The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/raid3/g_raid3.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/kernel.h>
   35 #include <sys/module.h>
   36 #include <sys/limits.h>
   37 #include <sys/lock.h>
   38 #include <sys/mutex.h>
   39 #include <sys/bio.h>
   40 #include <sys/sbuf.h>
   41 #include <sys/sysctl.h>
   42 #include <sys/malloc.h>
   43 #include <sys/eventhandler.h>
   44 #include <vm/uma.h>
   45 #include <geom/geom.h>
   46 #include <geom/geom_dbg.h>
   47 #include <sys/proc.h>
   48 #include <sys/kthread.h>
   49 #include <sys/sched.h>
   50 #include <geom/raid3/g_raid3.h>
   51 
   52 FEATURE(geom_raid3, "GEOM RAID-3 functionality");
   53 
   54 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
   55 
   56 SYSCTL_DECL(_kern_geom);
   57 static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   58     "GEOM_RAID3 stuff");
   59 u_int g_raid3_debug = 0;
   60 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid3_debug, 0,
   61     "Debug level");
   62 static u_int g_raid3_timeout = 4;
   63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_raid3_timeout,
   64     0, "Time to wait on all raid3 components");
   65 static u_int g_raid3_idletime = 5;
   66 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RWTUN,
   67     &g_raid3_idletime, 0, "Mark components as clean when idling");
   68 static u_int g_raid3_disconnect_on_failure = 1;
   69 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
   70     &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
   71 static u_int g_raid3_syncreqs = 2;
   72 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
   73     &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
   74 static u_int g_raid3_use_malloc = 0;
   75 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
   76     &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
   77 
   78 static u_int g_raid3_n64k = 50;
   79 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RDTUN, &g_raid3_n64k, 0,
   80     "Maximum number of 64kB allocations");
   81 static u_int g_raid3_n16k = 200;
   82 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RDTUN, &g_raid3_n16k, 0,
   83     "Maximum number of 16kB allocations");
   84 static u_int g_raid3_n4k = 1200;
   85 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RDTUN, &g_raid3_n4k, 0,
   86     "Maximum number of 4kB allocations");
   87 
   88 static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat,
   89     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   90     "GEOM_RAID3 statistics");
   91 static u_int g_raid3_parity_mismatch = 0;
   92 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
   93     &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
   94 
   95 #define MSLEEP(ident, mtx, priority, wmesg, timeout)    do {            \
   96         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));        \
   97         msleep((ident), (mtx), (priority), (wmesg), (timeout));         \
   98         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));        \
   99 } while (0)
  100 
  101 static eventhandler_tag g_raid3_post_sync = NULL;
  102 static int g_raid3_shutdown = 0;
  103 
  104 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
  105     struct g_geom *gp);
  106 static g_taste_t g_raid3_taste;
  107 static void g_raid3_init(struct g_class *mp);
  108 static void g_raid3_fini(struct g_class *mp);
  109 
  110 struct g_class g_raid3_class = {
  111         .name = G_RAID3_CLASS_NAME,
  112         .version = G_VERSION,
  113         .ctlreq = g_raid3_config,
  114         .taste = g_raid3_taste,
  115         .destroy_geom = g_raid3_destroy_geom,
  116         .init = g_raid3_init,
  117         .fini = g_raid3_fini
  118 };
  119 
  120 static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
  121 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
  122 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
  123 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
  124     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
  125 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
  126 static int g_raid3_register_request(struct bio *pbp);
  127 static void g_raid3_sync_release(struct g_raid3_softc *sc);
  128 
  129 static const char *
  130 g_raid3_disk_state2str(int state)
  131 {
  132 
  133         switch (state) {
  134         case G_RAID3_DISK_STATE_NODISK:
  135                 return ("NODISK");
  136         case G_RAID3_DISK_STATE_NONE:
  137                 return ("NONE");
  138         case G_RAID3_DISK_STATE_NEW:
  139                 return ("NEW");
  140         case G_RAID3_DISK_STATE_ACTIVE:
  141                 return ("ACTIVE");
  142         case G_RAID3_DISK_STATE_STALE:
  143                 return ("STALE");
  144         case G_RAID3_DISK_STATE_SYNCHRONIZING:
  145                 return ("SYNCHRONIZING");
  146         case G_RAID3_DISK_STATE_DISCONNECTED:
  147                 return ("DISCONNECTED");
  148         default:
  149                 return ("INVALID");
  150         }
  151 }
  152 
  153 static const char *
  154 g_raid3_device_state2str(int state)
  155 {
  156 
  157         switch (state) {
  158         case G_RAID3_DEVICE_STATE_STARTING:
  159                 return ("STARTING");
  160         case G_RAID3_DEVICE_STATE_DEGRADED:
  161                 return ("DEGRADED");
  162         case G_RAID3_DEVICE_STATE_COMPLETE:
  163                 return ("COMPLETE");
  164         default:
  165                 return ("INVALID");
  166         }
  167 }
  168 
  169 const char *
  170 g_raid3_get_diskname(struct g_raid3_disk *disk)
  171 {
  172 
  173         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
  174                 return ("[unknown]");
  175         return (disk->d_name);
  176 }
  177 
  178 static void *
  179 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
  180 {
  181         void *ptr;
  182         enum g_raid3_zones zone;
  183 
  184         if (g_raid3_use_malloc ||
  185             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
  186                 ptr = malloc(size, M_RAID3, flags);
  187         else {
  188                 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
  189                    &sc->sc_zones[zone], flags);
  190                 sc->sc_zones[zone].sz_requested++;
  191                 if (ptr == NULL)
  192                         sc->sc_zones[zone].sz_failed++;
  193         }
  194         return (ptr);
  195 }
  196 
  197 static void
  198 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
  199 {
  200         enum g_raid3_zones zone;
  201 
  202         if (g_raid3_use_malloc ||
  203             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
  204                 free(ptr, M_RAID3);
  205         else {
  206                 uma_zfree_arg(sc->sc_zones[zone].sz_zone,
  207                     ptr, &sc->sc_zones[zone]);
  208         }
  209 }
  210 
  211 static int
  212 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
  213 {
  214         struct g_raid3_zone *sz = arg;
  215 
  216         if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
  217                 return (ENOMEM);
  218         sz->sz_inuse++;
  219         return (0);
  220 }
  221 
  222 static void
  223 g_raid3_uma_dtor(void *mem, int size, void *arg)
  224 {
  225         struct g_raid3_zone *sz = arg;
  226 
  227         sz->sz_inuse--;
  228 }
  229 
  230 #define g_raid3_xor(src, dst, size)                                     \
  231         _g_raid3_xor((uint64_t *)(src),                                 \
  232             (uint64_t *)(dst), (size_t)size)
  233 static void
  234 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
  235 {
  236 
  237         KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
  238         for (; size > 0; size -= 128) {
  239                 *dst++ ^= (*src++);
  240                 *dst++ ^= (*src++);
  241                 *dst++ ^= (*src++);
  242                 *dst++ ^= (*src++);
  243                 *dst++ ^= (*src++);
  244                 *dst++ ^= (*src++);
  245                 *dst++ ^= (*src++);
  246                 *dst++ ^= (*src++);
  247                 *dst++ ^= (*src++);
  248                 *dst++ ^= (*src++);
  249                 *dst++ ^= (*src++);
  250                 *dst++ ^= (*src++);
  251                 *dst++ ^= (*src++);
  252                 *dst++ ^= (*src++);
  253                 *dst++ ^= (*src++);
  254                 *dst++ ^= (*src++);
  255         }
  256 }
  257 
  258 static int
  259 g_raid3_is_zero(struct bio *bp)
  260 {
  261         static const uint64_t zeros[] = {
  262             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  263         };
  264         u_char *addr;
  265         ssize_t size;
  266 
  267         size = bp->bio_length;
  268         addr = (u_char *)bp->bio_data;
  269         for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
  270                 if (bcmp(addr, zeros, sizeof(zeros)) != 0)
  271                         return (0);
  272         }
  273         return (1);
  274 }
  275 
  276 /*
  277  * --- Events handling functions ---
  278  * Events in geom_raid3 are used to maintain disks and device status
  279  * from one thread to simplify locking.
  280  */
  281 static void
  282 g_raid3_event_free(struct g_raid3_event *ep)
  283 {
  284 
  285         free(ep, M_RAID3);
  286 }
  287 
  288 int
  289 g_raid3_event_send(void *arg, int state, int flags)
  290 {
  291         struct g_raid3_softc *sc;
  292         struct g_raid3_disk *disk;
  293         struct g_raid3_event *ep;
  294         int error;
  295 
  296         ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
  297         G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
  298         if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
  299                 disk = NULL;
  300                 sc = arg;
  301         } else {
  302                 disk = arg;
  303                 sc = disk->d_softc;
  304         }
  305         ep->e_disk = disk;
  306         ep->e_state = state;
  307         ep->e_flags = flags;
  308         ep->e_error = 0;
  309         mtx_lock(&sc->sc_events_mtx);
  310         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
  311         mtx_unlock(&sc->sc_events_mtx);
  312         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
  313         mtx_lock(&sc->sc_queue_mtx);
  314         wakeup(sc);
  315         wakeup(&sc->sc_queue);
  316         mtx_unlock(&sc->sc_queue_mtx);
  317         if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
  318                 return (0);
  319         sx_assert(&sc->sc_lock, SX_XLOCKED);
  320         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
  321         sx_xunlock(&sc->sc_lock);
  322         while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
  323                 mtx_lock(&sc->sc_events_mtx);
  324                 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
  325                     hz * 5);
  326         }
  327         error = ep->e_error;
  328         g_raid3_event_free(ep);
  329         sx_xlock(&sc->sc_lock);
  330         return (error);
  331 }
  332 
  333 static struct g_raid3_event *
  334 g_raid3_event_get(struct g_raid3_softc *sc)
  335 {
  336         struct g_raid3_event *ep;
  337 
  338         mtx_lock(&sc->sc_events_mtx);
  339         ep = TAILQ_FIRST(&sc->sc_events);
  340         mtx_unlock(&sc->sc_events_mtx);
  341         return (ep);
  342 }
  343 
  344 static void
  345 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
  346 {
  347 
  348         mtx_lock(&sc->sc_events_mtx);
  349         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  350         mtx_unlock(&sc->sc_events_mtx);
  351 }
  352 
  353 static void
  354 g_raid3_event_cancel(struct g_raid3_disk *disk)
  355 {
  356         struct g_raid3_softc *sc;
  357         struct g_raid3_event *ep, *tmpep;
  358 
  359         sc = disk->d_softc;
  360         sx_assert(&sc->sc_lock, SX_XLOCKED);
  361 
  362         mtx_lock(&sc->sc_events_mtx);
  363         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
  364                 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
  365                         continue;
  366                 if (ep->e_disk != disk)
  367                         continue;
  368                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  369                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
  370                         g_raid3_event_free(ep);
  371                 else {
  372                         ep->e_error = ECANCELED;
  373                         wakeup(ep);
  374                 }
  375         }
  376         mtx_unlock(&sc->sc_events_mtx);
  377 }
  378 
  379 /*
  380  * Return the number of disks in the given state.
  381  * If state is equal to -1, count all connected disks.
  382  */
  383 u_int
  384 g_raid3_ndisks(struct g_raid3_softc *sc, int state)
  385 {
  386         struct g_raid3_disk *disk;
  387         u_int n, ndisks;
  388 
  389         sx_assert(&sc->sc_lock, SX_LOCKED);
  390 
  391         for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
  392                 disk = &sc->sc_disks[n];
  393                 if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
  394                         continue;
  395                 if (state == -1 || disk->d_state == state)
  396                         ndisks++;
  397         }
  398         return (ndisks);
  399 }
  400 
  401 static u_int
  402 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
  403 {
  404         struct bio *bp;
  405         u_int nreqs = 0;
  406 
  407         mtx_lock(&sc->sc_queue_mtx);
  408         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
  409                 if (bp->bio_from == cp)
  410                         nreqs++;
  411         }
  412         mtx_unlock(&sc->sc_queue_mtx);
  413         return (nreqs);
  414 }
  415 
  416 static int
  417 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
  418 {
  419 
  420         if (cp->index > 0) {
  421                 G_RAID3_DEBUG(2,
  422                     "I/O requests for %s exist, can't destroy it now.",
  423                     cp->provider->name);
  424                 return (1);
  425         }
  426         if (g_raid3_nrequests(sc, cp) > 0) {
  427                 G_RAID3_DEBUG(2,
  428                     "I/O requests for %s in queue, can't destroy it now.",
  429                     cp->provider->name);
  430                 return (1);
  431         }
  432         return (0);
  433 }
  434 
  435 static void
  436 g_raid3_destroy_consumer(void *arg, int flags __unused)
  437 {
  438         struct g_consumer *cp;
  439 
  440         g_topology_assert();
  441 
  442         cp = arg;
  443         G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
  444         g_detach(cp);
  445         g_destroy_consumer(cp);
  446 }
  447 
  448 static void
  449 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
  450 {
  451         struct g_provider *pp;
  452         int retaste_wait;
  453 
  454         g_topology_assert();
  455 
  456         cp->private = NULL;
  457         if (g_raid3_is_busy(sc, cp))
  458                 return;
  459         G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
  460         pp = cp->provider;
  461         retaste_wait = 0;
  462         if (cp->acw == 1) {
  463                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
  464                         retaste_wait = 1;
  465         }
  466         G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
  467             -cp->acw, -cp->ace, 0);
  468         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
  469                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
  470         if (retaste_wait) {
  471                 /*
  472                  * After retaste event was send (inside g_access()), we can send
  473                  * event to detach and destroy consumer.
  474                  * A class, which has consumer to the given provider connected
  475                  * will not receive retaste event for the provider.
  476                  * This is the way how I ignore retaste events when I close
  477                  * consumers opened for write: I detach and destroy consumer
  478                  * after retaste event is sent.
  479                  */
  480                 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
  481                 return;
  482         }
  483         G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
  484         g_detach(cp);
  485         g_destroy_consumer(cp);
  486 }
  487 
  488 static int
  489 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
  490 {
  491         struct g_consumer *cp;
  492         int error;
  493 
  494         g_topology_assert_not();
  495         KASSERT(disk->d_consumer == NULL,
  496             ("Disk already connected (device %s).", disk->d_softc->sc_name));
  497 
  498         g_topology_lock();
  499         cp = g_new_consumer(disk->d_softc->sc_geom);
  500         error = g_attach(cp, pp);
  501         if (error != 0) {
  502                 g_destroy_consumer(cp);
  503                 g_topology_unlock();
  504                 return (error);
  505         }
  506         error = g_access(cp, 1, 1, 1);
  507                 g_topology_unlock();
  508         if (error != 0) {
  509                 g_detach(cp);
  510                 g_destroy_consumer(cp);
  511                 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
  512                     pp->name, error);
  513                 return (error);
  514         }
  515         disk->d_consumer = cp;
  516         disk->d_consumer->private = disk;
  517         disk->d_consumer->index = 0;
  518         G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
  519         return (0);
  520 }
  521 
  522 static void
  523 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
  524 {
  525 
  526         g_topology_assert();
  527 
  528         if (cp == NULL)
  529                 return;
  530         if (cp->provider != NULL)
  531                 g_raid3_kill_consumer(sc, cp);
  532         else
  533                 g_destroy_consumer(cp);
  534 }
  535 
  536 /*
  537  * Initialize disk. This means allocate memory, create consumer, attach it
  538  * to the provider and open access (r1w1e1) to it.
  539  */
  540 static struct g_raid3_disk *
  541 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
  542     struct g_raid3_metadata *md, int *errorp)
  543 {
  544         struct g_raid3_disk *disk;
  545         int error;
  546 
  547         disk = &sc->sc_disks[md->md_no];
  548         error = g_raid3_connect_disk(disk, pp);
  549         if (error != 0) {
  550                 if (errorp != NULL)
  551                         *errorp = error;
  552                 return (NULL);
  553         }
  554         disk->d_state = G_RAID3_DISK_STATE_NONE;
  555         disk->d_flags = md->md_dflags;
  556         if (md->md_provider[0] != '\0')
  557                 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
  558         disk->d_sync.ds_consumer = NULL;
  559         disk->d_sync.ds_offset = md->md_sync_offset;
  560         disk->d_sync.ds_offset_done = md->md_sync_offset;
  561         disk->d_genid = md->md_genid;
  562         disk->d_sync.ds_syncid = md->md_syncid;
  563         if (errorp != NULL)
  564                 *errorp = 0;
  565         return (disk);
  566 }
  567 
  568 static void
  569 g_raid3_destroy_disk(struct g_raid3_disk *disk)
  570 {
  571         struct g_raid3_softc *sc;
  572 
  573         g_topology_assert_not();
  574         sc = disk->d_softc;
  575         sx_assert(&sc->sc_lock, SX_XLOCKED);
  576 
  577         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
  578                 return;
  579         g_raid3_event_cancel(disk);
  580         switch (disk->d_state) {
  581         case G_RAID3_DISK_STATE_SYNCHRONIZING:
  582                 if (sc->sc_syncdisk != NULL)
  583                         g_raid3_sync_stop(sc, 1);
  584                 /* FALLTHROUGH */
  585         case G_RAID3_DISK_STATE_NEW:
  586         case G_RAID3_DISK_STATE_STALE:
  587         case G_RAID3_DISK_STATE_ACTIVE:
  588                 g_topology_lock();
  589                 g_raid3_disconnect_consumer(sc, disk->d_consumer);
  590                 g_topology_unlock();
  591                 disk->d_consumer = NULL;
  592                 break;
  593         default:
  594                 KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
  595                     g_raid3_get_diskname(disk),
  596                     g_raid3_disk_state2str(disk->d_state)));
  597         }
  598         disk->d_state = G_RAID3_DISK_STATE_NODISK;
  599 }
  600 
  601 static void
  602 g_raid3_destroy_device(struct g_raid3_softc *sc)
  603 {
  604         struct g_raid3_event *ep;
  605         struct g_raid3_disk *disk;
  606         struct g_geom *gp;
  607         struct g_consumer *cp;
  608         u_int n;
  609 
  610         g_topology_assert_not();
  611         sx_assert(&sc->sc_lock, SX_XLOCKED);
  612 
  613         gp = sc->sc_geom;
  614         if (sc->sc_provider != NULL)
  615                 g_raid3_destroy_provider(sc);
  616         for (n = 0; n < sc->sc_ndisks; n++) {
  617                 disk = &sc->sc_disks[n];
  618                 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
  619                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
  620                         g_raid3_update_metadata(disk);
  621                         g_raid3_destroy_disk(disk);
  622                 }
  623         }
  624         while ((ep = g_raid3_event_get(sc)) != NULL) {
  625                 g_raid3_event_remove(sc, ep);
  626                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
  627                         g_raid3_event_free(ep);
  628                 else {
  629                         ep->e_error = ECANCELED;
  630                         ep->e_flags |= G_RAID3_EVENT_DONE;
  631                         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
  632                         mtx_lock(&sc->sc_events_mtx);
  633                         wakeup(ep);
  634                         mtx_unlock(&sc->sc_events_mtx);
  635                 }
  636         }
  637         callout_drain(&sc->sc_callout);
  638         cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
  639         g_topology_lock();
  640         if (cp != NULL)
  641                 g_raid3_disconnect_consumer(sc, cp);
  642         g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
  643         G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
  644         g_wither_geom(gp, ENXIO);
  645         g_topology_unlock();
  646         if (!g_raid3_use_malloc) {
  647                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
  648                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
  649                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
  650         }
  651         mtx_destroy(&sc->sc_queue_mtx);
  652         mtx_destroy(&sc->sc_events_mtx);
  653         sx_xunlock(&sc->sc_lock);
  654         sx_destroy(&sc->sc_lock);
  655 }
  656 
  657 static void
  658 g_raid3_orphan(struct g_consumer *cp)
  659 {
  660         struct g_raid3_disk *disk;
  661 
  662         g_topology_assert();
  663 
  664         disk = cp->private;
  665         if (disk == NULL)
  666                 return;
  667         disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
  668         g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
  669             G_RAID3_EVENT_DONTWAIT);
  670 }
  671 
  672 static int
  673 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
  674 {
  675         struct g_raid3_softc *sc;
  676         struct g_consumer *cp;
  677         off_t offset, length;
  678         u_char *sector;
  679         int error = 0;
  680 
  681         g_topology_assert_not();
  682         sc = disk->d_softc;
  683         sx_assert(&sc->sc_lock, SX_LOCKED);
  684 
  685         cp = disk->d_consumer;
  686         KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
  687         KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
  688         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
  689             ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
  690             cp->acw, cp->ace));
  691         length = cp->provider->sectorsize;
  692         offset = cp->provider->mediasize - length;
  693         sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
  694         if (md != NULL)
  695                 raid3_metadata_encode(md, sector);
  696         error = g_write_data(cp, offset, sector, length);
  697         free(sector, M_RAID3);
  698         if (error != 0) {
  699                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
  700                         G_RAID3_DEBUG(0, "Cannot write metadata on %s "
  701                             "(device=%s, error=%d).",
  702                             g_raid3_get_diskname(disk), sc->sc_name, error);
  703                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
  704                 } else {
  705                         G_RAID3_DEBUG(1, "Cannot write metadata on %s "
  706                             "(device=%s, error=%d).",
  707                             g_raid3_get_diskname(disk), sc->sc_name, error);
  708                 }
  709                 if (g_raid3_disconnect_on_failure &&
  710                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
  711                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
  712                         g_raid3_event_send(disk,
  713                             G_RAID3_DISK_STATE_DISCONNECTED,
  714                             G_RAID3_EVENT_DONTWAIT);
  715                 }
  716         }
  717         return (error);
  718 }
  719 
  720 int
  721 g_raid3_clear_metadata(struct g_raid3_disk *disk)
  722 {
  723         int error;
  724 
  725         g_topology_assert_not();
  726         sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
  727 
  728         error = g_raid3_write_metadata(disk, NULL);
  729         if (error == 0) {
  730                 G_RAID3_DEBUG(2, "Metadata on %s cleared.",
  731                     g_raid3_get_diskname(disk));
  732         } else {
  733                 G_RAID3_DEBUG(0,
  734                     "Cannot clear metadata on disk %s (error=%d).",
  735                     g_raid3_get_diskname(disk), error);
  736         }
  737         return (error);
  738 }
  739 
  740 void
  741 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
  742 {
  743         struct g_raid3_softc *sc;
  744         struct g_provider *pp;
  745 
  746         bzero(md, sizeof(*md));
  747         sc = disk->d_softc;
  748         strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
  749         md->md_version = G_RAID3_VERSION;
  750         strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
  751         md->md_id = sc->sc_id;
  752         md->md_all = sc->sc_ndisks;
  753         md->md_genid = sc->sc_genid;
  754         md->md_mediasize = sc->sc_mediasize;
  755         md->md_sectorsize = sc->sc_sectorsize;
  756         md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
  757         md->md_no = disk->d_no;
  758         md->md_syncid = disk->d_sync.ds_syncid;
  759         md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
  760         if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
  761                 md->md_sync_offset =
  762                     disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
  763         }
  764         if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
  765                 pp = disk->d_consumer->provider;
  766         else
  767                 pp = NULL;
  768         if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
  769                 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
  770         if (pp != NULL)
  771                 md->md_provsize = pp->mediasize;
  772 }
  773 
  774 void
  775 g_raid3_update_metadata(struct g_raid3_disk *disk)
  776 {
  777         struct g_raid3_softc *sc __diagused;
  778         struct g_raid3_metadata md;
  779         int error;
  780 
  781         g_topology_assert_not();
  782         sc = disk->d_softc;
  783         sx_assert(&sc->sc_lock, SX_LOCKED);
  784 
  785         g_raid3_fill_metadata(disk, &md);
  786         error = g_raid3_write_metadata(disk, &md);
  787         if (error == 0) {
  788                 G_RAID3_DEBUG(2, "Metadata on %s updated.",
  789                     g_raid3_get_diskname(disk));
  790         } else {
  791                 G_RAID3_DEBUG(0,
  792                     "Cannot update metadata on disk %s (error=%d).",
  793                     g_raid3_get_diskname(disk), error);
  794         }
  795 }
  796 
  797 static void
  798 g_raid3_bump_syncid(struct g_raid3_softc *sc)
  799 {
  800         struct g_raid3_disk *disk;
  801         u_int n;
  802 
  803         g_topology_assert_not();
  804         sx_assert(&sc->sc_lock, SX_XLOCKED);
  805         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
  806             ("%s called with no active disks (device=%s).", __func__,
  807             sc->sc_name));
  808 
  809         sc->sc_syncid++;
  810         G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
  811             sc->sc_syncid);
  812         for (n = 0; n < sc->sc_ndisks; n++) {
  813                 disk = &sc->sc_disks[n];
  814                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
  815                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
  816                         disk->d_sync.ds_syncid = sc->sc_syncid;
  817                         g_raid3_update_metadata(disk);
  818                 }
  819         }
  820 }
  821 
  822 static void
  823 g_raid3_bump_genid(struct g_raid3_softc *sc)
  824 {
  825         struct g_raid3_disk *disk;
  826         u_int n;
  827 
  828         g_topology_assert_not();
  829         sx_assert(&sc->sc_lock, SX_XLOCKED);
  830         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
  831             ("%s called with no active disks (device=%s).", __func__,
  832             sc->sc_name));
  833 
  834         sc->sc_genid++;
  835         G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
  836             sc->sc_genid);
  837         for (n = 0; n < sc->sc_ndisks; n++) {
  838                 disk = &sc->sc_disks[n];
  839                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
  840                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
  841                         disk->d_genid = sc->sc_genid;
  842                         g_raid3_update_metadata(disk);
  843                 }
  844         }
  845 }
  846 
  847 static int
  848 g_raid3_idle(struct g_raid3_softc *sc, int acw)
  849 {
  850         struct g_raid3_disk *disk;
  851         u_int i;
  852         int timeout;
  853 
  854         g_topology_assert_not();
  855         sx_assert(&sc->sc_lock, SX_XLOCKED);
  856 
  857         if (sc->sc_provider == NULL)
  858                 return (0);
  859         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
  860                 return (0);
  861         if (sc->sc_idle)
  862                 return (0);
  863         if (sc->sc_writes > 0)
  864                 return (0);
  865         if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
  866                 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
  867                 if (!g_raid3_shutdown && timeout > 0)
  868                         return (timeout);
  869         }
  870         sc->sc_idle = 1;
  871         for (i = 0; i < sc->sc_ndisks; i++) {
  872                 disk = &sc->sc_disks[i];
  873                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
  874                         continue;
  875                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
  876                     g_raid3_get_diskname(disk), sc->sc_name);
  877                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
  878                 g_raid3_update_metadata(disk);
  879         }
  880         return (0);
  881 }
  882 
  883 static void
  884 g_raid3_unidle(struct g_raid3_softc *sc)
  885 {
  886         struct g_raid3_disk *disk;
  887         u_int i;
  888 
  889         g_topology_assert_not();
  890         sx_assert(&sc->sc_lock, SX_XLOCKED);
  891 
  892         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
  893                 return;
  894         sc->sc_idle = 0;
  895         sc->sc_last_write = time_uptime;
  896         for (i = 0; i < sc->sc_ndisks; i++) {
  897                 disk = &sc->sc_disks[i];
  898                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
  899                         continue;
  900                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
  901                     g_raid3_get_diskname(disk), sc->sc_name);
  902                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
  903                 g_raid3_update_metadata(disk);
  904         }
  905 }
  906 
  907 /*
  908  * Treat bio_driver1 field in parent bio as list head and field bio_caller1
  909  * in child bio as pointer to the next element on the list.
  910  */
  911 #define G_RAID3_HEAD_BIO(pbp)   (pbp)->bio_driver1
  912 
  913 #define G_RAID3_NEXT_BIO(cbp)   (cbp)->bio_caller1
  914 
  915 #define G_RAID3_FOREACH_BIO(pbp, bp)                                    \
  916         for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;                \
  917             (bp) = G_RAID3_NEXT_BIO(bp))
  918 
  919 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)                        \
  920         for ((bp) = G_RAID3_HEAD_BIO(pbp);                              \
  921             (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);        \
  922             (bp) = (tmpbp))
  923 
  924 static void
  925 g_raid3_init_bio(struct bio *pbp)
  926 {
  927 
  928         G_RAID3_HEAD_BIO(pbp) = NULL;
  929 }
  930 
  931 static void
  932 g_raid3_remove_bio(struct bio *cbp)
  933 {
  934         struct bio *pbp, *bp;
  935 
  936         pbp = cbp->bio_parent;
  937         if (G_RAID3_HEAD_BIO(pbp) == cbp)
  938                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
  939         else {
  940                 G_RAID3_FOREACH_BIO(pbp, bp) {
  941                         if (G_RAID3_NEXT_BIO(bp) == cbp) {
  942                                 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
  943                                 break;
  944                         }
  945                 }
  946         }
  947         G_RAID3_NEXT_BIO(cbp) = NULL;
  948 }
  949 
  950 static void
  951 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
  952 {
  953         struct bio *pbp, *bp;
  954 
  955         g_raid3_remove_bio(sbp);
  956         pbp = dbp->bio_parent;
  957         G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
  958         if (G_RAID3_HEAD_BIO(pbp) == dbp)
  959                 G_RAID3_HEAD_BIO(pbp) = sbp;
  960         else {
  961                 G_RAID3_FOREACH_BIO(pbp, bp) {
  962                         if (G_RAID3_NEXT_BIO(bp) == dbp) {
  963                                 G_RAID3_NEXT_BIO(bp) = sbp;
  964                                 break;
  965                         }
  966                 }
  967         }
  968         G_RAID3_NEXT_BIO(dbp) = NULL;
  969 }
  970 
  971 static void
  972 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
  973 {
  974         struct bio *bp, *pbp;
  975         size_t size;
  976 
  977         pbp = cbp->bio_parent;
  978         pbp->bio_children--;
  979         KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
  980         size = pbp->bio_length / (sc->sc_ndisks - 1);
  981         g_raid3_free(sc, cbp->bio_data, size);
  982         if (G_RAID3_HEAD_BIO(pbp) == cbp) {
  983                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
  984                 G_RAID3_NEXT_BIO(cbp) = NULL;
  985                 g_destroy_bio(cbp);
  986         } else {
  987                 G_RAID3_FOREACH_BIO(pbp, bp) {
  988                         if (G_RAID3_NEXT_BIO(bp) == cbp)
  989                                 break;
  990                 }
  991                 if (bp != NULL) {
  992                         KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
  993                             ("NULL bp->bio_driver1"));
  994                         G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
  995                         G_RAID3_NEXT_BIO(cbp) = NULL;
  996                 }
  997                 g_destroy_bio(cbp);
  998         }
  999 }
 1000 
 1001 static struct bio *
 1002 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
 1003 {
 1004         struct bio *bp, *cbp;
 1005         size_t size;
 1006         int memflag;
 1007 
 1008         cbp = g_clone_bio(pbp);
 1009         if (cbp == NULL)
 1010                 return (NULL);
 1011         size = pbp->bio_length / (sc->sc_ndisks - 1);
 1012         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
 1013                 memflag = M_WAITOK;
 1014         else
 1015                 memflag = M_NOWAIT;
 1016         cbp->bio_data = g_raid3_alloc(sc, size, memflag);
 1017         if (cbp->bio_data == NULL) {
 1018                 pbp->bio_children--;
 1019                 g_destroy_bio(cbp);
 1020                 return (NULL);
 1021         }
 1022         G_RAID3_NEXT_BIO(cbp) = NULL;
 1023         if (G_RAID3_HEAD_BIO(pbp) == NULL)
 1024                 G_RAID3_HEAD_BIO(pbp) = cbp;
 1025         else {
 1026                 G_RAID3_FOREACH_BIO(pbp, bp) {
 1027                         if (G_RAID3_NEXT_BIO(bp) == NULL) {
 1028                                 G_RAID3_NEXT_BIO(bp) = cbp;
 1029                                 break;
 1030                         }
 1031                 }
 1032         }
 1033         return (cbp);
 1034 }
 1035 
 1036 static void
 1037 g_raid3_scatter(struct bio *pbp)
 1038 {
 1039         struct g_raid3_softc *sc;
 1040         struct g_raid3_disk *disk;
 1041         struct bio *bp, *cbp, *tmpbp;
 1042         off_t atom, cadd, padd, left;
 1043         int first;
 1044 
 1045         sc = pbp->bio_to->geom->softc;
 1046         bp = NULL;
 1047         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
 1048                 /*
 1049                  * Find bio for which we should calculate data.
 1050                  */
 1051                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1052                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
 1053                                 bp = cbp;
 1054                                 break;
 1055                         }
 1056                 }
 1057                 KASSERT(bp != NULL, ("NULL parity bio."));
 1058         }
 1059         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
 1060         cadd = padd = 0;
 1061         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
 1062                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1063                         if (cbp == bp)
 1064                                 continue;
 1065                         bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
 1066                         padd += atom;
 1067                 }
 1068                 cadd += atom;
 1069         }
 1070         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
 1071                 /*
 1072                  * Calculate parity.
 1073                  */
 1074                 first = 1;
 1075                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
 1076                         if (cbp == bp)
 1077                                 continue;
 1078                         if (first) {
 1079                                 bcopy(cbp->bio_data, bp->bio_data,
 1080                                     bp->bio_length);
 1081                                 first = 0;
 1082                         } else {
 1083                                 g_raid3_xor(cbp->bio_data, bp->bio_data,
 1084                                     bp->bio_length);
 1085                         }
 1086                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
 1087                                 g_raid3_destroy_bio(sc, cbp);
 1088                 }
 1089         }
 1090         G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
 1091                 struct g_consumer *cp;
 1092 
 1093                 disk = cbp->bio_caller2;
 1094                 cp = disk->d_consumer;
 1095                 cbp->bio_to = cp->provider;
 1096                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
 1097                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1098                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1099                     cp->acr, cp->acw, cp->ace));
 1100                 cp->index++;
 1101                 sc->sc_writes++;
 1102                 g_io_request(cbp, cp);
 1103         }
 1104 }
 1105 
 1106 static void
 1107 g_raid3_gather(struct bio *pbp)
 1108 {
 1109         struct g_raid3_softc *sc;
 1110         struct g_raid3_disk *disk;
 1111         struct bio *xbp, *fbp, *cbp;
 1112         off_t atom, cadd, padd, left;
 1113 
 1114         sc = pbp->bio_to->geom->softc;
 1115         /*
 1116          * Find bio for which we have to calculate data.
 1117          * While going through this path, check if all requests
 1118          * succeeded, if not, deny whole request.
 1119          * If we're in COMPLETE mode, we allow one request to fail,
 1120          * so if we find one, we're sending it to the parity consumer.
 1121          * If there are more failed requests, we deny whole request.
 1122          */
 1123         xbp = fbp = NULL;
 1124         G_RAID3_FOREACH_BIO(pbp, cbp) {
 1125                 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
 1126                         KASSERT(xbp == NULL, ("More than one parity bio."));
 1127                         xbp = cbp;
 1128                 }
 1129                 if (cbp->bio_error == 0)
 1130                         continue;
 1131                 /*
 1132                  * Found failed request.
 1133                  */
 1134                 if (fbp == NULL) {
 1135                         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
 1136                                 /*
 1137                                  * We are already in degraded mode, so we can't
 1138                                  * accept any failures.
 1139                                  */
 1140                                 if (pbp->bio_error == 0)
 1141                                         pbp->bio_error = cbp->bio_error;
 1142                         } else {
 1143                                 fbp = cbp;
 1144                         }
 1145                 } else {
 1146                         /*
 1147                          * Next failed request, that's too many.
 1148                          */
 1149                         if (pbp->bio_error == 0)
 1150                                 pbp->bio_error = fbp->bio_error;
 1151                 }
 1152                 disk = cbp->bio_caller2;
 1153                 if (disk == NULL)
 1154                         continue;
 1155                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
 1156                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
 1157                         G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
 1158                             cbp->bio_error);
 1159                 } else {
 1160                         G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
 1161                             cbp->bio_error);
 1162                 }
 1163                 if (g_raid3_disconnect_on_failure &&
 1164                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1165                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
 1166                         g_raid3_event_send(disk,
 1167                             G_RAID3_DISK_STATE_DISCONNECTED,
 1168                             G_RAID3_EVENT_DONTWAIT);
 1169                 }
 1170         }
 1171         if (pbp->bio_error != 0)
 1172                 goto finish;
 1173         if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
 1174                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
 1175                 if (xbp != fbp)
 1176                         g_raid3_replace_bio(xbp, fbp);
 1177                 g_raid3_destroy_bio(sc, fbp);
 1178         } else if (fbp != NULL) {
 1179                 struct g_consumer *cp;
 1180 
 1181                 /*
 1182                  * One request failed, so send the same request to
 1183                  * the parity consumer.
 1184                  */
 1185                 disk = pbp->bio_driver2;
 1186                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
 1187                         pbp->bio_error = fbp->bio_error;
 1188                         goto finish;
 1189                 }
 1190                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
 1191                 pbp->bio_inbed--;
 1192                 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
 1193                 if (disk->d_no == sc->sc_ndisks - 1)
 1194                         fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1195                 fbp->bio_error = 0;
 1196                 fbp->bio_completed = 0;
 1197                 fbp->bio_children = 0;
 1198                 fbp->bio_inbed = 0;
 1199                 cp = disk->d_consumer;
 1200                 fbp->bio_caller2 = disk;
 1201                 fbp->bio_to = cp->provider;
 1202                 G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
 1203                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1204                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1205                     cp->acr, cp->acw, cp->ace));
 1206                 cp->index++;
 1207                 g_io_request(fbp, cp);
 1208                 return;
 1209         }
 1210         if (xbp != NULL) {
 1211                 /*
 1212                  * Calculate parity.
 1213                  */
 1214                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1215                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
 1216                                 continue;
 1217                         g_raid3_xor(cbp->bio_data, xbp->bio_data,
 1218                             xbp->bio_length);
 1219                 }
 1220                 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
 1221                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
 1222                         if (!g_raid3_is_zero(xbp)) {
 1223                                 g_raid3_parity_mismatch++;
 1224                                 pbp->bio_error = EIO;
 1225                                 goto finish;
 1226                         }
 1227                         g_raid3_destroy_bio(sc, xbp);
 1228                 }
 1229         }
 1230         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
 1231         cadd = padd = 0;
 1232         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
 1233                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1234                         bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
 1235                         pbp->bio_completed += atom;
 1236                         padd += atom;
 1237                 }
 1238                 cadd += atom;
 1239         }
 1240 finish:
 1241         if (pbp->bio_error == 0)
 1242                 G_RAID3_LOGREQ(3, pbp, "Request finished.");
 1243         else {
 1244                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
 1245                         G_RAID3_LOGREQ(1, pbp, "Verification error.");
 1246                 else
 1247                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
 1248         }
 1249         pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
 1250         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
 1251                 g_raid3_destroy_bio(sc, cbp);
 1252         g_io_deliver(pbp, pbp->bio_error);
 1253 }
 1254 
 1255 static void
 1256 g_raid3_done(struct bio *bp)
 1257 {
 1258         struct g_raid3_softc *sc;
 1259 
 1260         sc = bp->bio_from->geom->softc;
 1261         bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
 1262         G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
 1263         mtx_lock(&sc->sc_queue_mtx);
 1264         bioq_insert_head(&sc->sc_queue, bp);
 1265         mtx_unlock(&sc->sc_queue_mtx);
 1266         wakeup(sc);
 1267         wakeup(&sc->sc_queue);
 1268 }
 1269 
 1270 static void
 1271 g_raid3_regular_request(struct bio *cbp)
 1272 {
 1273         struct g_raid3_softc *sc;
 1274         struct g_raid3_disk *disk;
 1275         struct bio *pbp;
 1276 
 1277         g_topology_assert_not();
 1278 
 1279         pbp = cbp->bio_parent;
 1280         sc = pbp->bio_to->geom->softc;
 1281         cbp->bio_from->index--;
 1282         if (cbp->bio_cmd == BIO_WRITE)
 1283                 sc->sc_writes--;
 1284         disk = cbp->bio_from->private;
 1285         if (disk == NULL) {
 1286                 g_topology_lock();
 1287                 g_raid3_kill_consumer(sc, cbp->bio_from);
 1288                 g_topology_unlock();
 1289         }
 1290 
 1291         G_RAID3_LOGREQ(3, cbp, "Request finished.");
 1292         pbp->bio_inbed++;
 1293         KASSERT(pbp->bio_inbed <= pbp->bio_children,
 1294             ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
 1295             pbp->bio_children));
 1296         if (pbp->bio_inbed != pbp->bio_children)
 1297                 return;
 1298         switch (pbp->bio_cmd) {
 1299         case BIO_READ:
 1300                 g_raid3_gather(pbp);
 1301                 break;
 1302         case BIO_WRITE:
 1303         case BIO_DELETE:
 1304             {
 1305                 int error = 0;
 1306 
 1307                 pbp->bio_completed = pbp->bio_length;
 1308                 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
 1309                         if (cbp->bio_error == 0) {
 1310                                 g_raid3_destroy_bio(sc, cbp);
 1311                                 continue;
 1312                         }
 1313 
 1314                         if (error == 0)
 1315                                 error = cbp->bio_error;
 1316                         else if (pbp->bio_error == 0) {
 1317                                 /*
 1318                                  * Next failed request, that's too many.
 1319                                  */
 1320                                 pbp->bio_error = error;
 1321                         }
 1322 
 1323                         disk = cbp->bio_caller2;
 1324                         if (disk == NULL) {
 1325                                 g_raid3_destroy_bio(sc, cbp);
 1326                                 continue;
 1327                         }
 1328 
 1329                         if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
 1330                                 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
 1331                                 G_RAID3_LOGREQ(0, cbp,
 1332                                     "Request failed (error=%d).",
 1333                                     cbp->bio_error);
 1334                         } else {
 1335                                 G_RAID3_LOGREQ(1, cbp,
 1336                                     "Request failed (error=%d).",
 1337                                     cbp->bio_error);
 1338                         }
 1339                         if (g_raid3_disconnect_on_failure &&
 1340                             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1341                                 sc->sc_bump_id |= G_RAID3_BUMP_GENID;
 1342                                 g_raid3_event_send(disk,
 1343                                     G_RAID3_DISK_STATE_DISCONNECTED,
 1344                                     G_RAID3_EVENT_DONTWAIT);
 1345                         }
 1346                         g_raid3_destroy_bio(sc, cbp);
 1347                 }
 1348                 if (pbp->bio_error == 0)
 1349                         G_RAID3_LOGREQ(3, pbp, "Request finished.");
 1350                 else
 1351                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
 1352                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
 1353                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
 1354                 bioq_remove(&sc->sc_inflight, pbp);
 1355                 /* Release delayed sync requests if possible. */
 1356                 g_raid3_sync_release(sc);
 1357                 g_io_deliver(pbp, pbp->bio_error);
 1358                 break;
 1359             }
 1360         }
 1361 }
 1362 
 1363 static void
 1364 g_raid3_sync_done(struct bio *bp)
 1365 {
 1366         struct g_raid3_softc *sc;
 1367 
 1368         G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
 1369         sc = bp->bio_from->geom->softc;
 1370         bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
 1371         mtx_lock(&sc->sc_queue_mtx);
 1372         bioq_insert_head(&sc->sc_queue, bp);
 1373         mtx_unlock(&sc->sc_queue_mtx);
 1374         wakeup(sc);
 1375         wakeup(&sc->sc_queue);
 1376 }
 1377 
 1378 static void
 1379 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
 1380 {
 1381         struct bio_queue_head queue;
 1382         struct g_raid3_disk *disk;
 1383         struct g_consumer *cp __diagused;
 1384         struct bio *cbp;
 1385         u_int i;
 1386 
 1387         bioq_init(&queue);
 1388         for (i = 0; i < sc->sc_ndisks; i++) {
 1389                 disk = &sc->sc_disks[i];
 1390                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
 1391                         continue;
 1392                 cbp = g_clone_bio(bp);
 1393                 if (cbp == NULL) {
 1394                         for (cbp = bioq_first(&queue); cbp != NULL;
 1395                             cbp = bioq_first(&queue)) {
 1396                                 bioq_remove(&queue, cbp);
 1397                                 g_destroy_bio(cbp);
 1398                         }
 1399                         if (bp->bio_error == 0)
 1400                                 bp->bio_error = ENOMEM;
 1401                         g_io_deliver(bp, bp->bio_error);
 1402                         return;
 1403                 }
 1404                 bioq_insert_tail(&queue, cbp);
 1405                 cbp->bio_done = g_std_done;
 1406                 cbp->bio_caller1 = disk;
 1407                 cbp->bio_to = disk->d_consumer->provider;
 1408         }
 1409         for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
 1410                 bioq_remove(&queue, cbp);
 1411                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
 1412                 disk = cbp->bio_caller1;
 1413                 cbp->bio_caller1 = NULL;
 1414                 cp = disk->d_consumer;
 1415                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1416                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1417                     cp->acr, cp->acw, cp->ace));
 1418                 g_io_request(cbp, disk->d_consumer);
 1419         }
 1420 }
 1421 
 1422 static void
 1423 g_raid3_start(struct bio *bp)
 1424 {
 1425         struct g_raid3_softc *sc;
 1426 
 1427         sc = bp->bio_to->geom->softc;
 1428         /*
 1429          * If sc == NULL or there are no valid disks, provider's error
 1430          * should be set and g_raid3_start() should not be called at all.
 1431          */
 1432         KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 1433             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
 1434             ("Provider's error should be set (error=%d)(device=%s).",
 1435             bp->bio_to->error, bp->bio_to->name));
 1436         G_RAID3_LOGREQ(3, bp, "Request received.");
 1437 
 1438         switch (bp->bio_cmd) {
 1439         case BIO_READ:
 1440         case BIO_WRITE:
 1441         case BIO_DELETE:
 1442                 break;
 1443         case BIO_SPEEDUP:
 1444         case BIO_FLUSH:
 1445                 g_raid3_flush(sc, bp);
 1446                 return;
 1447         case BIO_GETATTR:
 1448         default:
 1449                 g_io_deliver(bp, EOPNOTSUPP);
 1450                 return;
 1451         }
 1452         mtx_lock(&sc->sc_queue_mtx);
 1453         bioq_insert_tail(&sc->sc_queue, bp);
 1454         mtx_unlock(&sc->sc_queue_mtx);
 1455         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
 1456         wakeup(sc);
 1457 }
 1458 
 1459 /*
 1460  * Return TRUE if the given request is colliding with a in-progress
 1461  * synchronization request.
 1462  */
 1463 static int
 1464 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
 1465 {
 1466         struct g_raid3_disk *disk;
 1467         struct bio *sbp;
 1468         off_t rstart, rend, sstart, send;
 1469         int i;
 1470 
 1471         disk = sc->sc_syncdisk;
 1472         if (disk == NULL)
 1473                 return (0);
 1474         rstart = bp->bio_offset;
 1475         rend = bp->bio_offset + bp->bio_length;
 1476         for (i = 0; i < g_raid3_syncreqs; i++) {
 1477                 sbp = disk->d_sync.ds_bios[i];
 1478                 if (sbp == NULL)
 1479                         continue;
 1480                 sstart = sbp->bio_offset;
 1481                 send = sbp->bio_length;
 1482                 if (sbp->bio_cmd == BIO_WRITE) {
 1483                         sstart *= sc->sc_ndisks - 1;
 1484                         send *= sc->sc_ndisks - 1;
 1485                 }
 1486                 send += sstart;
 1487                 if (rend > sstart && rstart < send)
 1488                         return (1);
 1489         }
 1490         return (0);
 1491 }
 1492 
 1493 /*
 1494  * Return TRUE if the given sync request is colliding with a in-progress regular
 1495  * request.
 1496  */
 1497 static int
 1498 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
 1499 {
 1500         off_t rstart, rend, sstart, send;
 1501         struct bio *bp;
 1502 
 1503         if (sc->sc_syncdisk == NULL)
 1504                 return (0);
 1505         sstart = sbp->bio_offset;
 1506         send = sstart + sbp->bio_length;
 1507         TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
 1508                 rstart = bp->bio_offset;
 1509                 rend = bp->bio_offset + bp->bio_length;
 1510                 if (rend > sstart && rstart < send)
 1511                         return (1);
 1512         }
 1513         return (0);
 1514 }
 1515 
 1516 /*
 1517  * Puts request onto delayed queue.
 1518  */
 1519 static void
 1520 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
 1521 {
 1522 
 1523         G_RAID3_LOGREQ(2, bp, "Delaying request.");
 1524         bioq_insert_head(&sc->sc_regular_delayed, bp);
 1525 }
 1526 
 1527 /*
 1528  * Puts synchronization request onto delayed queue.
 1529  */
 1530 static void
 1531 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
 1532 {
 1533 
 1534         G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
 1535         bioq_insert_tail(&sc->sc_sync_delayed, bp);
 1536 }
 1537 
 1538 /*
 1539  * Releases delayed regular requests which don't collide anymore with sync
 1540  * requests.
 1541  */
 1542 static void
 1543 g_raid3_regular_release(struct g_raid3_softc *sc)
 1544 {
 1545         struct bio *bp, *bp2;
 1546 
 1547         TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
 1548                 if (g_raid3_sync_collision(sc, bp))
 1549                         continue;
 1550                 bioq_remove(&sc->sc_regular_delayed, bp);
 1551                 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
 1552                 mtx_lock(&sc->sc_queue_mtx);
 1553                 bioq_insert_head(&sc->sc_queue, bp);
 1554 #if 0
 1555                 /*
 1556                  * wakeup() is not needed, because this function is called from
 1557                  * the worker thread.
 1558                  */
 1559                 wakeup(&sc->sc_queue);
 1560 #endif
 1561                 mtx_unlock(&sc->sc_queue_mtx);
 1562         }
 1563 }
 1564 
 1565 /*
 1566  * Releases delayed sync requests which don't collide anymore with regular
 1567  * requests.
 1568  */
 1569 static void
 1570 g_raid3_sync_release(struct g_raid3_softc *sc)
 1571 {
 1572         struct bio *bp, *bp2;
 1573 
 1574         TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
 1575                 if (g_raid3_regular_collision(sc, bp))
 1576                         continue;
 1577                 bioq_remove(&sc->sc_sync_delayed, bp);
 1578                 G_RAID3_LOGREQ(2, bp,
 1579                     "Releasing delayed synchronization request.");
 1580                 g_io_request(bp, bp->bio_from);
 1581         }
 1582 }
 1583 
 1584 /*
 1585  * Handle synchronization requests.
 1586  * Every synchronization request is two-steps process: first, READ request is
 1587  * send to active provider and then WRITE request (with read data) to the provider
 1588  * being synchronized. When WRITE is finished, new synchronization request is
 1589  * send.
 1590  */
 1591 static void
 1592 g_raid3_sync_request(struct bio *bp)
 1593 {
 1594         struct g_raid3_softc *sc;
 1595         struct g_raid3_disk *disk;
 1596 
 1597         bp->bio_from->index--;
 1598         sc = bp->bio_from->geom->softc;
 1599         disk = bp->bio_from->private;
 1600         if (disk == NULL) {
 1601                 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
 1602                 g_topology_lock();
 1603                 g_raid3_kill_consumer(sc, bp->bio_from);
 1604                 g_topology_unlock();
 1605                 free(bp->bio_data, M_RAID3);
 1606                 g_destroy_bio(bp);
 1607                 sx_xlock(&sc->sc_lock);
 1608                 return;
 1609         }
 1610 
 1611         /*
 1612          * Synchronization request.
 1613          */
 1614         switch (bp->bio_cmd) {
 1615         case BIO_READ:
 1616             {
 1617                 struct g_consumer *cp;
 1618                 u_char *dst, *src;
 1619                 off_t left;
 1620                 u_int atom;
 1621 
 1622                 if (bp->bio_error != 0) {
 1623                         G_RAID3_LOGREQ(0, bp,
 1624                             "Synchronization request failed (error=%d).",
 1625                             bp->bio_error);
 1626                         g_destroy_bio(bp);
 1627                         return;
 1628                 }
 1629                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
 1630                 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
 1631                 dst = src = bp->bio_data;
 1632                 if (disk->d_no == sc->sc_ndisks - 1) {
 1633                         u_int n;
 1634 
 1635                         /* Parity component. */
 1636                         for (left = bp->bio_length; left > 0;
 1637                             left -= sc->sc_sectorsize) {
 1638                                 bcopy(src, dst, atom);
 1639                                 src += atom;
 1640                                 for (n = 1; n < sc->sc_ndisks - 1; n++) {
 1641                                         g_raid3_xor(src, dst, atom);
 1642                                         src += atom;
 1643                                 }
 1644                                 dst += atom;
 1645                         }
 1646                 } else {
 1647                         /* Regular component. */
 1648                         src += atom * disk->d_no;
 1649                         for (left = bp->bio_length; left > 0;
 1650                             left -= sc->sc_sectorsize) {
 1651                                 bcopy(src, dst, atom);
 1652                                 src += sc->sc_sectorsize;
 1653                                 dst += atom;
 1654                         }
 1655                 }
 1656                 bp->bio_driver1 = bp->bio_driver2 = NULL;
 1657                 bp->bio_pflags = 0;
 1658                 bp->bio_offset /= sc->sc_ndisks - 1;
 1659                 bp->bio_length /= sc->sc_ndisks - 1;
 1660                 bp->bio_cmd = BIO_WRITE;
 1661                 bp->bio_cflags = 0;
 1662                 bp->bio_children = bp->bio_inbed = 0;
 1663                 cp = disk->d_consumer;
 1664                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1665                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1666                     cp->acr, cp->acw, cp->ace));
 1667                 cp->index++;
 1668                 g_io_request(bp, cp);
 1669                 return;
 1670             }
 1671         case BIO_WRITE:
 1672             {
 1673                 struct g_raid3_disk_sync *sync;
 1674                 off_t boffset, moffset;
 1675                 void *data;
 1676                 int i;
 1677 
 1678                 if (bp->bio_error != 0) {
 1679                         G_RAID3_LOGREQ(0, bp,
 1680                             "Synchronization request failed (error=%d).",
 1681                             bp->bio_error);
 1682                         g_destroy_bio(bp);
 1683                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
 1684                         g_raid3_event_send(disk,
 1685                             G_RAID3_DISK_STATE_DISCONNECTED,
 1686                             G_RAID3_EVENT_DONTWAIT);
 1687                         return;
 1688                 }
 1689                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
 1690                 sync = &disk->d_sync;
 1691                 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
 1692                     sync->ds_consumer == NULL ||
 1693                     (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 1694                         /* Don't send more synchronization requests. */
 1695                         sync->ds_inflight--;
 1696                         if (sync->ds_bios != NULL) {
 1697                                 i = (int)(uintptr_t)bp->bio_caller1;
 1698                                 sync->ds_bios[i] = NULL;
 1699                         }
 1700                         free(bp->bio_data, M_RAID3);
 1701                         g_destroy_bio(bp);
 1702                         if (sync->ds_inflight > 0)
 1703                                 return;
 1704                         if (sync->ds_consumer == NULL ||
 1705                             (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 1706                                 return;
 1707                         }
 1708                         /*
 1709                          * Disk up-to-date, activate it.
 1710                          */
 1711                         g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
 1712                             G_RAID3_EVENT_DONTWAIT);
 1713                         return;
 1714                 }
 1715 
 1716                 /* Send next synchronization request. */
 1717                 data = bp->bio_data;
 1718                 g_reset_bio(bp);
 1719                 bp->bio_cmd = BIO_READ;
 1720                 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
 1721                 bp->bio_length = MIN(maxphys, sc->sc_mediasize - bp->bio_offset);
 1722                 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
 1723                 bp->bio_done = g_raid3_sync_done;
 1724                 bp->bio_data = data;
 1725                 bp->bio_from = sync->ds_consumer;
 1726                 bp->bio_to = sc->sc_provider;
 1727                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
 1728                 sync->ds_consumer->index++;
 1729                 /*
 1730                  * Delay the request if it is colliding with a regular request.
 1731                  */
 1732                 if (g_raid3_regular_collision(sc, bp))
 1733                         g_raid3_sync_delay(sc, bp);
 1734                 else
 1735                         g_io_request(bp, sync->ds_consumer);
 1736 
 1737                 /* Release delayed requests if possible. */
 1738                 g_raid3_regular_release(sc);
 1739 
 1740                 /* Find the smallest offset. */
 1741                 moffset = sc->sc_mediasize;
 1742                 for (i = 0; i < g_raid3_syncreqs; i++) {
 1743                         bp = sync->ds_bios[i];
 1744                         boffset = bp->bio_offset;
 1745                         if (bp->bio_cmd == BIO_WRITE)
 1746                                 boffset *= sc->sc_ndisks - 1;
 1747                         if (boffset < moffset)
 1748                                 moffset = boffset;
 1749                 }
 1750                 if (sync->ds_offset_done + maxphys * 100 < moffset) {
 1751                         /* Update offset_done on every 100 blocks. */
 1752                         sync->ds_offset_done = moffset;
 1753                         g_raid3_update_metadata(disk);
 1754                 }
 1755                 return;
 1756             }
 1757         default:
 1758                 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
 1759                     bp->bio_cmd, sc->sc_name));
 1760                 break;
 1761         }
 1762 }
 1763 
 1764 static int
 1765 g_raid3_register_request(struct bio *pbp)
 1766 {
 1767         struct g_raid3_softc *sc;
 1768         struct g_raid3_disk *disk;
 1769         struct g_consumer *cp;
 1770         struct bio *cbp, *tmpbp;
 1771         off_t offset, length;
 1772         u_int n, ndisks;
 1773         int round_robin, verify;
 1774 
 1775         ndisks = 0;
 1776         sc = pbp->bio_to->geom->softc;
 1777         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
 1778             sc->sc_syncdisk == NULL) {
 1779                 g_io_deliver(pbp, EIO);
 1780                 return (0);
 1781         }
 1782         g_raid3_init_bio(pbp);
 1783         length = pbp->bio_length / (sc->sc_ndisks - 1);
 1784         offset = pbp->bio_offset / (sc->sc_ndisks - 1);
 1785         round_robin = verify = 0;
 1786         switch (pbp->bio_cmd) {
 1787         case BIO_READ:
 1788                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
 1789                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1790                         pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
 1791                         verify = 1;
 1792                         ndisks = sc->sc_ndisks;
 1793                 } else {
 1794                         verify = 0;
 1795                         ndisks = sc->sc_ndisks - 1;
 1796                 }
 1797                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
 1798                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1799                         round_robin = 1;
 1800                 } else {
 1801                         round_robin = 0;
 1802                 }
 1803                 KASSERT(!round_robin || !verify,
 1804                     ("ROUND-ROBIN and VERIFY are mutually exclusive."));
 1805                 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
 1806                 break;
 1807         case BIO_WRITE:
 1808         case BIO_DELETE:
 1809                 /*
 1810                  * Delay the request if it is colliding with a synchronization
 1811                  * request.
 1812                  */
 1813                 if (g_raid3_sync_collision(sc, pbp)) {
 1814                         g_raid3_regular_delay(sc, pbp);
 1815                         return (0);
 1816                 }
 1817 
 1818                 if (sc->sc_idle)
 1819                         g_raid3_unidle(sc);
 1820                 else
 1821                         sc->sc_last_write = time_uptime;
 1822 
 1823                 ndisks = sc->sc_ndisks;
 1824                 break;
 1825         }
 1826         for (n = 0; n < ndisks; n++) {
 1827                 disk = &sc->sc_disks[n];
 1828                 cbp = g_raid3_clone_bio(sc, pbp);
 1829                 if (cbp == NULL) {
 1830                         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
 1831                                 g_raid3_destroy_bio(sc, cbp);
 1832                         /*
 1833                          * To prevent deadlock, we must run back up
 1834                          * with the ENOMEM for failed requests of any
 1835                          * of our consumers.  Our own sync requests
 1836                          * can stick around, as they are finite.
 1837                          */
 1838                         if ((pbp->bio_cflags &
 1839                             G_RAID3_BIO_CFLAG_REGULAR) != 0) {
 1840                                 g_io_deliver(pbp, ENOMEM);
 1841                                 return (0);
 1842                         }
 1843                         return (ENOMEM);
 1844                 }
 1845                 cbp->bio_offset = offset;
 1846                 cbp->bio_length = length;
 1847                 cbp->bio_done = g_raid3_done;
 1848                 switch (pbp->bio_cmd) {
 1849                 case BIO_READ:
 1850                         if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
 1851                                 /*
 1852                                  * Replace invalid component with the parity
 1853                                  * component.
 1854                                  */
 1855                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
 1856                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1857                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
 1858                         } else if (round_robin &&
 1859                             disk->d_no == sc->sc_round_robin) {
 1860                                 /*
 1861                                  * In round-robin mode skip one data component
 1862                                  * and use parity component when reading.
 1863                                  */
 1864                                 pbp->bio_driver2 = disk;
 1865                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
 1866                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1867                                 sc->sc_round_robin++;
 1868                                 round_robin = 0;
 1869                         } else if (verify && disk->d_no == sc->sc_ndisks - 1) {
 1870                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1871                         }
 1872                         break;
 1873                 case BIO_WRITE:
 1874                 case BIO_DELETE:
 1875                         if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
 1876                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
 1877                                 if (n == ndisks - 1) {
 1878                                         /*
 1879                                          * Active parity component, mark it as such.
 1880                                          */
 1881                                         cbp->bio_cflags |=
 1882                                             G_RAID3_BIO_CFLAG_PARITY;
 1883                                 }
 1884                         } else {
 1885                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
 1886                                 if (n == ndisks - 1) {
 1887                                         /*
 1888                                          * Parity component is not connected,
 1889                                          * so destroy its request.
 1890                                          */
 1891                                         pbp->bio_pflags |=
 1892                                             G_RAID3_BIO_PFLAG_NOPARITY;
 1893                                         g_raid3_destroy_bio(sc, cbp);
 1894                                         cbp = NULL;
 1895                                 } else {
 1896                                         cbp->bio_cflags |=
 1897                                             G_RAID3_BIO_CFLAG_NODISK;
 1898                                         disk = NULL;
 1899                                 }
 1900                         }
 1901                         break;
 1902                 }
 1903                 if (cbp != NULL)
 1904                         cbp->bio_caller2 = disk;
 1905         }
 1906         switch (pbp->bio_cmd) {
 1907         case BIO_READ:
 1908                 if (round_robin) {
 1909                         /*
 1910                          * If we are in round-robin mode and 'round_robin' is
 1911                          * still 1, it means, that we skipped parity component
 1912                          * for this read and must reset sc_round_robin field.
 1913                          */
 1914                         sc->sc_round_robin = 0;
 1915                 }
 1916                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
 1917                         disk = cbp->bio_caller2;
 1918                         cp = disk->d_consumer;
 1919                         cbp->bio_to = cp->provider;
 1920                         G_RAID3_LOGREQ(3, cbp, "Sending request.");
 1921                         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1922                             ("Consumer %s not opened (r%dw%de%d).",
 1923                             cp->provider->name, cp->acr, cp->acw, cp->ace));
 1924                         cp->index++;
 1925                         g_io_request(cbp, cp);
 1926                 }
 1927                 break;
 1928         case BIO_WRITE:
 1929         case BIO_DELETE:
 1930                 /*
 1931                  * Put request onto inflight queue, so we can check if new
 1932                  * synchronization requests don't collide with it.
 1933                  */
 1934                 bioq_insert_tail(&sc->sc_inflight, pbp);
 1935 
 1936                 /*
 1937                  * Bump syncid on first write.
 1938                  */
 1939                 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
 1940                         sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
 1941                         g_raid3_bump_syncid(sc);
 1942                 }
 1943                 g_raid3_scatter(pbp);
 1944                 break;
 1945         }
 1946         return (0);
 1947 }
 1948 
 1949 static int
 1950 g_raid3_can_destroy(struct g_raid3_softc *sc)
 1951 {
 1952         struct g_geom *gp;
 1953         struct g_consumer *cp;
 1954 
 1955         g_topology_assert();
 1956         gp = sc->sc_geom;
 1957         if (gp->softc == NULL)
 1958                 return (1);
 1959         LIST_FOREACH(cp, &gp->consumer, consumer) {
 1960                 if (g_raid3_is_busy(sc, cp))
 1961                         return (0);
 1962         }
 1963         gp = sc->sc_sync.ds_geom;
 1964         LIST_FOREACH(cp, &gp->consumer, consumer) {
 1965                 if (g_raid3_is_busy(sc, cp))
 1966                         return (0);
 1967         }
 1968         G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
 1969             sc->sc_name);
 1970         return (1);
 1971 }
 1972 
 1973 static int
 1974 g_raid3_try_destroy(struct g_raid3_softc *sc)
 1975 {
 1976 
 1977         g_topology_assert_not();
 1978         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1979 
 1980         if (sc->sc_rootmount != NULL) {
 1981                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
 1982                     sc->sc_rootmount);
 1983                 root_mount_rel(sc->sc_rootmount);
 1984                 sc->sc_rootmount = NULL;
 1985         }
 1986 
 1987         g_topology_lock();
 1988         if (!g_raid3_can_destroy(sc)) {
 1989                 g_topology_unlock();
 1990                 return (0);
 1991         }
 1992         sc->sc_geom->softc = NULL;
 1993         sc->sc_sync.ds_geom->softc = NULL;
 1994         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
 1995                 g_topology_unlock();
 1996                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
 1997                     &sc->sc_worker);
 1998                 /* Unlock sc_lock here, as it can be destroyed after wakeup. */
 1999                 sx_xunlock(&sc->sc_lock);
 2000                 wakeup(&sc->sc_worker);
 2001                 sc->sc_worker = NULL;
 2002         } else {
 2003                 g_topology_unlock();
 2004                 g_raid3_destroy_device(sc);
 2005                 free(sc->sc_disks, M_RAID3);
 2006                 free(sc, M_RAID3);
 2007         }
 2008         return (1);
 2009 }
 2010 
 2011 /*
 2012  * Worker thread.
 2013  */
 2014 static void
 2015 g_raid3_worker(void *arg)
 2016 {
 2017         struct g_raid3_softc *sc;
 2018         struct g_raid3_event *ep;
 2019         struct bio *bp;
 2020         int timeout;
 2021 
 2022         sc = arg;
 2023         thread_lock(curthread);
 2024         sched_prio(curthread, PRIBIO);
 2025         thread_unlock(curthread);
 2026 
 2027         sx_xlock(&sc->sc_lock);
 2028         for (;;) {
 2029                 G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
 2030                 /*
 2031                  * First take a look at events.
 2032                  * This is important to handle events before any I/O requests.
 2033                  */
 2034                 ep = g_raid3_event_get(sc);
 2035                 if (ep != NULL) {
 2036                         g_raid3_event_remove(sc, ep);
 2037                         if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
 2038                                 /* Update only device status. */
 2039                                 G_RAID3_DEBUG(3,
 2040                                     "Running event for device %s.",
 2041                                     sc->sc_name);
 2042                                 ep->e_error = 0;
 2043                                 g_raid3_update_device(sc, 1);
 2044                         } else {
 2045                                 /* Update disk status. */
 2046                                 G_RAID3_DEBUG(3, "Running event for disk %s.",
 2047                                      g_raid3_get_diskname(ep->e_disk));
 2048                                 ep->e_error = g_raid3_update_disk(ep->e_disk,
 2049                                     ep->e_state);
 2050                                 if (ep->e_error == 0)
 2051                                         g_raid3_update_device(sc, 0);
 2052                         }
 2053                         if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
 2054                                 KASSERT(ep->e_error == 0,
 2055                                     ("Error cannot be handled."));
 2056                                 g_raid3_event_free(ep);
 2057                         } else {
 2058                                 ep->e_flags |= G_RAID3_EVENT_DONE;
 2059                                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
 2060                                     ep);
 2061                                 mtx_lock(&sc->sc_events_mtx);
 2062                                 wakeup(ep);
 2063                                 mtx_unlock(&sc->sc_events_mtx);
 2064                         }
 2065                         if ((sc->sc_flags &
 2066                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 2067                                 if (g_raid3_try_destroy(sc)) {
 2068                                         curthread->td_pflags &= ~TDP_GEOM;
 2069                                         G_RAID3_DEBUG(1, "Thread exiting.");
 2070                                         kproc_exit(0);
 2071                                 }
 2072                         }
 2073                         G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
 2074                         continue;
 2075                 }
 2076                 /*
 2077                  * Check if we can mark array as CLEAN and if we can't take
 2078                  * how much seconds should we wait.
 2079                  */
 2080                 timeout = g_raid3_idle(sc, -1);
 2081                 /*
 2082                  * Now I/O requests.
 2083                  */
 2084                 /* Get first request from the queue. */
 2085                 mtx_lock(&sc->sc_queue_mtx);
 2086                 bp = bioq_first(&sc->sc_queue);
 2087                 if (bp == NULL) {
 2088                         if ((sc->sc_flags &
 2089                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 2090                                 mtx_unlock(&sc->sc_queue_mtx);
 2091                                 if (g_raid3_try_destroy(sc)) {
 2092                                         curthread->td_pflags &= ~TDP_GEOM;
 2093                                         G_RAID3_DEBUG(1, "Thread exiting.");
 2094                                         kproc_exit(0);
 2095                                 }
 2096                                 mtx_lock(&sc->sc_queue_mtx);
 2097                         }
 2098                         sx_xunlock(&sc->sc_lock);
 2099                         /*
 2100                          * XXX: We can miss an event here, because an event
 2101                          *      can be added without sx-device-lock and without
 2102                          *      mtx-queue-lock. Maybe I should just stop using
 2103                          *      dedicated mutex for events synchronization and
 2104                          *      stick with the queue lock?
 2105                          *      The event will hang here until next I/O request
 2106                          *      or next event is received.
 2107                          */
 2108                         MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
 2109                             timeout * hz);
 2110                         sx_xlock(&sc->sc_lock);
 2111                         G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
 2112                         continue;
 2113                 }
 2114 process:
 2115                 bioq_remove(&sc->sc_queue, bp);
 2116                 mtx_unlock(&sc->sc_queue_mtx);
 2117 
 2118                 if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
 2119                     (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
 2120                         g_raid3_sync_request(bp);       /* READ */
 2121                 } else if (bp->bio_to != sc->sc_provider) {
 2122                         if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
 2123                                 g_raid3_regular_request(bp);
 2124                         else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
 2125                                 g_raid3_sync_request(bp);       /* WRITE */
 2126                         else {
 2127                                 KASSERT(0,
 2128                                     ("Invalid request cflags=0x%hx to=%s.",
 2129                                     bp->bio_cflags, bp->bio_to->name));
 2130                         }
 2131                 } else if (g_raid3_register_request(bp) != 0) {
 2132                         mtx_lock(&sc->sc_queue_mtx);
 2133                         bioq_insert_head(&sc->sc_queue, bp);
 2134                         /*
 2135                          * We are short in memory, let see if there are finished
 2136                          * request we can free.
 2137                          */
 2138                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
 2139                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
 2140                                         goto process;
 2141                         }
 2142                         /*
 2143                          * No finished regular request, so at least keep
 2144                          * synchronization running.
 2145                          */
 2146                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
 2147                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
 2148                                         goto process;
 2149                         }
 2150                         sx_xunlock(&sc->sc_lock);
 2151                         MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
 2152                             "r3:lowmem", hz / 10);
 2153                         sx_xlock(&sc->sc_lock);
 2154                 }
 2155                 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
 2156         }
 2157 }
 2158 
 2159 static void
 2160 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
 2161 {
 2162 
 2163         sx_assert(&sc->sc_lock, SX_LOCKED);
 2164         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
 2165                 return;
 2166         if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
 2167                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
 2168                     g_raid3_get_diskname(disk), sc->sc_name);
 2169                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
 2170         } else if (sc->sc_idle &&
 2171             (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
 2172                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
 2173                     g_raid3_get_diskname(disk), sc->sc_name);
 2174                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2175         }
 2176 }
 2177 
 2178 static void
 2179 g_raid3_sync_start(struct g_raid3_softc *sc)
 2180 {
 2181         struct g_raid3_disk *disk;
 2182         struct g_consumer *cp;
 2183         struct bio *bp;
 2184         int error __diagused;
 2185         u_int n;
 2186 
 2187         g_topology_assert_not();
 2188         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2189 
 2190         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
 2191             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
 2192             sc->sc_state));
 2193         KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
 2194             sc->sc_name, sc->sc_state));
 2195         disk = NULL;
 2196         for (n = 0; n < sc->sc_ndisks; n++) {
 2197                 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
 2198                         continue;
 2199                 disk = &sc->sc_disks[n];
 2200                 break;
 2201         }
 2202         if (disk == NULL)
 2203                 return;
 2204 
 2205         sx_xunlock(&sc->sc_lock);
 2206         g_topology_lock();
 2207         cp = g_new_consumer(sc->sc_sync.ds_geom);
 2208         error = g_attach(cp, sc->sc_provider);
 2209         KASSERT(error == 0,
 2210             ("Cannot attach to %s (error=%d).", sc->sc_name, error));
 2211         error = g_access(cp, 1, 0, 0);
 2212         KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
 2213         g_topology_unlock();
 2214         sx_xlock(&sc->sc_lock);
 2215 
 2216         G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
 2217             g_raid3_get_diskname(disk));
 2218         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
 2219                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
 2220         KASSERT(disk->d_sync.ds_consumer == NULL,
 2221             ("Sync consumer already exists (device=%s, disk=%s).",
 2222             sc->sc_name, g_raid3_get_diskname(disk)));
 2223 
 2224         disk->d_sync.ds_consumer = cp;
 2225         disk->d_sync.ds_consumer->private = disk;
 2226         disk->d_sync.ds_consumer->index = 0;
 2227         sc->sc_syncdisk = disk;
 2228 
 2229         /*
 2230          * Allocate memory for synchronization bios and initialize them.
 2231          */
 2232         disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
 2233             M_RAID3, M_WAITOK);
 2234         for (n = 0; n < g_raid3_syncreqs; n++) {
 2235                 bp = g_alloc_bio();
 2236                 disk->d_sync.ds_bios[n] = bp;
 2237                 bp->bio_parent = NULL;
 2238                 bp->bio_cmd = BIO_READ;
 2239                 bp->bio_data = malloc(maxphys, M_RAID3, M_WAITOK);
 2240                 bp->bio_cflags = 0;
 2241                 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
 2242                 bp->bio_length = MIN(maxphys, sc->sc_mediasize - bp->bio_offset);
 2243                 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
 2244                 bp->bio_done = g_raid3_sync_done;
 2245                 bp->bio_from = disk->d_sync.ds_consumer;
 2246                 bp->bio_to = sc->sc_provider;
 2247                 bp->bio_caller1 = (void *)(uintptr_t)n;
 2248         }
 2249 
 2250         /* Set the number of in-flight synchronization requests. */
 2251         disk->d_sync.ds_inflight = g_raid3_syncreqs;
 2252 
 2253         /*
 2254          * Fire off first synchronization requests.
 2255          */
 2256         for (n = 0; n < g_raid3_syncreqs; n++) {
 2257                 bp = disk->d_sync.ds_bios[n];
 2258                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
 2259                 disk->d_sync.ds_consumer->index++;
 2260                 /*
 2261                  * Delay the request if it is colliding with a regular request.
 2262                  */
 2263                 if (g_raid3_regular_collision(sc, bp))
 2264                         g_raid3_sync_delay(sc, bp);
 2265                 else
 2266                         g_io_request(bp, disk->d_sync.ds_consumer);
 2267         }
 2268 }
 2269 
 2270 /*
 2271  * Stop synchronization process.
 2272  * type: 0 - synchronization finished
 2273  *       1 - synchronization stopped
 2274  */
 2275 static void
 2276 g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
 2277 {
 2278         struct g_raid3_disk *disk;
 2279         struct g_consumer *cp;
 2280 
 2281         g_topology_assert_not();
 2282         sx_assert(&sc->sc_lock, SX_LOCKED);
 2283 
 2284         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
 2285             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
 2286             sc->sc_state));
 2287         disk = sc->sc_syncdisk;
 2288         sc->sc_syncdisk = NULL;
 2289         KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
 2290         KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
 2291             ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2292             g_raid3_disk_state2str(disk->d_state)));
 2293         if (disk->d_sync.ds_consumer == NULL)
 2294                 return;
 2295 
 2296         if (type == 0) {
 2297                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
 2298                     sc->sc_name, g_raid3_get_diskname(disk));
 2299         } else /* if (type == 1) */ {
 2300                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
 2301                     sc->sc_name, g_raid3_get_diskname(disk));
 2302         }
 2303         free(disk->d_sync.ds_bios, M_RAID3);
 2304         disk->d_sync.ds_bios = NULL;
 2305         cp = disk->d_sync.ds_consumer;
 2306         disk->d_sync.ds_consumer = NULL;
 2307         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2308         sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
 2309         g_topology_lock();
 2310         g_raid3_kill_consumer(sc, cp);
 2311         g_topology_unlock();
 2312         sx_xlock(&sc->sc_lock);
 2313 }
 2314 
 2315 static void
 2316 g_raid3_launch_provider(struct g_raid3_softc *sc)
 2317 {
 2318         struct g_provider *pp;
 2319         struct g_raid3_disk *disk;
 2320         int n;
 2321 
 2322         sx_assert(&sc->sc_lock, SX_LOCKED);
 2323 
 2324         g_topology_lock();
 2325         pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
 2326         pp->mediasize = sc->sc_mediasize;
 2327         pp->sectorsize = sc->sc_sectorsize;
 2328         pp->stripesize = 0;
 2329         pp->stripeoffset = 0;
 2330         for (n = 0; n < sc->sc_ndisks; n++) {
 2331                 disk = &sc->sc_disks[n];
 2332                 if (disk->d_consumer && disk->d_consumer->provider &&
 2333                     disk->d_consumer->provider->stripesize > pp->stripesize) {
 2334                         pp->stripesize = disk->d_consumer->provider->stripesize;
 2335                         pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
 2336                 }
 2337         }
 2338         pp->stripesize *= sc->sc_ndisks - 1;
 2339         pp->stripeoffset *= sc->sc_ndisks - 1;
 2340         sc->sc_provider = pp;
 2341         g_error_provider(pp, 0);
 2342         g_topology_unlock();
 2343         G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
 2344             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
 2345 
 2346         if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
 2347                 g_raid3_sync_start(sc);
 2348 }
 2349 
 2350 static void
 2351 g_raid3_destroy_provider(struct g_raid3_softc *sc)
 2352 {
 2353         struct bio *bp;
 2354 
 2355         g_topology_assert_not();
 2356         KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
 2357             sc->sc_name));
 2358 
 2359         g_topology_lock();
 2360         g_error_provider(sc->sc_provider, ENXIO);
 2361         mtx_lock(&sc->sc_queue_mtx);
 2362         while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
 2363                 bioq_remove(&sc->sc_queue, bp);
 2364                 g_io_deliver(bp, ENXIO);
 2365         }
 2366         mtx_unlock(&sc->sc_queue_mtx);
 2367         G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
 2368             sc->sc_provider->name);
 2369         g_wither_provider(sc->sc_provider, ENXIO);
 2370         g_topology_unlock();
 2371         sc->sc_provider = NULL;
 2372         if (sc->sc_syncdisk != NULL)
 2373                 g_raid3_sync_stop(sc, 1);
 2374 }
 2375 
 2376 static void
 2377 g_raid3_go(void *arg)
 2378 {
 2379         struct g_raid3_softc *sc;
 2380 
 2381         sc = arg;
 2382         G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
 2383         g_raid3_event_send(sc, 0,
 2384             G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
 2385 }
 2386 
 2387 static u_int
 2388 g_raid3_determine_state(struct g_raid3_disk *disk)
 2389 {
 2390         struct g_raid3_softc *sc;
 2391         u_int state;
 2392 
 2393         sc = disk->d_softc;
 2394         if (sc->sc_syncid == disk->d_sync.ds_syncid) {
 2395                 if ((disk->d_flags &
 2396                     G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
 2397                         /* Disk does not need synchronization. */
 2398                         state = G_RAID3_DISK_STATE_ACTIVE;
 2399                 } else {
 2400                         if ((sc->sc_flags &
 2401                              G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
 2402                             (disk->d_flags &
 2403                              G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
 2404                                 /*
 2405                                  * We can start synchronization from
 2406                                  * the stored offset.
 2407                                  */
 2408                                 state = G_RAID3_DISK_STATE_SYNCHRONIZING;
 2409                         } else {
 2410                                 state = G_RAID3_DISK_STATE_STALE;
 2411                         }
 2412                 }
 2413         } else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
 2414                 /*
 2415                  * Reset all synchronization data for this disk,
 2416                  * because if it even was synchronized, it was
 2417                  * synchronized to disks with different syncid.
 2418                  */
 2419                 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2420                 disk->d_sync.ds_offset = 0;
 2421                 disk->d_sync.ds_offset_done = 0;
 2422                 disk->d_sync.ds_syncid = sc->sc_syncid;
 2423                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
 2424                     (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
 2425                         state = G_RAID3_DISK_STATE_SYNCHRONIZING;
 2426                 } else {
 2427                         state = G_RAID3_DISK_STATE_STALE;
 2428                 }
 2429         } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
 2430                 /*
 2431                  * Not good, NOT GOOD!
 2432                  * It means that device was started on stale disks
 2433                  * and more fresh disk just arrive.
 2434                  * If there were writes, device is broken, sorry.
 2435                  * I think the best choice here is don't touch
 2436                  * this disk and inform the user loudly.
 2437                  */
 2438                 G_RAID3_DEBUG(0, "Device %s was started before the freshest "
 2439                     "disk (%s) arrives!! It will not be connected to the "
 2440                     "running device.", sc->sc_name,
 2441                     g_raid3_get_diskname(disk));
 2442                 g_raid3_destroy_disk(disk);
 2443                 state = G_RAID3_DISK_STATE_NONE;
 2444                 /* Return immediately, because disk was destroyed. */
 2445                 return (state);
 2446         }
 2447         G_RAID3_DEBUG(3, "State for %s disk: %s.",
 2448             g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
 2449         return (state);
 2450 }
 2451 
 2452 /*
 2453  * Update device state.
 2454  */
 2455 static void
 2456 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
 2457 {
 2458         struct g_raid3_disk *disk;
 2459         u_int state;
 2460 
 2461         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2462 
 2463         switch (sc->sc_state) {
 2464         case G_RAID3_DEVICE_STATE_STARTING:
 2465             {
 2466                 u_int n, ndirty, ndisks, genid, syncid;
 2467 
 2468                 KASSERT(sc->sc_provider == NULL,
 2469                     ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
 2470                 /*
 2471                  * Are we ready? We are, if all disks are connected or
 2472                  * one disk is missing and 'force' is true.
 2473                  */
 2474                 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
 2475                         if (!force)
 2476                                 callout_drain(&sc->sc_callout);
 2477                 } else {
 2478                         if (force) {
 2479                                 /*
 2480                                  * Timeout expired, so destroy device.
 2481                                  */
 2482                                 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 2483                                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
 2484                                     __LINE__, sc->sc_rootmount);
 2485                                 root_mount_rel(sc->sc_rootmount);
 2486                                 sc->sc_rootmount = NULL;
 2487                         }
 2488                         return;
 2489                 }
 2490 
 2491                 /*
 2492                  * Find the biggest genid.
 2493                  */
 2494                 genid = 0;
 2495                 for (n = 0; n < sc->sc_ndisks; n++) {
 2496                         disk = &sc->sc_disks[n];
 2497                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2498                                 continue;
 2499                         if (disk->d_genid > genid)
 2500                                 genid = disk->d_genid;
 2501                 }
 2502                 sc->sc_genid = genid;
 2503                 /*
 2504                  * Remove all disks without the biggest genid.
 2505                  */
 2506                 for (n = 0; n < sc->sc_ndisks; n++) {
 2507                         disk = &sc->sc_disks[n];
 2508                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2509                                 continue;
 2510                         if (disk->d_genid < genid) {
 2511                                 G_RAID3_DEBUG(0,
 2512                                     "Component %s (device %s) broken, skipping.",
 2513                                     g_raid3_get_diskname(disk), sc->sc_name);
 2514                                 g_raid3_destroy_disk(disk);
 2515                         }
 2516                 }
 2517 
 2518                 /*
 2519                  * There must be at least 'sc->sc_ndisks - 1' components
 2520                  * with the same syncid and without SYNCHRONIZING flag.
 2521                  */
 2522 
 2523                 /*
 2524                  * Find the biggest syncid, number of valid components and
 2525                  * number of dirty components.
 2526                  */
 2527                 ndirty = ndisks = syncid = 0;
 2528                 for (n = 0; n < sc->sc_ndisks; n++) {
 2529                         disk = &sc->sc_disks[n];
 2530                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2531                                 continue;
 2532                         if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
 2533                                 ndirty++;
 2534                         if (disk->d_sync.ds_syncid > syncid) {
 2535                                 syncid = disk->d_sync.ds_syncid;
 2536                                 ndisks = 0;
 2537                         } else if (disk->d_sync.ds_syncid < syncid) {
 2538                                 continue;
 2539                         }
 2540                         if ((disk->d_flags &
 2541                             G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
 2542                                 continue;
 2543                         }
 2544                         ndisks++;
 2545                 }
 2546                 /*
 2547                  * Do we have enough valid components?
 2548                  */
 2549                 if (ndisks + 1 < sc->sc_ndisks) {
 2550                         G_RAID3_DEBUG(0,
 2551                             "Device %s is broken, too few valid components.",
 2552                             sc->sc_name);
 2553                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 2554                         return;
 2555                 }
 2556                 /*
 2557                  * If there is one DIRTY component and all disks are present,
 2558                  * mark it for synchronization. If there is more than one DIRTY
 2559                  * component, mark parity component for synchronization.
 2560                  */
 2561                 if (ndisks == sc->sc_ndisks && ndirty == 1) {
 2562                         for (n = 0; n < sc->sc_ndisks; n++) {
 2563                                 disk = &sc->sc_disks[n];
 2564                                 if ((disk->d_flags &
 2565                                     G_RAID3_DISK_FLAG_DIRTY) == 0) {
 2566                                         continue;
 2567                                 }
 2568                                 disk->d_flags |=
 2569                                     G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2570                         }
 2571                 } else if (ndisks == sc->sc_ndisks && ndirty > 1) {
 2572                         disk = &sc->sc_disks[sc->sc_ndisks - 1];
 2573                         disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2574                 }
 2575 
 2576                 sc->sc_syncid = syncid;
 2577                 if (force) {
 2578                         /* Remember to bump syncid on first write. */
 2579                         sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
 2580                 }
 2581                 if (ndisks == sc->sc_ndisks)
 2582                         state = G_RAID3_DEVICE_STATE_COMPLETE;
 2583                 else /* if (ndisks == sc->sc_ndisks - 1) */
 2584                         state = G_RAID3_DEVICE_STATE_DEGRADED;
 2585                 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
 2586                     sc->sc_name, g_raid3_device_state2str(sc->sc_state),
 2587                     g_raid3_device_state2str(state));
 2588                 sc->sc_state = state;
 2589                 for (n = 0; n < sc->sc_ndisks; n++) {
 2590                         disk = &sc->sc_disks[n];
 2591                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2592                                 continue;
 2593                         state = g_raid3_determine_state(disk);
 2594                         g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
 2595                         if (state == G_RAID3_DISK_STATE_STALE)
 2596                                 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
 2597                 }
 2598                 break;
 2599             }
 2600         case G_RAID3_DEVICE_STATE_DEGRADED:
 2601                 /*
 2602                  * Genid need to be bumped immediately, so do it here.
 2603                  */
 2604                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
 2605                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
 2606                         g_raid3_bump_genid(sc);
 2607                 }
 2608 
 2609                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
 2610                         return;
 2611                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
 2612                     sc->sc_ndisks - 1) {
 2613                         if (sc->sc_provider != NULL)
 2614                                 g_raid3_destroy_provider(sc);
 2615                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 2616                         return;
 2617                 }
 2618                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
 2619                     sc->sc_ndisks) {
 2620                         state = G_RAID3_DEVICE_STATE_COMPLETE;
 2621                         G_RAID3_DEBUG(1,
 2622                             "Device %s state changed from %s to %s.",
 2623                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
 2624                             g_raid3_device_state2str(state));
 2625                         sc->sc_state = state;
 2626                 }
 2627                 if (sc->sc_provider == NULL)
 2628                         g_raid3_launch_provider(sc);
 2629                 if (sc->sc_rootmount != NULL) {
 2630                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
 2631                             sc->sc_rootmount);
 2632                         root_mount_rel(sc->sc_rootmount);
 2633                         sc->sc_rootmount = NULL;
 2634                 }
 2635                 break;
 2636         case G_RAID3_DEVICE_STATE_COMPLETE:
 2637                 /*
 2638                  * Genid need to be bumped immediately, so do it here.
 2639                  */
 2640                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
 2641                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
 2642                         g_raid3_bump_genid(sc);
 2643                 }
 2644 
 2645                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
 2646                         return;
 2647                 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
 2648                     sc->sc_ndisks - 1,
 2649                     ("Too few ACTIVE components in COMPLETE state (device %s).",
 2650                     sc->sc_name));
 2651                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
 2652                     sc->sc_ndisks - 1) {
 2653                         state = G_RAID3_DEVICE_STATE_DEGRADED;
 2654                         G_RAID3_DEBUG(1,
 2655                             "Device %s state changed from %s to %s.",
 2656                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
 2657                             g_raid3_device_state2str(state));
 2658                         sc->sc_state = state;
 2659                 }
 2660                 if (sc->sc_provider == NULL)
 2661                         g_raid3_launch_provider(sc);
 2662                 if (sc->sc_rootmount != NULL) {
 2663                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
 2664                             sc->sc_rootmount);
 2665                         root_mount_rel(sc->sc_rootmount);
 2666                         sc->sc_rootmount = NULL;
 2667                 }
 2668                 break;
 2669         default:
 2670                 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
 2671                     g_raid3_device_state2str(sc->sc_state)));
 2672                 break;
 2673         }
 2674 }
 2675 
 2676 /*
 2677  * Update disk state and device state if needed.
 2678  */
 2679 #define DISK_STATE_CHANGED()    G_RAID3_DEBUG(1,                        \
 2680         "Disk %s state changed from %s to %s (device %s).",             \
 2681         g_raid3_get_diskname(disk),                                     \
 2682         g_raid3_disk_state2str(disk->d_state),                          \
 2683         g_raid3_disk_state2str(state), sc->sc_name)
 2684 static int
 2685 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
 2686 {
 2687         struct g_raid3_softc *sc;
 2688 
 2689         sc = disk->d_softc;
 2690         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2691 
 2692 again:
 2693         G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
 2694             g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
 2695             g_raid3_disk_state2str(state));
 2696         switch (state) {
 2697         case G_RAID3_DISK_STATE_NEW:
 2698                 /*
 2699                  * Possible scenarios:
 2700                  * 1. New disk arrive.
 2701                  */
 2702                 /* Previous state should be NONE. */
 2703                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
 2704                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2705                     g_raid3_disk_state2str(disk->d_state)));
 2706                 DISK_STATE_CHANGED();
 2707 
 2708                 disk->d_state = state;
 2709                 G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
 2710                     sc->sc_name, g_raid3_get_diskname(disk));
 2711                 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
 2712                         break;
 2713                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2714                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2715                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2716                     g_raid3_device_state2str(sc->sc_state),
 2717                     g_raid3_get_diskname(disk),
 2718                     g_raid3_disk_state2str(disk->d_state)));
 2719                 state = g_raid3_determine_state(disk);
 2720                 if (state != G_RAID3_DISK_STATE_NONE)
 2721                         goto again;
 2722                 break;
 2723         case G_RAID3_DISK_STATE_ACTIVE:
 2724                 /*
 2725                  * Possible scenarios:
 2726                  * 1. New disk does not need synchronization.
 2727                  * 2. Synchronization process finished successfully.
 2728                  */
 2729                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2730                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2731                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2732                     g_raid3_device_state2str(sc->sc_state),
 2733                     g_raid3_get_diskname(disk),
 2734                     g_raid3_disk_state2str(disk->d_state)));
 2735                 /* Previous state should be NEW or SYNCHRONIZING. */
 2736                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
 2737                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
 2738                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2739                     g_raid3_disk_state2str(disk->d_state)));
 2740                 DISK_STATE_CHANGED();
 2741 
 2742                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
 2743                         disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2744                         disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
 2745                         g_raid3_sync_stop(sc, 0);
 2746                 }
 2747                 disk->d_state = state;
 2748                 disk->d_sync.ds_offset = 0;
 2749                 disk->d_sync.ds_offset_done = 0;
 2750                 g_raid3_update_idle(sc, disk);
 2751                 g_raid3_update_metadata(disk);
 2752                 G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
 2753                     sc->sc_name, g_raid3_get_diskname(disk));
 2754                 break;
 2755         case G_RAID3_DISK_STATE_STALE:
 2756                 /*
 2757                  * Possible scenarios:
 2758                  * 1. Stale disk was connected.
 2759                  */
 2760                 /* Previous state should be NEW. */
 2761                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
 2762                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2763                     g_raid3_disk_state2str(disk->d_state)));
 2764                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2765                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2766                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2767                     g_raid3_device_state2str(sc->sc_state),
 2768                     g_raid3_get_diskname(disk),
 2769                     g_raid3_disk_state2str(disk->d_state)));
 2770                 /*
 2771                  * STALE state is only possible if device is marked
 2772                  * NOAUTOSYNC.
 2773                  */
 2774                 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
 2775                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2776                     g_raid3_device_state2str(sc->sc_state),
 2777                     g_raid3_get_diskname(disk),
 2778                     g_raid3_disk_state2str(disk->d_state)));
 2779                 DISK_STATE_CHANGED();
 2780 
 2781                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2782                 disk->d_state = state;
 2783                 g_raid3_update_metadata(disk);
 2784                 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
 2785                     sc->sc_name, g_raid3_get_diskname(disk));
 2786                 break;
 2787         case G_RAID3_DISK_STATE_SYNCHRONIZING:
 2788                 /*
 2789                  * Possible scenarios:
 2790                  * 1. Disk which needs synchronization was connected.
 2791                  */
 2792                 /* Previous state should be NEW. */
 2793                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
 2794                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2795                     g_raid3_disk_state2str(disk->d_state)));
 2796                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2797                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2798                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2799                     g_raid3_device_state2str(sc->sc_state),
 2800                     g_raid3_get_diskname(disk),
 2801                     g_raid3_disk_state2str(disk->d_state)));
 2802                 DISK_STATE_CHANGED();
 2803 
 2804                 if (disk->d_state == G_RAID3_DISK_STATE_NEW)
 2805                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2806                 disk->d_state = state;
 2807                 if (sc->sc_provider != NULL) {
 2808                         g_raid3_sync_start(sc);
 2809                         g_raid3_update_metadata(disk);
 2810                 }
 2811                 break;
 2812         case G_RAID3_DISK_STATE_DISCONNECTED:
 2813                 /*
 2814                  * Possible scenarios:
 2815                  * 1. Device wasn't running yet, but disk disappear.
 2816                  * 2. Disk was active and disapppear.
 2817                  * 3. Disk disappear during synchronization process.
 2818                  */
 2819                 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2820                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 2821                         /*
 2822                          * Previous state should be ACTIVE, STALE or
 2823                          * SYNCHRONIZING.
 2824                          */
 2825                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
 2826                             disk->d_state == G_RAID3_DISK_STATE_STALE ||
 2827                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
 2828                             ("Wrong disk state (%s, %s).",
 2829                             g_raid3_get_diskname(disk),
 2830                             g_raid3_disk_state2str(disk->d_state)));
 2831                 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
 2832                         /* Previous state should be NEW. */
 2833                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
 2834                             ("Wrong disk state (%s, %s).",
 2835                             g_raid3_get_diskname(disk),
 2836                             g_raid3_disk_state2str(disk->d_state)));
 2837                         /*
 2838                          * Reset bumping syncid if disk disappeared in STARTING
 2839                          * state.
 2840                          */
 2841                         if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
 2842                                 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
 2843 #ifdef  INVARIANTS
 2844                 } else {
 2845                         KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
 2846                             sc->sc_name,
 2847                             g_raid3_device_state2str(sc->sc_state),
 2848                             g_raid3_get_diskname(disk),
 2849                             g_raid3_disk_state2str(disk->d_state)));
 2850 #endif
 2851                 }
 2852                 DISK_STATE_CHANGED();
 2853                 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
 2854                     sc->sc_name, g_raid3_get_diskname(disk));
 2855 
 2856                 g_raid3_destroy_disk(disk);
 2857                 break;
 2858         default:
 2859                 KASSERT(1 == 0, ("Unknown state (%u).", state));
 2860                 break;
 2861         }
 2862         return (0);
 2863 }
 2864 #undef  DISK_STATE_CHANGED
 2865 
 2866 int
 2867 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
 2868 {
 2869         struct g_provider *pp;
 2870         u_char *buf;
 2871         int error;
 2872 
 2873         g_topology_assert();
 2874 
 2875         error = g_access(cp, 1, 0, 0);
 2876         if (error != 0)
 2877                 return (error);
 2878         pp = cp->provider;
 2879         g_topology_unlock();
 2880         /* Metadata are stored on last sector. */
 2881         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
 2882             &error);
 2883         g_topology_lock();
 2884         g_access(cp, -1, 0, 0);
 2885         if (buf == NULL) {
 2886                 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
 2887                     cp->provider->name, error);
 2888                 return (error);
 2889         }
 2890 
 2891         /* Decode metadata. */
 2892         error = raid3_metadata_decode(buf, md);
 2893         g_free(buf);
 2894         if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
 2895                 return (EINVAL);
 2896         if (md->md_version > G_RAID3_VERSION) {
 2897                 G_RAID3_DEBUG(0,
 2898                     "Kernel module is too old to handle metadata from %s.",
 2899                     cp->provider->name);
 2900                 return (EINVAL);
 2901         }
 2902         if (error != 0) {
 2903                 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
 2904                     cp->provider->name);
 2905                 return (error);
 2906         }
 2907         if (md->md_sectorsize > maxphys) {
 2908                 G_RAID3_DEBUG(0, "The blocksize is too big.");
 2909                 return (EINVAL);
 2910         }
 2911 
 2912         return (0);
 2913 }
 2914 
 2915 static int
 2916 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
 2917     struct g_raid3_metadata *md)
 2918 {
 2919 
 2920         if (md->md_no >= sc->sc_ndisks) {
 2921                 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
 2922                     pp->name, md->md_no);
 2923                 return (EINVAL);
 2924         }
 2925         if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
 2926                 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
 2927                     pp->name, md->md_no);
 2928                 return (EEXIST);
 2929         }
 2930         if (md->md_all != sc->sc_ndisks) {
 2931                 G_RAID3_DEBUG(1,
 2932                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2933                     "md_all", pp->name, sc->sc_name);
 2934                 return (EINVAL);
 2935         }
 2936         if ((md->md_mediasize % md->md_sectorsize) != 0) {
 2937                 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
 2938                     "0) on disk %s (device %s), skipping.", pp->name,
 2939                     sc->sc_name);
 2940                 return (EINVAL);
 2941         }
 2942         if (md->md_mediasize != sc->sc_mediasize) {
 2943                 G_RAID3_DEBUG(1,
 2944                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2945                     "md_mediasize", pp->name, sc->sc_name);
 2946                 return (EINVAL);
 2947         }
 2948         if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
 2949                 G_RAID3_DEBUG(1,
 2950                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2951                     "md_mediasize", pp->name, sc->sc_name);
 2952                 return (EINVAL);
 2953         }
 2954         if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
 2955                 G_RAID3_DEBUG(1,
 2956                     "Invalid size of disk %s (device %s), skipping.", pp->name,
 2957                     sc->sc_name);
 2958                 return (EINVAL);
 2959         }
 2960         if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
 2961                 G_RAID3_DEBUG(1,
 2962                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2963                     "md_sectorsize", pp->name, sc->sc_name);
 2964                 return (EINVAL);
 2965         }
 2966         if (md->md_sectorsize != sc->sc_sectorsize) {
 2967                 G_RAID3_DEBUG(1,
 2968                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2969                     "md_sectorsize", pp->name, sc->sc_name);
 2970                 return (EINVAL);
 2971         }
 2972         if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
 2973                 G_RAID3_DEBUG(1,
 2974                     "Invalid sector size of disk %s (device %s), skipping.",
 2975                     pp->name, sc->sc_name);
 2976                 return (EINVAL);
 2977         }
 2978         if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
 2979                 G_RAID3_DEBUG(1,
 2980                     "Invalid device flags on disk %s (device %s), skipping.",
 2981                     pp->name, sc->sc_name);
 2982                 return (EINVAL);
 2983         }
 2984         if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
 2985             (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
 2986                 /*
 2987                  * VERIFY and ROUND-ROBIN options are mutally exclusive.
 2988                  */
 2989                 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
 2990                     "disk %s (device %s), skipping.", pp->name, sc->sc_name);
 2991                 return (EINVAL);
 2992         }
 2993         if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
 2994                 G_RAID3_DEBUG(1,
 2995                     "Invalid disk flags on disk %s (device %s), skipping.",
 2996                     pp->name, sc->sc_name);
 2997                 return (EINVAL);
 2998         }
 2999         return (0);
 3000 }
 3001 
 3002 int
 3003 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
 3004     struct g_raid3_metadata *md)
 3005 {
 3006         struct g_raid3_disk *disk;
 3007         int error;
 3008 
 3009         g_topology_assert_not();
 3010         G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
 3011 
 3012         error = g_raid3_check_metadata(sc, pp, md);
 3013         if (error != 0)
 3014                 return (error);
 3015         if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
 3016             md->md_genid < sc->sc_genid) {
 3017                 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
 3018                     pp->name, sc->sc_name);
 3019                 return (EINVAL);
 3020         }
 3021         disk = g_raid3_init_disk(sc, pp, md, &error);
 3022         if (disk == NULL)
 3023                 return (error);
 3024         error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
 3025             G_RAID3_EVENT_WAIT);
 3026         if (error != 0)
 3027                 return (error);
 3028         if (md->md_version < G_RAID3_VERSION) {
 3029                 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
 3030                     pp->name, md->md_version, G_RAID3_VERSION);
 3031                 g_raid3_update_metadata(disk);
 3032         }
 3033         return (0);
 3034 }
 3035 
 3036 static void
 3037 g_raid3_destroy_delayed(void *arg, int flag)
 3038 {
 3039         struct g_raid3_softc *sc;
 3040         int error;
 3041 
 3042         if (flag == EV_CANCEL) {
 3043                 G_RAID3_DEBUG(1, "Destroying canceled.");
 3044                 return;
 3045         }
 3046         sc = arg;
 3047         g_topology_unlock();
 3048         sx_xlock(&sc->sc_lock);
 3049         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
 3050             ("DESTROY flag set on %s.", sc->sc_name));
 3051         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
 3052             ("DESTROYING flag not set on %s.", sc->sc_name));
 3053         G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
 3054         error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
 3055         if (error != 0) {
 3056                 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
 3057                 sx_xunlock(&sc->sc_lock);
 3058         }
 3059         g_topology_lock();
 3060 }
 3061 
 3062 static int
 3063 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
 3064 {
 3065         struct g_raid3_softc *sc;
 3066         int dcr, dcw, dce, error = 0;
 3067 
 3068         g_topology_assert();
 3069         G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
 3070             acw, ace);
 3071 
 3072         sc = pp->geom->softc;
 3073         if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
 3074                 return (0);
 3075         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
 3076 
 3077         dcr = pp->acr + acr;
 3078         dcw = pp->acw + acw;
 3079         dce = pp->ace + ace;
 3080 
 3081         g_topology_unlock();
 3082         sx_xlock(&sc->sc_lock);
 3083         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
 3084             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
 3085                 if (acr > 0 || acw > 0 || ace > 0)
 3086                         error = ENXIO;
 3087                 goto end;
 3088         }
 3089         if (dcw == 0)
 3090                 g_raid3_idle(sc, dcw);
 3091         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
 3092                 if (acr > 0 || acw > 0 || ace > 0) {
 3093                         error = ENXIO;
 3094                         goto end;
 3095                 }
 3096                 if (dcr == 0 && dcw == 0 && dce == 0) {
 3097                         g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
 3098                             sc, NULL);
 3099                 }
 3100         }
 3101 end:
 3102         sx_xunlock(&sc->sc_lock);
 3103         g_topology_lock();
 3104         return (error);
 3105 }
 3106 
 3107 static struct g_geom *
 3108 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
 3109 {
 3110         struct g_raid3_softc *sc;
 3111         struct g_geom *gp;
 3112         int error, timeout;
 3113         u_int n;
 3114 
 3115         g_topology_assert();
 3116         G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
 3117 
 3118         /* One disk is minimum. */
 3119         if (md->md_all < 1)
 3120                 return (NULL);
 3121         /*
 3122          * Action geom.
 3123          */
 3124         gp = g_new_geomf(mp, "%s", md->md_name);
 3125         sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
 3126         sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
 3127             M_WAITOK | M_ZERO);
 3128         gp->start = g_raid3_start;
 3129         gp->orphan = g_raid3_orphan;
 3130         gp->access = g_raid3_access;
 3131         gp->dumpconf = g_raid3_dumpconf;
 3132 
 3133         sc->sc_id = md->md_id;
 3134         sc->sc_mediasize = md->md_mediasize;
 3135         sc->sc_sectorsize = md->md_sectorsize;
 3136         sc->sc_ndisks = md->md_all;
 3137         sc->sc_round_robin = 0;
 3138         sc->sc_flags = md->md_mflags;
 3139         sc->sc_bump_id = 0;
 3140         sc->sc_idle = 1;
 3141         sc->sc_last_write = time_uptime;
 3142         sc->sc_writes = 0;
 3143         for (n = 0; n < sc->sc_ndisks; n++) {
 3144                 sc->sc_disks[n].d_softc = sc;
 3145                 sc->sc_disks[n].d_no = n;
 3146                 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
 3147         }
 3148         sx_init(&sc->sc_lock, "graid3:lock");
 3149         bioq_init(&sc->sc_queue);
 3150         mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
 3151         bioq_init(&sc->sc_regular_delayed);
 3152         bioq_init(&sc->sc_inflight);
 3153         bioq_init(&sc->sc_sync_delayed);
 3154         TAILQ_INIT(&sc->sc_events);
 3155         mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
 3156         callout_init(&sc->sc_callout, 1);
 3157         sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
 3158         gp->softc = sc;
 3159         sc->sc_geom = gp;
 3160         sc->sc_provider = NULL;
 3161         /*
 3162          * Synchronization geom.
 3163          */
 3164         gp = g_new_geomf(mp, "%s.sync", md->md_name);
 3165         gp->softc = sc;
 3166         gp->orphan = g_raid3_orphan;
 3167         sc->sc_sync.ds_geom = gp;
 3168 
 3169         if (!g_raid3_use_malloc) {
 3170                 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
 3171                     65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
 3172                     UMA_ALIGN_PTR, 0);
 3173                 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
 3174                 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
 3175                 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
 3176                     sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
 3177                 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
 3178                     16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
 3179                     UMA_ALIGN_PTR, 0);
 3180                 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
 3181                 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
 3182                 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
 3183                     sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
 3184                 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
 3185                     4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
 3186                     UMA_ALIGN_PTR, 0);
 3187                 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
 3188                 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
 3189                 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
 3190                     sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
 3191         }
 3192 
 3193         error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
 3194             "g_raid3 %s", md->md_name);
 3195         if (error != 0) {
 3196                 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
 3197                     sc->sc_name);
 3198                 if (!g_raid3_use_malloc) {
 3199                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
 3200                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
 3201                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
 3202                 }
 3203                 g_destroy_geom(sc->sc_sync.ds_geom);
 3204                 mtx_destroy(&sc->sc_events_mtx);
 3205                 mtx_destroy(&sc->sc_queue_mtx);
 3206                 sx_destroy(&sc->sc_lock);
 3207                 g_destroy_geom(sc->sc_geom);
 3208                 free(sc->sc_disks, M_RAID3);
 3209                 free(sc, M_RAID3);
 3210                 return (NULL);
 3211         }
 3212 
 3213         G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
 3214             sc->sc_name, sc->sc_ndisks, sc->sc_id);
 3215 
 3216         sc->sc_rootmount = root_mount_hold("GRAID3");
 3217         G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
 3218 
 3219         /*
 3220          * Run timeout.
 3221          */
 3222         timeout = atomic_load_acq_int(&g_raid3_timeout);
 3223         callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
 3224         return (sc->sc_geom);
 3225 }
 3226 
 3227 int
 3228 g_raid3_destroy(struct g_raid3_softc *sc, int how)
 3229 {
 3230         struct g_provider *pp;
 3231 
 3232         g_topology_assert_not();
 3233         if (sc == NULL)
 3234                 return (ENXIO);
 3235         sx_assert(&sc->sc_lock, SX_XLOCKED);
 3236 
 3237         pp = sc->sc_provider;
 3238         if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
 3239                 switch (how) {
 3240                 case G_RAID3_DESTROY_SOFT:
 3241                         G_RAID3_DEBUG(1,
 3242                             "Device %s is still open (r%dw%de%d).", pp->name,
 3243                             pp->acr, pp->acw, pp->ace);
 3244                         return (EBUSY);
 3245                 case G_RAID3_DESTROY_DELAYED:
 3246                         G_RAID3_DEBUG(1,
 3247                             "Device %s will be destroyed on last close.",
 3248                             pp->name);
 3249                         if (sc->sc_syncdisk != NULL)
 3250                                 g_raid3_sync_stop(sc, 1);
 3251                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
 3252                         return (EBUSY);
 3253                 case G_RAID3_DESTROY_HARD:
 3254                         G_RAID3_DEBUG(1, "Device %s is still open, so it "
 3255                             "can't be definitely removed.", pp->name);
 3256                         break;
 3257                 }
 3258         }
 3259 
 3260         g_topology_lock();
 3261         if (sc->sc_geom->softc == NULL) {
 3262                 g_topology_unlock();
 3263                 return (0);
 3264         }
 3265         sc->sc_geom->softc = NULL;
 3266         sc->sc_sync.ds_geom->softc = NULL;
 3267         g_topology_unlock();
 3268 
 3269         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 3270         sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
 3271         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
 3272         sx_xunlock(&sc->sc_lock);
 3273         mtx_lock(&sc->sc_queue_mtx);
 3274         wakeup(sc);
 3275         wakeup(&sc->sc_queue);
 3276         mtx_unlock(&sc->sc_queue_mtx);
 3277         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
 3278         while (sc->sc_worker != NULL)
 3279                 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
 3280         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
 3281         sx_xlock(&sc->sc_lock);
 3282         g_raid3_destroy_device(sc);
 3283         free(sc->sc_disks, M_RAID3);
 3284         free(sc, M_RAID3);
 3285         return (0);
 3286 }
 3287 
 3288 static void
 3289 g_raid3_taste_orphan(struct g_consumer *cp)
 3290 {
 3291 
 3292         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
 3293             cp->provider->name));
 3294 }
 3295 
 3296 static struct g_geom *
 3297 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
 3298 {
 3299         struct g_raid3_metadata md;
 3300         struct g_raid3_softc *sc;
 3301         struct g_consumer *cp;
 3302         struct g_geom *gp;
 3303         int error;
 3304 
 3305         g_topology_assert();
 3306         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
 3307         G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
 3308 
 3309         gp = g_new_geomf(mp, "raid3:taste");
 3310         /* This orphan function should be never called. */
 3311         gp->orphan = g_raid3_taste_orphan;
 3312         cp = g_new_consumer(gp);
 3313         cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
 3314         error = g_attach(cp, pp);
 3315         if (error == 0) {
 3316                 error = g_raid3_read_metadata(cp, &md);
 3317                 g_detach(cp);
 3318         }
 3319         g_destroy_consumer(cp);
 3320         g_destroy_geom(gp);
 3321         if (error != 0)
 3322                 return (NULL);
 3323         gp = NULL;
 3324 
 3325         if (md.md_provider[0] != '\0' &&
 3326             !g_compare_names(md.md_provider, pp->name))
 3327                 return (NULL);
 3328         if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
 3329                 return (NULL);
 3330         if (g_raid3_debug >= 2)
 3331                 raid3_metadata_dump(&md);
 3332 
 3333         /*
 3334          * Let's check if device already exists.
 3335          */
 3336         sc = NULL;
 3337         LIST_FOREACH(gp, &mp->geom, geom) {
 3338                 sc = gp->softc;
 3339                 if (sc == NULL)
 3340                         continue;
 3341                 if (sc->sc_sync.ds_geom == gp)
 3342                         continue;
 3343                 if (strcmp(md.md_name, sc->sc_name) != 0)
 3344                         continue;
 3345                 if (md.md_id != sc->sc_id) {
 3346                         G_RAID3_DEBUG(0, "Device %s already configured.",
 3347                             sc->sc_name);
 3348                         return (NULL);
 3349                 }
 3350                 break;
 3351         }
 3352         if (gp == NULL) {
 3353                 gp = g_raid3_create(mp, &md);
 3354                 if (gp == NULL) {
 3355                         G_RAID3_DEBUG(0, "Cannot create device %s.",
 3356                             md.md_name);
 3357                         return (NULL);
 3358                 }
 3359                 sc = gp->softc;
 3360         }
 3361         G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
 3362         g_topology_unlock();
 3363         sx_xlock(&sc->sc_lock);
 3364         error = g_raid3_add_disk(sc, pp, &md);
 3365         if (error != 0) {
 3366                 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
 3367                     pp->name, gp->name, error);
 3368                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
 3369                     sc->sc_ndisks) {
 3370                         g_cancel_event(sc);
 3371                         g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
 3372                         g_topology_lock();
 3373                         return (NULL);
 3374                 }
 3375                 gp = NULL;
 3376         }
 3377         sx_xunlock(&sc->sc_lock);
 3378         g_topology_lock();
 3379         return (gp);
 3380 }
 3381 
 3382 static int
 3383 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
 3384     struct g_geom *gp)
 3385 {
 3386         struct g_raid3_softc *sc;
 3387         int error;
 3388 
 3389         g_topology_unlock();
 3390         sc = gp->softc;
 3391         sx_xlock(&sc->sc_lock);
 3392         g_cancel_event(sc);
 3393         error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
 3394         if (error != 0)
 3395                 sx_xunlock(&sc->sc_lock);
 3396         g_topology_lock();
 3397         return (error);
 3398 }
 3399 
 3400 static void
 3401 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
 3402     struct g_consumer *cp, struct g_provider *pp)
 3403 {
 3404         struct g_raid3_softc *sc;
 3405 
 3406         g_topology_assert();
 3407 
 3408         sc = gp->softc;
 3409         if (sc == NULL)
 3410                 return;
 3411         /* Skip synchronization geom. */
 3412         if (gp == sc->sc_sync.ds_geom)
 3413                 return;
 3414         if (pp != NULL) {
 3415                 /* Nothing here. */
 3416         } else if (cp != NULL) {
 3417                 struct g_raid3_disk *disk;
 3418 
 3419                 disk = cp->private;
 3420                 if (disk == NULL)
 3421                         return;
 3422                 g_topology_unlock();
 3423                 sx_xlock(&sc->sc_lock);
 3424                 sbuf_printf(sb, "%s<Type>", indent);
 3425                 if (disk->d_no == sc->sc_ndisks - 1)
 3426                         sbuf_cat(sb, "PARITY");
 3427                 else
 3428                         sbuf_cat(sb, "DATA");
 3429                 sbuf_cat(sb, "</Type>\n");
 3430                 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
 3431                     (u_int)disk->d_no);
 3432                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
 3433                         sbuf_printf(sb, "%s<Synchronized>", indent);
 3434                         if (disk->d_sync.ds_offset == 0)
 3435                                 sbuf_cat(sb, "0%");
 3436                         else {
 3437                                 sbuf_printf(sb, "%u%%",
 3438                                     (u_int)((disk->d_sync.ds_offset * 100) /
 3439                                     (sc->sc_mediasize / (sc->sc_ndisks - 1))));
 3440                         }
 3441                         sbuf_cat(sb, "</Synchronized>\n");
 3442                         if (disk->d_sync.ds_offset > 0) {
 3443                                 sbuf_printf(sb, "%s<BytesSynced>%jd"
 3444                                     "</BytesSynced>\n", indent,
 3445                                     (intmax_t)disk->d_sync.ds_offset);
 3446                         }
 3447                 }
 3448                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
 3449                     disk->d_sync.ds_syncid);
 3450                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
 3451                 sbuf_printf(sb, "%s<Flags>", indent);
 3452                 if (disk->d_flags == 0)
 3453                         sbuf_cat(sb, "NONE");
 3454                 else {
 3455                         int first = 1;
 3456 
 3457 #define ADD_FLAG(flag, name)    do {                                    \
 3458         if ((disk->d_flags & (flag)) != 0) {                            \
 3459                 if (!first)                                             \
 3460                         sbuf_cat(sb, ", ");                             \
 3461                 else                                                    \
 3462                         first = 0;                                      \
 3463                 sbuf_cat(sb, name);                                     \
 3464         }                                                               \
 3465 } while (0)
 3466                         ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
 3467                         ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
 3468                         ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
 3469                             "SYNCHRONIZING");
 3470                         ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
 3471                         ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
 3472 #undef  ADD_FLAG
 3473                 }
 3474                 sbuf_cat(sb, "</Flags>\n");
 3475                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 3476                     g_raid3_disk_state2str(disk->d_state));
 3477                 sx_xunlock(&sc->sc_lock);
 3478                 g_topology_lock();
 3479         } else {
 3480                 g_topology_unlock();
 3481                 sx_xlock(&sc->sc_lock);
 3482                 if (!g_raid3_use_malloc) {
 3483                         sbuf_printf(sb,
 3484                             "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
 3485                             sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
 3486                         sbuf_printf(sb,
 3487                             "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
 3488                             sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
 3489                         sbuf_printf(sb,
 3490                             "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
 3491                             sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
 3492                         sbuf_printf(sb,
 3493                             "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
 3494                             sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
 3495                         sbuf_printf(sb,
 3496                             "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
 3497                             sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
 3498                         sbuf_printf(sb,
 3499                             "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
 3500                             sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
 3501                 }
 3502                 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
 3503                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
 3504                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
 3505                 sbuf_printf(sb, "%s<Flags>", indent);
 3506                 if (sc->sc_flags == 0)
 3507                         sbuf_cat(sb, "NONE");
 3508                 else {
 3509                         int first = 1;
 3510 
 3511 #define ADD_FLAG(flag, name)    do {                                    \
 3512         if ((sc->sc_flags & (flag)) != 0) {                             \
 3513                 if (!first)                                             \
 3514                         sbuf_cat(sb, ", ");                             \
 3515                 else                                                    \
 3516                         first = 0;                                      \
 3517                 sbuf_cat(sb, name);                                     \
 3518         }                                                               \
 3519 } while (0)
 3520                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
 3521                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
 3522                         ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
 3523                             "ROUND-ROBIN");
 3524                         ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
 3525 #undef  ADD_FLAG
 3526                 }
 3527                 sbuf_cat(sb, "</Flags>\n");
 3528                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
 3529                     sc->sc_ndisks);
 3530                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 3531                     g_raid3_device_state2str(sc->sc_state));
 3532                 sx_xunlock(&sc->sc_lock);
 3533                 g_topology_lock();
 3534         }
 3535 }
 3536 
 3537 static void
 3538 g_raid3_shutdown_post_sync(void *arg, int howto)
 3539 {
 3540         struct g_class *mp;
 3541         struct g_geom *gp, *gp2;
 3542         struct g_raid3_softc *sc;
 3543         int error;
 3544 
 3545         mp = arg;
 3546         g_topology_lock();
 3547         g_raid3_shutdown = 1;
 3548         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
 3549                 if ((sc = gp->softc) == NULL)
 3550                         continue;
 3551                 /* Skip synchronization geom. */
 3552                 if (gp == sc->sc_sync.ds_geom)
 3553                         continue;
 3554                 g_topology_unlock();
 3555                 sx_xlock(&sc->sc_lock);
 3556                 g_raid3_idle(sc, -1);
 3557                 g_cancel_event(sc);
 3558                 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
 3559                 if (error != 0)
 3560                         sx_xunlock(&sc->sc_lock);
 3561                 g_topology_lock();
 3562         }
 3563         g_topology_unlock();
 3564 }
 3565 
 3566 static void
 3567 g_raid3_init(struct g_class *mp)
 3568 {
 3569 
 3570         g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
 3571             g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
 3572         if (g_raid3_post_sync == NULL)
 3573                 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
 3574 }
 3575 
 3576 static void
 3577 g_raid3_fini(struct g_class *mp)
 3578 {
 3579 
 3580         if (g_raid3_post_sync != NULL)
 3581                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync);
 3582 }
 3583 
 3584 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);
 3585 MODULE_VERSION(geom_raid3, 0);

Cache object: a2c34494ac13a81dc481a0567d9b9ace


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.