - 1);
  830         meta->config_size = INTEL_MAX_MD_SIZE(1);
  831         meta->config_id = meta->orig_config_id = arc4random();
  832         meta->generation = 1;
  833         meta->total_disks = 1;
  834         meta->disk[0] = *d;
  835         error = intel_meta_write(cp, meta);
  836         free(meta, M_MD_INTEL);
  837         return (error);
  838 }
  839 
  840 static struct g_raid_disk *
  841 g_raid_md_intel_get_disk(struct g_raid_softc *sc, int id)
  842 {
  843         struct g_raid_disk      *disk;
  844         struct g_raid_md_intel_perdisk *pd;
  845 
  846         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
  847                 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
  848                 if (pd->pd_disk_pos == id)
  849                         break;
  850         }
  851         return (disk);
  852 }
  853 
  854 static int
  855 g_raid_md_intel_supported(int level, int qual, int disks, int force)
  856 {
  857 
  858         switch (level) {
  859         case G_RAID_VOLUME_RL_RAID0:
  860                 if (disks < 1)
  861                         return (0);
  862                 if (!force && (disks < 2 || disks > 6))
  863                         return (0);
  864                 break;
  865         case G_RAID_VOLUME_RL_RAID1:
  866                 if (disks < 1)
  867                         return (0);
  868                 if (!force && (disks != 2))
  869                         return (0);
  870                 break;
  871         case G_RAID_VOLUME_RL_RAID1E:
  872                 if (disks < 2)
  873                         return (0);
  874                 if (!force && (disks != 4))
  875                         return (0);
  876                 break;
  877         case G_RAID_VOLUME_RL_RAID5:
  878                 if (disks < 3)
  879                         return (0);
  880                 if (!force && disks > 6)
  881                         return (0);
  882                 if (qual != G_RAID_VOLUME_RLQ_R5LA)
  883                         return (0);
  884                 break;
  885         default:
  886                 return (0);
  887         }
  888         if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE)
  889                 return (0);
  890         return (1);
  891 }
  892 
  893 static struct g_raid_volume *
  894 g_raid_md_intel_get_volume(struct g_raid_softc *sc, int id)
  895 {
  896         struct g_raid_volume    *mvol;
  897         struct g_raid_md_intel_pervolume *pv;
  898 
  899         TAILQ_FOREACH(mvol, &sc->sc_volumes, v_next) {
  900                 pv = mvol->v_md_data;
  901                 if (pv->pv_volume_pos == id)
  902                         break;
  903         }
  904         return (mvol);
  905 }
  906 
  907 static int
  908 g_raid_md_intel_start_disk(struct g_raid_disk *disk)
  909 {
  910         struct g_raid_softc *sc;
  911         struct g_raid_subdisk *sd, *tmpsd;
  912         struct g_raid_disk *olddisk, *tmpdisk;
  913         struct g_raid_md_object *md;
  914         struct g_raid_md_intel_object *mdi;
  915         struct g_raid_md_intel_pervolume *pv;
  916         struct g_raid_md_intel_perdisk *pd, *oldpd;
  917         struct intel_raid_conf *meta;
  918         struct intel_raid_vol *mvol;
  919         struct intel_raid_map *mmap0, *mmap1;
  920         int disk_pos, resurrection = 0, migr_global, i;
  921 
  922         sc = disk->d_softc;
  923         md = sc->sc_md;
  924         mdi = (struct g_raid_md_intel_object *)md;
  925         meta = mdi->mdio_meta;
  926         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
  927         olddisk = NULL;
  928 
  929         /* Find disk position in metadata by its serial. */
  930         disk_pos = intel_meta_find_disk(meta, pd->pd_disk_meta.serial);
  931         if (disk_pos < 0) {
  932                 G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk");
  933                 /* Failed stale disk is useless for us. */
  934                 if ((pd->pd_disk_meta.flags & INTEL_F_FAILED) &&
  935                     !(pd->pd_disk_meta.flags & INTEL_F_DISABLED)) {
  936                         g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
  937                         return (0);
  938                 }
  939                 /* If we are in the start process, that's all for now. */
  940                 if (!mdi->mdio_started)
  941                         goto nofit;
  942                 /*
  943                  * If we have already started - try to get use of the disk.
  944                  * Try to replace OFFLINE disks first, then FAILED.
  945                  */
  946                 TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) {
  947                         if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE &&
  948                             tmpdisk->d_state != G_RAID_DISK_S_FAILED)
  949                                 continue;
  950                         /* Make sure this disk is big enough. */
  951                         TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) {
  952                                 off_t disk_sectors = 
  953                                     intel_get_disk_sectors(&pd->pd_disk_meta);
  954 
  955                                 if (sd->sd_offset + sd->sd_size + 4096 >
  956                                     disk_sectors * 512) {
  957                                         G_RAID_DEBUG1(1, sc,
  958                                             "Disk too small (%llu < %llu)",
  959                                             (unsigned long long)
  960                                             disk_sectors * 512,
  961                                             (unsigned long long)
  962                                             sd->sd_offset + sd->sd_size + 4096);
  963                                         break;
  964                                 }
  965                         }
  966                         if (sd != NULL)
  967                                 continue;
  968                         if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) {
  969                                 olddisk = tmpdisk;
  970                                 break;
  971                         } else if (olddisk == NULL)
  972                                 olddisk = tmpdisk;
  973                 }
  974                 if (olddisk == NULL) {
  975 nofit:
  976                         if (pd->pd_disk_meta.flags & INTEL_F_SPARE) {
  977                                 g_raid_change_disk_state(disk,
  978                                     G_RAID_DISK_S_SPARE);
  979                                 return (1);
  980                         } else {
  981                                 g_raid_change_disk_state(disk,
  982                                     G_RAID_DISK_S_STALE);
  983                                 return (0);
  984                         }
  985                 }
  986                 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
  987                 disk_pos = oldpd->pd_disk_pos;
  988                 resurrection = 1;
  989         }
  990 
  991         if (olddisk == NULL) {
  992                 /* Find placeholder by position. */
  993                 olddisk = g_raid_md_intel_get_disk(sc, disk_pos);
  994                 if (olddisk == NULL)
  995                         panic("No disk at position %d!", disk_pos);
  996                 if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) {
  997                         G_RAID_DEBUG1(1, sc, "More than one disk for pos %d",
  998                             disk_pos);
  999                         g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE);
 1000                         return (0);
 1001                 }
 1002                 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
 1003         }
 1004 
 1005         /* Replace failed disk or placeholder with new disk. */
 1006         TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) {
 1007                 TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next);
 1008                 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
 1009                 sd->sd_disk = disk;
 1010         }
 1011         oldpd->pd_disk_pos = -2;
 1012         pd->pd_disk_pos = disk_pos;
 1013 
 1014         /* If it was placeholder -- destroy it. */
 1015         if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) {
 1016                 g_raid_destroy_disk(olddisk);
 1017         } else {
 1018                 /* Otherwise, make it STALE_FAILED. */
 1019                 g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED);
 1020                 /* Update global metadata just in case. */
 1021                 memcpy(&meta->disk[disk_pos], &pd->pd_disk_meta,
 1022                     sizeof(struct intel_raid_disk));
 1023         }
 1024 
 1025         /* Welcome the new disk. */
 1026         if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) &&
 1027             !(pd->pd_disk_meta.flags & INTEL_F_SPARE))
 1028                 g_raid_change_disk_state(disk, G_RAID_DISK_S_DISABLED);
 1029         else if (resurrection)
 1030                 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
 1031         else if (meta->disk[disk_pos].flags & INTEL_F_FAILED)
 1032                 g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
 1033         else if (meta->disk[disk_pos].flags & INTEL_F_SPARE)
 1034                 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
 1035         else
 1036                 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
 1037         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 1038                 pv = sd->sd_volume->v_md_data;
 1039                 mvol = intel_get_volume(meta, pv->pv_volume_pos);
 1040                 mmap0 = intel_get_map(mvol, 0);
 1041                 if (mvol->migr_state)
 1042                         mmap1 = intel_get_map(mvol, 1);
 1043                 else
 1044                         mmap1 = mmap0;
 1045 
 1046                 migr_global = 1;
 1047                 for (i = 0; i < mmap0->total_disks; i++) {
 1048                         if ((mmap0->disk_idx[i] & INTEL_DI_RBLD) == 0 &&
 1049                             (mmap1->disk_idx[i] & INTEL_DI_RBLD) != 0)
 1050                                 migr_global = 0;
 1051                 }
 1052 
 1053                 if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) &&
 1054                     !(pd->pd_disk_meta.flags & INTEL_F_SPARE)) {
 1055                         /* Disabled disk, useless. */
 1056                         g_raid_change_subdisk_state(sd,
 1057                             G_RAID_SUBDISK_S_NONE);
 1058                 } else if (resurrection) {
 1059                         /* Stale disk, almost same as new. */
 1060                         g_raid_change_subdisk_state(sd,
 1061                             G_RAID_SUBDISK_S_NEW);
 1062                 } else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) {
 1063                         /* Failed disk, almost useless. */
 1064                         g_raid_change_subdisk_state(sd,
 1065                             G_RAID_SUBDISK_S_FAILED);
 1066                 } else if (mvol->migr_state == 0) {
 1067                         if (mmap0->status == INTEL_S_UNINITIALIZED &&
 1068                             (!pv->pv_cng || pv->pv_cng_master_disk != disk_pos)) {
 1069                                 /* Freshly created uninitialized volume. */
 1070                                 g_raid_change_subdisk_state(sd,
 1071                                     G_RAID_SUBDISK_S_UNINITIALIZED);
 1072                         } else if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
 1073                                 /* Freshly inserted disk. */
 1074                                 g_raid_change_subdisk_state(sd,
 1075                                     G_RAID_SUBDISK_S_NEW);
 1076                         } else if (mvol->dirty && (!pv->pv_cng ||
 1077                             pv->pv_cng_master_disk != disk_pos)) {
 1078                                 /* Dirty volume (unclean shutdown). */
 1079                                 g_raid_change_subdisk_state(sd,
 1080                                     G_RAID_SUBDISK_S_STALE);
 1081                         } else {
 1082                                 /* Up to date disk. */
 1083                                 g_raid_change_subdisk_state(sd,
 1084                                     G_RAID_SUBDISK_S_ACTIVE);
 1085                         }
 1086                 } else if (mvol->migr_type == INTEL_MT_INIT ||
 1087                            mvol->migr_type == INTEL_MT_REBUILD) {
 1088                         if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
 1089                                 /* Freshly inserted disk. */
 1090                                 g_raid_change_subdisk_state(sd,
 1091                                     G_RAID_SUBDISK_S_NEW);
 1092                         } else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
 1093                                 /* Rebuilding disk. */
 1094                                 g_raid_change_subdisk_state(sd,
 1095                                     G_RAID_SUBDISK_S_REBUILD);
 1096                                 if (mvol->dirty) {
 1097                                         sd->sd_rebuild_pos = 0;
 1098                                 } else {
 1099                                         sd->sd_rebuild_pos =
 1100                                             intel_get_vol_curr_migr_unit(mvol) *
 1101                                             sd->sd_volume->v_strip_size *
 1102                                             mmap0->total_domains;
 1103                                 }
 1104                         } else if (mvol->migr_type == INTEL_MT_INIT &&
 1105                             migr_global) {
 1106                                 /* Freshly created uninitialized volume. */
 1107                                 g_raid_change_subdisk_state(sd,
 1108                                     G_RAID_SUBDISK_S_UNINITIALIZED);
 1109                         } else if (mvol->dirty && (!pv->pv_cng ||
 1110                             pv->pv_cng_master_disk != disk_pos)) {
 1111                                 /* Dirty volume (unclean shutdown). */
 1112                                 g_raid_change_subdisk_state(sd,
 1113                                     G_RAID_SUBDISK_S_STALE);
 1114                         } else {
 1115                                 /* Up to date disk. */
 1116                                 g_raid_change_subdisk_state(sd,
 1117                                     G_RAID_SUBDISK_S_ACTIVE);
 1118                         }
 1119                 } else if (mvol->migr_type == INTEL_MT_VERIFY ||
 1120                            mvol->migr_type == INTEL_MT_REPAIR) {
 1121                         if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
 1122                                 /* Freshly inserted disk. */
 1123                                 g_raid_change_subdisk_state(sd,
 1124                                     G_RAID_SUBDISK_S_NEW);
 1125                         } else if ((mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) ||
 1126                             migr_global) {
 1127                                 /* Resyncing disk. */
 1128                                 g_raid_change_subdisk_state(sd,
 1129                                     G_RAID_SUBDISK_S_RESYNC);
 1130                                 if (mvol->dirty) {
 1131                                         sd->sd_rebuild_pos = 0;
 1132                                 } else {
 1133                                         sd->sd_rebuild_pos =
 1134                                             intel_get_vol_curr_migr_unit(mvol) *
 1135                                             sd->sd_volume->v_strip_size *
 1136                                             mmap0->total_domains;
 1137                                 }
 1138                         } else if (mvol->dirty) {
 1139                                 /* Dirty volume (unclean shutdown). */
 1140                                 g_raid_change_subdisk_state(sd,
 1141                                     G_RAID_SUBDISK_S_STALE);
 1142                         } else {
 1143                                 /* Up to date disk. */
 1144                                 g_raid_change_subdisk_state(sd,
 1145                                     G_RAID_SUBDISK_S_ACTIVE);
 1146                         }
 1147                 } else if (mvol->migr_type == INTEL_MT_GEN_MIGR) {
 1148                         if ((mmap1->disk_idx[0] & INTEL_DI_IDX) != disk_pos) {
 1149                                 /* Freshly inserted disk. */
 1150                                 g_raid_change_subdisk_state(sd,
 1151                                     G_RAID_SUBDISK_S_NEW);
 1152                         } else {
 1153                                 /* Up to date disk. */
 1154                                 g_raid_change_subdisk_state(sd,
 1155                                     G_RAID_SUBDISK_S_ACTIVE);
 1156                         }
 1157                 }
 1158                 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
 1159                     G_RAID_EVENT_SUBDISK);
 1160         }
 1161 
 1162         /* Update status of our need for spare. */
 1163         if (mdi->mdio_started) {
 1164                 mdi->mdio_incomplete =
 1165                     (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
 1166                      g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) <
 1167                      meta->total_disks);
 1168         }
 1169 
 1170         return (resurrection);
 1171 }
 1172 
 1173 static void
 1174 g_disk_md_intel_retaste(void *arg, int pending)
 1175 {
 1176 
 1177         G_RAID_DEBUG(1, "Array is not complete, trying to retaste.");
 1178         g_retaste(&g_raid_class);
 1179         free(arg, M_MD_INTEL);
 1180 }
 1181 
 1182 static void
 1183 g_raid_md_intel_refill(struct g_raid_softc *sc)
 1184 {
 1185         struct g_raid_md_object *md;
 1186         struct g_raid_md_intel_object *mdi;
 1187         struct intel_raid_conf *meta;
 1188         struct g_raid_disk *disk;
 1189         struct task *task;
 1190         int update, na;
 1191 
 1192         md = sc->sc_md;
 1193         mdi = (struct g_raid_md_intel_object *)md;
 1194         meta = mdi->mdio_meta;
 1195         update = 0;
 1196         do {
 1197                 /* Make sure we miss anything. */
 1198                 na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
 1199                     g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED);
 1200                 if (na == meta->total_disks)
 1201                         break;
 1202 
 1203                 G_RAID_DEBUG1(1, md->mdo_softc,
 1204                     "Array is not complete (%d of %d), "
 1205                     "trying to refill.", na, meta->total_disks);
 1206 
 1207                 /* Try to get use some of STALE disks. */
 1208                 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
 1209                         if (disk->d_state == G_RAID_DISK_S_STALE) {
 1210                                 update += g_raid_md_intel_start_disk(disk);
 1211                                 if (disk->d_state == G_RAID_DISK_S_ACTIVE ||
 1212                                     disk->d_state == G_RAID_DISK_S_DISABLED)
 1213                                         break;
 1214                         }
 1215                 }
 1216                 if (disk != NULL)
 1217                         continue;
 1218 
 1219                 /* Try to get use some of SPARE disks. */
 1220                 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
 1221                         if (disk->d_state == G_RAID_DISK_S_SPARE) {
 1222                                 update += g_raid_md_intel_start_disk(disk);
 1223                                 if (disk->d_state == G_RAID_DISK_S_ACTIVE)
 1224                                         break;
 1225                         }
 1226                 }
 1227         } while (disk != NULL);
 1228 
 1229         /* Write new metadata if we changed something. */
 1230         if (update) {
 1231                 g_raid_md_write_intel(md, NULL, NULL, NULL);
 1232                 meta = mdi->mdio_meta;
 1233         }
 1234 
 1235         /* Update status of our need for spare. */
 1236         mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
 1237             g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) < meta->total_disks);
 1238 
 1239         /* Request retaste hoping to find spare. */
 1240         if (mdi->mdio_incomplete) {
 1241                 task = malloc(sizeof(struct task),
 1242                     M_MD_INTEL, M_WAITOK | M_ZERO);
 1243                 TASK_INIT(task, 0, g_disk_md_intel_retaste, task);
 1244                 taskqueue_enqueue(taskqueue_swi, task);
 1245         }
 1246 }
 1247 
 1248 static void
 1249 g_raid_md_intel_start(struct g_raid_softc *sc)
 1250 {
 1251         struct g_raid_md_object *md;
 1252         struct g_raid_md_intel_object *mdi;
 1253         struct g_raid_md_intel_pervolume *pv;
 1254         struct g_raid_md_intel_perdisk *pd;
 1255         struct intel_raid_conf *meta;
 1256         struct intel_raid_vol *mvol;
 1257         struct intel_raid_map *mmap;
 1258         struct g_raid_volume *vol;
 1259         struct g_raid_subdisk *sd;
 1260         struct g_raid_disk *disk;
 1261         int i, j, disk_pos;
 1262 
 1263         md = sc->sc_md;
 1264         mdi = (struct g_raid_md_intel_object *)md;
 1265         meta = mdi->mdio_meta;
 1266 
 1267         /* Create volumes and subdisks. */
 1268         for (i = 0; i < meta->total_volumes; i++) {
 1269                 mvol = intel_get_volume(meta, i);
 1270                 mmap = intel_get_map(mvol, 0);
 1271                 vol = g_raid_create_volume(sc, mvol->name, mvol->tid - 1);
 1272                 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
 1273                 pv->pv_volume_pos = i;
 1274                 pv->pv_cng = (mvol->state & INTEL_ST_CLONE_N_GO) != 0;
 1275                 pv->pv_cng_man_sync = (mvol->state & INTEL_ST_CLONE_MAN_SYNC) != 0;
 1276                 if (mvol->cng_master_disk < mmap->total_disks)
 1277                         pv->pv_cng_master_disk = mvol->cng_master_disk;
 1278                 vol->v_md_data = pv;
 1279                 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
 1280                 if (mmap->type == INTEL_T_RAID0)
 1281                         vol->v_raid_level = G_RAID_VOLUME_RL_RAID0;
 1282                 else if (mmap->type == INTEL_T_RAID1 &&
 1283                     mmap->total_domains >= 2 &&
 1284                     mmap->total_domains <= mmap->total_disks) {
 1285                         /* Assume total_domains is correct. */
 1286                         if (mmap->total_domains == mmap->total_disks)
 1287                                 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
 1288                         else
 1289                                 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
 1290                 } else if (mmap->type == INTEL_T_RAID1) {
 1291                         /* total_domains looks wrong. */
 1292                         if (mmap->total_disks <= 2)
 1293                                 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
 1294                         else
 1295                                 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
 1296                 } else if (mmap->type == INTEL_T_RAID5) {
 1297                         vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
 1298                         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA;
 1299                 } else
 1300                         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
 1301                 vol->v_strip_size = (u_int)mmap->strip_sectors * 512; //ZZZ
 1302                 vol->v_disks_count = mmap->total_disks;
 1303                 vol->v_mediasize = (off_t)mvol->total_sectors * 512; //ZZZ
 1304                 vol->v_sectorsize = 512; //ZZZ
 1305                 for (j = 0; j < vol->v_disks_count; j++) {
 1306                         sd = &vol->v_subdisks[j];
 1307                         sd->sd_offset = intel_get_map_offset(mmap) * 512; //ZZZ
 1308                         sd->sd_size = intel_get_map_disk_sectors(mmap) * 512; //ZZZ
 1309                 }
 1310                 g_raid_start_volume(vol);
 1311         }
 1312 
 1313         /* Create disk placeholders to store data for later writing. */
 1314         for (disk_pos = 0; disk_pos < meta->total_disks; disk_pos++) {
 1315                 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
 1316                 pd->pd_disk_pos = disk_pos;
 1317                 pd->pd_disk_meta = meta->disk[disk_pos];
 1318                 disk = g_raid_create_disk(sc);
 1319                 disk->d_md_data = (void *)pd;
 1320                 disk->d_state = G_RAID_DISK_S_OFFLINE;
 1321                 for (i = 0; i < meta->total_volumes; i++) {
 1322                         mvol = intel_get_volume(meta, i);
 1323                         mmap = intel_get_map(mvol, 0);
 1324                         for (j = 0; j < mmap->total_disks; j++) {
 1325                                 if ((mmap->disk_idx[j] & INTEL_DI_IDX) == disk_pos)
 1326                                         break;
 1327                         }
 1328                         if (j == mmap->total_disks)
 1329                                 continue;
 1330                         vol = g_raid_md_intel_get_volume(sc, i);
 1331                         sd = &vol->v_subdisks[j];
 1332                         sd->sd_disk = disk;
 1333                         TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
 1334                 }
 1335         }
 1336 
 1337         /* Make all disks found till the moment take their places. */
 1338         do {
 1339                 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
 1340                         if (disk->d_state == G_RAID_DISK_S_NONE) {
 1341                                 g_raid_md_intel_start_disk(disk);
 1342                                 break;
 1343                         }
 1344                 }
 1345         } while (disk != NULL);
 1346 
 1347         mdi->mdio_started = 1;
 1348         G_RAID_DEBUG1(0, sc, "Array started.");
 1349         g_raid_md_write_intel(md, NULL, NULL, NULL);
 1350 
 1351         /* Pickup any STALE/SPARE disks to refill array if needed. */
 1352         g_raid_md_intel_refill(sc);
 1353 
 1354         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1355                 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
 1356                     G_RAID_EVENT_VOLUME);
 1357         }
 1358 
 1359         callout_stop(&mdi->mdio_start_co);
 1360         G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount);
 1361         root_mount_rel(mdi->mdio_rootmount);
 1362         mdi->mdio_rootmount = NULL;
 1363 }
 1364 
 1365 static void
 1366 g_raid_md_intel_new_disk(struct g_raid_disk *disk)
 1367 {
 1368         struct g_raid_softc *sc;
 1369         struct g_raid_md_object *md;
 1370         struct g_raid_md_intel_object *mdi;
 1371         struct intel_raid_conf *pdmeta;
 1372         struct g_raid_md_intel_perdisk *pd;
 1373 
 1374         sc = disk->d_softc;
 1375         md = sc->sc_md;
 1376         mdi = (struct g_raid_md_intel_object *)md;
 1377         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
 1378         pdmeta = pd->pd_meta;
 1379 
 1380         if (mdi->mdio_started) {
 1381                 if (g_raid_md_intel_start_disk(disk))
 1382                         g_raid_md_write_intel(md, NULL, NULL, NULL);
 1383         } else {
 1384                 /* If we haven't started yet - check metadata freshness. */
 1385                 if (mdi->mdio_meta == NULL ||
 1386                     ((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) {
 1387                         G_RAID_DEBUG1(1, sc, "Newer disk");
 1388                         if (mdi->mdio_meta != NULL)
 1389                                 free(mdi->mdio_meta, M_MD_INTEL);
 1390                         mdi->mdio_meta = intel_meta_copy(pdmeta);
 1391                         mdi->mdio_generation = mdi->mdio_meta->generation;
 1392                         mdi->mdio_disks_present = 1;
 1393                 } else if (pdmeta->generation == mdi->mdio_generation) {
 1394                         mdi->mdio_disks_present++;
 1395                         G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)",
 1396                             mdi->mdio_disks_present,
 1397                             mdi->mdio_meta->total_disks);
 1398                 } else {
 1399                         G_RAID_DEBUG1(1, sc, "Older disk");
 1400                 }
 1401                 /* If we collected all needed disks - start array. */
 1402                 if (mdi->mdio_disks_present == mdi->mdio_meta->total_disks)
 1403                         g_raid_md_intel_start(sc);
 1404         }
 1405 }
 1406 
 1407 static void
 1408 g_raid_intel_go(void *arg)
 1409 {
 1410         struct g_raid_softc *sc;
 1411         struct g_raid_md_object *md;
 1412         struct g_raid_md_intel_object *mdi;
 1413 
 1414         sc = arg;
 1415         md = sc->sc_md;
 1416         mdi = (struct g_raid_md_intel_object *)md;
 1417         if (!mdi->mdio_started) {
 1418                 G_RAID_DEBUG1(0, sc, "Force array start due to timeout.");
 1419                 g_raid_event_send(sc, G_RAID_NODE_E_START, 0);
 1420         }
 1421 }
 1422 
 1423 static int
 1424 g_raid_md_create_intel(struct g_raid_md_object *md, struct g_class *mp,
 1425     struct g_geom **gp)
 1426 {
 1427         struct g_raid_softc *sc;
 1428         struct g_raid_md_intel_object *mdi;
 1429         char name[16];
 1430 
 1431         mdi = (struct g_raid_md_intel_object *)md;
 1432         mdi->mdio_config_id = mdi->mdio_orig_config_id = arc4random();
 1433         mdi->mdio_generation = 0;
 1434         snprintf(name, sizeof(name), "Intel-%08x", mdi->mdio_config_id);
 1435         sc = g_raid_create_node(mp, name, md);
 1436         if (sc == NULL)
 1437                 return (G_RAID_MD_TASTE_FAIL);
 1438         md->mdo_softc = sc;
 1439         *gp = sc->sc_geom;
 1440         return (G_RAID_MD_TASTE_NEW);
 1441 }
 1442 
 1443 /*
 1444  * Return the last N characters of the serial label.  The Linux and
 1445  * ataraid(7) code always uses the last 16 characters of the label to
 1446  * store into the Intel meta format.  Generalize this to N characters
 1447  * since that's easy.  Labels can be up to 20 characters for SATA drives
 1448  * and up 251 characters for SAS drives.  Since intel controllers don't
 1449  * support SAS drives, just stick with the SATA limits for stack friendliness.
 1450  */
 1451 static int
 1452 g_raid_md_get_label(struct g_consumer *cp, char *serial, int serlen)
 1453 {
 1454         char serial_buffer[DISK_IDENT_SIZE];
 1455         int len, error;
 1456 
 1457         len = sizeof(serial_buffer);
 1458         error = g_io_getattr("GEOM::ident", cp, &len, serial_buffer);
 1459         if (error != 0)
 1460                 return (error);
 1461         len = strlen(serial_buffer);
 1462         if (len > serlen)
 1463                 len -= serlen;
 1464         else
 1465                 len = 0;
 1466         strncpy(serial, serial_buffer + len, serlen);
 1467         return (0);
 1468 }
 1469 
 1470 static int
 1471 g_raid_md_taste_intel(struct g_raid_md_object *md, struct g_class *mp,
 1472                               struct g_consumer *cp, struct g_geom **gp)
 1473 {
 1474         struct g_consumer *rcp;
 1475         struct g_provider *pp;
 1476         struct g_raid_md_intel_object *mdi, *mdi1;
 1477         struct g_raid_softc *sc;
 1478         struct g_raid_disk *disk;
 1479         struct intel_raid_conf *meta;
 1480         struct g_raid_md_intel_perdisk *pd;
 1481         struct g_geom *geom;
 1482         int error, disk_pos, result, spare, len;
 1483         char serial[INTEL_SERIAL_LEN];
 1484         char name[16];
 1485         uint16_t vendor;
 1486 
 1487         G_RAID_DEBUG(1, "Tasting Intel on %s", cp->provider->name);
 1488         mdi = (struct g_raid_md_intel_object *)md;
 1489         pp = cp->provider;
 1490 
 1491         /* Read metadata from device. */
 1492         meta = NULL;
 1493         disk_pos = 0;
 1494         g_topology_unlock();
 1495         error = g_raid_md_get_label(cp, serial, sizeof(serial));
 1496         if (error != 0) {
 1497                 G_RAID_DEBUG(1, "Cannot get serial number from %s (error=%d).",
 1498                     pp->name, error);
 1499                 goto fail2;
 1500         }
 1501         vendor = 0xffff;
 1502         len = sizeof(vendor);
 1503         if (pp->geom->rank == 1)
 1504                 g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor);
 1505         meta = intel_meta_read(cp);
 1506         g_topology_lock();
 1507         if (meta == NULL) {
 1508                 if (g_raid_aggressive_spare) {
 1509                         if (vendor != 0x8086) {
 1510                                 G_RAID_DEBUG(1,
 1511                                     "Intel vendor mismatch 0x%04x != 0x8086",
 1512                                     vendor);
 1513                         } else {
 1514                                 G_RAID_DEBUG(1,
 1515                                     "No Intel metadata, forcing spare.");
 1516                                 spare = 2;
 1517                                 goto search;
 1518                         }
 1519                 }
 1520                 return (G_RAID_MD_TASTE_FAIL);
 1521         }
 1522 
 1523         /* Check this disk position in obtained metadata. */
 1524         disk_pos = intel_meta_find_disk(meta, serial);
 1525         if (disk_pos < 0) {
 1526                 G_RAID_DEBUG(1, "Intel serial '%s' not found", serial);
 1527                 goto fail1;
 1528         }
 1529         if (intel_get_disk_sectors(&meta->disk[disk_pos]) !=
 1530             (pp->mediasize / pp->sectorsize)) {
 1531                 G_RAID_DEBUG(1, "Intel size mismatch %ju != %ju",
 1532                     intel_get_disk_sectors(&meta->disk[disk_pos]),
 1533                     (off_t)(pp->mediasize / pp->sectorsize));
 1534                 goto fail1;
 1535         }
 1536 
 1537         G_RAID_DEBUG(1, "Intel disk position %d", disk_pos);
 1538         spare = meta->disk[disk_pos].flags & INTEL_F_SPARE;
 1539 
 1540 search:
 1541         /* Search for matching node. */
 1542         sc = NULL;
 1543         mdi1 = NULL;
 1544         LIST_FOREACH(geom, &mp->geom, geom) {
 1545                 sc = geom->softc;
 1546                 if (sc == NULL)
 1547                         continue;
 1548                 if (sc->sc_stopping != 0)
 1549                         continue;
 1550                 if (sc->sc_md->mdo_class != md->mdo_class)
 1551                         continue;
 1552                 mdi1 = (struct g_raid_md_intel_object *)sc->sc_md;
 1553                 if (spare) {
 1554                         if (mdi1->mdio_incomplete)
 1555                                 break;
 1556                 } else {
 1557                         if (mdi1->mdio_config_id == meta->config_id)
 1558                                 break;
 1559                 }
 1560         }
 1561 
 1562         /* Found matching node. */
 1563         if (geom != NULL) {
 1564                 G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
 1565                 result = G_RAID_MD_TASTE_EXISTING;
 1566 
 1567         } else if (spare) { /* Not found needy node -- left for later. */
 1568                 G_RAID_DEBUG(1, "Spare is not needed at this time");
 1569                 goto fail1;
 1570 
 1571         } else { /* Not found matching node -- create one. */
 1572                 result = G_RAID_MD_TASTE_NEW;
 1573                 mdi->mdio_config_id = meta->config_id;
 1574                 mdi->mdio_orig_config_id = meta->orig_config_id;
 1575                 snprintf(name, sizeof(name), "Intel-%08x", meta->config_id);
 1576                 sc = g_raid_create_node(mp, name, md);
 1577                 md->mdo_softc = sc;
 1578                 geom = sc->sc_geom;
 1579                 callout_init(&mdi->mdio_start_co, 1);
 1580                 callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz,
 1581                     g_raid_intel_go, sc);
 1582                 mdi->mdio_rootmount = root_mount_hold("GRAID-Intel");
 1583                 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount);
 1584         }
 1585 
 1586         /* There is no return after this point, so we close passed consumer. */
 1587         g_access(cp, -1, 0, 0);
 1588 
 1589         rcp = g_new_consumer(geom);
 1590         rcp->flags |= G_CF_DIRECT_RECEIVE;
 1591         g_attach(rcp, pp);
 1592         if (g_access(rcp, 1, 1, 1) != 0)
 1593                 ; //goto fail1;
 1594 
 1595         g_topology_unlock();
 1596         sx_xlock(&sc->sc_lock);
 1597 
 1598         pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
 1599         pd->pd_meta = meta;
 1600         pd->pd_disk_pos = -1;
 1601         if (spare == 2) {
 1602                 memcpy(&pd->pd_disk_meta.serial[0], serial, INTEL_SERIAL_LEN);
 1603                 intel_set_disk_sectors(&pd->pd_disk_meta, 
 1604                     pp->mediasize / pp->sectorsize);
 1605                 pd->pd_disk_meta.id = 0;
 1606                 pd->pd_disk_meta.flags = INTEL_F_SPARE;
 1607         } else {
 1608                 pd->pd_disk_meta = meta->disk[disk_pos];
 1609         }
 1610         disk = g_raid_create_disk(sc);
 1611         disk->d_md_data = (void *)pd;
 1612         disk->d_consumer = rcp;
 1613         rcp->private = disk;
 1614 
 1615         g_raid_get_disk_info(disk);
 1616 
 1617         g_raid_md_intel_new_disk(disk);
 1618 
 1619         sx_xunlock(&sc->sc_lock);
 1620         g_topology_lock();
 1621         *gp = geom;
 1622         return (result);
 1623 fail2:
 1624         g_topology_lock();
 1625 fail1:
 1626         free(meta, M_MD_INTEL);
 1627         return (G_RAID_MD_TASTE_FAIL);
 1628 }
 1629 
 1630 static int
 1631 g_raid_md_event_intel(struct g_raid_md_object *md,
 1632     struct g_raid_disk *disk, u_int event)
 1633 {
 1634         struct g_raid_softc *sc;
 1635         struct g_raid_subdisk *sd;
 1636         struct g_raid_md_intel_object *mdi;
 1637         struct g_raid_md_intel_perdisk *pd;
 1638 
 1639         sc = md->mdo_softc;
 1640         mdi = (struct g_raid_md_intel_object *)md;
 1641         if (disk == NULL) {
 1642                 switch (event) {
 1643                 case G_RAID_NODE_E_START:
 1644                         if (!mdi->mdio_started)
 1645                                 g_raid_md_intel_start(sc);
 1646                         return (0);
 1647                 }
 1648                 return (-1);
 1649         }
 1650         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
 1651         switch (event) {
 1652         case G_RAID_DISK_E_DISCONNECTED:
 1653                 /* If disk was assigned, just update statuses. */
 1654                 if (pd->pd_disk_pos >= 0) {
 1655                         g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
 1656                         if (disk->d_consumer) {
 1657                                 g_raid_kill_consumer(sc, disk->d_consumer);
 1658                                 disk->d_consumer = NULL;
 1659                         }
 1660                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 1661                                 g_raid_change_subdisk_state(sd,
 1662                                     G_RAID_SUBDISK_S_NONE);
 1663                                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
 1664                                     G_RAID_EVENT_SUBDISK);
 1665                         }
 1666                 } else {
 1667                         /* Otherwise -- delete. */
 1668                         g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
 1669                         g_raid_destroy_disk(disk);
 1670                 }
 1671 
 1672                 /* Write updated metadata to all disks. */
 1673                 g_raid_md_write_intel(md, NULL, NULL, NULL);
 1674 
 1675                 /* Check if anything left except placeholders. */
 1676                 if (g_raid_ndisks(sc, -1) ==
 1677                     g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
 1678                         g_raid_destroy_node(sc, 0);
 1679                 else
 1680                         g_raid_md_intel_refill(sc);
 1681                 return (0);
 1682         }
 1683         return (-2);
 1684 }
 1685 
 1686 static int
 1687 g_raid_md_ctl_intel(struct g_raid_md_object *md,
 1688     struct gctl_req *req)
 1689 {
 1690         struct g_raid_softc *sc;
 1691         struct g_raid_volume *vol, *vol1;
 1692         struct g_raid_subdisk *sd;
 1693         struct g_raid_disk *disk;
 1694         struct g_raid_md_intel_object *mdi;
 1695         struct g_raid_md_intel_pervolume *pv;
 1696         struct g_raid_md_intel_perdisk *pd;
 1697         struct g_consumer *cp;
 1698         struct g_provider *pp;
 1699         char arg[16], serial[INTEL_SERIAL_LEN];
 1700         const char *nodename, *verb, *volname, *levelname, *diskname;
 1701         char *tmp;
 1702         int *nargs, *force;
 1703         off_t off, size, sectorsize, strip, disk_sectors;
 1704         intmax_t *sizearg, *striparg;
 1705         int numdisks, i, len, level, qual, update;
 1706         int error;
 1707 
 1708         sc = md->mdo_softc;
 1709         mdi = (struct g_raid_md_intel_object *)md;
 1710         verb = gctl_get_param(req, "verb", NULL);
 1711         nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
 1712         error = 0;
 1713         if (strcmp(verb, "label") == 0) {
 1714                 if (*nargs < 4) {
 1715                         gctl_error(req, "Invalid number of arguments.");
 1716                         return (-1);
 1717                 }
 1718                 volname = gctl_get_asciiparam(req, "arg1");
 1719                 if (volname == NULL) {
 1720                         gctl_error(req, "No volume name.");
 1721                         return (-2);
 1722                 }
 1723                 levelname = gctl_get_asciiparam(req, "arg2");
 1724                 if (levelname == NULL) {
 1725                         gctl_error(req, "No RAID level.");
 1726                         return (-3);
 1727                 }
 1728                 if (strcasecmp(levelname, "RAID5") == 0)
 1729                         levelname = "RAID5-LA";
 1730                 if (g_raid_volume_str2level(levelname, &level, &qual)) {
 1731                         gctl_error(req, "Unknown RAID level '%s'.", levelname);
 1732                         return (-4);
 1733                 }
 1734                 numdisks = *nargs - 3;
 1735                 force = gctl_get_paraml(req, "force", sizeof(*force));
 1736                 if (!g_raid_md_intel_supported(level, qual, numdisks,
 1737                     force ? *force : 0)) {
 1738                         gctl_error(req, "Unsupported RAID level "
 1739                             "(0x%02x/0x%02x), or number of disks (%d).",
 1740                             level, qual, numdisks);
 1741                         return (-5);
 1742                 }
 1743 
 1744                 /* Search for disks, connect them and probe. */
 1745                 size = 0x7fffffffffffffffllu;
 1746                 sectorsize = 0;
 1747                 for (i = 0; i < numdisks; i++) {
 1748                         snprintf(arg, sizeof(arg), "arg%d", i + 3);
 1749                         diskname = gctl_get_asciiparam(req, arg);
 1750                         if (diskname == NULL) {
 1751                                 gctl_error(req, "No disk name (%s).", arg);
 1752                                 error = -6;
 1753                                 break;
 1754                         }
 1755                         if (strcmp(diskname, "NONE") == 0) {
 1756                                 cp = NULL;
 1757                                 pp = NULL;
 1758                         } else {
 1759                                 g_topology_lock();
 1760                                 cp = g_raid_open_consumer(sc, diskname);
 1761                                 if (cp == NULL) {
 1762                                         gctl_error(req, "Can't open disk '%s'.",
 1763                                             diskname);
 1764                                         g_topology_unlock();
 1765                                         error = -7;
 1766                                         break;
 1767                                 }
 1768                                 pp = cp->provider;
 1769                         }
 1770                         pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
 1771                         pd->pd_disk_pos = i;
 1772                         disk = g_raid_create_disk(sc);
 1773                         disk->d_md_data = (void *)pd;
 1774                         disk->d_consumer = cp;
 1775                         if (cp == NULL) {
 1776                                 strcpy(&pd->pd_disk_meta.serial[0], "NONE");
 1777                                 pd->pd_disk_meta.id = 0xffffffff;
 1778                                 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
 1779                                 continue;
 1780                         }
 1781                         cp->private = disk;
 1782                         g_topology_unlock();
 1783 
 1784                         error = g_raid_md_get_label(cp,
 1785                             &pd->pd_disk_meta.serial[0], INTEL_SERIAL_LEN);
 1786                         if (error != 0) {
 1787                                 gctl_error(req,
 1788                                     "Can't get serial for provider '%s'.",
 1789                                     diskname);
 1790                                 error = -8;
 1791                                 break;
 1792                         }
 1793 
 1794                         g_raid_get_disk_info(disk);
 1795 
 1796                         intel_set_disk_sectors(&pd->pd_disk_meta,
 1797                             pp->mediasize / pp->sectorsize);
 1798                         if (size > pp->mediasize)
 1799                                 size = pp->mediasize;
 1800                         if (sectorsize < pp->sectorsize)
 1801                                 sectorsize = pp->sectorsize;
 1802                         pd->pd_disk_meta.id = 0;
 1803                         pd->pd_disk_meta.flags = INTEL_F_ASSIGNED | INTEL_F_ONLINE;
 1804                 }
 1805                 if (error != 0)
 1806                         return (error);
 1807 
 1808                 if (sectorsize <= 0) {
 1809                         gctl_error(req, "Can't get sector size.");
 1810                         return (-8);
 1811                 }
 1812 
 1813                 /* Reserve some space for metadata. */
 1814                 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
 1815 
 1816                 /* Handle size argument. */
 1817                 len = sizeof(*sizearg);
 1818                 sizearg = gctl_get_param(req, "size", &len);
 1819                 if (sizearg != NULL && len == sizeof(*sizearg) &&
 1820                     *sizearg > 0) {
 1821                         if (*sizearg > size) {
 1822                                 gctl_error(req, "Size too big %lld > %lld.",
 1823                                     (long long)*sizearg, (long long)size);
 1824                                 return (-9);
 1825                         }
 1826                         size = *sizearg;
 1827                 }
 1828 
 1829                 /* Handle strip argument. */
 1830                 strip = 131072;
 1831                 len = sizeof(*striparg);
 1832                 striparg = gctl_get_param(req, "strip", &len);
 1833                 if (striparg != NULL && len == sizeof(*striparg) &&
 1834                     *striparg > 0) {
 1835                         if (*striparg < sectorsize) {
 1836                                 gctl_error(req, "Strip size too small.");
 1837                                 return (-10);
 1838                         }
 1839                         if (*striparg % sectorsize != 0) {
 1840                                 gctl_error(req, "Incorrect strip size.");
 1841                                 return (-11);
 1842                         }
 1843                         if (strip > 65535 * sectorsize) {
 1844                                 gctl_error(req, "Strip size too big.");
 1845                                 return (-12);
 1846                         }
 1847                         strip = *striparg;
 1848                 }
 1849 
 1850                 /* Round size down to strip or sector. */
 1851                 if (level == G_RAID_VOLUME_RL_RAID1)
 1852                         size -= (size % sectorsize);
 1853                 else if (level == G_RAID_VOLUME_RL_RAID1E &&
 1854                     (numdisks & 1) != 0)
 1855                         size -= (size % (2 * strip));
 1856                 else
 1857                         size -= (size % strip);
 1858                 if (size <= 0) {
 1859                         gctl_error(req, "Size too small.");
 1860                         return (-13);
 1861                 }
 1862 
 1863                 /* We have all we need, create things: volume, ... */
 1864                 mdi->mdio_started = 1;
 1865                 vol = g_raid_create_volume(sc, volname, -1);
 1866                 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
 1867                 pv->pv_volume_pos = 0;
 1868                 vol->v_md_data = pv;
 1869                 vol->v_raid_level = level;
 1870                 vol->v_raid_level_qualifier = qual;
 1871                 vol->v_strip_size = strip;
 1872                 vol->v_disks_count = numdisks;
 1873                 if (level == G_RAID_VOLUME_RL_RAID0)
 1874                         vol->v_mediasize = size * numdisks;
 1875                 else if (level == G_RAID_VOLUME_RL_RAID1)
 1876                         vol->v_mediasize = size;
 1877                 else if (level == G_RAID_VOLUME_RL_RAID5)
 1878                         vol->v_mediasize = size * (numdisks - 1);
 1879                 else { /* RAID1E */
 1880                         vol->v_mediasize = ((size * numdisks) / strip / 2) *
 1881                             strip;
 1882                 }
 1883                 vol->v_sectorsize = sectorsize;
 1884                 g_raid_start_volume(vol);
 1885 
 1886                 /* , and subdisks. */
 1887                 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
 1888                         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
 1889                         sd = &vol->v_subdisks[pd->pd_disk_pos];
 1890                         sd->sd_disk = disk;
 1891                         sd->sd_offset = 0;
 1892                         sd->sd_size = size;
 1893                         TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
 1894                         if (sd->sd_disk->d_consumer != NULL) {
 1895                                 g_raid_change_disk_state(disk,
 1896                                     G_RAID_DISK_S_ACTIVE);
 1897                                 if (level == G_RAID_VOLUME_RL_RAID5)
 1898                                         g_raid_change_subdisk_state(sd,
 1899                                             G_RAID_SUBDISK_S_UNINITIALIZED);
 1900                                 else
 1901                                         g_raid_change_subdisk_state(sd,
 1902                                             G_RAID_SUBDISK_S_ACTIVE);
 1903                                 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
 1904                                     G_RAID_EVENT_SUBDISK);
 1905                         } else {
 1906                                 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
 1907                         }
 1908                 }
 1909 
 1910                 /* Write metadata based on created entities. */
 1911                 G_RAID_DEBUG1(0, sc, "Array started.");
 1912                 g_raid_md_write_intel(md, NULL, NULL, NULL);
 1913 
 1914                 /* Pickup any STALE/SPARE disks to refill array if needed. */
 1915                 g_raid_md_intel_refill(sc);
 1916 
 1917                 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
 1918                     G_RAID_EVENT_VOLUME);
 1919                 return (0);
 1920         }
 1921         if (strcmp(verb, "add") == 0) {
 1922                 if (*nargs != 3) {
 1923                         gctl_error(req, "Invalid number of arguments.");
 1924                         return (-1);
 1925                 }
 1926                 volname = gctl_get_asciiparam(req, "arg1");
 1927                 if (volname == NULL) {
 1928                         gctl_error(req, "No volume name.");
 1929                         return (-2);
 1930                 }
 1931                 levelname = gctl_get_asciiparam(req, "arg2");
 1932                 if (levelname == NULL) {
 1933                         gctl_error(req, "No RAID level.");
 1934                         return (-3);
 1935                 }
 1936                 if (strcasecmp(levelname, "RAID5") == 0)
 1937                         levelname = "RAID5-LA";
 1938                 if (g_raid_volume_str2level(levelname, &level, &qual)) {
 1939                         gctl_error(req, "Unknown RAID level '%s'.", levelname);
 1940                         return (-4);
 1941                 }
 1942 
 1943                 /* Look for existing volumes. */
 1944                 i = 0;
 1945                 vol1 = NULL;
 1946                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 1947                         vol1 = vol;
 1948                         i++;
 1949                 }
 1950                 if (i > 1) {
 1951                         gctl_error(req, "Maximum two volumes supported.");
 1952                         return (-6);
 1953                 }
 1954                 if (vol1 == NULL) {
 1955                         gctl_error(req, "At least one volume must exist.");
 1956                         return (-7);
 1957                 }
 1958 
 1959                 numdisks = vol1->v_disks_count;
 1960                 force = gctl_get_paraml(req, "force", sizeof(*force));
 1961                 if (!g_raid_md_intel_supported(level, qual, numdisks,
 1962                     force ? *force : 0)) {
 1963                         gctl_error(req, "Unsupported RAID level "
 1964                             "(0x%02x/0x%02x), or number of disks (%d).",
 1965                             level, qual, numdisks);
 1966                         return (-5);
 1967                 }
 1968 
 1969                 /* Collect info about present disks. */
 1970                 size = 0x7fffffffffffffffllu;
 1971                 sectorsize = 512;
 1972                 for (i = 0; i < numdisks; i++) {
 1973                         disk = vol1->v_subdisks[i].sd_disk;
 1974                         pd = (struct g_raid_md_intel_perdisk *)
 1975                             disk->d_md_data;
 1976                         disk_sectors = 
 1977                             intel_get_disk_sectors(&pd->pd_disk_meta);
 1978 
 1979                         if (disk_sectors * 512 < size)
 1980                                 size = disk_sectors * 512;
 1981                         if (disk->d_consumer != NULL &&
 1982                             disk->d_consumer->provider != NULL &&
 1983                             disk->d_consumer->provider->sectorsize >
 1984                              sectorsize) {
 1985                                 sectorsize =
 1986                                     disk->d_consumer->provider->sectorsize;
 1987                         }
 1988                 }
 1989 
 1990                 /* Reserve some space for metadata. */
 1991                 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
 1992 
 1993                 /* Decide insert before or after. */
 1994                 sd = &vol1->v_subdisks[0];
 1995                 if (sd->sd_offset >
 1996                     size - (sd->sd_offset + sd->sd_size)) {
 1997                         off = 0;
 1998                         size = sd->sd_offset;
 1999                 } else {
 2000                         off = sd->sd_offset + sd->sd_size;
 2001                         size = size - (sd->sd_offset + sd->sd_size);
 2002                 }
 2003 
 2004                 /* Handle strip argument. */
 2005                 strip = 131072;
 2006                 len = sizeof(*striparg);
 2007                 striparg = gctl_get_param(req, "strip", &len);
 2008                 if (striparg != NULL && len == sizeof(*striparg) &&
 2009                     *striparg > 0) {
 2010                         if (*striparg < sectorsize) {
 2011                                 gctl_error(req, "Strip size too small.");
 2012                                 return (-10);
 2013                         }
 2014                         if (*striparg % sectorsize != 0) {
 2015                                 gctl_error(req, "Incorrect strip size.");
 2016                                 return (-11);
 2017                         }
 2018                         if (strip > 65535 * sectorsize) {
 2019                                 gctl_error(req, "Strip size too big.");
 2020                                 return (-12);
 2021                         }
 2022                         strip = *striparg;
 2023                 }
 2024 
 2025                 /* Round offset up to strip. */
 2026                 if (off % strip != 0) {
 2027                         size -= strip - off % strip;
 2028                         off += strip - off % strip;
 2029                 }
 2030 
 2031                 /* Handle size argument. */
 2032                 len = sizeof(*sizearg);
 2033                 sizearg = gctl_get_param(req, "size", &len);
 2034                 if (sizearg != NULL && len == sizeof(*sizearg) &&
 2035                     *sizearg > 0) {
 2036                         if (*sizearg > size) {
 2037                                 gctl_error(req, "Size too big %lld > %lld.",
 2038                                     (long long)*sizearg, (long long)size);
 2039                                 return (-9);
 2040                         }
 2041                         size = *sizearg;
 2042                 }
 2043 
 2044                 /* Round size down to strip or sector. */
 2045                 if (level == G_RAID_VOLUME_RL_RAID1)
 2046                         size -= (size % sectorsize);
 2047                 else
 2048                         size -= (size % strip);
 2049                 if (size <= 0) {
 2050                         gctl_error(req, "Size too small.");
 2051                         return (-13);
 2052                 }
 2053                 if (size > 0xffffffffllu * sectorsize) {
 2054                         gctl_error(req, "Size too big.");
 2055                         return (-14);
 2056                 }
 2057 
 2058                 /* We have all we need, create things: volume, ... */
 2059                 vol = g_raid_create_volume(sc, volname, -1);
 2060                 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
 2061                 pv->pv_volume_pos = i;
 2062                 vol->v_md_data = pv;
 2063                 vol->v_raid_level = level;
 2064                 vol->v_raid_level_qualifier = qual;
 2065                 vol->v_strip_size = strip;
 2066                 vol->v_disks_count = numdisks;
 2067                 if (level == G_RAID_VOLUME_RL_RAID0)
 2068                         vol->v_mediasize = size * numdisks;
 2069                 else if (level == G_RAID_VOLUME_RL_RAID1)
 2070                         vol->v_mediasize = size;
 2071                 else if (level == G_RAID_VOLUME_RL_RAID5)
 2072                         vol->v_mediasize = size * (numdisks - 1);
 2073                 else { /* RAID1E */
 2074                         vol->v_mediasize = ((size * numdisks) / strip / 2) *
 2075                             strip;
 2076                 }
 2077                 vol->v_sectorsize = sectorsize;
 2078                 g_raid_start_volume(vol);
 2079 
 2080                 /* , and subdisks. */
 2081                 for (i = 0; i < numdisks; i++) {
 2082                         disk = vol1->v_subdisks[i].sd_disk;
 2083                         sd = &vol->v_subdisks[i];
 2084                         sd->sd_disk = disk;
 2085                         sd->sd_offset = off;
 2086                         sd->sd_size = size;
 2087                         TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
 2088                         if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
 2089                                 if (level == G_RAID_VOLUME_RL_RAID5)
 2090                                         g_raid_change_subdisk_state(sd,
 2091                                             G_RAID_SUBDISK_S_UNINITIALIZED);
 2092                                 else
 2093                                         g_raid_change_subdisk_state(sd,
 2094                                             G_RAID_SUBDISK_S_ACTIVE);
 2095                                 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
 2096                                     G_RAID_EVENT_SUBDISK);
 2097                         }
 2098                 }
 2099 
 2100                 /* Write metadata based on created entities. */
 2101                 g_raid_md_write_intel(md, NULL, NULL, NULL);
 2102 
 2103                 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
 2104                     G_RAID_EVENT_VOLUME);
 2105                 return (0);
 2106         }
 2107         if (strcmp(verb, "delete") == 0) {
 2108                 nodename = gctl_get_asciiparam(req, "arg0");
 2109                 if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
 2110                         nodename = NULL;
 2111 
 2112                 /* Full node destruction. */
 2113                 if (*nargs == 1 && nodename != NULL) {
 2114                         /* Check if some volume is still open. */
 2115                         force = gctl_get_paraml(req, "force", sizeof(*force));
 2116                         if (force != NULL && *force == 0 &&
 2117                             g_raid_nopens(sc) != 0) {
 2118                                 gctl_error(req, "Some volume is still open.");
 2119                                 return (-4);
 2120                         }
 2121 
 2122                         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
 2123                                 if (disk->d_consumer)
 2124                                         intel_meta_erase(disk->d_consumer);
 2125                         }
 2126                         g_raid_destroy_node(sc, 0);
 2127                         return (0);
 2128                 }
 2129 
 2130                 /* Destroy specified volume. If it was last - all node. */
 2131                 if (*nargs > 2) {
 2132                         gctl_error(req, "Invalid number of arguments.");
 2133                         return (-1);
 2134                 }
 2135                 volname = gctl_get_asciiparam(req,
 2136                     nodename != NULL ? "arg1" : "arg0");
 2137                 if (volname == NULL) {
 2138                         gctl_error(req, "No volume name.");
 2139                         return (-2);
 2140                 }
 2141 
 2142                 /* Search for volume. */
 2143                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 2144                         if (strcmp(vol->v_name, volname) == 0)
 2145                                 break;
 2146                         pp = vol->v_provider;
 2147                         if (pp == NULL)
 2148                                 continue;
 2149                         if (strcmp(pp->name, volname) == 0)
 2150                                 break;
 2151                         if (strncmp(pp->name, "raid/", 5) == 0 &&
 2152                             strcmp(pp->name + 5, volname) == 0)
 2153                                 break;
 2154                 }
 2155                 if (vol == NULL) {
 2156                         i = strtol(volname, &tmp, 10);
 2157                         if (verb != volname && tmp[0] == 0) {
 2158                                 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 2159                                         if (vol->v_global_id == i)
 2160                                                 break;
 2161                                 }
 2162                         }
 2163                 }
 2164                 if (vol == NULL) {
 2165                         gctl_error(req, "Volume '%s' not found.", volname);
 2166                         return (-3);
 2167                 }
 2168 
 2169                 /* Check if volume is still open. */
 2170                 force = gctl_get_paraml(req, "force", sizeof(*force));
 2171                 if (force != NULL && *force == 0 &&
 2172                     vol->v_provider_open != 0) {
 2173                         gctl_error(req, "Volume is still open.");
 2174                         return (-4);
 2175                 }
 2176 
 2177                 /* Destroy volume and potentially node. */
 2178                 i = 0;
 2179                 TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
 2180                         i++;
 2181                 if (i >= 2) {
 2182                         g_raid_destroy_volume(vol);
 2183                         g_raid_md_write_intel(md, NULL, NULL, NULL);
 2184                 } else {
 2185                         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
 2186                                 if (disk->d_consumer)
 2187                                         intel_meta_erase(disk->d_consumer);
 2188                         }
 2189                         g_raid_destroy_node(sc, 0);
 2190                 }
 2191                 return (0);
 2192         }
 2193         if (strcmp(verb, "remove") == 0 ||
 2194             strcmp(verb, "fail") == 0) {
 2195                 if (*nargs < 2) {
 2196                         gctl_error(req, "Invalid number of arguments.");
 2197                         return (-1);
 2198                 }
 2199                 for (i = 1; i < *nargs; i++) {
 2200                         snprintf(arg, sizeof(arg), "arg%d", i);
 2201                         diskname = gctl_get_asciiparam(req, arg);
 2202                         if (diskname == NULL) {
 2203                                 gctl_error(req, "No disk name (%s).", arg);
 2204                                 error = -2;
 2205                                 break;
 2206                         }
 2207                         if (strncmp(diskname, _PATH_DEV, 5) == 0)
 2208                                 diskname += 5;
 2209 
 2210                         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
 2211                                 if (disk->d_consumer != NULL && 
 2212                                     disk->d_consumer->provider != NULL &&
 2213                                     strcmp(disk->d_consumer->provider->name,
 2214                                      diskname) == 0)
 2215                                         break;
 2216                         }
 2217                         if (disk == NULL) {
 2218                                 gctl_error(req, "Disk '%s' not found.",
 2219                                     diskname);
 2220                                 error = -3;
 2221                                 break;
 2222                         }
 2223 
 2224                         if (strcmp(verb, "fail") == 0) {
 2225                                 g_raid_md_fail_disk_intel(md, NULL, disk);
 2226                                 continue;
 2227                         }
 2228 
 2229                         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
 2230 
 2231                         /* Erase metadata on deleting disk. */
 2232                         intel_meta_erase(disk->d_consumer);
 2233 
 2234                         /* If disk was assigned, just update statuses. */
 2235                         if (pd->pd_disk_pos >= 0) {
 2236                                 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
 2237                                 g_raid_kill_consumer(sc, disk->d_consumer);
 2238                                 disk->d_consumer = NULL;
 2239                                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
 2240                                         g_raid_change_subdisk_state(sd,
 2241                                             G_RAID_SUBDISK_S_NONE);
 2242                                         g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
 2243                                             G_RAID_EVENT_SUBDISK);
 2244                                 }
 2245                         } else {
 2246                                 /* Otherwise -- delete. */
 2247                                 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
 2248                                 g_raid_destroy_disk(disk);
 2249                         }
 2250                 }
 2251 
 2252                 /* Write updated metadata to remaining disks. */
 2253                 g_raid_md_write_intel(md, NULL, NULL, NULL);
 2254 
 2255                 /* Check if anything left except placeholders. */
 2256                 if (g_raid_ndisks(sc, -1) ==
 2257                     g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
 2258                         g_raid_destroy_node(sc, 0);
 2259                 else
 2260                         g_raid_md_intel_refill(sc);
 2261                 return (error);
 2262         }
 2263         if (strcmp(verb, "insert") == 0) {
 2264                 if (*nargs < 2) {
 2265                         gctl_error(req, "Invalid number of arguments.");
 2266                         return (-1);
 2267                 }
 2268                 update = 0;
 2269                 for (i = 1; i < *nargs; i++) {
 2270                         /* Get disk name. */
 2271                         snprintf(arg, sizeof(arg), "arg%d", i);
 2272                         diskname = gctl_get_asciiparam(req, arg);
 2273                         if (diskname == NULL) {
 2274                                 gctl_error(req, "No disk name (%s).", arg);
 2275                                 error = -3;
 2276                                 break;
 2277                         }
 2278 
 2279                         /* Try to find provider with specified name. */
 2280                         g_topology_lock();
 2281                         cp = g_raid_open_consumer(sc, diskname);
 2282                         if (cp == NULL) {
 2283                                 gctl_error(req, "Can't open disk '%s'.",
 2284                                     diskname);
 2285                                 g_topology_unlock();
 2286                                 error = -4;
 2287                                 break;
 2288                         }
 2289                         pp = cp->provider;
 2290                         g_topology_unlock();
 2291 
 2292                         /* Read disk serial. */
 2293                         error = g_raid_md_get_label(cp,
 2294                             &serial[0], INTEL_SERIAL_LEN);
 2295                         if (error != 0) {
 2296                                 gctl_error(req,
 2297                                     "Can't get serial for provider '%s'.",
 2298                                     diskname);
 2299                                 g_raid_kill_consumer(sc, cp);
 2300                                 error = -7;
 2301                                 break;
 2302                         }
 2303 
 2304                         pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
 2305                         pd->pd_disk_pos = -1;
 2306 
 2307                         disk = g_raid_create_disk(sc);
 2308                         disk->d_consumer = cp;
 2309                         disk->d_md_data = (void *)pd;
 2310                         cp->private = disk;
 2311 
 2312                         g_raid_get_disk_info(disk);
 2313 
 2314                         memcpy(&pd->pd_disk_meta.serial[0], &serial[0],
 2315                             INTEL_SERIAL_LEN);
 2316                         intel_set_disk_sectors(&pd->pd_disk_meta,
 2317                             pp->mediasize / pp->sectorsize);
 2318                         pd->pd_disk_meta.id = 0;
 2319                         pd->pd_disk_meta.flags = INTEL_F_SPARE;
 2320 
 2321                         /* Welcome the "new" disk. */
 2322                         update += g_raid_md_intel_start_disk(disk);
 2323                         if (disk->d_state == G_RAID_DISK_S_SPARE) {
 2324                                 intel_meta_write_spare(cp, &pd->pd_disk_meta);
 2325                                 g_raid_destroy_disk(disk);
 2326                         } else if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
 2327                                 gctl_error(req, "Disk '%s' doesn't fit.",
 2328                                     diskname);
 2329                                 g_raid_destroy_disk(disk);
 2330                                 error = -8;
 2331                                 break;
 2332                         }
 2333                 }
 2334 
 2335                 /* Write new metadata if we changed something. */
 2336                 if (update)
 2337                         g_raid_md_write_intel(md, NULL, NULL, NULL);
 2338                 return (error);
 2339         }
 2340         return (-100);
 2341 }
 2342 
 2343 static int
 2344 g_raid_md_write_intel(struct g_raid_md_object *md, struct g_raid_volume *tvol,
 2345     struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
 2346 {
 2347         struct g_raid_softc *sc;
 2348         struct g_raid_volume *vol;
 2349         struct g_raid_subdisk *sd;
 2350         struct g_raid_disk *disk;
 2351         struct g_raid_md_intel_object *mdi;
 2352         struct g_raid_md_intel_pervolume *pv;
 2353         struct g_raid_md_intel_perdisk *pd;
 2354         struct intel_raid_conf *meta;
 2355         struct intel_raid_vol *mvol;
 2356         struct intel_raid_map *mmap0, *mmap1;
 2357         off_t sectorsize = 512, pos;
 2358         const char *version, *cv;
 2359         int vi, sdi, numdisks, len, state, stale;
 2360 
 2361         sc = md->mdo_softc;
 2362         mdi = (struct g_raid_md_intel_object *)md;
 2363 
 2364         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
 2365                 return (0);
 2366 
 2367         /* Bump generation. Newly written metadata may differ from previous. */
 2368         mdi->mdio_generation++;
 2369 
 2370         /* Count number of disks. */
 2371         numdisks = 0;
 2372         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
 2373                 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
 2374                 if (pd->pd_disk_pos < 0)
 2375                         continue;
 2376                 numdisks++;
 2377                 if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
 2378                         pd->pd_disk_meta.flags =
 2379                             INTEL_F_ONLINE | INTEL_F_ASSIGNED;
 2380                 } else if (disk->d_state == G_RAID_DISK_S_FAILED) {
 2381                         pd->pd_disk_meta.flags = INTEL_F_FAILED |
 2382                             INTEL_F_ASSIGNED;
 2383                 } else if (disk->d_state == G_RAID_DISK_S_DISABLED) {
 2384                         pd->pd_disk_meta.flags = INTEL_F_FAILED |
 2385                             INTEL_F_ASSIGNED | INTEL_F_DISABLED;
 2386                 } else {
 2387                         if (!(pd->pd_disk_meta.flags & INTEL_F_DISABLED))
 2388                                 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
 2389                         if (pd->pd_disk_meta.id != 0xffffffff) {
 2390                                 pd->pd_disk_meta.id = 0xffffffff;
 2391                                 len = strlen(pd->pd_disk_meta.serial);
 2392                                 len = min(len, INTEL_SERIAL_LEN - 3);
 2393                                 strcpy(pd->pd_disk_meta.serial + len, ":0");
 2394                         }
 2395                 }
 2396         }
 2397 
 2398         /* Fill anchor and disks. */
 2399         meta = malloc(INTEL_MAX_MD_SIZE(numdisks),
 2400             M_MD_INTEL, M_WAITOK | M_ZERO);
 2401         memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
 2402         meta->config_size = INTEL_MAX_MD_SIZE(numdisks);
 2403         meta->config_id = mdi->mdio_config_id;
 2404         meta->orig_config_id = mdi->mdio_orig_config_id;
 2405         meta->generation = mdi->mdio_generation;
 2406         meta->attributes = INTEL_ATTR_CHECKSUM;
 2407         meta->total_disks = numdisks;
 2408         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
 2409                 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
 2410                 if (pd->pd_disk_pos < 0)
 2411                         continue;
 2412                 meta->disk[pd->pd_disk_pos] = pd->pd_disk_meta;
 2413                 if (pd->pd_disk_meta.sectors_hi != 0)
 2414                         meta->attributes |= INTEL_ATTR_2TB_DISK;
 2415         }
 2416 
 2417         /* Fill volumes and maps. */
 2418         vi = 0;
 2419         version = INTEL_VERSION_1000;
 2420         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
 2421                 pv = vol->v_md_data;
 2422                 if (vol->v_stopping)
 2423                         continue;
 2424                 mvol = intel_get_volume(meta, vi);
 2425 
 2426                 /* New metadata may have different volumes order. */
 2427                 pv->pv_volume_pos = vi;
 2428 
 2429                 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
 2430                         sd = &vol->v_subdisks[sdi];
 2431                         if (sd->sd_disk != NULL)
 2432                                 break;
 2433                 }
 2434                 if (sdi >= vol->v_disks_count)
 2435                         panic("No any filled subdisk in volume");
 2436                 if (vol->v_mediasize >= 0x20000000000llu)
 2437                         meta->attributes |= INTEL_ATTR_2TB;
 2438                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
 2439                         meta->attributes |= INTEL_ATTR_RAID0;
 2440                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
 2441                         meta->attributes |= INTEL_ATTR_RAID1;
 2442                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
 2443                         meta->attributes |= INTEL_ATTR_RAID5;
 2444                 else if ((vol->v_disks_count & 1) == 0)
 2445                         meta->attributes |= INTEL_ATTR_RAID10;
 2446                 else
 2447                         meta->attributes |= INTEL_ATTR_RAID1E;
 2448                 if (pv->pv_cng)
 2449                         meta->attributes |= INTEL_ATTR_RAIDCNG;
 2450                 if (vol->v_strip_size > 131072)
 2451                         meta->attributes |= INTEL_ATTR_EXT_STRIP;
 2452 
 2453                 if (pv->pv_cng)
 2454                         cv = INTEL_VERSION_1206;
 2455                 else if (vol->v_disks_count > 4)
 2456                         cv = INTEL_VERSION_1204;
 2457                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
 2458                         cv = INTEL_VERSION_1202;
 2459                 else if (vol->v_disks_count > 2)
 2460                         cv = INTEL_VERSION_1201;
 2461                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
 2462                         cv = INTEL_VERSION_1100;
 2463                 else
 2464                         cv = INTEL_VERSION_1000;
 2465                 if (strcmp(cv, version) > 0)
 2466                         version = cv;
 2467 
 2468                 strlcpy(&mvol->name[0], vol->v_name, sizeof(mvol->name));
 2469                 mvol->total_sectors = vol->v_mediasize / sectorsize;
 2470                 mvol->state = (INTEL_ST_READ_COALESCING |
 2471                     INTEL_ST_WRITE_COALESCING);
 2472                 mvol->tid = vol->v_global_id + 1;
 2473                 if (pv->pv_cng) {
 2474                         mvol->state |= INTEL_ST_CLONE_N_GO;
 2475                         if (pv->pv_cng_man_sync)
 2476                                 mvol->state |= INTEL_ST_CLONE_MAN_SYNC;
 2477                         mvol->cng_master_disk = pv->pv_cng_master_disk;
 2478                         if (vol->v_subdisks[pv->pv_cng_master_disk].sd_state ==
 2479                             G_RAID_SUBDISK_S_NONE)
 2480                                 mvol->cng_state = INTEL_CNGST_MASTER_MISSING;
 2481                         else if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL)
 2482                                 mvol->cng_state = INTEL_CNGST_NEEDS_UPDATE;
 2483                         else
 2484                                 mvol->cng_state = INTEL_CNGST_UPDATED;
 2485                 }
 2486 
 2487                 /* Check for any recovery in progress. */
 2488                 state = G_RAID_SUBDISK_S_ACTIVE;
 2489                 pos = 0x7fffffffffffffffllu;
 2490                 stale = 0;
 2491                 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
 2492                         sd = &vol->v_subdisks[sdi];
 2493                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD)
 2494                                 state = G_RAID_SUBDISK_S_REBUILD;
 2495                         else if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC &&
 2496                             state != G_RAID_SUBDISK_S_REBUILD)
 2497                                 state = G_RAID_SUBDISK_S_RESYNC;
 2498                         else if (sd->sd_state == G_RAID_SUBDISK_S_STALE)
 2499                                 stale = 1;
 2500                         if ((sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2501                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
 2502                              sd->sd_rebuild_pos < pos)
 2503                                 pos = sd->sd_rebuild_pos;
 2504                 }
 2505                 if (state == G_RAID_SUBDISK_S_REBUILD) {
 2506                         mvol->migr_state = 1;
 2507                         mvol->migr_type = INTEL_MT_REBUILD;
 2508                 } else if (state == G_RAID_SUBDISK_S_RESYNC) {
 2509                         mvol->migr_state = 1;
 2510                         /* mvol->migr_type = INTEL_MT_REPAIR; */
 2511                         mvol->migr_type = INTEL_MT_VERIFY;
 2512                         mvol->state |= INTEL_ST_VERIFY_AND_FIX;
 2513                 } else
 2514                         mvol->migr_state = 0;
 2515                 mvol->dirty = (vol->v_dirty || stale);
 2516 
 2517                 mmap0 = intel_get_map(mvol, 0);
 2518 
 2519                 /* Write map / common part of two maps. */
 2520                 intel_set_map_offset(mmap0, sd->sd_offset / sectorsize);
 2521                 intel_set_map_disk_sectors(mmap0, sd->sd_size / sectorsize);
 2522                 mmap0->strip_sectors = vol->v_strip_size / sectorsize;
 2523                 if (vol->v_state == G_RAID_VOLUME_S_BROKEN)
 2524                         mmap0->status = INTEL_S_FAILURE;
 2525                 else if (vol->v_state == G_RAID_VOLUME_S_DEGRADED)
 2526                         mmap0->status = INTEL_S_DEGRADED;
 2527                 else if (g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED)
 2528                     == g_raid_nsubdisks(vol, -1))
 2529                         mmap0->status = INTEL_S_UNINITIALIZED;
 2530                 else
 2531                         mmap0->status = INTEL_S_READY;
 2532                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
 2533                         mmap0->type = INTEL_T_RAID0;
 2534                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
 2535                     vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
 2536                         mmap0->type = INTEL_T_RAID1;
 2537                 else
 2538                         mmap0->type = INTEL_T_RAID5;
 2539                 mmap0->total_disks = vol->v_disks_count;
 2540                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
 2541                         mmap0->total_domains = vol->v_disks_count;
 2542                 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
 2543                         mmap0->total_domains = 2;
 2544                 else
 2545                         mmap0->total_domains = 1;
 2546                 intel_set_map_stripe_count(mmap0,
 2547                     sd->sd_size / vol->v_strip_size / mmap0->total_domains);
 2548                 mmap0->failed_disk_num = 0xff;
 2549                 mmap0->ddf = 1;
 2550 
 2551                 /* If there are two maps - copy common and update. */
 2552                 if (mvol->migr_state) {
 2553                         intel_set_vol_curr_migr_unit(mvol,
 2554                             pos / vol->v_strip_size / mmap0->total_domains);
 2555                         mmap1 = intel_get_map(mvol, 1);
 2556                         memcpy(mmap1, mmap0, sizeof(struct intel_raid_map));
 2557                         mmap0->status = INTEL_S_READY;
 2558                 } else
 2559                         mmap1 = NULL;
 2560 
 2561                 /* Write disk indexes and put rebuild flags. */
 2562                 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
 2563                         sd = &vol->v_subdisks[sdi];
 2564                         pd = (struct g_raid_md_intel_perdisk *)
 2565                             sd->sd_disk->d_md_data;
 2566                         mmap0->disk_idx[sdi] = pd->pd_disk_pos;
 2567                         if (mvol->migr_state)
 2568                                 mmap1->disk_idx[sdi] = pd->pd_disk_pos;
 2569                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
 2570                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
 2571                                 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
 2572                         } else if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
 2573                             sd->sd_state != G_RAID_SUBDISK_S_STALE &&
 2574                             sd->sd_state != G_RAID_SUBDISK_S_UNINITIALIZED) {
 2575                                 mmap0->disk_idx[sdi] |= INTEL_DI_RBLD;
 2576                                 if (mvol->migr_state)
 2577                                         mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
 2578                         }
 2579                         if ((sd->sd_state == G_RAID_SUBDISK_S_NONE ||
 2580                              sd->sd_state == G_RAID_SUBDISK_S_FAILED ||
 2581                              sd->sd_state == G_RAID_SUBDISK_S_REBUILD) &&
 2582                             mmap0->failed_disk_num == 0xff) {
 2583                                 mmap0->failed_disk_num = sdi;
 2584                                 if (mvol->migr_state)
 2585                                         mmap1->failed_disk_num = sdi;
 2586                         }
 2587                 }
 2588                 vi++;
 2589         }
 2590         meta->total_volumes = vi;
 2591         if (vi > 1 || meta->attributes &
 2592              (INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | INTEL_ATTR_2TB))
 2593                 version = INTEL_VERSION_1300;
 2594         if (strcmp(version, INTEL_VERSION_1300) < 0)
 2595                 meta->attributes &= INTEL_ATTR_CHECKSUM;
 2596         memcpy(&meta->version[0], version, sizeof(INTEL_VERSION_1000) - 1);
 2597 
 2598         /* We are done. Print meta data and store them to disks. */
 2599         g_raid_md_intel_print(meta);
 2600         if (mdi->mdio_meta != NULL)
 2601                 free(mdi->mdio_meta, M_MD_INTEL);
 2602         mdi->mdio_meta = meta;
 2603         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
 2604                 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
 2605                 if (disk->d_state != G_RAID_DISK_S_ACTIVE)
 2606                         continue;
 2607                 if (pd->pd_meta != NULL) {
 2608                         free(pd->pd_meta, M_MD_INTEL);
 2609                         pd->pd_meta = NULL;
 2610                 }
 2611                 pd->pd_meta = intel_meta_copy(meta);
 2612                 intel_meta_write(disk->d_consumer, meta);
 2613         }
 2614         return (0);
 2615 }
 2616 
 2617 static int
 2618 g_raid_md_fail_disk_intel(struct g_raid_md_object *md,
 2619     struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
 2620 {
 2621         struct g_raid_softc *sc;
 2622         struct g_raid_md_intel_object *mdi;
 2623         struct g_raid_md_intel_perdisk *pd;
 2624         struct g_raid_subdisk *sd;
 2625 
 2626         sc = md->mdo_softc;
 2627         mdi = (struct g_raid_md_intel_object *)md;
 2628         pd = (struct g_raid_md_intel_perdisk *)tdisk->d_md_data;
 2629 
 2630         /* We can't fail disk that is not a part of array now. */
 2631         if (pd->pd_disk_pos < 0)
 2632                 return (-1);
 2633 
 2634         /*
 2635          * Mark disk as failed in metadata and try to write that metadata
 2636          * to the disk itself to prevent it's later resurrection as STALE.
 2637          */
 2638         mdi->mdio_meta->disk[pd->pd_disk_pos].flags = INTEL_F_FAILED;
 2639         pd->pd_disk_meta.flags = INTEL_F_FAILED;
 2640         g_raid_md_intel_print(mdi->mdio_meta);
 2641         if (tdisk->d_consumer)
 2642                 intel_meta_write(tdisk->d_consumer, mdi->mdio_meta);
 2643 
 2644         /* Change states. */
 2645         g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
 2646         TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
 2647                 g_raid_change_subdisk_state(sd,
 2648                     G_RAID_SUBDISK_S_FAILED);
 2649                 g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
 2650                     G_RAID_EVENT_SUBDISK);
 2651         }
 2652 
 2653         /* Write updated metadata to remaining disks. */
 2654         g_raid_md_write_intel(md, NULL, NULL, tdisk);
 2655 
 2656         /* Check if anything left except placeholders. */
 2657         if (g_raid_ndisks(sc, -1) ==
 2658             g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
 2659                 g_raid_destroy_node(sc, 0);
 2660         else
 2661                 g_raid_md_intel_refill(sc);
 2662         return (0);
 2663 }
 2664 
 2665 static int
 2666 g_raid_md_free_disk_intel(struct g_raid_md_object *md,
 2667     struct g_raid_disk *disk)
 2668 {
 2669         struct g_raid_md_intel_perdisk *pd;
 2670 
 2671         pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
 2672         if (pd->pd_meta != NULL) {
 2673                 free(pd->pd_meta, M_MD_INTEL);
 2674                 pd->pd_meta = NULL;
 2675         }
 2676         free(pd, M_MD_INTEL);
 2677         disk->d_md_data = NULL;
 2678         return (0);
 2679 }
 2680 
 2681 static int
 2682 g_raid_md_free_volume_intel(struct g_raid_md_object *md,
 2683     struct g_raid_volume *vol)
 2684 {
 2685         struct g_raid_md_intel_pervolume *pv;
 2686 
 2687         pv = (struct g_raid_md_intel_pervolume *)vol->v_md_data;
 2688         free(pv, M_MD_INTEL);
 2689         vol->v_md_data = NULL;
 2690         return (0);
 2691 }
 2692 
 2693 static int
 2694 g_raid_md_free_intel(struct g_raid_md_object *md)
 2695 {
 2696         struct g_raid_md_intel_object *mdi;
 2697 
 2698         mdi = (struct g_raid_md_intel_object *)md;
 2699         if (!mdi->mdio_started) {
 2700                 mdi->mdio_started = 0;
 2701                 callout_stop(&mdi->mdio_start_co);
 2702                 G_RAID_DEBUG1(1, md->mdo_softc,
 2703                     "root_mount_rel %p", mdi->mdio_rootmount);
 2704                 root_mount_rel(mdi->mdio_rootmount);
 2705                 mdi->mdio_rootmount = NULL;
 2706         }
 2707         if (mdi->mdio_meta != NULL) {
 2708                 free(mdi->mdio_meta, M_MD_INTEL);
 2709                 mdi->mdio_meta = NULL;
 2710         }
 2711         return (0);
 2712 }
 2713 
 2714 G_RAID_MD_DECLARE(intel, "Intel");

Cache object: b6a0e75fe5e5dd24d3fbc2f27eb97d46


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.