The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/raid3/g_raid3.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/10.0/sys/geom/raid3/g_raid3.c 245444 2013-01-15 01:27:04Z mav $");
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/kernel.h>
   33 #include <sys/module.h>
   34 #include <sys/limits.h>
   35 #include <sys/lock.h>
   36 #include <sys/mutex.h>
   37 #include <sys/bio.h>
   38 #include <sys/sbuf.h>
   39 #include <sys/sysctl.h>
   40 #include <sys/malloc.h>
   41 #include <sys/eventhandler.h>
   42 #include <vm/uma.h>
   43 #include <geom/geom.h>
   44 #include <sys/proc.h>
   45 #include <sys/kthread.h>
   46 #include <sys/sched.h>
   47 #include <geom/raid3/g_raid3.h>
   48 
   49 FEATURE(geom_raid3, "GEOM RAID-3 functionality");
   50 
   51 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
   52 
   53 SYSCTL_DECL(_kern_geom);
   54 static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0,
   55     "GEOM_RAID3 stuff");
   56 u_int g_raid3_debug = 0;
   57 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug);
   58 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0,
   59     "Debug level");
   60 static u_int g_raid3_timeout = 4;
   61 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout);
   62 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout,
   63     0, "Time to wait on all raid3 components");
   64 static u_int g_raid3_idletime = 5;
   65 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime);
   66 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW,
   67     &g_raid3_idletime, 0, "Mark components as clean when idling");
   68 static u_int g_raid3_disconnect_on_failure = 1;
   69 TUNABLE_INT("kern.geom.raid3.disconnect_on_failure",
   70     &g_raid3_disconnect_on_failure);
   71 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
   72     &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
   73 static u_int g_raid3_syncreqs = 2;
   74 TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs);
   75 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
   76     &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
   77 static u_int g_raid3_use_malloc = 0;
   78 TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc);
   79 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
   80     &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
   81 
   82 static u_int g_raid3_n64k = 50;
   83 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k);
   84 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0,
   85     "Maximum number of 64kB allocations");
   86 static u_int g_raid3_n16k = 200;
   87 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k);
   88 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0,
   89     "Maximum number of 16kB allocations");
   90 static u_int g_raid3_n4k = 1200;
   91 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k);
   92 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0,
   93     "Maximum number of 4kB allocations");
   94 
   95 static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
   96     "GEOM_RAID3 statistics");
   97 static u_int g_raid3_parity_mismatch = 0;
   98 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
   99     &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
  100 
  101 #define MSLEEP(ident, mtx, priority, wmesg, timeout)    do {            \
  102         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));        \
  103         msleep((ident), (mtx), (priority), (wmesg), (timeout));         \
  104         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));        \
  105 } while (0)
  106 
  107 static eventhandler_tag g_raid3_post_sync = NULL;
  108 static int g_raid3_shutdown = 0;
  109 
  110 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
  111     struct g_geom *gp);
  112 static g_taste_t g_raid3_taste;
  113 static void g_raid3_init(struct g_class *mp);
  114 static void g_raid3_fini(struct g_class *mp);
  115 
  116 struct g_class g_raid3_class = {
  117         .name = G_RAID3_CLASS_NAME,
  118         .version = G_VERSION,
  119         .ctlreq = g_raid3_config,
  120         .taste = g_raid3_taste,
  121         .destroy_geom = g_raid3_destroy_geom,
  122         .init = g_raid3_init,
  123         .fini = g_raid3_fini
  124 };
  125 
  126 
  127 static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
  128 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
  129 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
  130 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
  131     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
  132 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
  133 static int g_raid3_register_request(struct bio *pbp);
  134 static void g_raid3_sync_release(struct g_raid3_softc *sc);
  135 
  136 
  137 static const char *
  138 g_raid3_disk_state2str(int state)
  139 {
  140 
  141         switch (state) {
  142         case G_RAID3_DISK_STATE_NODISK:
  143                 return ("NODISK");
  144         case G_RAID3_DISK_STATE_NONE:
  145                 return ("NONE");
  146         case G_RAID3_DISK_STATE_NEW:
  147                 return ("NEW");
  148         case G_RAID3_DISK_STATE_ACTIVE:
  149                 return ("ACTIVE");
  150         case G_RAID3_DISK_STATE_STALE:
  151                 return ("STALE");
  152         case G_RAID3_DISK_STATE_SYNCHRONIZING:
  153                 return ("SYNCHRONIZING");
  154         case G_RAID3_DISK_STATE_DISCONNECTED:
  155                 return ("DISCONNECTED");
  156         default:
  157                 return ("INVALID");
  158         }
  159 }
  160 
  161 static const char *
  162 g_raid3_device_state2str(int state)
  163 {
  164 
  165         switch (state) {
  166         case G_RAID3_DEVICE_STATE_STARTING:
  167                 return ("STARTING");
  168         case G_RAID3_DEVICE_STATE_DEGRADED:
  169                 return ("DEGRADED");
  170         case G_RAID3_DEVICE_STATE_COMPLETE:
  171                 return ("COMPLETE");
  172         default:
  173                 return ("INVALID");
  174         }
  175 }
  176 
  177 const char *
  178 g_raid3_get_diskname(struct g_raid3_disk *disk)
  179 {
  180 
  181         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
  182                 return ("[unknown]");
  183         return (disk->d_name);
  184 }
  185 
  186 static void *
  187 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
  188 {
  189         void *ptr;
  190         enum g_raid3_zones zone;
  191 
  192         if (g_raid3_use_malloc ||
  193             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
  194                 ptr = malloc(size, M_RAID3, flags);
  195         else {
  196                 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
  197                    &sc->sc_zones[zone], flags);
  198                 sc->sc_zones[zone].sz_requested++;
  199                 if (ptr == NULL)
  200                         sc->sc_zones[zone].sz_failed++;
  201         }
  202         return (ptr);
  203 }
  204 
  205 static void
  206 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
  207 {
  208         enum g_raid3_zones zone;
  209 
  210         if (g_raid3_use_malloc ||
  211             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
  212                 free(ptr, M_RAID3);
  213         else {
  214                 uma_zfree_arg(sc->sc_zones[zone].sz_zone,
  215                     ptr, &sc->sc_zones[zone]);
  216         }
  217 }
  218 
  219 static int
  220 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
  221 {
  222         struct g_raid3_zone *sz = arg;
  223 
  224         if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
  225                 return (ENOMEM);
  226         sz->sz_inuse++;
  227         return (0);
  228 }
  229 
  230 static void
  231 g_raid3_uma_dtor(void *mem, int size, void *arg)
  232 {
  233         struct g_raid3_zone *sz = arg;
  234 
  235         sz->sz_inuse--;
  236 }
  237 
  238 #define g_raid3_xor(src, dst, size)                                     \
  239         _g_raid3_xor((uint64_t *)(src),                                 \
  240             (uint64_t *)(dst), (size_t)size)
  241 static void
  242 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
  243 {
  244 
  245         KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
  246         for (; size > 0; size -= 128) {
  247                 *dst++ ^= (*src++);
  248                 *dst++ ^= (*src++);
  249                 *dst++ ^= (*src++);
  250                 *dst++ ^= (*src++);
  251                 *dst++ ^= (*src++);
  252                 *dst++ ^= (*src++);
  253                 *dst++ ^= (*src++);
  254                 *dst++ ^= (*src++);
  255                 *dst++ ^= (*src++);
  256                 *dst++ ^= (*src++);
  257                 *dst++ ^= (*src++);
  258                 *dst++ ^= (*src++);
  259                 *dst++ ^= (*src++);
  260                 *dst++ ^= (*src++);
  261                 *dst++ ^= (*src++);
  262                 *dst++ ^= (*src++);
  263         }
  264 }
  265 
  266 static int
  267 g_raid3_is_zero(struct bio *bp)
  268 {
  269         static const uint64_t zeros[] = {
  270             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  271         };
  272         u_char *addr;
  273         ssize_t size;
  274 
  275         size = bp->bio_length;
  276         addr = (u_char *)bp->bio_data;
  277         for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
  278                 if (bcmp(addr, zeros, sizeof(zeros)) != 0)
  279                         return (0);
  280         }
  281         return (1);
  282 }
  283 
  284 /*
  285  * --- Events handling functions ---
  286  * Events in geom_raid3 are used to maintain disks and device status
  287  * from one thread to simplify locking.
  288  */
  289 static void
  290 g_raid3_event_free(struct g_raid3_event *ep)
  291 {
  292 
  293         free(ep, M_RAID3);
  294 }
  295 
  296 int
  297 g_raid3_event_send(void *arg, int state, int flags)
  298 {
  299         struct g_raid3_softc *sc;
  300         struct g_raid3_disk *disk;
  301         struct g_raid3_event *ep;
  302         int error;
  303 
  304         ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
  305         G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
  306         if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
  307                 disk = NULL;
  308                 sc = arg;
  309         } else {
  310                 disk = arg;
  311                 sc = disk->d_softc;
  312         }
  313         ep->e_disk = disk;
  314         ep->e_state = state;
  315         ep->e_flags = flags;
  316         ep->e_error = 0;
  317         mtx_lock(&sc->sc_events_mtx);
  318         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
  319         mtx_unlock(&sc->sc_events_mtx);
  320         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
  321         mtx_lock(&sc->sc_queue_mtx);
  322         wakeup(sc);
  323         wakeup(&sc->sc_queue);
  324         mtx_unlock(&sc->sc_queue_mtx);
  325         if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
  326                 return (0);
  327         sx_assert(&sc->sc_lock, SX_XLOCKED);
  328         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
  329         sx_xunlock(&sc->sc_lock);
  330         while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
  331                 mtx_lock(&sc->sc_events_mtx);
  332                 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
  333                     hz * 5);
  334         }
  335         error = ep->e_error;
  336         g_raid3_event_free(ep);
  337         sx_xlock(&sc->sc_lock);
  338         return (error);
  339 }
  340 
  341 static struct g_raid3_event *
  342 g_raid3_event_get(struct g_raid3_softc *sc)
  343 {
  344         struct g_raid3_event *ep;
  345 
  346         mtx_lock(&sc->sc_events_mtx);
  347         ep = TAILQ_FIRST(&sc->sc_events);
  348         mtx_unlock(&sc->sc_events_mtx);
  349         return (ep);
  350 }
  351 
  352 static void
  353 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
  354 {
  355 
  356         mtx_lock(&sc->sc_events_mtx);
  357         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  358         mtx_unlock(&sc->sc_events_mtx);
  359 }
  360 
  361 static void
  362 g_raid3_event_cancel(struct g_raid3_disk *disk)
  363 {
  364         struct g_raid3_softc *sc;
  365         struct g_raid3_event *ep, *tmpep;
  366 
  367         sc = disk->d_softc;
  368         sx_assert(&sc->sc_lock, SX_XLOCKED);
  369 
  370         mtx_lock(&sc->sc_events_mtx);
  371         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
  372                 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
  373                         continue;
  374                 if (ep->e_disk != disk)
  375                         continue;
  376                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  377                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
  378                         g_raid3_event_free(ep);
  379                 else {
  380                         ep->e_error = ECANCELED;
  381                         wakeup(ep);
  382                 }
  383         }
  384         mtx_unlock(&sc->sc_events_mtx);
  385 }
  386 
  387 /*
  388  * Return the number of disks in the given state.
  389  * If state is equal to -1, count all connected disks.
  390  */
  391 u_int
  392 g_raid3_ndisks(struct g_raid3_softc *sc, int state)
  393 {
  394         struct g_raid3_disk *disk;
  395         u_int n, ndisks;
  396 
  397         sx_assert(&sc->sc_lock, SX_LOCKED);
  398 
  399         for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
  400                 disk = &sc->sc_disks[n];
  401                 if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
  402                         continue;
  403                 if (state == -1 || disk->d_state == state)
  404                         ndisks++;
  405         }
  406         return (ndisks);
  407 }
  408 
  409 static u_int
  410 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
  411 {
  412         struct bio *bp;
  413         u_int nreqs = 0;
  414 
  415         mtx_lock(&sc->sc_queue_mtx);
  416         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
  417                 if (bp->bio_from == cp)
  418                         nreqs++;
  419         }
  420         mtx_unlock(&sc->sc_queue_mtx);
  421         return (nreqs);
  422 }
  423 
  424 static int
  425 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
  426 {
  427 
  428         if (cp->index > 0) {
  429                 G_RAID3_DEBUG(2,
  430                     "I/O requests for %s exist, can't destroy it now.",
  431                     cp->provider->name);
  432                 return (1);
  433         }
  434         if (g_raid3_nrequests(sc, cp) > 0) {
  435                 G_RAID3_DEBUG(2,
  436                     "I/O requests for %s in queue, can't destroy it now.",
  437                     cp->provider->name);
  438                 return (1);
  439         }
  440         return (0);
  441 }
  442 
  443 static void
  444 g_raid3_destroy_consumer(void *arg, int flags __unused)
  445 {
  446         struct g_consumer *cp;
  447 
  448         g_topology_assert();
  449 
  450         cp = arg;
  451         G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
  452         g_detach(cp);
  453         g_destroy_consumer(cp);
  454 }
  455 
  456 static void
  457 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
  458 {
  459         struct g_provider *pp;
  460         int retaste_wait;
  461 
  462         g_topology_assert();
  463 
  464         cp->private = NULL;
  465         if (g_raid3_is_busy(sc, cp))
  466                 return;
  467         G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
  468         pp = cp->provider;
  469         retaste_wait = 0;
  470         if (cp->acw == 1) {
  471                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
  472                         retaste_wait = 1;
  473         }
  474         G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
  475             -cp->acw, -cp->ace, 0);
  476         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
  477                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
  478         if (retaste_wait) {
  479                 /*
  480                  * After retaste event was send (inside g_access()), we can send
  481                  * event to detach and destroy consumer.
  482                  * A class, which has consumer to the given provider connected
  483                  * will not receive retaste event for the provider.
  484                  * This is the way how I ignore retaste events when I close
  485                  * consumers opened for write: I detach and destroy consumer
  486                  * after retaste event is sent.
  487                  */
  488                 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
  489                 return;
  490         }
  491         G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
  492         g_detach(cp);
  493         g_destroy_consumer(cp);
  494 }
  495 
  496 static int
  497 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
  498 {
  499         struct g_consumer *cp;
  500         int error;
  501 
  502         g_topology_assert_not();
  503         KASSERT(disk->d_consumer == NULL,
  504             ("Disk already connected (device %s).", disk->d_softc->sc_name));
  505 
  506         g_topology_lock();
  507         cp = g_new_consumer(disk->d_softc->sc_geom);
  508         error = g_attach(cp, pp);
  509         if (error != 0) {
  510                 g_destroy_consumer(cp);
  511                 g_topology_unlock();
  512                 return (error);
  513         }
  514         error = g_access(cp, 1, 1, 1);
  515                 g_topology_unlock();
  516         if (error != 0) {
  517                 g_detach(cp);
  518                 g_destroy_consumer(cp);
  519                 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
  520                     pp->name, error);
  521                 return (error);
  522         }
  523         disk->d_consumer = cp;
  524         disk->d_consumer->private = disk;
  525         disk->d_consumer->index = 0;
  526         G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
  527         return (0);
  528 }
  529 
  530 static void
  531 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
  532 {
  533 
  534         g_topology_assert();
  535 
  536         if (cp == NULL)
  537                 return;
  538         if (cp->provider != NULL)
  539                 g_raid3_kill_consumer(sc, cp);
  540         else
  541                 g_destroy_consumer(cp);
  542 }
  543 
  544 /*
  545  * Initialize disk. This means allocate memory, create consumer, attach it
  546  * to the provider and open access (r1w1e1) to it.
  547  */
  548 static struct g_raid3_disk *
  549 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
  550     struct g_raid3_metadata *md, int *errorp)
  551 {
  552         struct g_raid3_disk *disk;
  553         int error;
  554 
  555         disk = &sc->sc_disks[md->md_no];
  556         error = g_raid3_connect_disk(disk, pp);
  557         if (error != 0) {
  558                 if (errorp != NULL)
  559                         *errorp = error;
  560                 return (NULL);
  561         }
  562         disk->d_state = G_RAID3_DISK_STATE_NONE;
  563         disk->d_flags = md->md_dflags;
  564         if (md->md_provider[0] != '\0')
  565                 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
  566         disk->d_sync.ds_consumer = NULL;
  567         disk->d_sync.ds_offset = md->md_sync_offset;
  568         disk->d_sync.ds_offset_done = md->md_sync_offset;
  569         disk->d_genid = md->md_genid;
  570         disk->d_sync.ds_syncid = md->md_syncid;
  571         if (errorp != NULL)
  572                 *errorp = 0;
  573         return (disk);
  574 }
  575 
  576 static void
  577 g_raid3_destroy_disk(struct g_raid3_disk *disk)
  578 {
  579         struct g_raid3_softc *sc;
  580 
  581         g_topology_assert_not();
  582         sc = disk->d_softc;
  583         sx_assert(&sc->sc_lock, SX_XLOCKED);
  584 
  585         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
  586                 return;
  587         g_raid3_event_cancel(disk);
  588         switch (disk->d_state) {
  589         case G_RAID3_DISK_STATE_SYNCHRONIZING:
  590                 if (sc->sc_syncdisk != NULL)
  591                         g_raid3_sync_stop(sc, 1);
  592                 /* FALLTHROUGH */
  593         case G_RAID3_DISK_STATE_NEW:
  594         case G_RAID3_DISK_STATE_STALE:
  595         case G_RAID3_DISK_STATE_ACTIVE:
  596                 g_topology_lock();
  597                 g_raid3_disconnect_consumer(sc, disk->d_consumer);
  598                 g_topology_unlock();
  599                 disk->d_consumer = NULL;
  600                 break;
  601         default:
  602                 KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
  603                     g_raid3_get_diskname(disk),
  604                     g_raid3_disk_state2str(disk->d_state)));
  605         }
  606         disk->d_state = G_RAID3_DISK_STATE_NODISK;
  607 }
  608 
  609 static void
  610 g_raid3_destroy_device(struct g_raid3_softc *sc)
  611 {
  612         struct g_raid3_event *ep;
  613         struct g_raid3_disk *disk;
  614         struct g_geom *gp;
  615         struct g_consumer *cp;
  616         u_int n;
  617 
  618         g_topology_assert_not();
  619         sx_assert(&sc->sc_lock, SX_XLOCKED);
  620 
  621         gp = sc->sc_geom;
  622         if (sc->sc_provider != NULL)
  623                 g_raid3_destroy_provider(sc);
  624         for (n = 0; n < sc->sc_ndisks; n++) {
  625                 disk = &sc->sc_disks[n];
  626                 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
  627                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
  628                         g_raid3_update_metadata(disk);
  629                         g_raid3_destroy_disk(disk);
  630                 }
  631         }
  632         while ((ep = g_raid3_event_get(sc)) != NULL) {
  633                 g_raid3_event_remove(sc, ep);
  634                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
  635                         g_raid3_event_free(ep);
  636                 else {
  637                         ep->e_error = ECANCELED;
  638                         ep->e_flags |= G_RAID3_EVENT_DONE;
  639                         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
  640                         mtx_lock(&sc->sc_events_mtx);
  641                         wakeup(ep);
  642                         mtx_unlock(&sc->sc_events_mtx);
  643                 }
  644         }
  645         callout_drain(&sc->sc_callout);
  646         cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
  647         g_topology_lock();
  648         if (cp != NULL)
  649                 g_raid3_disconnect_consumer(sc, cp);
  650         g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
  651         G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
  652         g_wither_geom(gp, ENXIO);
  653         g_topology_unlock();
  654         if (!g_raid3_use_malloc) {
  655                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
  656                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
  657                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
  658         }
  659         mtx_destroy(&sc->sc_queue_mtx);
  660         mtx_destroy(&sc->sc_events_mtx);
  661         sx_xunlock(&sc->sc_lock);
  662         sx_destroy(&sc->sc_lock);
  663 }
  664 
  665 static void
  666 g_raid3_orphan(struct g_consumer *cp)
  667 {
  668         struct g_raid3_disk *disk;
  669 
  670         g_topology_assert();
  671 
  672         disk = cp->private;
  673         if (disk == NULL)
  674                 return;
  675         disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
  676         g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
  677             G_RAID3_EVENT_DONTWAIT);
  678 }
  679 
  680 static int
  681 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
  682 {
  683         struct g_raid3_softc *sc;
  684         struct g_consumer *cp;
  685         off_t offset, length;
  686         u_char *sector;
  687         int error = 0;
  688 
  689         g_topology_assert_not();
  690         sc = disk->d_softc;
  691         sx_assert(&sc->sc_lock, SX_LOCKED);
  692 
  693         cp = disk->d_consumer;
  694         KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
  695         KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
  696         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
  697             ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
  698             cp->acw, cp->ace));
  699         length = cp->provider->sectorsize;
  700         offset = cp->provider->mediasize - length;
  701         sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
  702         if (md != NULL)
  703                 raid3_metadata_encode(md, sector);
  704         error = g_write_data(cp, offset, sector, length);
  705         free(sector, M_RAID3);
  706         if (error != 0) {
  707                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
  708                         G_RAID3_DEBUG(0, "Cannot write metadata on %s "
  709                             "(device=%s, error=%d).",
  710                             g_raid3_get_diskname(disk), sc->sc_name, error);
  711                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
  712                 } else {
  713                         G_RAID3_DEBUG(1, "Cannot write metadata on %s "
  714                             "(device=%s, error=%d).",
  715                             g_raid3_get_diskname(disk), sc->sc_name, error);
  716                 }
  717                 if (g_raid3_disconnect_on_failure &&
  718                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
  719                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
  720                         g_raid3_event_send(disk,
  721                             G_RAID3_DISK_STATE_DISCONNECTED,
  722                             G_RAID3_EVENT_DONTWAIT);
  723                 }
  724         }
  725         return (error);
  726 }
  727 
  728 int
  729 g_raid3_clear_metadata(struct g_raid3_disk *disk)
  730 {
  731         int error;
  732 
  733         g_topology_assert_not();
  734         sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
  735 
  736         error = g_raid3_write_metadata(disk, NULL);
  737         if (error == 0) {
  738                 G_RAID3_DEBUG(2, "Metadata on %s cleared.",
  739                     g_raid3_get_diskname(disk));
  740         } else {
  741                 G_RAID3_DEBUG(0,
  742                     "Cannot clear metadata on disk %s (error=%d).",
  743                     g_raid3_get_diskname(disk), error);
  744         }
  745         return (error);
  746 }
  747 
  748 void
  749 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
  750 {
  751         struct g_raid3_softc *sc;
  752         struct g_provider *pp;
  753 
  754         sc = disk->d_softc;
  755         strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
  756         md->md_version = G_RAID3_VERSION;
  757         strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
  758         md->md_id = sc->sc_id;
  759         md->md_all = sc->sc_ndisks;
  760         md->md_genid = sc->sc_genid;
  761         md->md_mediasize = sc->sc_mediasize;
  762         md->md_sectorsize = sc->sc_sectorsize;
  763         md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
  764         md->md_no = disk->d_no;
  765         md->md_syncid = disk->d_sync.ds_syncid;
  766         md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
  767         if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
  768                 md->md_sync_offset = 0;
  769         else {
  770                 md->md_sync_offset =
  771                     disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
  772         }
  773         if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
  774                 pp = disk->d_consumer->provider;
  775         else
  776                 pp = NULL;
  777         if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
  778                 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
  779         else
  780                 bzero(md->md_provider, sizeof(md->md_provider));
  781         if (pp != NULL)
  782                 md->md_provsize = pp->mediasize;
  783         else
  784                 md->md_provsize = 0;
  785 }
  786 
  787 void
  788 g_raid3_update_metadata(struct g_raid3_disk *disk)
  789 {
  790         struct g_raid3_softc *sc;
  791         struct g_raid3_metadata md;
  792         int error;
  793 
  794         g_topology_assert_not();
  795         sc = disk->d_softc;
  796         sx_assert(&sc->sc_lock, SX_LOCKED);
  797 
  798         g_raid3_fill_metadata(disk, &md);
  799         error = g_raid3_write_metadata(disk, &md);
  800         if (error == 0) {
  801                 G_RAID3_DEBUG(2, "Metadata on %s updated.",
  802                     g_raid3_get_diskname(disk));
  803         } else {
  804                 G_RAID3_DEBUG(0,
  805                     "Cannot update metadata on disk %s (error=%d).",
  806                     g_raid3_get_diskname(disk), error);
  807         }
  808 }
  809 
  810 static void
  811 g_raid3_bump_syncid(struct g_raid3_softc *sc)
  812 {
  813         struct g_raid3_disk *disk;
  814         u_int n;
  815 
  816         g_topology_assert_not();
  817         sx_assert(&sc->sc_lock, SX_XLOCKED);
  818         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
  819             ("%s called with no active disks (device=%s).", __func__,
  820             sc->sc_name));
  821 
  822         sc->sc_syncid++;
  823         G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
  824             sc->sc_syncid);
  825         for (n = 0; n < sc->sc_ndisks; n++) {
  826                 disk = &sc->sc_disks[n];
  827                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
  828                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
  829                         disk->d_sync.ds_syncid = sc->sc_syncid;
  830                         g_raid3_update_metadata(disk);
  831                 }
  832         }
  833 }
  834 
  835 static void
  836 g_raid3_bump_genid(struct g_raid3_softc *sc)
  837 {
  838         struct g_raid3_disk *disk;
  839         u_int n;
  840 
  841         g_topology_assert_not();
  842         sx_assert(&sc->sc_lock, SX_XLOCKED);
  843         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
  844             ("%s called with no active disks (device=%s).", __func__,
  845             sc->sc_name));
  846 
  847         sc->sc_genid++;
  848         G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
  849             sc->sc_genid);
  850         for (n = 0; n < sc->sc_ndisks; n++) {
  851                 disk = &sc->sc_disks[n];
  852                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
  853                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
  854                         disk->d_genid = sc->sc_genid;
  855                         g_raid3_update_metadata(disk);
  856                 }
  857         }
  858 }
  859 
  860 static int
  861 g_raid3_idle(struct g_raid3_softc *sc, int acw)
  862 {
  863         struct g_raid3_disk *disk;
  864         u_int i;
  865         int timeout;
  866 
  867         g_topology_assert_not();
  868         sx_assert(&sc->sc_lock, SX_XLOCKED);
  869 
  870         if (sc->sc_provider == NULL)
  871                 return (0);
  872         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
  873                 return (0);
  874         if (sc->sc_idle)
  875                 return (0);
  876         if (sc->sc_writes > 0)
  877                 return (0);
  878         if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
  879                 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
  880                 if (!g_raid3_shutdown && timeout > 0)
  881                         return (timeout);
  882         }
  883         sc->sc_idle = 1;
  884         for (i = 0; i < sc->sc_ndisks; i++) {
  885                 disk = &sc->sc_disks[i];
  886                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
  887                         continue;
  888                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
  889                     g_raid3_get_diskname(disk), sc->sc_name);
  890                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
  891                 g_raid3_update_metadata(disk);
  892         }
  893         return (0);
  894 }
  895 
  896 static void
  897 g_raid3_unidle(struct g_raid3_softc *sc)
  898 {
  899         struct g_raid3_disk *disk;
  900         u_int i;
  901 
  902         g_topology_assert_not();
  903         sx_assert(&sc->sc_lock, SX_XLOCKED);
  904 
  905         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
  906                 return;
  907         sc->sc_idle = 0;
  908         sc->sc_last_write = time_uptime;
  909         for (i = 0; i < sc->sc_ndisks; i++) {
  910                 disk = &sc->sc_disks[i];
  911                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
  912                         continue;
  913                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
  914                     g_raid3_get_diskname(disk), sc->sc_name);
  915                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
  916                 g_raid3_update_metadata(disk);
  917         }
  918 }
  919 
  920 /*
  921  * Treat bio_driver1 field in parent bio as list head and field bio_caller1
  922  * in child bio as pointer to the next element on the list.
  923  */
  924 #define G_RAID3_HEAD_BIO(pbp)   (pbp)->bio_driver1
  925 
  926 #define G_RAID3_NEXT_BIO(cbp)   (cbp)->bio_caller1
  927 
  928 #define G_RAID3_FOREACH_BIO(pbp, bp)                                    \
  929         for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;                \
  930             (bp) = G_RAID3_NEXT_BIO(bp))
  931 
  932 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)                        \
  933         for ((bp) = G_RAID3_HEAD_BIO(pbp);                              \
  934             (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);        \
  935             (bp) = (tmpbp))
  936 
  937 static void
  938 g_raid3_init_bio(struct bio *pbp)
  939 {
  940 
  941         G_RAID3_HEAD_BIO(pbp) = NULL;
  942 }
  943 
  944 static void
  945 g_raid3_remove_bio(struct bio *cbp)
  946 {
  947         struct bio *pbp, *bp;
  948 
  949         pbp = cbp->bio_parent;
  950         if (G_RAID3_HEAD_BIO(pbp) == cbp)
  951                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
  952         else {
  953                 G_RAID3_FOREACH_BIO(pbp, bp) {
  954                         if (G_RAID3_NEXT_BIO(bp) == cbp) {
  955                                 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
  956                                 break;
  957                         }
  958                 }
  959         }
  960         G_RAID3_NEXT_BIO(cbp) = NULL;
  961 }
  962 
  963 static void
  964 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
  965 {
  966         struct bio *pbp, *bp;
  967 
  968         g_raid3_remove_bio(sbp);
  969         pbp = dbp->bio_parent;
  970         G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
  971         if (G_RAID3_HEAD_BIO(pbp) == dbp)
  972                 G_RAID3_HEAD_BIO(pbp) = sbp;
  973         else {
  974                 G_RAID3_FOREACH_BIO(pbp, bp) {
  975                         if (G_RAID3_NEXT_BIO(bp) == dbp) {
  976                                 G_RAID3_NEXT_BIO(bp) = sbp;
  977                                 break;
  978                         }
  979                 }
  980         }
  981         G_RAID3_NEXT_BIO(dbp) = NULL;
  982 }
  983 
  984 static void
  985 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
  986 {
  987         struct bio *bp, *pbp;
  988         size_t size;
  989 
  990         pbp = cbp->bio_parent;
  991         pbp->bio_children--;
  992         KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
  993         size = pbp->bio_length / (sc->sc_ndisks - 1);
  994         g_raid3_free(sc, cbp->bio_data, size);
  995         if (G_RAID3_HEAD_BIO(pbp) == cbp) {
  996                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
  997                 G_RAID3_NEXT_BIO(cbp) = NULL;
  998                 g_destroy_bio(cbp);
  999         } else {
 1000                 G_RAID3_FOREACH_BIO(pbp, bp) {
 1001                         if (G_RAID3_NEXT_BIO(bp) == cbp)
 1002                                 break;
 1003                 }
 1004                 if (bp != NULL) {
 1005                         KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
 1006                             ("NULL bp->bio_driver1"));
 1007                         G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
 1008                         G_RAID3_NEXT_BIO(cbp) = NULL;
 1009                 }
 1010                 g_destroy_bio(cbp);
 1011         }
 1012 }
 1013 
 1014 static struct bio *
 1015 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
 1016 {
 1017         struct bio *bp, *cbp;
 1018         size_t size;
 1019         int memflag;
 1020 
 1021         cbp = g_clone_bio(pbp);
 1022         if (cbp == NULL)
 1023                 return (NULL);
 1024         size = pbp->bio_length / (sc->sc_ndisks - 1);
 1025         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
 1026                 memflag = M_WAITOK;
 1027         else
 1028                 memflag = M_NOWAIT;
 1029         cbp->bio_data = g_raid3_alloc(sc, size, memflag);
 1030         if (cbp->bio_data == NULL) {
 1031                 pbp->bio_children--;
 1032                 g_destroy_bio(cbp);
 1033                 return (NULL);
 1034         }
 1035         G_RAID3_NEXT_BIO(cbp) = NULL;
 1036         if (G_RAID3_HEAD_BIO(pbp) == NULL)
 1037                 G_RAID3_HEAD_BIO(pbp) = cbp;
 1038         else {
 1039                 G_RAID3_FOREACH_BIO(pbp, bp) {
 1040                         if (G_RAID3_NEXT_BIO(bp) == NULL) {
 1041                                 G_RAID3_NEXT_BIO(bp) = cbp;
 1042                                 break;
 1043                         }
 1044                 }
 1045         }
 1046         return (cbp);
 1047 }
 1048 
 1049 static void
 1050 g_raid3_scatter(struct bio *pbp)
 1051 {
 1052         struct g_raid3_softc *sc;
 1053         struct g_raid3_disk *disk;
 1054         struct bio *bp, *cbp, *tmpbp;
 1055         off_t atom, cadd, padd, left;
 1056         int first;
 1057 
 1058         sc = pbp->bio_to->geom->softc;
 1059         bp = NULL;
 1060         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
 1061                 /*
 1062                  * Find bio for which we should calculate data.
 1063                  */
 1064                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1065                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
 1066                                 bp = cbp;
 1067                                 break;
 1068                         }
 1069                 }
 1070                 KASSERT(bp != NULL, ("NULL parity bio."));
 1071         }
 1072         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
 1073         cadd = padd = 0;
 1074         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
 1075                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1076                         if (cbp == bp)
 1077                                 continue;
 1078                         bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
 1079                         padd += atom;
 1080                 }
 1081                 cadd += atom;
 1082         }
 1083         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
 1084                 /*
 1085                  * Calculate parity.
 1086                  */
 1087                 first = 1;
 1088                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
 1089                         if (cbp == bp)
 1090                                 continue;
 1091                         if (first) {
 1092                                 bcopy(cbp->bio_data, bp->bio_data,
 1093                                     bp->bio_length);
 1094                                 first = 0;
 1095                         } else {
 1096                                 g_raid3_xor(cbp->bio_data, bp->bio_data,
 1097                                     bp->bio_length);
 1098                         }
 1099                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
 1100                                 g_raid3_destroy_bio(sc, cbp);
 1101                 }
 1102         }
 1103         G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
 1104                 struct g_consumer *cp;
 1105 
 1106                 disk = cbp->bio_caller2;
 1107                 cp = disk->d_consumer;
 1108                 cbp->bio_to = cp->provider;
 1109                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
 1110                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1111                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1112                     cp->acr, cp->acw, cp->ace));
 1113                 cp->index++;
 1114                 sc->sc_writes++;
 1115                 g_io_request(cbp, cp);
 1116         }
 1117 }
 1118 
 1119 static void
 1120 g_raid3_gather(struct bio *pbp)
 1121 {
 1122         struct g_raid3_softc *sc;
 1123         struct g_raid3_disk *disk;
 1124         struct bio *xbp, *fbp, *cbp;
 1125         off_t atom, cadd, padd, left;
 1126 
 1127         sc = pbp->bio_to->geom->softc;
 1128         /*
 1129          * Find bio for which we have to calculate data.
 1130          * While going through this path, check if all requests
 1131          * succeeded, if not, deny whole request.
 1132          * If we're in COMPLETE mode, we allow one request to fail,
 1133          * so if we find one, we're sending it to the parity consumer.
 1134          * If there are more failed requests, we deny whole request.
 1135          */
 1136         xbp = fbp = NULL;
 1137         G_RAID3_FOREACH_BIO(pbp, cbp) {
 1138                 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
 1139                         KASSERT(xbp == NULL, ("More than one parity bio."));
 1140                         xbp = cbp;
 1141                 }
 1142                 if (cbp->bio_error == 0)
 1143                         continue;
 1144                 /*
 1145                  * Found failed request.
 1146                  */
 1147                 if (fbp == NULL) {
 1148                         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
 1149                                 /*
 1150                                  * We are already in degraded mode, so we can't
 1151                                  * accept any failures.
 1152                                  */
 1153                                 if (pbp->bio_error == 0)
 1154                                         pbp->bio_error = cbp->bio_error;
 1155                         } else {
 1156                                 fbp = cbp;
 1157                         }
 1158                 } else {
 1159                         /*
 1160                          * Next failed request, that's too many.
 1161                          */
 1162                         if (pbp->bio_error == 0)
 1163                                 pbp->bio_error = fbp->bio_error;
 1164                 }
 1165                 disk = cbp->bio_caller2;
 1166                 if (disk == NULL)
 1167                         continue;
 1168                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
 1169                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
 1170                         G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
 1171                             cbp->bio_error);
 1172                 } else {
 1173                         G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
 1174                             cbp->bio_error);
 1175                 }
 1176                 if (g_raid3_disconnect_on_failure &&
 1177                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1178                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
 1179                         g_raid3_event_send(disk,
 1180                             G_RAID3_DISK_STATE_DISCONNECTED,
 1181                             G_RAID3_EVENT_DONTWAIT);
 1182                 }
 1183         }
 1184         if (pbp->bio_error != 0)
 1185                 goto finish;
 1186         if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
 1187                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
 1188                 if (xbp != fbp)
 1189                         g_raid3_replace_bio(xbp, fbp);
 1190                 g_raid3_destroy_bio(sc, fbp);
 1191         } else if (fbp != NULL) {
 1192                 struct g_consumer *cp;
 1193 
 1194                 /*
 1195                  * One request failed, so send the same request to
 1196                  * the parity consumer.
 1197                  */
 1198                 disk = pbp->bio_driver2;
 1199                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
 1200                         pbp->bio_error = fbp->bio_error;
 1201                         goto finish;
 1202                 }
 1203                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
 1204                 pbp->bio_inbed--;
 1205                 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
 1206                 if (disk->d_no == sc->sc_ndisks - 1)
 1207                         fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1208                 fbp->bio_error = 0;
 1209                 fbp->bio_completed = 0;
 1210                 fbp->bio_children = 0;
 1211                 fbp->bio_inbed = 0;
 1212                 cp = disk->d_consumer;
 1213                 fbp->bio_caller2 = disk;
 1214                 fbp->bio_to = cp->provider;
 1215                 G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
 1216                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1217                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1218                     cp->acr, cp->acw, cp->ace));
 1219                 cp->index++;
 1220                 g_io_request(fbp, cp);
 1221                 return;
 1222         }
 1223         if (xbp != NULL) {
 1224                 /*
 1225                  * Calculate parity.
 1226                  */
 1227                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1228                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
 1229                                 continue;
 1230                         g_raid3_xor(cbp->bio_data, xbp->bio_data,
 1231                             xbp->bio_length);
 1232                 }
 1233                 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
 1234                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
 1235                         if (!g_raid3_is_zero(xbp)) {
 1236                                 g_raid3_parity_mismatch++;
 1237                                 pbp->bio_error = EIO;
 1238                                 goto finish;
 1239                         }
 1240                         g_raid3_destroy_bio(sc, xbp);
 1241                 }
 1242         }
 1243         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
 1244         cadd = padd = 0;
 1245         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
 1246                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1247                         bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
 1248                         pbp->bio_completed += atom;
 1249                         padd += atom;
 1250                 }
 1251                 cadd += atom;
 1252         }
 1253 finish:
 1254         if (pbp->bio_error == 0)
 1255                 G_RAID3_LOGREQ(3, pbp, "Request finished.");
 1256         else {
 1257                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
 1258                         G_RAID3_LOGREQ(1, pbp, "Verification error.");
 1259                 else
 1260                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
 1261         }
 1262         pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
 1263         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
 1264                 g_raid3_destroy_bio(sc, cbp);
 1265         g_io_deliver(pbp, pbp->bio_error);
 1266 }
 1267 
 1268 static void
 1269 g_raid3_done(struct bio *bp)
 1270 {
 1271         struct g_raid3_softc *sc;
 1272 
 1273         sc = bp->bio_from->geom->softc;
 1274         bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
 1275         G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
 1276         mtx_lock(&sc->sc_queue_mtx);
 1277         bioq_insert_head(&sc->sc_queue, bp);
 1278         mtx_unlock(&sc->sc_queue_mtx);
 1279         wakeup(sc);
 1280         wakeup(&sc->sc_queue);
 1281 }
 1282 
 1283 static void
 1284 g_raid3_regular_request(struct bio *cbp)
 1285 {
 1286         struct g_raid3_softc *sc;
 1287         struct g_raid3_disk *disk;
 1288         struct bio *pbp;
 1289 
 1290         g_topology_assert_not();
 1291 
 1292         pbp = cbp->bio_parent;
 1293         sc = pbp->bio_to->geom->softc;
 1294         cbp->bio_from->index--;
 1295         if (cbp->bio_cmd == BIO_WRITE)
 1296                 sc->sc_writes--;
 1297         disk = cbp->bio_from->private;
 1298         if (disk == NULL) {
 1299                 g_topology_lock();
 1300                 g_raid3_kill_consumer(sc, cbp->bio_from);
 1301                 g_topology_unlock();
 1302         }
 1303 
 1304         G_RAID3_LOGREQ(3, cbp, "Request finished.");
 1305         pbp->bio_inbed++;
 1306         KASSERT(pbp->bio_inbed <= pbp->bio_children,
 1307             ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
 1308             pbp->bio_children));
 1309         if (pbp->bio_inbed != pbp->bio_children)
 1310                 return;
 1311         switch (pbp->bio_cmd) {
 1312         case BIO_READ:
 1313                 g_raid3_gather(pbp);
 1314                 break;
 1315         case BIO_WRITE:
 1316         case BIO_DELETE:
 1317             {
 1318                 int error = 0;
 1319 
 1320                 pbp->bio_completed = pbp->bio_length;
 1321                 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
 1322                         if (cbp->bio_error == 0) {
 1323                                 g_raid3_destroy_bio(sc, cbp);
 1324                                 continue;
 1325                         }
 1326 
 1327                         if (error == 0)
 1328                                 error = cbp->bio_error;
 1329                         else if (pbp->bio_error == 0) {
 1330                                 /*
 1331                                  * Next failed request, that's too many.
 1332                                  */
 1333                                 pbp->bio_error = error;
 1334                         }
 1335 
 1336                         disk = cbp->bio_caller2;
 1337                         if (disk == NULL) {
 1338                                 g_raid3_destroy_bio(sc, cbp);
 1339                                 continue;
 1340                         }
 1341 
 1342                         if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
 1343                                 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
 1344                                 G_RAID3_LOGREQ(0, cbp,
 1345                                     "Request failed (error=%d).",
 1346                                     cbp->bio_error);
 1347                         } else {
 1348                                 G_RAID3_LOGREQ(1, cbp,
 1349                                     "Request failed (error=%d).",
 1350                                     cbp->bio_error);
 1351                         }
 1352                         if (g_raid3_disconnect_on_failure &&
 1353                             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1354                                 sc->sc_bump_id |= G_RAID3_BUMP_GENID;
 1355                                 g_raid3_event_send(disk,
 1356                                     G_RAID3_DISK_STATE_DISCONNECTED,
 1357                                     G_RAID3_EVENT_DONTWAIT);
 1358                         }
 1359                         g_raid3_destroy_bio(sc, cbp);
 1360                 }
 1361                 if (pbp->bio_error == 0)
 1362                         G_RAID3_LOGREQ(3, pbp, "Request finished.");
 1363                 else
 1364                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
 1365                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
 1366                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
 1367                 bioq_remove(&sc->sc_inflight, pbp);
 1368                 /* Release delayed sync requests if possible. */
 1369                 g_raid3_sync_release(sc);
 1370                 g_io_deliver(pbp, pbp->bio_error);
 1371                 break;
 1372             }
 1373         }
 1374 }
 1375 
 1376 static void
 1377 g_raid3_sync_done(struct bio *bp)
 1378 {
 1379         struct g_raid3_softc *sc;
 1380 
 1381         G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
 1382         sc = bp->bio_from->geom->softc;
 1383         bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
 1384         mtx_lock(&sc->sc_queue_mtx);
 1385         bioq_insert_head(&sc->sc_queue, bp);
 1386         mtx_unlock(&sc->sc_queue_mtx);
 1387         wakeup(sc);
 1388         wakeup(&sc->sc_queue);
 1389 }
 1390 
 1391 static void
 1392 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
 1393 {
 1394         struct bio_queue_head queue;
 1395         struct g_raid3_disk *disk;
 1396         struct g_consumer *cp;
 1397         struct bio *cbp;
 1398         u_int i;
 1399 
 1400         bioq_init(&queue);
 1401         for (i = 0; i < sc->sc_ndisks; i++) {
 1402                 disk = &sc->sc_disks[i];
 1403                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
 1404                         continue;
 1405                 cbp = g_clone_bio(bp);
 1406                 if (cbp == NULL) {
 1407                         for (cbp = bioq_first(&queue); cbp != NULL;
 1408                             cbp = bioq_first(&queue)) {
 1409                                 bioq_remove(&queue, cbp);
 1410                                 g_destroy_bio(cbp);
 1411                         }
 1412                         if (bp->bio_error == 0)
 1413                                 bp->bio_error = ENOMEM;
 1414                         g_io_deliver(bp, bp->bio_error);
 1415                         return;
 1416                 }
 1417                 bioq_insert_tail(&queue, cbp);
 1418                 cbp->bio_done = g_std_done;
 1419                 cbp->bio_caller1 = disk;
 1420                 cbp->bio_to = disk->d_consumer->provider;
 1421         }
 1422         for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
 1423                 bioq_remove(&queue, cbp);
 1424                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
 1425                 disk = cbp->bio_caller1;
 1426                 cbp->bio_caller1 = NULL;
 1427                 cp = disk->d_consumer;
 1428                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1429                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1430                     cp->acr, cp->acw, cp->ace));
 1431                 g_io_request(cbp, disk->d_consumer);
 1432         }
 1433 }
 1434 
 1435 static void
 1436 g_raid3_start(struct bio *bp)
 1437 {
 1438         struct g_raid3_softc *sc;
 1439 
 1440         sc = bp->bio_to->geom->softc;
 1441         /*
 1442          * If sc == NULL or there are no valid disks, provider's error
 1443          * should be set and g_raid3_start() should not be called at all.
 1444          */
 1445         KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 1446             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
 1447             ("Provider's error should be set (error=%d)(device=%s).",
 1448             bp->bio_to->error, bp->bio_to->name));
 1449         G_RAID3_LOGREQ(3, bp, "Request received.");
 1450 
 1451         switch (bp->bio_cmd) {
 1452         case BIO_READ:
 1453         case BIO_WRITE:
 1454         case BIO_DELETE:
 1455                 break;
 1456         case BIO_FLUSH:
 1457                 g_raid3_flush(sc, bp);
 1458                 return;
 1459         case BIO_GETATTR:
 1460         default:
 1461                 g_io_deliver(bp, EOPNOTSUPP);
 1462                 return;
 1463         }
 1464         mtx_lock(&sc->sc_queue_mtx);
 1465         bioq_insert_tail(&sc->sc_queue, bp);
 1466         mtx_unlock(&sc->sc_queue_mtx);
 1467         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
 1468         wakeup(sc);
 1469 }
 1470 
 1471 /*
 1472  * Return TRUE if the given request is colliding with a in-progress
 1473  * synchronization request.
 1474  */
 1475 static int
 1476 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
 1477 {
 1478         struct g_raid3_disk *disk;
 1479         struct bio *sbp;
 1480         off_t rstart, rend, sstart, send;
 1481         int i;
 1482 
 1483         disk = sc->sc_syncdisk;
 1484         if (disk == NULL)
 1485                 return (0);
 1486         rstart = bp->bio_offset;
 1487         rend = bp->bio_offset + bp->bio_length;
 1488         for (i = 0; i < g_raid3_syncreqs; i++) {
 1489                 sbp = disk->d_sync.ds_bios[i];
 1490                 if (sbp == NULL)
 1491                         continue;
 1492                 sstart = sbp->bio_offset;
 1493                 send = sbp->bio_length;
 1494                 if (sbp->bio_cmd == BIO_WRITE) {
 1495                         sstart *= sc->sc_ndisks - 1;
 1496                         send *= sc->sc_ndisks - 1;
 1497                 }
 1498                 send += sstart;
 1499                 if (rend > sstart && rstart < send)
 1500                         return (1);
 1501         }
 1502         return (0);
 1503 }
 1504 
 1505 /*
 1506  * Return TRUE if the given sync request is colliding with a in-progress regular
 1507  * request.
 1508  */
 1509 static int
 1510 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
 1511 {
 1512         off_t rstart, rend, sstart, send;
 1513         struct bio *bp;
 1514 
 1515         if (sc->sc_syncdisk == NULL)
 1516                 return (0);
 1517         sstart = sbp->bio_offset;
 1518         send = sstart + sbp->bio_length;
 1519         TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
 1520                 rstart = bp->bio_offset;
 1521                 rend = bp->bio_offset + bp->bio_length;
 1522                 if (rend > sstart && rstart < send)
 1523                         return (1);
 1524         }
 1525         return (0);
 1526 }
 1527 
 1528 /*
 1529  * Puts request onto delayed queue.
 1530  */
 1531 static void
 1532 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
 1533 {
 1534 
 1535         G_RAID3_LOGREQ(2, bp, "Delaying request.");
 1536         bioq_insert_head(&sc->sc_regular_delayed, bp);
 1537 }
 1538 
 1539 /*
 1540  * Puts synchronization request onto delayed queue.
 1541  */
 1542 static void
 1543 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
 1544 {
 1545 
 1546         G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
 1547         bioq_insert_tail(&sc->sc_sync_delayed, bp);
 1548 }
 1549 
 1550 /*
 1551  * Releases delayed regular requests which don't collide anymore with sync
 1552  * requests.
 1553  */
 1554 static void
 1555 g_raid3_regular_release(struct g_raid3_softc *sc)
 1556 {
 1557         struct bio *bp, *bp2;
 1558 
 1559         TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
 1560                 if (g_raid3_sync_collision(sc, bp))
 1561                         continue;
 1562                 bioq_remove(&sc->sc_regular_delayed, bp);
 1563                 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
 1564                 mtx_lock(&sc->sc_queue_mtx);
 1565                 bioq_insert_head(&sc->sc_queue, bp);
 1566 #if 0
 1567                 /*
 1568                  * wakeup() is not needed, because this function is called from
 1569                  * the worker thread.
 1570                  */
 1571                 wakeup(&sc->sc_queue);
 1572 #endif
 1573                 mtx_unlock(&sc->sc_queue_mtx);
 1574         }
 1575 }
 1576 
 1577 /*
 1578  * Releases delayed sync requests which don't collide anymore with regular
 1579  * requests.
 1580  */
 1581 static void
 1582 g_raid3_sync_release(struct g_raid3_softc *sc)
 1583 {
 1584         struct bio *bp, *bp2;
 1585 
 1586         TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
 1587                 if (g_raid3_regular_collision(sc, bp))
 1588                         continue;
 1589                 bioq_remove(&sc->sc_sync_delayed, bp);
 1590                 G_RAID3_LOGREQ(2, bp,
 1591                     "Releasing delayed synchronization request.");
 1592                 g_io_request(bp, bp->bio_from);
 1593         }
 1594 }
 1595 
 1596 /*
 1597  * Handle synchronization requests.
 1598  * Every synchronization request is two-steps process: first, READ request is
 1599  * send to active provider and then WRITE request (with read data) to the provider
 1600  * beeing synchronized. When WRITE is finished, new synchronization request is
 1601  * send.
 1602  */
 1603 static void
 1604 g_raid3_sync_request(struct bio *bp)
 1605 {
 1606         struct g_raid3_softc *sc;
 1607         struct g_raid3_disk *disk;
 1608 
 1609         bp->bio_from->index--;
 1610         sc = bp->bio_from->geom->softc;
 1611         disk = bp->bio_from->private;
 1612         if (disk == NULL) {
 1613                 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
 1614                 g_topology_lock();
 1615                 g_raid3_kill_consumer(sc, bp->bio_from);
 1616                 g_topology_unlock();
 1617                 free(bp->bio_data, M_RAID3);
 1618                 g_destroy_bio(bp);
 1619                 sx_xlock(&sc->sc_lock);
 1620                 return;
 1621         }
 1622 
 1623         /*
 1624          * Synchronization request.
 1625          */
 1626         switch (bp->bio_cmd) {
 1627         case BIO_READ:
 1628             {
 1629                 struct g_consumer *cp;
 1630                 u_char *dst, *src;
 1631                 off_t left;
 1632                 u_int atom;
 1633 
 1634                 if (bp->bio_error != 0) {
 1635                         G_RAID3_LOGREQ(0, bp,
 1636                             "Synchronization request failed (error=%d).",
 1637                             bp->bio_error);
 1638                         g_destroy_bio(bp);
 1639                         return;
 1640                 }
 1641                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
 1642                 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
 1643                 dst = src = bp->bio_data;
 1644                 if (disk->d_no == sc->sc_ndisks - 1) {
 1645                         u_int n;
 1646 
 1647                         /* Parity component. */
 1648                         for (left = bp->bio_length; left > 0;
 1649                             left -= sc->sc_sectorsize) {
 1650                                 bcopy(src, dst, atom);
 1651                                 src += atom;
 1652                                 for (n = 1; n < sc->sc_ndisks - 1; n++) {
 1653                                         g_raid3_xor(src, dst, atom);
 1654                                         src += atom;
 1655                                 }
 1656                                 dst += atom;
 1657                         }
 1658                 } else {
 1659                         /* Regular component. */
 1660                         src += atom * disk->d_no;
 1661                         for (left = bp->bio_length; left > 0;
 1662                             left -= sc->sc_sectorsize) {
 1663                                 bcopy(src, dst, atom);
 1664                                 src += sc->sc_sectorsize;
 1665                                 dst += atom;
 1666                         }
 1667                 }
 1668                 bp->bio_driver1 = bp->bio_driver2 = NULL;
 1669                 bp->bio_pflags = 0;
 1670                 bp->bio_offset /= sc->sc_ndisks - 1;
 1671                 bp->bio_length /= sc->sc_ndisks - 1;
 1672                 bp->bio_cmd = BIO_WRITE;
 1673                 bp->bio_cflags = 0;
 1674                 bp->bio_children = bp->bio_inbed = 0;
 1675                 cp = disk->d_consumer;
 1676                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1677                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1678                     cp->acr, cp->acw, cp->ace));
 1679                 cp->index++;
 1680                 g_io_request(bp, cp);
 1681                 return;
 1682             }
 1683         case BIO_WRITE:
 1684             {
 1685                 struct g_raid3_disk_sync *sync;
 1686                 off_t boffset, moffset;
 1687                 void *data;
 1688                 int i;
 1689 
 1690                 if (bp->bio_error != 0) {
 1691                         G_RAID3_LOGREQ(0, bp,
 1692                             "Synchronization request failed (error=%d).",
 1693                             bp->bio_error);
 1694                         g_destroy_bio(bp);
 1695                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
 1696                         g_raid3_event_send(disk,
 1697                             G_RAID3_DISK_STATE_DISCONNECTED,
 1698                             G_RAID3_EVENT_DONTWAIT);
 1699                         return;
 1700                 }
 1701                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
 1702                 sync = &disk->d_sync;
 1703                 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
 1704                     sync->ds_consumer == NULL ||
 1705                     (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 1706                         /* Don't send more synchronization requests. */
 1707                         sync->ds_inflight--;
 1708                         if (sync->ds_bios != NULL) {
 1709                                 i = (int)(uintptr_t)bp->bio_caller1;
 1710                                 sync->ds_bios[i] = NULL;
 1711                         }
 1712                         free(bp->bio_data, M_RAID3);
 1713                         g_destroy_bio(bp);
 1714                         if (sync->ds_inflight > 0)
 1715                                 return;
 1716                         if (sync->ds_consumer == NULL ||
 1717                             (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 1718                                 return;
 1719                         }
 1720                         /*
 1721                          * Disk up-to-date, activate it.
 1722                          */
 1723                         g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
 1724                             G_RAID3_EVENT_DONTWAIT);
 1725                         return;
 1726                 }
 1727 
 1728                 /* Send next synchronization request. */
 1729                 data = bp->bio_data;
 1730                 bzero(bp, sizeof(*bp));
 1731                 bp->bio_cmd = BIO_READ;
 1732                 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
 1733                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
 1734                 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
 1735                 bp->bio_done = g_raid3_sync_done;
 1736                 bp->bio_data = data;
 1737                 bp->bio_from = sync->ds_consumer;
 1738                 bp->bio_to = sc->sc_provider;
 1739                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
 1740                 sync->ds_consumer->index++;
 1741                 /*
 1742                  * Delay the request if it is colliding with a regular request.
 1743                  */
 1744                 if (g_raid3_regular_collision(sc, bp))
 1745                         g_raid3_sync_delay(sc, bp);
 1746                 else
 1747                         g_io_request(bp, sync->ds_consumer);
 1748 
 1749                 /* Release delayed requests if possible. */
 1750                 g_raid3_regular_release(sc);
 1751 
 1752                 /* Find the smallest offset. */
 1753                 moffset = sc->sc_mediasize;
 1754                 for (i = 0; i < g_raid3_syncreqs; i++) {
 1755                         bp = sync->ds_bios[i];
 1756                         boffset = bp->bio_offset;
 1757                         if (bp->bio_cmd == BIO_WRITE)
 1758                                 boffset *= sc->sc_ndisks - 1;
 1759                         if (boffset < moffset)
 1760                                 moffset = boffset;
 1761                 }
 1762                 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
 1763                         /* Update offset_done on every 100 blocks. */
 1764                         sync->ds_offset_done = moffset;
 1765                         g_raid3_update_metadata(disk);
 1766                 }
 1767                 return;
 1768             }
 1769         default:
 1770                 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
 1771                     bp->bio_cmd, sc->sc_name));
 1772                 break;
 1773         }
 1774 }
 1775 
 1776 static int
 1777 g_raid3_register_request(struct bio *pbp)
 1778 {
 1779         struct g_raid3_softc *sc;
 1780         struct g_raid3_disk *disk;
 1781         struct g_consumer *cp;
 1782         struct bio *cbp, *tmpbp;
 1783         off_t offset, length;
 1784         u_int n, ndisks;
 1785         int round_robin, verify;
 1786 
 1787         ndisks = 0;
 1788         sc = pbp->bio_to->geom->softc;
 1789         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
 1790             sc->sc_syncdisk == NULL) {
 1791                 g_io_deliver(pbp, EIO);
 1792                 return (0);
 1793         }
 1794         g_raid3_init_bio(pbp);
 1795         length = pbp->bio_length / (sc->sc_ndisks - 1);
 1796         offset = pbp->bio_offset / (sc->sc_ndisks - 1);
 1797         round_robin = verify = 0;
 1798         switch (pbp->bio_cmd) {
 1799         case BIO_READ:
 1800                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
 1801                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1802                         pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
 1803                         verify = 1;
 1804                         ndisks = sc->sc_ndisks;
 1805                 } else {
 1806                         verify = 0;
 1807                         ndisks = sc->sc_ndisks - 1;
 1808                 }
 1809                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
 1810                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1811                         round_robin = 1;
 1812                 } else {
 1813                         round_robin = 0;
 1814                 }
 1815                 KASSERT(!round_robin || !verify,
 1816                     ("ROUND-ROBIN and VERIFY are mutually exclusive."));
 1817                 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
 1818                 break;
 1819         case BIO_WRITE:
 1820         case BIO_DELETE:
 1821                 /*
 1822                  * Delay the request if it is colliding with a synchronization
 1823                  * request.
 1824                  */
 1825                 if (g_raid3_sync_collision(sc, pbp)) {
 1826                         g_raid3_regular_delay(sc, pbp);
 1827                         return (0);
 1828                 }
 1829 
 1830                 if (sc->sc_idle)
 1831                         g_raid3_unidle(sc);
 1832                 else
 1833                         sc->sc_last_write = time_uptime;
 1834 
 1835                 ndisks = sc->sc_ndisks;
 1836                 break;
 1837         }
 1838         for (n = 0; n < ndisks; n++) {
 1839                 disk = &sc->sc_disks[n];
 1840                 cbp = g_raid3_clone_bio(sc, pbp);
 1841                 if (cbp == NULL) {
 1842                         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
 1843                                 g_raid3_destroy_bio(sc, cbp);
 1844                         /*
 1845                          * To prevent deadlock, we must run back up
 1846                          * with the ENOMEM for failed requests of any
 1847                          * of our consumers.  Our own sync requests
 1848                          * can stick around, as they are finite.
 1849                          */
 1850                         if ((pbp->bio_cflags &
 1851                             G_RAID3_BIO_CFLAG_REGULAR) != 0) {
 1852                                 g_io_deliver(pbp, ENOMEM);
 1853                                 return (0);
 1854                         }
 1855                         return (ENOMEM);
 1856                 }
 1857                 cbp->bio_offset = offset;
 1858                 cbp->bio_length = length;
 1859                 cbp->bio_done = g_raid3_done;
 1860                 switch (pbp->bio_cmd) {
 1861                 case BIO_READ:
 1862                         if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
 1863                                 /*
 1864                                  * Replace invalid component with the parity
 1865                                  * component.
 1866                                  */
 1867                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
 1868                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1869                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
 1870                         } else if (round_robin &&
 1871                             disk->d_no == sc->sc_round_robin) {
 1872                                 /*
 1873                                  * In round-robin mode skip one data component
 1874                                  * and use parity component when reading.
 1875                                  */
 1876                                 pbp->bio_driver2 = disk;
 1877                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
 1878                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1879                                 sc->sc_round_robin++;
 1880                                 round_robin = 0;
 1881                         } else if (verify && disk->d_no == sc->sc_ndisks - 1) {
 1882                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1883                         }
 1884                         break;
 1885                 case BIO_WRITE:
 1886                 case BIO_DELETE:
 1887                         if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
 1888                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
 1889                                 if (n == ndisks - 1) {
 1890                                         /*
 1891                                          * Active parity component, mark it as such.
 1892                                          */
 1893                                         cbp->bio_cflags |=
 1894                                             G_RAID3_BIO_CFLAG_PARITY;
 1895                                 }
 1896                         } else {
 1897                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
 1898                                 if (n == ndisks - 1) {
 1899                                         /*
 1900                                          * Parity component is not connected,
 1901                                          * so destroy its request.
 1902                                          */
 1903                                         pbp->bio_pflags |=
 1904                                             G_RAID3_BIO_PFLAG_NOPARITY;
 1905                                         g_raid3_destroy_bio(sc, cbp);
 1906                                         cbp = NULL;
 1907                                 } else {
 1908                                         cbp->bio_cflags |=
 1909                                             G_RAID3_BIO_CFLAG_NODISK;
 1910                                         disk = NULL;
 1911                                 }
 1912                         }
 1913                         break;
 1914                 }
 1915                 if (cbp != NULL)
 1916                         cbp->bio_caller2 = disk;
 1917         }
 1918         switch (pbp->bio_cmd) {
 1919         case BIO_READ:
 1920                 if (round_robin) {
 1921                         /*
 1922                          * If we are in round-robin mode and 'round_robin' is
 1923                          * still 1, it means, that we skipped parity component
 1924                          * for this read and must reset sc_round_robin field.
 1925                          */
 1926                         sc->sc_round_robin = 0;
 1927                 }
 1928                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
 1929                         disk = cbp->bio_caller2;
 1930                         cp = disk->d_consumer;
 1931                         cbp->bio_to = cp->provider;
 1932                         G_RAID3_LOGREQ(3, cbp, "Sending request.");
 1933                         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1934                             ("Consumer %s not opened (r%dw%de%d).",
 1935                             cp->provider->name, cp->acr, cp->acw, cp->ace));
 1936                         cp->index++;
 1937                         g_io_request(cbp, cp);
 1938                 }
 1939                 break;
 1940         case BIO_WRITE:
 1941         case BIO_DELETE:
 1942                 /*
 1943                  * Put request onto inflight queue, so we can check if new
 1944                  * synchronization requests don't collide with it.
 1945                  */
 1946                 bioq_insert_tail(&sc->sc_inflight, pbp);
 1947 
 1948                 /*
 1949                  * Bump syncid on first write.
 1950                  */
 1951                 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
 1952                         sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
 1953                         g_raid3_bump_syncid(sc);
 1954                 }
 1955                 g_raid3_scatter(pbp);
 1956                 break;
 1957         }
 1958         return (0);
 1959 }
 1960 
 1961 static int
 1962 g_raid3_can_destroy(struct g_raid3_softc *sc)
 1963 {
 1964         struct g_geom *gp;
 1965         struct g_consumer *cp;
 1966 
 1967         g_topology_assert();
 1968         gp = sc->sc_geom;
 1969         if (gp->softc == NULL)
 1970                 return (1);
 1971         LIST_FOREACH(cp, &gp->consumer, consumer) {
 1972                 if (g_raid3_is_busy(sc, cp))
 1973                         return (0);
 1974         }
 1975         gp = sc->sc_sync.ds_geom;
 1976         LIST_FOREACH(cp, &gp->consumer, consumer) {
 1977                 if (g_raid3_is_busy(sc, cp))
 1978                         return (0);
 1979         }
 1980         G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
 1981             sc->sc_name);
 1982         return (1);
 1983 }
 1984 
 1985 static int
 1986 g_raid3_try_destroy(struct g_raid3_softc *sc)
 1987 {
 1988 
 1989         g_topology_assert_not();
 1990         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1991 
 1992         if (sc->sc_rootmount != NULL) {
 1993                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
 1994                     sc->sc_rootmount);
 1995                 root_mount_rel(sc->sc_rootmount);
 1996                 sc->sc_rootmount = NULL;
 1997         }
 1998 
 1999         g_topology_lock();
 2000         if (!g_raid3_can_destroy(sc)) {
 2001                 g_topology_unlock();
 2002                 return (0);
 2003         }
 2004         sc->sc_geom->softc = NULL;
 2005         sc->sc_sync.ds_geom->softc = NULL;
 2006         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
 2007                 g_topology_unlock();
 2008                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
 2009                     &sc->sc_worker);
 2010                 /* Unlock sc_lock here, as it can be destroyed after wakeup. */
 2011                 sx_xunlock(&sc->sc_lock);
 2012                 wakeup(&sc->sc_worker);
 2013                 sc->sc_worker = NULL;
 2014         } else {
 2015                 g_topology_unlock();
 2016                 g_raid3_destroy_device(sc);
 2017                 free(sc->sc_disks, M_RAID3);
 2018                 free(sc, M_RAID3);
 2019         }
 2020         return (1);
 2021 }
 2022 
 2023 /*
 2024  * Worker thread.
 2025  */
 2026 static void
 2027 g_raid3_worker(void *arg)
 2028 {
 2029         struct g_raid3_softc *sc;
 2030         struct g_raid3_event *ep;
 2031         struct bio *bp;
 2032         int timeout;
 2033 
 2034         sc = arg;
 2035         thread_lock(curthread);
 2036         sched_prio(curthread, PRIBIO);
 2037         thread_unlock(curthread);
 2038 
 2039         sx_xlock(&sc->sc_lock);
 2040         for (;;) {
 2041                 G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
 2042                 /*
 2043                  * First take a look at events.
 2044                  * This is important to handle events before any I/O requests.
 2045                  */
 2046                 ep = g_raid3_event_get(sc);
 2047                 if (ep != NULL) {
 2048                         g_raid3_event_remove(sc, ep);
 2049                         if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
 2050                                 /* Update only device status. */
 2051                                 G_RAID3_DEBUG(3,
 2052                                     "Running event for device %s.",
 2053                                     sc->sc_name);
 2054                                 ep->e_error = 0;
 2055                                 g_raid3_update_device(sc, 1);
 2056                         } else {
 2057                                 /* Update disk status. */
 2058                                 G_RAID3_DEBUG(3, "Running event for disk %s.",
 2059                                      g_raid3_get_diskname(ep->e_disk));
 2060                                 ep->e_error = g_raid3_update_disk(ep->e_disk,
 2061                                     ep->e_state);
 2062                                 if (ep->e_error == 0)
 2063                                         g_raid3_update_device(sc, 0);
 2064                         }
 2065                         if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
 2066                                 KASSERT(ep->e_error == 0,
 2067                                     ("Error cannot be handled."));
 2068                                 g_raid3_event_free(ep);
 2069                         } else {
 2070                                 ep->e_flags |= G_RAID3_EVENT_DONE;
 2071                                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
 2072                                     ep);
 2073                                 mtx_lock(&sc->sc_events_mtx);
 2074                                 wakeup(ep);
 2075                                 mtx_unlock(&sc->sc_events_mtx);
 2076                         }
 2077                         if ((sc->sc_flags &
 2078                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 2079                                 if (g_raid3_try_destroy(sc)) {
 2080                                         curthread->td_pflags &= ~TDP_GEOM;
 2081                                         G_RAID3_DEBUG(1, "Thread exiting.");
 2082                                         kproc_exit(0);
 2083                                 }
 2084                         }
 2085                         G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
 2086                         continue;
 2087                 }
 2088                 /*
 2089                  * Check if we can mark array as CLEAN and if we can't take
 2090                  * how much seconds should we wait.
 2091                  */
 2092                 timeout = g_raid3_idle(sc, -1);
 2093                 /*
 2094                  * Now I/O requests.
 2095                  */
 2096                 /* Get first request from the queue. */
 2097                 mtx_lock(&sc->sc_queue_mtx);
 2098                 bp = bioq_first(&sc->sc_queue);
 2099                 if (bp == NULL) {
 2100                         if ((sc->sc_flags &
 2101                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 2102                                 mtx_unlock(&sc->sc_queue_mtx);
 2103                                 if (g_raid3_try_destroy(sc)) {
 2104                                         curthread->td_pflags &= ~TDP_GEOM;
 2105                                         G_RAID3_DEBUG(1, "Thread exiting.");
 2106                                         kproc_exit(0);
 2107                                 }
 2108                                 mtx_lock(&sc->sc_queue_mtx);
 2109                         }
 2110                         sx_xunlock(&sc->sc_lock);
 2111                         /*
 2112                          * XXX: We can miss an event here, because an event
 2113                          *      can be added without sx-device-lock and without
 2114                          *      mtx-queue-lock. Maybe I should just stop using
 2115                          *      dedicated mutex for events synchronization and
 2116                          *      stick with the queue lock?
 2117                          *      The event will hang here until next I/O request
 2118                          *      or next event is received.
 2119                          */
 2120                         MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
 2121                             timeout * hz);
 2122                         sx_xlock(&sc->sc_lock);
 2123                         G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
 2124                         continue;
 2125                 }
 2126 process:
 2127                 bioq_remove(&sc->sc_queue, bp);
 2128                 mtx_unlock(&sc->sc_queue_mtx);
 2129 
 2130                 if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
 2131                     (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
 2132                         g_raid3_sync_request(bp);       /* READ */
 2133                 } else if (bp->bio_to != sc->sc_provider) {
 2134                         if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
 2135                                 g_raid3_regular_request(bp);
 2136                         else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
 2137                                 g_raid3_sync_request(bp);       /* WRITE */
 2138                         else {
 2139                                 KASSERT(0,
 2140                                     ("Invalid request cflags=0x%hhx to=%s.",
 2141                                     bp->bio_cflags, bp->bio_to->name));
 2142                         }
 2143                 } else if (g_raid3_register_request(bp) != 0) {
 2144                         mtx_lock(&sc->sc_queue_mtx);
 2145                         bioq_insert_head(&sc->sc_queue, bp);
 2146                         /*
 2147                          * We are short in memory, let see if there are finished
 2148                          * request we can free.
 2149                          */
 2150                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
 2151                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
 2152                                         goto process;
 2153                         }
 2154                         /*
 2155                          * No finished regular request, so at least keep
 2156                          * synchronization running.
 2157                          */
 2158                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
 2159                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
 2160                                         goto process;
 2161                         }
 2162                         sx_xunlock(&sc->sc_lock);
 2163                         MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
 2164                             "r3:lowmem", hz / 10);
 2165                         sx_xlock(&sc->sc_lock);
 2166                 }
 2167                 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
 2168         }
 2169 }
 2170 
 2171 static void
 2172 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
 2173 {
 2174 
 2175         sx_assert(&sc->sc_lock, SX_LOCKED);
 2176         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
 2177                 return;
 2178         if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
 2179                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
 2180                     g_raid3_get_diskname(disk), sc->sc_name);
 2181                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
 2182         } else if (sc->sc_idle &&
 2183             (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
 2184                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
 2185                     g_raid3_get_diskname(disk), sc->sc_name);
 2186                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2187         }
 2188 }
 2189 
 2190 static void
 2191 g_raid3_sync_start(struct g_raid3_softc *sc)
 2192 {
 2193         struct g_raid3_disk *disk;
 2194         struct g_consumer *cp;
 2195         struct bio *bp;
 2196         int error;
 2197         u_int n;
 2198 
 2199         g_topology_assert_not();
 2200         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2201 
 2202         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
 2203             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
 2204             sc->sc_state));
 2205         KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
 2206             sc->sc_name, sc->sc_state));
 2207         disk = NULL;
 2208         for (n = 0; n < sc->sc_ndisks; n++) {
 2209                 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
 2210                         continue;
 2211                 disk = &sc->sc_disks[n];
 2212                 break;
 2213         }
 2214         if (disk == NULL)
 2215                 return;
 2216 
 2217         sx_xunlock(&sc->sc_lock);
 2218         g_topology_lock();
 2219         cp = g_new_consumer(sc->sc_sync.ds_geom);
 2220         error = g_attach(cp, sc->sc_provider);
 2221         KASSERT(error == 0,
 2222             ("Cannot attach to %s (error=%d).", sc->sc_name, error));
 2223         error = g_access(cp, 1, 0, 0);
 2224         KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
 2225         g_topology_unlock();
 2226         sx_xlock(&sc->sc_lock);
 2227 
 2228         G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
 2229             g_raid3_get_diskname(disk));
 2230         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
 2231                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
 2232         KASSERT(disk->d_sync.ds_consumer == NULL,
 2233             ("Sync consumer already exists (device=%s, disk=%s).",
 2234             sc->sc_name, g_raid3_get_diskname(disk)));
 2235 
 2236         disk->d_sync.ds_consumer = cp;
 2237         disk->d_sync.ds_consumer->private = disk;
 2238         disk->d_sync.ds_consumer->index = 0;
 2239         sc->sc_syncdisk = disk;
 2240 
 2241         /*
 2242          * Allocate memory for synchronization bios and initialize them.
 2243          */
 2244         disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
 2245             M_RAID3, M_WAITOK);
 2246         for (n = 0; n < g_raid3_syncreqs; n++) {
 2247                 bp = g_alloc_bio();
 2248                 disk->d_sync.ds_bios[n] = bp;
 2249                 bp->bio_parent = NULL;
 2250                 bp->bio_cmd = BIO_READ;
 2251                 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
 2252                 bp->bio_cflags = 0;
 2253                 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
 2254                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
 2255                 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
 2256                 bp->bio_done = g_raid3_sync_done;
 2257                 bp->bio_from = disk->d_sync.ds_consumer;
 2258                 bp->bio_to = sc->sc_provider;
 2259                 bp->bio_caller1 = (void *)(uintptr_t)n;
 2260         }
 2261 
 2262         /* Set the number of in-flight synchronization requests. */
 2263         disk->d_sync.ds_inflight = g_raid3_syncreqs;
 2264 
 2265         /*
 2266          * Fire off first synchronization requests.
 2267          */
 2268         for (n = 0; n < g_raid3_syncreqs; n++) {
 2269                 bp = disk->d_sync.ds_bios[n];
 2270                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
 2271                 disk->d_sync.ds_consumer->index++;
 2272                 /*
 2273                  * Delay the request if it is colliding with a regular request.
 2274                  */
 2275                 if (g_raid3_regular_collision(sc, bp))
 2276                         g_raid3_sync_delay(sc, bp);
 2277                 else
 2278                         g_io_request(bp, disk->d_sync.ds_consumer);
 2279         }
 2280 }
 2281 
 2282 /*
 2283  * Stop synchronization process.
 2284  * type: 0 - synchronization finished
 2285  *       1 - synchronization stopped
 2286  */
 2287 static void
 2288 g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
 2289 {
 2290         struct g_raid3_disk *disk;
 2291         struct g_consumer *cp;
 2292 
 2293         g_topology_assert_not();
 2294         sx_assert(&sc->sc_lock, SX_LOCKED);
 2295 
 2296         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
 2297             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
 2298             sc->sc_state));
 2299         disk = sc->sc_syncdisk;
 2300         sc->sc_syncdisk = NULL;
 2301         KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
 2302         KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
 2303             ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2304             g_raid3_disk_state2str(disk->d_state)));
 2305         if (disk->d_sync.ds_consumer == NULL)
 2306                 return;
 2307 
 2308         if (type == 0) {
 2309                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
 2310                     sc->sc_name, g_raid3_get_diskname(disk));
 2311         } else /* if (type == 1) */ {
 2312                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
 2313                     sc->sc_name, g_raid3_get_diskname(disk));
 2314         }
 2315         free(disk->d_sync.ds_bios, M_RAID3);
 2316         disk->d_sync.ds_bios = NULL;
 2317         cp = disk->d_sync.ds_consumer;
 2318         disk->d_sync.ds_consumer = NULL;
 2319         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2320         sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
 2321         g_topology_lock();
 2322         g_raid3_kill_consumer(sc, cp);
 2323         g_topology_unlock();
 2324         sx_xlock(&sc->sc_lock);
 2325 }
 2326 
 2327 static void
 2328 g_raid3_launch_provider(struct g_raid3_softc *sc)
 2329 {
 2330         struct g_provider *pp;
 2331         struct g_raid3_disk *disk;
 2332         int n;
 2333 
 2334         sx_assert(&sc->sc_lock, SX_LOCKED);
 2335 
 2336         g_topology_lock();
 2337         pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
 2338         pp->mediasize = sc->sc_mediasize;
 2339         pp->sectorsize = sc->sc_sectorsize;
 2340         pp->stripesize = 0;
 2341         pp->stripeoffset = 0;
 2342         for (n = 0; n < sc->sc_ndisks; n++) {
 2343                 disk = &sc->sc_disks[n];
 2344                 if (disk->d_consumer && disk->d_consumer->provider &&
 2345                     disk->d_consumer->provider->stripesize > pp->stripesize) {
 2346                         pp->stripesize = disk->d_consumer->provider->stripesize;
 2347                         pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
 2348                 }
 2349         }
 2350         pp->stripesize *= sc->sc_ndisks - 1;
 2351         pp->stripeoffset *= sc->sc_ndisks - 1;
 2352         sc->sc_provider = pp;
 2353         g_error_provider(pp, 0);
 2354         g_topology_unlock();
 2355         G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
 2356             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
 2357 
 2358         if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
 2359                 g_raid3_sync_start(sc);
 2360 }
 2361 
 2362 static void
 2363 g_raid3_destroy_provider(struct g_raid3_softc *sc)
 2364 {
 2365         struct bio *bp;
 2366 
 2367         g_topology_assert_not();
 2368         KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
 2369             sc->sc_name));
 2370 
 2371         g_topology_lock();
 2372         g_error_provider(sc->sc_provider, ENXIO);
 2373         mtx_lock(&sc->sc_queue_mtx);
 2374         while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
 2375                 bioq_remove(&sc->sc_queue, bp);
 2376                 g_io_deliver(bp, ENXIO);
 2377         }
 2378         mtx_unlock(&sc->sc_queue_mtx);
 2379         G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
 2380             sc->sc_provider->name);
 2381         sc->sc_provider->flags |= G_PF_WITHER;
 2382         g_orphan_provider(sc->sc_provider, ENXIO);
 2383         g_topology_unlock();
 2384         sc->sc_provider = NULL;
 2385         if (sc->sc_syncdisk != NULL)
 2386                 g_raid3_sync_stop(sc, 1);
 2387 }
 2388 
 2389 static void
 2390 g_raid3_go(void *arg)
 2391 {
 2392         struct g_raid3_softc *sc;
 2393 
 2394         sc = arg;
 2395         G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
 2396         g_raid3_event_send(sc, 0,
 2397             G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
 2398 }
 2399 
 2400 static u_int
 2401 g_raid3_determine_state(struct g_raid3_disk *disk)
 2402 {
 2403         struct g_raid3_softc *sc;
 2404         u_int state;
 2405 
 2406         sc = disk->d_softc;
 2407         if (sc->sc_syncid == disk->d_sync.ds_syncid) {
 2408                 if ((disk->d_flags &
 2409                     G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
 2410                         /* Disk does not need synchronization. */
 2411                         state = G_RAID3_DISK_STATE_ACTIVE;
 2412                 } else {
 2413                         if ((sc->sc_flags &
 2414                              G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
 2415                             (disk->d_flags &
 2416                              G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
 2417                                 /*
 2418                                  * We can start synchronization from
 2419                                  * the stored offset.
 2420                                  */
 2421                                 state = G_RAID3_DISK_STATE_SYNCHRONIZING;
 2422                         } else {
 2423                                 state = G_RAID3_DISK_STATE_STALE;
 2424                         }
 2425                 }
 2426         } else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
 2427                 /*
 2428                  * Reset all synchronization data for this disk,
 2429                  * because if it even was synchronized, it was
 2430                  * synchronized to disks with different syncid.
 2431                  */
 2432                 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2433                 disk->d_sync.ds_offset = 0;
 2434                 disk->d_sync.ds_offset_done = 0;
 2435                 disk->d_sync.ds_syncid = sc->sc_syncid;
 2436                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
 2437                     (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
 2438                         state = G_RAID3_DISK_STATE_SYNCHRONIZING;
 2439                 } else {
 2440                         state = G_RAID3_DISK_STATE_STALE;
 2441                 }
 2442         } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
 2443                 /*
 2444                  * Not good, NOT GOOD!
 2445                  * It means that device was started on stale disks
 2446                  * and more fresh disk just arrive.
 2447                  * If there were writes, device is broken, sorry.
 2448                  * I think the best choice here is don't touch
 2449                  * this disk and inform the user loudly.
 2450                  */
 2451                 G_RAID3_DEBUG(0, "Device %s was started before the freshest "
 2452                     "disk (%s) arrives!! It will not be connected to the "
 2453                     "running device.", sc->sc_name,
 2454                     g_raid3_get_diskname(disk));
 2455                 g_raid3_destroy_disk(disk);
 2456                 state = G_RAID3_DISK_STATE_NONE;
 2457                 /* Return immediately, because disk was destroyed. */
 2458                 return (state);
 2459         }
 2460         G_RAID3_DEBUG(3, "State for %s disk: %s.",
 2461             g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
 2462         return (state);
 2463 }
 2464 
 2465 /*
 2466  * Update device state.
 2467  */
 2468 static void
 2469 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
 2470 {
 2471         struct g_raid3_disk *disk;
 2472         u_int state;
 2473 
 2474         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2475 
 2476         switch (sc->sc_state) {
 2477         case G_RAID3_DEVICE_STATE_STARTING:
 2478             {
 2479                 u_int n, ndirty, ndisks, genid, syncid;
 2480 
 2481                 KASSERT(sc->sc_provider == NULL,
 2482                     ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
 2483                 /*
 2484                  * Are we ready? We are, if all disks are connected or
 2485                  * one disk is missing and 'force' is true.
 2486                  */
 2487                 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
 2488                         if (!force)
 2489                                 callout_drain(&sc->sc_callout);
 2490                 } else {
 2491                         if (force) {
 2492                                 /*
 2493                                  * Timeout expired, so destroy device.
 2494                                  */
 2495                                 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 2496                                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
 2497                                     __LINE__, sc->sc_rootmount);
 2498                                 root_mount_rel(sc->sc_rootmount);
 2499                                 sc->sc_rootmount = NULL;
 2500                         }
 2501                         return;
 2502                 }
 2503 
 2504                 /*
 2505                  * Find the biggest genid.
 2506                  */
 2507                 genid = 0;
 2508                 for (n = 0; n < sc->sc_ndisks; n++) {
 2509                         disk = &sc->sc_disks[n];
 2510                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2511                                 continue;
 2512                         if (disk->d_genid > genid)
 2513                                 genid = disk->d_genid;
 2514                 }
 2515                 sc->sc_genid = genid;
 2516                 /*
 2517                  * Remove all disks without the biggest genid.
 2518                  */
 2519                 for (n = 0; n < sc->sc_ndisks; n++) {
 2520                         disk = &sc->sc_disks[n];
 2521                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2522                                 continue;
 2523                         if (disk->d_genid < genid) {
 2524                                 G_RAID3_DEBUG(0,
 2525                                     "Component %s (device %s) broken, skipping.",
 2526                                     g_raid3_get_diskname(disk), sc->sc_name);
 2527                                 g_raid3_destroy_disk(disk);
 2528                         }
 2529                 }
 2530 
 2531                 /*
 2532                  * There must be at least 'sc->sc_ndisks - 1' components
 2533                  * with the same syncid and without SYNCHRONIZING flag.
 2534                  */
 2535 
 2536                 /*
 2537                  * Find the biggest syncid, number of valid components and
 2538                  * number of dirty components.
 2539                  */
 2540                 ndirty = ndisks = syncid = 0;
 2541                 for (n = 0; n < sc->sc_ndisks; n++) {
 2542                         disk = &sc->sc_disks[n];
 2543                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2544                                 continue;
 2545                         if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
 2546                                 ndirty++;
 2547                         if (disk->d_sync.ds_syncid > syncid) {
 2548                                 syncid = disk->d_sync.ds_syncid;
 2549                                 ndisks = 0;
 2550                         } else if (disk->d_sync.ds_syncid < syncid) {
 2551                                 continue;
 2552                         }
 2553                         if ((disk->d_flags &
 2554                             G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
 2555                                 continue;
 2556                         }
 2557                         ndisks++;
 2558                 }
 2559                 /*
 2560                  * Do we have enough valid components?
 2561                  */
 2562                 if (ndisks + 1 < sc->sc_ndisks) {
 2563                         G_RAID3_DEBUG(0,
 2564                             "Device %s is broken, too few valid components.",
 2565                             sc->sc_name);
 2566                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 2567                         return;
 2568                 }
 2569                 /*
 2570                  * If there is one DIRTY component and all disks are present,
 2571                  * mark it for synchronization. If there is more than one DIRTY
 2572                  * component, mark parity component for synchronization.
 2573                  */
 2574                 if (ndisks == sc->sc_ndisks && ndirty == 1) {
 2575                         for (n = 0; n < sc->sc_ndisks; n++) {
 2576                                 disk = &sc->sc_disks[n];
 2577                                 if ((disk->d_flags &
 2578                                     G_RAID3_DISK_FLAG_DIRTY) == 0) {
 2579                                         continue;
 2580                                 }
 2581                                 disk->d_flags |=
 2582                                     G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2583                         }
 2584                 } else if (ndisks == sc->sc_ndisks && ndirty > 1) {
 2585                         disk = &sc->sc_disks[sc->sc_ndisks - 1];
 2586                         disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2587                 }
 2588 
 2589                 sc->sc_syncid = syncid;
 2590                 if (force) {
 2591                         /* Remember to bump syncid on first write. */
 2592                         sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
 2593                 }
 2594                 if (ndisks == sc->sc_ndisks)
 2595                         state = G_RAID3_DEVICE_STATE_COMPLETE;
 2596                 else /* if (ndisks == sc->sc_ndisks - 1) */
 2597                         state = G_RAID3_DEVICE_STATE_DEGRADED;
 2598                 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
 2599                     sc->sc_name, g_raid3_device_state2str(sc->sc_state),
 2600                     g_raid3_device_state2str(state));
 2601                 sc->sc_state = state;
 2602                 for (n = 0; n < sc->sc_ndisks; n++) {
 2603                         disk = &sc->sc_disks[n];
 2604                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2605                                 continue;
 2606                         state = g_raid3_determine_state(disk);
 2607                         g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
 2608                         if (state == G_RAID3_DISK_STATE_STALE)
 2609                                 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
 2610                 }
 2611                 break;
 2612             }
 2613         case G_RAID3_DEVICE_STATE_DEGRADED:
 2614                 /*
 2615                  * Genid need to be bumped immediately, so do it here.
 2616                  */
 2617                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
 2618                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
 2619                         g_raid3_bump_genid(sc);
 2620                 }
 2621 
 2622                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
 2623                         return;
 2624                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
 2625                     sc->sc_ndisks - 1) {
 2626                         if (sc->sc_provider != NULL)
 2627                                 g_raid3_destroy_provider(sc);
 2628                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 2629                         return;
 2630                 }
 2631                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
 2632                     sc->sc_ndisks) {
 2633                         state = G_RAID3_DEVICE_STATE_COMPLETE;
 2634                         G_RAID3_DEBUG(1,
 2635                             "Device %s state changed from %s to %s.",
 2636                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
 2637                             g_raid3_device_state2str(state));
 2638                         sc->sc_state = state;
 2639                 }
 2640                 if (sc->sc_provider == NULL)
 2641                         g_raid3_launch_provider(sc);
 2642                 if (sc->sc_rootmount != NULL) {
 2643                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
 2644                             sc->sc_rootmount);
 2645                         root_mount_rel(sc->sc_rootmount);
 2646                         sc->sc_rootmount = NULL;
 2647                 }
 2648                 break;
 2649         case G_RAID3_DEVICE_STATE_COMPLETE:
 2650                 /*
 2651                  * Genid need to be bumped immediately, so do it here.
 2652                  */
 2653                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
 2654                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
 2655                         g_raid3_bump_genid(sc);
 2656                 }
 2657 
 2658                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
 2659                         return;
 2660                 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
 2661                     sc->sc_ndisks - 1,
 2662                     ("Too few ACTIVE components in COMPLETE state (device %s).",
 2663                     sc->sc_name));
 2664                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
 2665                     sc->sc_ndisks - 1) {
 2666                         state = G_RAID3_DEVICE_STATE_DEGRADED;
 2667                         G_RAID3_DEBUG(1,
 2668                             "Device %s state changed from %s to %s.",
 2669                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
 2670                             g_raid3_device_state2str(state));
 2671                         sc->sc_state = state;
 2672                 }
 2673                 if (sc->sc_provider == NULL)
 2674                         g_raid3_launch_provider(sc);
 2675                 if (sc->sc_rootmount != NULL) {
 2676                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
 2677                             sc->sc_rootmount);
 2678                         root_mount_rel(sc->sc_rootmount);
 2679                         sc->sc_rootmount = NULL;
 2680                 }
 2681                 break;
 2682         default:
 2683                 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
 2684                     g_raid3_device_state2str(sc->sc_state)));
 2685                 break;
 2686         }
 2687 }
 2688 
 2689 /*
 2690  * Update disk state and device state if needed.
 2691  */
 2692 #define DISK_STATE_CHANGED()    G_RAID3_DEBUG(1,                        \
 2693         "Disk %s state changed from %s to %s (device %s).",             \
 2694         g_raid3_get_diskname(disk),                                     \
 2695         g_raid3_disk_state2str(disk->d_state),                          \
 2696         g_raid3_disk_state2str(state), sc->sc_name)
 2697 static int
 2698 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
 2699 {
 2700         struct g_raid3_softc *sc;
 2701 
 2702         sc = disk->d_softc;
 2703         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2704 
 2705 again:
 2706         G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
 2707             g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
 2708             g_raid3_disk_state2str(state));
 2709         switch (state) {
 2710         case G_RAID3_DISK_STATE_NEW:
 2711                 /*
 2712                  * Possible scenarios:
 2713                  * 1. New disk arrive.
 2714                  */
 2715                 /* Previous state should be NONE. */
 2716                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
 2717                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2718                     g_raid3_disk_state2str(disk->d_state)));
 2719                 DISK_STATE_CHANGED();
 2720 
 2721                 disk->d_state = state;
 2722                 G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
 2723                     sc->sc_name, g_raid3_get_diskname(disk));
 2724                 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
 2725                         break;
 2726                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2727                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2728                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2729                     g_raid3_device_state2str(sc->sc_state),
 2730                     g_raid3_get_diskname(disk),
 2731                     g_raid3_disk_state2str(disk->d_state)));
 2732                 state = g_raid3_determine_state(disk);
 2733                 if (state != G_RAID3_DISK_STATE_NONE)
 2734                         goto again;
 2735                 break;
 2736         case G_RAID3_DISK_STATE_ACTIVE:
 2737                 /*
 2738                  * Possible scenarios:
 2739                  * 1. New disk does not need synchronization.
 2740                  * 2. Synchronization process finished successfully.
 2741                  */
 2742                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2743                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2744                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2745                     g_raid3_device_state2str(sc->sc_state),
 2746                     g_raid3_get_diskname(disk),
 2747                     g_raid3_disk_state2str(disk->d_state)));
 2748                 /* Previous state should be NEW or SYNCHRONIZING. */
 2749                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
 2750                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
 2751                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2752                     g_raid3_disk_state2str(disk->d_state)));
 2753                 DISK_STATE_CHANGED();
 2754 
 2755                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
 2756                         disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2757                         disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
 2758                         g_raid3_sync_stop(sc, 0);
 2759                 }
 2760                 disk->d_state = state;
 2761                 disk->d_sync.ds_offset = 0;
 2762                 disk->d_sync.ds_offset_done = 0;
 2763                 g_raid3_update_idle(sc, disk);
 2764                 g_raid3_update_metadata(disk);
 2765                 G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
 2766                     sc->sc_name, g_raid3_get_diskname(disk));
 2767                 break;
 2768         case G_RAID3_DISK_STATE_STALE:
 2769                 /*
 2770                  * Possible scenarios:
 2771                  * 1. Stale disk was connected.
 2772                  */
 2773                 /* Previous state should be NEW. */
 2774                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
 2775                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2776                     g_raid3_disk_state2str(disk->d_state)));
 2777                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2778                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2779                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2780                     g_raid3_device_state2str(sc->sc_state),
 2781                     g_raid3_get_diskname(disk),
 2782                     g_raid3_disk_state2str(disk->d_state)));
 2783                 /*
 2784                  * STALE state is only possible if device is marked
 2785                  * NOAUTOSYNC.
 2786                  */
 2787                 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
 2788                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2789                     g_raid3_device_state2str(sc->sc_state),
 2790                     g_raid3_get_diskname(disk),
 2791                     g_raid3_disk_state2str(disk->d_state)));
 2792                 DISK_STATE_CHANGED();
 2793 
 2794                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2795                 disk->d_state = state;
 2796                 g_raid3_update_metadata(disk);
 2797                 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
 2798                     sc->sc_name, g_raid3_get_diskname(disk));
 2799                 break;
 2800         case G_RAID3_DISK_STATE_SYNCHRONIZING:
 2801                 /*
 2802                  * Possible scenarios:
 2803                  * 1. Disk which needs synchronization was connected.
 2804                  */
 2805                 /* Previous state should be NEW. */
 2806                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
 2807                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2808                     g_raid3_disk_state2str(disk->d_state)));
 2809                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2810                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2811                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2812                     g_raid3_device_state2str(sc->sc_state),
 2813                     g_raid3_get_diskname(disk),
 2814                     g_raid3_disk_state2str(disk->d_state)));
 2815                 DISK_STATE_CHANGED();
 2816 
 2817                 if (disk->d_state == G_RAID3_DISK_STATE_NEW)
 2818                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2819                 disk->d_state = state;
 2820                 if (sc->sc_provider != NULL) {
 2821                         g_raid3_sync_start(sc);
 2822                         g_raid3_update_metadata(disk);
 2823                 }
 2824                 break;
 2825         case G_RAID3_DISK_STATE_DISCONNECTED:
 2826                 /*
 2827                  * Possible scenarios:
 2828                  * 1. Device wasn't running yet, but disk disappear.
 2829                  * 2. Disk was active and disapppear.
 2830                  * 3. Disk disappear during synchronization process.
 2831                  */
 2832                 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2833                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 2834                         /*
 2835                          * Previous state should be ACTIVE, STALE or
 2836                          * SYNCHRONIZING.
 2837                          */
 2838                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
 2839                             disk->d_state == G_RAID3_DISK_STATE_STALE ||
 2840                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
 2841                             ("Wrong disk state (%s, %s).",
 2842                             g_raid3_get_diskname(disk),
 2843                             g_raid3_disk_state2str(disk->d_state)));
 2844                 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
 2845                         /* Previous state should be NEW. */
 2846                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
 2847                             ("Wrong disk state (%s, %s).",
 2848                             g_raid3_get_diskname(disk),
 2849                             g_raid3_disk_state2str(disk->d_state)));
 2850                         /*
 2851                          * Reset bumping syncid if disk disappeared in STARTING
 2852                          * state.
 2853                          */
 2854                         if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
 2855                                 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
 2856 #ifdef  INVARIANTS
 2857                 } else {
 2858                         KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
 2859                             sc->sc_name,
 2860                             g_raid3_device_state2str(sc->sc_state),
 2861                             g_raid3_get_diskname(disk),
 2862                             g_raid3_disk_state2str(disk->d_state)));
 2863 #endif
 2864                 }
 2865                 DISK_STATE_CHANGED();
 2866                 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
 2867                     sc->sc_name, g_raid3_get_diskname(disk));
 2868 
 2869                 g_raid3_destroy_disk(disk);
 2870                 break;
 2871         default:
 2872                 KASSERT(1 == 0, ("Unknown state (%u).", state));
 2873                 break;
 2874         }
 2875         return (0);
 2876 }
 2877 #undef  DISK_STATE_CHANGED
 2878 
 2879 int
 2880 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
 2881 {
 2882         struct g_provider *pp;
 2883         u_char *buf;
 2884         int error;
 2885 
 2886         g_topology_assert();
 2887 
 2888         error = g_access(cp, 1, 0, 0);
 2889         if (error != 0)
 2890                 return (error);
 2891         pp = cp->provider;
 2892         g_topology_unlock();
 2893         /* Metadata are stored on last sector. */
 2894         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
 2895             &error);
 2896         g_topology_lock();
 2897         g_access(cp, -1, 0, 0);
 2898         if (buf == NULL) {
 2899                 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
 2900                     cp->provider->name, error);
 2901                 return (error);
 2902         }
 2903 
 2904         /* Decode metadata. */
 2905         error = raid3_metadata_decode(buf, md);
 2906         g_free(buf);
 2907         if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
 2908                 return (EINVAL);
 2909         if (md->md_version > G_RAID3_VERSION) {
 2910                 G_RAID3_DEBUG(0,
 2911                     "Kernel module is too old to handle metadata from %s.",
 2912                     cp->provider->name);
 2913                 return (EINVAL);
 2914         }
 2915         if (error != 0) {
 2916                 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
 2917                     cp->provider->name);
 2918                 return (error);
 2919         }
 2920         if (md->md_sectorsize > MAXPHYS) {
 2921                 G_RAID3_DEBUG(0, "The blocksize is too big.");
 2922                 return (EINVAL);
 2923         }
 2924 
 2925         return (0);
 2926 }
 2927 
 2928 static int
 2929 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
 2930     struct g_raid3_metadata *md)
 2931 {
 2932 
 2933         if (md->md_no >= sc->sc_ndisks) {
 2934                 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
 2935                     pp->name, md->md_no);
 2936                 return (EINVAL);
 2937         }
 2938         if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
 2939                 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
 2940                     pp->name, md->md_no);
 2941                 return (EEXIST);
 2942         }
 2943         if (md->md_all != sc->sc_ndisks) {
 2944                 G_RAID3_DEBUG(1,
 2945                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2946                     "md_all", pp->name, sc->sc_name);
 2947                 return (EINVAL);
 2948         }
 2949         if ((md->md_mediasize % md->md_sectorsize) != 0) {
 2950                 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
 2951                     "0) on disk %s (device %s), skipping.", pp->name,
 2952                     sc->sc_name);
 2953                 return (EINVAL);
 2954         }
 2955         if (md->md_mediasize != sc->sc_mediasize) {
 2956                 G_RAID3_DEBUG(1,
 2957                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2958                     "md_mediasize", pp->name, sc->sc_name);
 2959                 return (EINVAL);
 2960         }
 2961         if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
 2962                 G_RAID3_DEBUG(1,
 2963                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2964                     "md_mediasize", pp->name, sc->sc_name);
 2965                 return (EINVAL);
 2966         }
 2967         if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
 2968                 G_RAID3_DEBUG(1,
 2969                     "Invalid size of disk %s (device %s), skipping.", pp->name,
 2970                     sc->sc_name);
 2971                 return (EINVAL);
 2972         }
 2973         if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
 2974                 G_RAID3_DEBUG(1,
 2975                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2976                     "md_sectorsize", pp->name, sc->sc_name);
 2977                 return (EINVAL);
 2978         }
 2979         if (md->md_sectorsize != sc->sc_sectorsize) {
 2980                 G_RAID3_DEBUG(1,
 2981                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2982                     "md_sectorsize", pp->name, sc->sc_name);
 2983                 return (EINVAL);
 2984         }
 2985         if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
 2986                 G_RAID3_DEBUG(1,
 2987                     "Invalid sector size of disk %s (device %s), skipping.",
 2988                     pp->name, sc->sc_name);
 2989                 return (EINVAL);
 2990         }
 2991         if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
 2992                 G_RAID3_DEBUG(1,
 2993                     "Invalid device flags on disk %s (device %s), skipping.",
 2994                     pp->name, sc->sc_name);
 2995                 return (EINVAL);
 2996         }
 2997         if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
 2998             (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
 2999                 /*
 3000                  * VERIFY and ROUND-ROBIN options are mutally exclusive.
 3001                  */
 3002                 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
 3003                     "disk %s (device %s), skipping.", pp->name, sc->sc_name);
 3004                 return (EINVAL);
 3005         }
 3006         if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
 3007                 G_RAID3_DEBUG(1,
 3008                     "Invalid disk flags on disk %s (device %s), skipping.",
 3009                     pp->name, sc->sc_name);
 3010                 return (EINVAL);
 3011         }
 3012         return (0);
 3013 }
 3014 
 3015 int
 3016 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
 3017     struct g_raid3_metadata *md)
 3018 {
 3019         struct g_raid3_disk *disk;
 3020         int error;
 3021 
 3022         g_topology_assert_not();
 3023         G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
 3024 
 3025         error = g_raid3_check_metadata(sc, pp, md);
 3026         if (error != 0)
 3027                 return (error);
 3028         if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
 3029             md->md_genid < sc->sc_genid) {
 3030                 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
 3031                     pp->name, sc->sc_name);
 3032                 return (EINVAL);
 3033         }
 3034         disk = g_raid3_init_disk(sc, pp, md, &error);
 3035         if (disk == NULL)
 3036                 return (error);
 3037         error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
 3038             G_RAID3_EVENT_WAIT);
 3039         if (error != 0)
 3040                 return (error);
 3041         if (md->md_version < G_RAID3_VERSION) {
 3042                 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
 3043                     pp->name, md->md_version, G_RAID3_VERSION);
 3044                 g_raid3_update_metadata(disk);
 3045         }
 3046         return (0);
 3047 }
 3048 
 3049 static void
 3050 g_raid3_destroy_delayed(void *arg, int flag)
 3051 {
 3052         struct g_raid3_softc *sc;
 3053         int error;
 3054 
 3055         if (flag == EV_CANCEL) {
 3056                 G_RAID3_DEBUG(1, "Destroying canceled.");
 3057                 return;
 3058         }
 3059         sc = arg;
 3060         g_topology_unlock();
 3061         sx_xlock(&sc->sc_lock);
 3062         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
 3063             ("DESTROY flag set on %s.", sc->sc_name));
 3064         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
 3065             ("DESTROYING flag not set on %s.", sc->sc_name));
 3066         G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
 3067         error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
 3068         if (error != 0) {
 3069                 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
 3070                 sx_xunlock(&sc->sc_lock);
 3071         }
 3072         g_topology_lock();
 3073 }
 3074 
 3075 static int
 3076 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
 3077 {
 3078         struct g_raid3_softc *sc;
 3079         int dcr, dcw, dce, error = 0;
 3080 
 3081         g_topology_assert();
 3082         G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
 3083             acw, ace);
 3084 
 3085         sc = pp->geom->softc;
 3086         if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
 3087                 return (0);
 3088         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
 3089 
 3090         dcr = pp->acr + acr;
 3091         dcw = pp->acw + acw;
 3092         dce = pp->ace + ace;
 3093 
 3094         g_topology_unlock();
 3095         sx_xlock(&sc->sc_lock);
 3096         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
 3097             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
 3098                 if (acr > 0 || acw > 0 || ace > 0)
 3099                         error = ENXIO;
 3100                 goto end;
 3101         }
 3102         if (dcw == 0)
 3103                 g_raid3_idle(sc, dcw);
 3104         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
 3105                 if (acr > 0 || acw > 0 || ace > 0) {
 3106                         error = ENXIO;
 3107                         goto end;
 3108                 }
 3109                 if (dcr == 0 && dcw == 0 && dce == 0) {
 3110                         g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
 3111                             sc, NULL);
 3112                 }
 3113         }
 3114 end:
 3115         sx_xunlock(&sc->sc_lock);
 3116         g_topology_lock();
 3117         return (error);
 3118 }
 3119 
 3120 static struct g_geom *
 3121 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
 3122 {
 3123         struct g_raid3_softc *sc;
 3124         struct g_geom *gp;
 3125         int error, timeout;
 3126         u_int n;
 3127 
 3128         g_topology_assert();
 3129         G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
 3130 
 3131         /* One disk is minimum. */
 3132         if (md->md_all < 1)
 3133                 return (NULL);
 3134         /*
 3135          * Action geom.
 3136          */
 3137         gp = g_new_geomf(mp, "%s", md->md_name);
 3138         sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
 3139         sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
 3140             M_WAITOK | M_ZERO);
 3141         gp->start = g_raid3_start;
 3142         gp->orphan = g_raid3_orphan;
 3143         gp->access = g_raid3_access;
 3144         gp->dumpconf = g_raid3_dumpconf;
 3145 
 3146         sc->sc_id = md->md_id;
 3147         sc->sc_mediasize = md->md_mediasize;
 3148         sc->sc_sectorsize = md->md_sectorsize;
 3149         sc->sc_ndisks = md->md_all;
 3150         sc->sc_round_robin = 0;
 3151         sc->sc_flags = md->md_mflags;
 3152         sc->sc_bump_id = 0;
 3153         sc->sc_idle = 1;
 3154         sc->sc_last_write = time_uptime;
 3155         sc->sc_writes = 0;
 3156         for (n = 0; n < sc->sc_ndisks; n++) {
 3157                 sc->sc_disks[n].d_softc = sc;
 3158                 sc->sc_disks[n].d_no = n;
 3159                 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
 3160         }
 3161         sx_init(&sc->sc_lock, "graid3:lock");
 3162         bioq_init(&sc->sc_queue);
 3163         mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
 3164         bioq_init(&sc->sc_regular_delayed);
 3165         bioq_init(&sc->sc_inflight);
 3166         bioq_init(&sc->sc_sync_delayed);
 3167         TAILQ_INIT(&sc->sc_events);
 3168         mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
 3169         callout_init(&sc->sc_callout, CALLOUT_MPSAFE);
 3170         sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
 3171         gp->softc = sc;
 3172         sc->sc_geom = gp;
 3173         sc->sc_provider = NULL;
 3174         /*
 3175          * Synchronization geom.
 3176          */
 3177         gp = g_new_geomf(mp, "%s.sync", md->md_name);
 3178         gp->softc = sc;
 3179         gp->orphan = g_raid3_orphan;
 3180         sc->sc_sync.ds_geom = gp;
 3181 
 3182         if (!g_raid3_use_malloc) {
 3183                 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
 3184                     65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
 3185                     UMA_ALIGN_PTR, 0);
 3186                 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
 3187                 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
 3188                 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
 3189                     sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
 3190                 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
 3191                     16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
 3192                     UMA_ALIGN_PTR, 0);
 3193                 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
 3194                 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
 3195                 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
 3196                     sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
 3197                 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
 3198                     4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
 3199                     UMA_ALIGN_PTR, 0);
 3200                 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
 3201                 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
 3202                 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
 3203                     sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
 3204         }
 3205 
 3206         error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
 3207             "g_raid3 %s", md->md_name);
 3208         if (error != 0) {
 3209                 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
 3210                     sc->sc_name);
 3211                 if (!g_raid3_use_malloc) {
 3212                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
 3213                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
 3214                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
 3215                 }
 3216                 g_destroy_geom(sc->sc_sync.ds_geom);
 3217                 mtx_destroy(&sc->sc_events_mtx);
 3218                 mtx_destroy(&sc->sc_queue_mtx);
 3219                 sx_destroy(&sc->sc_lock);
 3220                 g_destroy_geom(sc->sc_geom);
 3221                 free(sc->sc_disks, M_RAID3);
 3222                 free(sc, M_RAID3);
 3223                 return (NULL);
 3224         }
 3225 
 3226         G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
 3227             sc->sc_name, sc->sc_ndisks, sc->sc_id);
 3228 
 3229         sc->sc_rootmount = root_mount_hold("GRAID3");
 3230         G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
 3231 
 3232         /*
 3233          * Run timeout.
 3234          */
 3235         timeout = atomic_load_acq_int(&g_raid3_timeout);
 3236         callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
 3237         return (sc->sc_geom);
 3238 }
 3239 
 3240 int
 3241 g_raid3_destroy(struct g_raid3_softc *sc, int how)
 3242 {
 3243         struct g_provider *pp;
 3244 
 3245         g_topology_assert_not();
 3246         if (sc == NULL)
 3247                 return (ENXIO);
 3248         sx_assert(&sc->sc_lock, SX_XLOCKED);
 3249 
 3250         pp = sc->sc_provider;
 3251         if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
 3252                 switch (how) {
 3253                 case G_RAID3_DESTROY_SOFT:
 3254                         G_RAID3_DEBUG(1,
 3255                             "Device %s is still open (r%dw%de%d).", pp->name,
 3256                             pp->acr, pp->acw, pp->ace);
 3257                         return (EBUSY);
 3258                 case G_RAID3_DESTROY_DELAYED:
 3259                         G_RAID3_DEBUG(1,
 3260                             "Device %s will be destroyed on last close.",
 3261                             pp->name);
 3262                         if (sc->sc_syncdisk != NULL)
 3263                                 g_raid3_sync_stop(sc, 1);
 3264                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
 3265                         return (EBUSY);
 3266                 case G_RAID3_DESTROY_HARD:
 3267                         G_RAID3_DEBUG(1, "Device %s is still open, so it "
 3268                             "can't be definitely removed.", pp->name);
 3269                         break;
 3270                 }
 3271         }
 3272 
 3273         g_topology_lock();
 3274         if (sc->sc_geom->softc == NULL) {
 3275                 g_topology_unlock();
 3276                 return (0);
 3277         }
 3278         sc->sc_geom->softc = NULL;
 3279         sc->sc_sync.ds_geom->softc = NULL;
 3280         g_topology_unlock();
 3281 
 3282         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 3283         sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
 3284         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
 3285         sx_xunlock(&sc->sc_lock);
 3286         mtx_lock(&sc->sc_queue_mtx);
 3287         wakeup(sc);
 3288         wakeup(&sc->sc_queue);
 3289         mtx_unlock(&sc->sc_queue_mtx);
 3290         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
 3291         while (sc->sc_worker != NULL)
 3292                 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
 3293         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
 3294         sx_xlock(&sc->sc_lock);
 3295         g_raid3_destroy_device(sc);
 3296         free(sc->sc_disks, M_RAID3);
 3297         free(sc, M_RAID3);
 3298         return (0);
 3299 }
 3300 
 3301 static void
 3302 g_raid3_taste_orphan(struct g_consumer *cp)
 3303 {
 3304 
 3305         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
 3306             cp->provider->name));
 3307 }
 3308 
 3309 static struct g_geom *
 3310 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
 3311 {
 3312         struct g_raid3_metadata md;
 3313         struct g_raid3_softc *sc;
 3314         struct g_consumer *cp;
 3315         struct g_geom *gp;
 3316         int error;
 3317 
 3318         g_topology_assert();
 3319         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
 3320         G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
 3321 
 3322         gp = g_new_geomf(mp, "raid3:taste");
 3323         /* This orphan function should be never called. */
 3324         gp->orphan = g_raid3_taste_orphan;
 3325         cp = g_new_consumer(gp);
 3326         g_attach(cp, pp);
 3327         error = g_raid3_read_metadata(cp, &md);
 3328         g_detach(cp);
 3329         g_destroy_consumer(cp);
 3330         g_destroy_geom(gp);
 3331         if (error != 0)
 3332                 return (NULL);
 3333         gp = NULL;
 3334 
 3335         if (md.md_provider[0] != '\0' &&
 3336             !g_compare_names(md.md_provider, pp->name))
 3337                 return (NULL);
 3338         if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
 3339                 return (NULL);
 3340         if (g_raid3_debug >= 2)
 3341                 raid3_metadata_dump(&md);
 3342 
 3343         /*
 3344          * Let's check if device already exists.
 3345          */
 3346         sc = NULL;
 3347         LIST_FOREACH(gp, &mp->geom, geom) {
 3348                 sc = gp->softc;
 3349                 if (sc == NULL)
 3350                         continue;
 3351                 if (sc->sc_sync.ds_geom == gp)
 3352                         continue;
 3353                 if (strcmp(md.md_name, sc->sc_name) != 0)
 3354                         continue;
 3355                 if (md.md_id != sc->sc_id) {
 3356                         G_RAID3_DEBUG(0, "Device %s already configured.",
 3357                             sc->sc_name);
 3358                         return (NULL);
 3359                 }
 3360                 break;
 3361         }
 3362         if (gp == NULL) {
 3363                 gp = g_raid3_create(mp, &md);
 3364                 if (gp == NULL) {
 3365                         G_RAID3_DEBUG(0, "Cannot create device %s.",
 3366                             md.md_name);
 3367                         return (NULL);
 3368                 }
 3369                 sc = gp->softc;
 3370         }
 3371         G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
 3372         g_topology_unlock();
 3373         sx_xlock(&sc->sc_lock);
 3374         error = g_raid3_add_disk(sc, pp, &md);
 3375         if (error != 0) {
 3376                 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
 3377                     pp->name, gp->name, error);
 3378                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
 3379                     sc->sc_ndisks) {
 3380                         g_cancel_event(sc);
 3381                         g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
 3382                         g_topology_lock();
 3383                         return (NULL);
 3384                 }
 3385                 gp = NULL;
 3386         }
 3387         sx_xunlock(&sc->sc_lock);
 3388         g_topology_lock();
 3389         return (gp);
 3390 }
 3391 
 3392 static int
 3393 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
 3394     struct g_geom *gp)
 3395 {
 3396         struct g_raid3_softc *sc;
 3397         int error;
 3398 
 3399         g_topology_unlock();
 3400         sc = gp->softc;
 3401         sx_xlock(&sc->sc_lock);
 3402         g_cancel_event(sc);
 3403         error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
 3404         if (error != 0)
 3405                 sx_xunlock(&sc->sc_lock);
 3406         g_topology_lock();
 3407         return (error);
 3408 }
 3409 
 3410 static void
 3411 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
 3412     struct g_consumer *cp, struct g_provider *pp)
 3413 {
 3414         struct g_raid3_softc *sc;
 3415 
 3416         g_topology_assert();
 3417 
 3418         sc = gp->softc;
 3419         if (sc == NULL)
 3420                 return;
 3421         /* Skip synchronization geom. */
 3422         if (gp == sc->sc_sync.ds_geom)
 3423                 return;
 3424         if (pp != NULL) {
 3425                 /* Nothing here. */
 3426         } else if (cp != NULL) {
 3427                 struct g_raid3_disk *disk;
 3428 
 3429                 disk = cp->private;
 3430                 if (disk == NULL)
 3431                         return;
 3432                 g_topology_unlock();
 3433                 sx_xlock(&sc->sc_lock);
 3434                 sbuf_printf(sb, "%s<Type>", indent);
 3435                 if (disk->d_no == sc->sc_ndisks - 1)
 3436                         sbuf_printf(sb, "PARITY");
 3437                 else
 3438                         sbuf_printf(sb, "DATA");
 3439                 sbuf_printf(sb, "</Type>\n");
 3440                 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
 3441                     (u_int)disk->d_no);
 3442                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
 3443                         sbuf_printf(sb, "%s<Synchronized>", indent);
 3444                         if (disk->d_sync.ds_offset == 0)
 3445                                 sbuf_printf(sb, "0%%");
 3446                         else {
 3447                                 sbuf_printf(sb, "%u%%",
 3448                                     (u_int)((disk->d_sync.ds_offset * 100) /
 3449                                     (sc->sc_mediasize / (sc->sc_ndisks - 1))));
 3450                         }
 3451                         sbuf_printf(sb, "</Synchronized>\n");
 3452                         if (disk->d_sync.ds_offset > 0) {
 3453                                 sbuf_printf(sb, "%s<BytesSynced>%jd"
 3454                                     "</BytesSynced>\n", indent,
 3455                                     (intmax_t)disk->d_sync.ds_offset);
 3456                         }
 3457                 }
 3458                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
 3459                     disk->d_sync.ds_syncid);
 3460                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
 3461                 sbuf_printf(sb, "%s<Flags>", indent);
 3462                 if (disk->d_flags == 0)
 3463                         sbuf_printf(sb, "NONE");
 3464                 else {
 3465                         int first = 1;
 3466 
 3467 #define ADD_FLAG(flag, name)    do {                                    \
 3468         if ((disk->d_flags & (flag)) != 0) {                            \
 3469                 if (!first)                                             \
 3470                         sbuf_printf(sb, ", ");                          \
 3471                 else                                                    \
 3472                         first = 0;                                      \
 3473                 sbuf_printf(sb, name);                                  \
 3474         }                                                               \
 3475 } while (0)
 3476                         ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
 3477                         ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
 3478                         ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
 3479                             "SYNCHRONIZING");
 3480                         ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
 3481                         ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
 3482 #undef  ADD_FLAG
 3483                 }
 3484                 sbuf_printf(sb, "</Flags>\n");
 3485                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 3486                     g_raid3_disk_state2str(disk->d_state));
 3487                 sx_xunlock(&sc->sc_lock);
 3488                 g_topology_lock();
 3489         } else {
 3490                 g_topology_unlock();
 3491                 sx_xlock(&sc->sc_lock);
 3492                 if (!g_raid3_use_malloc) {
 3493                         sbuf_printf(sb,
 3494                             "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
 3495                             sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
 3496                         sbuf_printf(sb,
 3497                             "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
 3498                             sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
 3499                         sbuf_printf(sb,
 3500                             "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
 3501                             sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
 3502                         sbuf_printf(sb,
 3503                             "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
 3504                             sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
 3505                         sbuf_printf(sb,
 3506                             "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
 3507                             sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
 3508                         sbuf_printf(sb,
 3509                             "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
 3510                             sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
 3511                 }
 3512                 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
 3513                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
 3514                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
 3515                 sbuf_printf(sb, "%s<Flags>", indent);
 3516                 if (sc->sc_flags == 0)
 3517                         sbuf_printf(sb, "NONE");
 3518                 else {
 3519                         int first = 1;
 3520 
 3521 #define ADD_FLAG(flag, name)    do {                                    \
 3522         if ((sc->sc_flags & (flag)) != 0) {                             \
 3523                 if (!first)                                             \
 3524                         sbuf_printf(sb, ", ");                          \
 3525                 else                                                    \
 3526                         first = 0;                                      \
 3527                 sbuf_printf(sb, name);                                  \
 3528         }                                                               \
 3529 } while (0)
 3530                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
 3531                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
 3532                         ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
 3533                             "ROUND-ROBIN");
 3534                         ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
 3535 #undef  ADD_FLAG
 3536                 }
 3537                 sbuf_printf(sb, "</Flags>\n");
 3538                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
 3539                     sc->sc_ndisks);
 3540                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 3541                     g_raid3_device_state2str(sc->sc_state));
 3542                 sx_xunlock(&sc->sc_lock);
 3543                 g_topology_lock();
 3544         }
 3545 }
 3546 
 3547 static void
 3548 g_raid3_shutdown_post_sync(void *arg, int howto)
 3549 {
 3550         struct g_class *mp;
 3551         struct g_geom *gp, *gp2;
 3552         struct g_raid3_softc *sc;
 3553         int error;
 3554 
 3555         mp = arg;
 3556         DROP_GIANT();
 3557         g_topology_lock();
 3558         g_raid3_shutdown = 1;
 3559         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
 3560                 if ((sc = gp->softc) == NULL)
 3561                         continue;
 3562                 /* Skip synchronization geom. */
 3563                 if (gp == sc->sc_sync.ds_geom)
 3564                         continue;
 3565                 g_topology_unlock();
 3566                 sx_xlock(&sc->sc_lock);
 3567                 g_raid3_idle(sc, -1);
 3568                 g_cancel_event(sc);
 3569                 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
 3570                 if (error != 0)
 3571                         sx_xunlock(&sc->sc_lock);
 3572                 g_topology_lock();
 3573         }
 3574         g_topology_unlock();
 3575         PICKUP_GIANT();
 3576 }
 3577 
 3578 static void
 3579 g_raid3_init(struct g_class *mp)
 3580 {
 3581 
 3582         g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
 3583             g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
 3584         if (g_raid3_post_sync == NULL)
 3585                 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
 3586 }
 3587 
 3588 static void
 3589 g_raid3_fini(struct g_class *mp)
 3590 {
 3591 
 3592         if (g_raid3_post_sync != NULL)
 3593                 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync);
 3594 }
 3595 
 3596 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);

Cache object: 1e0e6d85e060585ca5951110e6cba051


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.