The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/geom/raid3/g_raid3.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/8.3/sys/geom/raid3/g_raid3.c 222920 2011-06-10 09:12:09Z mav $");
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/kernel.h>
   33 #include <sys/module.h>
   34 #include <sys/limits.h>
   35 #include <sys/lock.h>
   36 #include <sys/mutex.h>
   37 #include <sys/bio.h>
   38 #include <sys/sysctl.h>
   39 #include <sys/malloc.h>
   40 #include <sys/eventhandler.h>
   41 #include <vm/uma.h>
   42 #include <geom/geom.h>
   43 #include <sys/proc.h>
   44 #include <sys/kthread.h>
   45 #include <sys/sched.h>
   46 #include <geom/raid3/g_raid3.h>
   47 
   48 
   49 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
   50 
   51 SYSCTL_DECL(_kern_geom);
   52 SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff");
   53 u_int g_raid3_debug = 0;
   54 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug);
   55 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0,
   56     "Debug level");
   57 static u_int g_raid3_timeout = 4;
   58 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout);
   59 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout,
   60     0, "Time to wait on all raid3 components");
   61 static u_int g_raid3_idletime = 5;
   62 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime);
   63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW,
   64     &g_raid3_idletime, 0, "Mark components as clean when idling");
   65 static u_int g_raid3_disconnect_on_failure = 1;
   66 TUNABLE_INT("kern.geom.raid3.disconnect_on_failure",
   67     &g_raid3_disconnect_on_failure);
   68 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
   69     &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
   70 static u_int g_raid3_syncreqs = 2;
   71 TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs);
   72 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
   73     &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
   74 static u_int g_raid3_use_malloc = 0;
   75 TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc);
   76 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
   77     &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
   78 
   79 static u_int g_raid3_n64k = 50;
   80 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k);
   81 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0,
   82     "Maximum number of 64kB allocations");
   83 static u_int g_raid3_n16k = 200;
   84 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k);
   85 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0,
   86     "Maximum number of 16kB allocations");
   87 static u_int g_raid3_n4k = 1200;
   88 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k);
   89 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0,
   90     "Maximum number of 4kB allocations");
   91 
   92 SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
   93     "GEOM_RAID3 statistics");
   94 static u_int g_raid3_parity_mismatch = 0;
   95 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
   96     &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
   97 
   98 #define MSLEEP(ident, mtx, priority, wmesg, timeout)    do {            \
   99         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));        \
  100         msleep((ident), (mtx), (priority), (wmesg), (timeout));         \
  101         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));        \
  102 } while (0)
  103 
  104 static eventhandler_tag g_raid3_pre_sync = NULL;
  105 
  106 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
  107     struct g_geom *gp);
  108 static g_taste_t g_raid3_taste;
  109 static void g_raid3_init(struct g_class *mp);
  110 static void g_raid3_fini(struct g_class *mp);
  111 
  112 struct g_class g_raid3_class = {
  113         .name = G_RAID3_CLASS_NAME,
  114         .version = G_VERSION,
  115         .ctlreq = g_raid3_config,
  116         .taste = g_raid3_taste,
  117         .destroy_geom = g_raid3_destroy_geom,
  118         .init = g_raid3_init,
  119         .fini = g_raid3_fini
  120 };
  121 
  122 
  123 static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
  124 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
  125 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
  126 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
  127     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
  128 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
  129 static int g_raid3_register_request(struct bio *pbp);
  130 static void g_raid3_sync_release(struct g_raid3_softc *sc);
  131 
  132 
  133 static const char *
  134 g_raid3_disk_state2str(int state)
  135 {
  136 
  137         switch (state) {
  138         case G_RAID3_DISK_STATE_NODISK:
  139                 return ("NODISK");
  140         case G_RAID3_DISK_STATE_NONE:
  141                 return ("NONE");
  142         case G_RAID3_DISK_STATE_NEW:
  143                 return ("NEW");
  144         case G_RAID3_DISK_STATE_ACTIVE:
  145                 return ("ACTIVE");
  146         case G_RAID3_DISK_STATE_STALE:
  147                 return ("STALE");
  148         case G_RAID3_DISK_STATE_SYNCHRONIZING:
  149                 return ("SYNCHRONIZING");
  150         case G_RAID3_DISK_STATE_DISCONNECTED:
  151                 return ("DISCONNECTED");
  152         default:
  153                 return ("INVALID");
  154         }
  155 }
  156 
  157 static const char *
  158 g_raid3_device_state2str(int state)
  159 {
  160 
  161         switch (state) {
  162         case G_RAID3_DEVICE_STATE_STARTING:
  163                 return ("STARTING");
  164         case G_RAID3_DEVICE_STATE_DEGRADED:
  165                 return ("DEGRADED");
  166         case G_RAID3_DEVICE_STATE_COMPLETE:
  167                 return ("COMPLETE");
  168         default:
  169                 return ("INVALID");
  170         }
  171 }
  172 
  173 const char *
  174 g_raid3_get_diskname(struct g_raid3_disk *disk)
  175 {
  176 
  177         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
  178                 return ("[unknown]");
  179         return (disk->d_name);
  180 }
  181 
  182 static void *
  183 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
  184 {
  185         void *ptr;
  186         enum g_raid3_zones zone;
  187 
  188         if (g_raid3_use_malloc ||
  189             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
  190                 ptr = malloc(size, M_RAID3, flags);
  191         else {
  192                 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
  193                    &sc->sc_zones[zone], flags);
  194                 sc->sc_zones[zone].sz_requested++;
  195                 if (ptr == NULL)
  196                         sc->sc_zones[zone].sz_failed++;
  197         }
  198         return (ptr);
  199 }
  200 
  201 static void
  202 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
  203 {
  204         enum g_raid3_zones zone;
  205 
  206         if (g_raid3_use_malloc ||
  207             (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
  208                 free(ptr, M_RAID3);
  209         else {
  210                 uma_zfree_arg(sc->sc_zones[zone].sz_zone,
  211                     ptr, &sc->sc_zones[zone]);
  212         }
  213 }
  214 
  215 static int
  216 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
  217 {
  218         struct g_raid3_zone *sz = arg;
  219 
  220         if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
  221                 return (ENOMEM);
  222         sz->sz_inuse++;
  223         return (0);
  224 }
  225 
  226 static void
  227 g_raid3_uma_dtor(void *mem, int size, void *arg)
  228 {
  229         struct g_raid3_zone *sz = arg;
  230 
  231         sz->sz_inuse--;
  232 }
  233 
  234 #define g_raid3_xor(src, dst, size)                                     \
  235         _g_raid3_xor((uint64_t *)(src),                                 \
  236             (uint64_t *)(dst), (size_t)size)
  237 static void
  238 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
  239 {
  240 
  241         KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
  242         for (; size > 0; size -= 128) {
  243                 *dst++ ^= (*src++);
  244                 *dst++ ^= (*src++);
  245                 *dst++ ^= (*src++);
  246                 *dst++ ^= (*src++);
  247                 *dst++ ^= (*src++);
  248                 *dst++ ^= (*src++);
  249                 *dst++ ^= (*src++);
  250                 *dst++ ^= (*src++);
  251                 *dst++ ^= (*src++);
  252                 *dst++ ^= (*src++);
  253                 *dst++ ^= (*src++);
  254                 *dst++ ^= (*src++);
  255                 *dst++ ^= (*src++);
  256                 *dst++ ^= (*src++);
  257                 *dst++ ^= (*src++);
  258                 *dst++ ^= (*src++);
  259         }
  260 }
  261 
  262 static int
  263 g_raid3_is_zero(struct bio *bp)
  264 {
  265         static const uint64_t zeros[] = {
  266             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  267         };
  268         u_char *addr;
  269         ssize_t size;
  270 
  271         size = bp->bio_length;
  272         addr = (u_char *)bp->bio_data;
  273         for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
  274                 if (bcmp(addr, zeros, sizeof(zeros)) != 0)
  275                         return (0);
  276         }
  277         return (1);
  278 }
  279 
  280 /*
  281  * --- Events handling functions ---
  282  * Events in geom_raid3 are used to maintain disks and device status
  283  * from one thread to simplify locking.
  284  */
  285 static void
  286 g_raid3_event_free(struct g_raid3_event *ep)
  287 {
  288 
  289         free(ep, M_RAID3);
  290 }
  291 
  292 int
  293 g_raid3_event_send(void *arg, int state, int flags)
  294 {
  295         struct g_raid3_softc *sc;
  296         struct g_raid3_disk *disk;
  297         struct g_raid3_event *ep;
  298         int error;
  299 
  300         ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
  301         G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
  302         if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
  303                 disk = NULL;
  304                 sc = arg;
  305         } else {
  306                 disk = arg;
  307                 sc = disk->d_softc;
  308         }
  309         ep->e_disk = disk;
  310         ep->e_state = state;
  311         ep->e_flags = flags;
  312         ep->e_error = 0;
  313         mtx_lock(&sc->sc_events_mtx);
  314         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
  315         mtx_unlock(&sc->sc_events_mtx);
  316         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
  317         mtx_lock(&sc->sc_queue_mtx);
  318         wakeup(sc);
  319         wakeup(&sc->sc_queue);
  320         mtx_unlock(&sc->sc_queue_mtx);
  321         if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
  322                 return (0);
  323         sx_assert(&sc->sc_lock, SX_XLOCKED);
  324         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
  325         sx_xunlock(&sc->sc_lock);
  326         while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
  327                 mtx_lock(&sc->sc_events_mtx);
  328                 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
  329                     hz * 5);
  330         }
  331         error = ep->e_error;
  332         g_raid3_event_free(ep);
  333         sx_xlock(&sc->sc_lock);
  334         return (error);
  335 }
  336 
  337 static struct g_raid3_event *
  338 g_raid3_event_get(struct g_raid3_softc *sc)
  339 {
  340         struct g_raid3_event *ep;
  341 
  342         mtx_lock(&sc->sc_events_mtx);
  343         ep = TAILQ_FIRST(&sc->sc_events);
  344         mtx_unlock(&sc->sc_events_mtx);
  345         return (ep);
  346 }
  347 
  348 static void
  349 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
  350 {
  351 
  352         mtx_lock(&sc->sc_events_mtx);
  353         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  354         mtx_unlock(&sc->sc_events_mtx);
  355 }
  356 
  357 static void
  358 g_raid3_event_cancel(struct g_raid3_disk *disk)
  359 {
  360         struct g_raid3_softc *sc;
  361         struct g_raid3_event *ep, *tmpep;
  362 
  363         sc = disk->d_softc;
  364         sx_assert(&sc->sc_lock, SX_XLOCKED);
  365 
  366         mtx_lock(&sc->sc_events_mtx);
  367         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
  368                 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
  369                         continue;
  370                 if (ep->e_disk != disk)
  371                         continue;
  372                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
  373                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
  374                         g_raid3_event_free(ep);
  375                 else {
  376                         ep->e_error = ECANCELED;
  377                         wakeup(ep);
  378                 }
  379         }
  380         mtx_unlock(&sc->sc_events_mtx);
  381 }
  382 
  383 /*
  384  * Return the number of disks in the given state.
  385  * If state is equal to -1, count all connected disks.
  386  */
  387 u_int
  388 g_raid3_ndisks(struct g_raid3_softc *sc, int state)
  389 {
  390         struct g_raid3_disk *disk;
  391         u_int n, ndisks;
  392 
  393         sx_assert(&sc->sc_lock, SX_LOCKED);
  394 
  395         for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
  396                 disk = &sc->sc_disks[n];
  397                 if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
  398                         continue;
  399                 if (state == -1 || disk->d_state == state)
  400                         ndisks++;
  401         }
  402         return (ndisks);
  403 }
  404 
  405 static u_int
  406 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
  407 {
  408         struct bio *bp;
  409         u_int nreqs = 0;
  410 
  411         mtx_lock(&sc->sc_queue_mtx);
  412         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
  413                 if (bp->bio_from == cp)
  414                         nreqs++;
  415         }
  416         mtx_unlock(&sc->sc_queue_mtx);
  417         return (nreqs);
  418 }
  419 
  420 static int
  421 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
  422 {
  423 
  424         if (cp->index > 0) {
  425                 G_RAID3_DEBUG(2,
  426                     "I/O requests for %s exist, can't destroy it now.",
  427                     cp->provider->name);
  428                 return (1);
  429         }
  430         if (g_raid3_nrequests(sc, cp) > 0) {
  431                 G_RAID3_DEBUG(2,
  432                     "I/O requests for %s in queue, can't destroy it now.",
  433                     cp->provider->name);
  434                 return (1);
  435         }
  436         return (0);
  437 }
  438 
  439 static void
  440 g_raid3_destroy_consumer(void *arg, int flags __unused)
  441 {
  442         struct g_consumer *cp;
  443 
  444         g_topology_assert();
  445 
  446         cp = arg;
  447         G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
  448         g_detach(cp);
  449         g_destroy_consumer(cp);
  450 }
  451 
  452 static void
  453 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
  454 {
  455         struct g_provider *pp;
  456         int retaste_wait;
  457 
  458         g_topology_assert();
  459 
  460         cp->private = NULL;
  461         if (g_raid3_is_busy(sc, cp))
  462                 return;
  463         G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
  464         pp = cp->provider;
  465         retaste_wait = 0;
  466         if (cp->acw == 1) {
  467                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
  468                         retaste_wait = 1;
  469         }
  470         G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
  471             -cp->acw, -cp->ace, 0);
  472         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
  473                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
  474         if (retaste_wait) {
  475                 /*
  476                  * After retaste event was send (inside g_access()), we can send
  477                  * event to detach and destroy consumer.
  478                  * A class, which has consumer to the given provider connected
  479                  * will not receive retaste event for the provider.
  480                  * This is the way how I ignore retaste events when I close
  481                  * consumers opened for write: I detach and destroy consumer
  482                  * after retaste event is sent.
  483                  */
  484                 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
  485                 return;
  486         }
  487         G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
  488         g_detach(cp);
  489         g_destroy_consumer(cp);
  490 }
  491 
  492 static int
  493 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
  494 {
  495         struct g_consumer *cp;
  496         int error;
  497 
  498         g_topology_assert_not();
  499         KASSERT(disk->d_consumer == NULL,
  500             ("Disk already connected (device %s).", disk->d_softc->sc_name));
  501 
  502         g_topology_lock();
  503         cp = g_new_consumer(disk->d_softc->sc_geom);
  504         error = g_attach(cp, pp);
  505         if (error != 0) {
  506                 g_destroy_consumer(cp);
  507                 g_topology_unlock();
  508                 return (error);
  509         }
  510         error = g_access(cp, 1, 1, 1);
  511                 g_topology_unlock();
  512         if (error != 0) {
  513                 g_detach(cp);
  514                 g_destroy_consumer(cp);
  515                 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
  516                     pp->name, error);
  517                 return (error);
  518         }
  519         disk->d_consumer = cp;
  520         disk->d_consumer->private = disk;
  521         disk->d_consumer->index = 0;
  522         G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
  523         return (0);
  524 }
  525 
  526 static void
  527 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
  528 {
  529 
  530         g_topology_assert();
  531 
  532         if (cp == NULL)
  533                 return;
  534         if (cp->provider != NULL)
  535                 g_raid3_kill_consumer(sc, cp);
  536         else
  537                 g_destroy_consumer(cp);
  538 }
  539 
  540 /*
  541  * Initialize disk. This means allocate memory, create consumer, attach it
  542  * to the provider and open access (r1w1e1) to it.
  543  */
  544 static struct g_raid3_disk *
  545 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
  546     struct g_raid3_metadata *md, int *errorp)
  547 {
  548         struct g_raid3_disk *disk;
  549         int error;
  550 
  551         disk = &sc->sc_disks[md->md_no];
  552         error = g_raid3_connect_disk(disk, pp);
  553         if (error != 0) {
  554                 if (errorp != NULL)
  555                         *errorp = error;
  556                 return (NULL);
  557         }
  558         disk->d_state = G_RAID3_DISK_STATE_NONE;
  559         disk->d_flags = md->md_dflags;
  560         if (md->md_provider[0] != '\0')
  561                 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
  562         disk->d_sync.ds_consumer = NULL;
  563         disk->d_sync.ds_offset = md->md_sync_offset;
  564         disk->d_sync.ds_offset_done = md->md_sync_offset;
  565         disk->d_genid = md->md_genid;
  566         disk->d_sync.ds_syncid = md->md_syncid;
  567         if (errorp != NULL)
  568                 *errorp = 0;
  569         return (disk);
  570 }
  571 
  572 static void
  573 g_raid3_destroy_disk(struct g_raid3_disk *disk)
  574 {
  575         struct g_raid3_softc *sc;
  576 
  577         g_topology_assert_not();
  578         sc = disk->d_softc;
  579         sx_assert(&sc->sc_lock, SX_XLOCKED);
  580 
  581         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
  582                 return;
  583         g_raid3_event_cancel(disk);
  584         switch (disk->d_state) {
  585         case G_RAID3_DISK_STATE_SYNCHRONIZING:
  586                 if (sc->sc_syncdisk != NULL)
  587                         g_raid3_sync_stop(sc, 1);
  588                 /* FALLTHROUGH */
  589         case G_RAID3_DISK_STATE_NEW:
  590         case G_RAID3_DISK_STATE_STALE:
  591         case G_RAID3_DISK_STATE_ACTIVE:
  592                 g_topology_lock();
  593                 g_raid3_disconnect_consumer(sc, disk->d_consumer);
  594                 g_topology_unlock();
  595                 disk->d_consumer = NULL;
  596                 break;
  597         default:
  598                 KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
  599                     g_raid3_get_diskname(disk),
  600                     g_raid3_disk_state2str(disk->d_state)));
  601         }
  602         disk->d_state = G_RAID3_DISK_STATE_NODISK;
  603 }
  604 
  605 static void
  606 g_raid3_destroy_device(struct g_raid3_softc *sc)
  607 {
  608         struct g_raid3_event *ep;
  609         struct g_raid3_disk *disk;
  610         struct g_geom *gp;
  611         struct g_consumer *cp;
  612         u_int n;
  613 
  614         g_topology_assert_not();
  615         sx_assert(&sc->sc_lock, SX_XLOCKED);
  616 
  617         gp = sc->sc_geom;
  618         if (sc->sc_provider != NULL)
  619                 g_raid3_destroy_provider(sc);
  620         for (n = 0; n < sc->sc_ndisks; n++) {
  621                 disk = &sc->sc_disks[n];
  622                 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
  623                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
  624                         g_raid3_update_metadata(disk);
  625                         g_raid3_destroy_disk(disk);
  626                 }
  627         }
  628         while ((ep = g_raid3_event_get(sc)) != NULL) {
  629                 g_raid3_event_remove(sc, ep);
  630                 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
  631                         g_raid3_event_free(ep);
  632                 else {
  633                         ep->e_error = ECANCELED;
  634                         ep->e_flags |= G_RAID3_EVENT_DONE;
  635                         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
  636                         mtx_lock(&sc->sc_events_mtx);
  637                         wakeup(ep);
  638                         mtx_unlock(&sc->sc_events_mtx);
  639                 }
  640         }
  641         callout_drain(&sc->sc_callout);
  642         cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
  643         g_topology_lock();
  644         if (cp != NULL)
  645                 g_raid3_disconnect_consumer(sc, cp);
  646         g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
  647         G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
  648         g_wither_geom(gp, ENXIO);
  649         g_topology_unlock();
  650         if (!g_raid3_use_malloc) {
  651                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
  652                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
  653                 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
  654         }
  655         mtx_destroy(&sc->sc_queue_mtx);
  656         mtx_destroy(&sc->sc_events_mtx);
  657         sx_xunlock(&sc->sc_lock);
  658         sx_destroy(&sc->sc_lock);
  659 }
  660 
  661 static void
  662 g_raid3_orphan(struct g_consumer *cp)
  663 {
  664         struct g_raid3_disk *disk;
  665 
  666         g_topology_assert();
  667 
  668         disk = cp->private;
  669         if (disk == NULL)
  670                 return;
  671         disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
  672         g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
  673             G_RAID3_EVENT_DONTWAIT);
  674 }
  675 
  676 static int
  677 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
  678 {
  679         struct g_raid3_softc *sc;
  680         struct g_consumer *cp;
  681         off_t offset, length;
  682         u_char *sector;
  683         int error = 0;
  684 
  685         g_topology_assert_not();
  686         sc = disk->d_softc;
  687         sx_assert(&sc->sc_lock, SX_LOCKED);
  688 
  689         cp = disk->d_consumer;
  690         KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
  691         KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
  692         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
  693             ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
  694             cp->acw, cp->ace));
  695         length = cp->provider->sectorsize;
  696         offset = cp->provider->mediasize - length;
  697         sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
  698         if (md != NULL)
  699                 raid3_metadata_encode(md, sector);
  700         error = g_write_data(cp, offset, sector, length);
  701         free(sector, M_RAID3);
  702         if (error != 0) {
  703                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
  704                         G_RAID3_DEBUG(0, "Cannot write metadata on %s "
  705                             "(device=%s, error=%d).",
  706                             g_raid3_get_diskname(disk), sc->sc_name, error);
  707                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
  708                 } else {
  709                         G_RAID3_DEBUG(1, "Cannot write metadata on %s "
  710                             "(device=%s, error=%d).",
  711                             g_raid3_get_diskname(disk), sc->sc_name, error);
  712                 }
  713                 if (g_raid3_disconnect_on_failure &&
  714                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
  715                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
  716                         g_raid3_event_send(disk,
  717                             G_RAID3_DISK_STATE_DISCONNECTED,
  718                             G_RAID3_EVENT_DONTWAIT);
  719                 }
  720         }
  721         return (error);
  722 }
  723 
  724 int
  725 g_raid3_clear_metadata(struct g_raid3_disk *disk)
  726 {
  727         int error;
  728 
  729         g_topology_assert_not();
  730         sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
  731 
  732         error = g_raid3_write_metadata(disk, NULL);
  733         if (error == 0) {
  734                 G_RAID3_DEBUG(2, "Metadata on %s cleared.",
  735                     g_raid3_get_diskname(disk));
  736         } else {
  737                 G_RAID3_DEBUG(0,
  738                     "Cannot clear metadata on disk %s (error=%d).",
  739                     g_raid3_get_diskname(disk), error);
  740         }
  741         return (error);
  742 }
  743 
  744 void
  745 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
  746 {
  747         struct g_raid3_softc *sc;
  748         struct g_provider *pp;
  749 
  750         sc = disk->d_softc;
  751         strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
  752         md->md_version = G_RAID3_VERSION;
  753         strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
  754         md->md_id = sc->sc_id;
  755         md->md_all = sc->sc_ndisks;
  756         md->md_genid = sc->sc_genid;
  757         md->md_mediasize = sc->sc_mediasize;
  758         md->md_sectorsize = sc->sc_sectorsize;
  759         md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
  760         md->md_no = disk->d_no;
  761         md->md_syncid = disk->d_sync.ds_syncid;
  762         md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
  763         if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
  764                 md->md_sync_offset = 0;
  765         else {
  766                 md->md_sync_offset =
  767                     disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
  768         }
  769         if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
  770                 pp = disk->d_consumer->provider;
  771         else
  772                 pp = NULL;
  773         if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
  774                 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
  775         else
  776                 bzero(md->md_provider, sizeof(md->md_provider));
  777         if (pp != NULL)
  778                 md->md_provsize = pp->mediasize;
  779         else
  780                 md->md_provsize = 0;
  781 }
  782 
  783 void
  784 g_raid3_update_metadata(struct g_raid3_disk *disk)
  785 {
  786         struct g_raid3_softc *sc;
  787         struct g_raid3_metadata md;
  788         int error;
  789 
  790         g_topology_assert_not();
  791         sc = disk->d_softc;
  792         sx_assert(&sc->sc_lock, SX_LOCKED);
  793 
  794         g_raid3_fill_metadata(disk, &md);
  795         error = g_raid3_write_metadata(disk, &md);
  796         if (error == 0) {
  797                 G_RAID3_DEBUG(2, "Metadata on %s updated.",
  798                     g_raid3_get_diskname(disk));
  799         } else {
  800                 G_RAID3_DEBUG(0,
  801                     "Cannot update metadata on disk %s (error=%d).",
  802                     g_raid3_get_diskname(disk), error);
  803         }
  804 }
  805 
  806 static void
  807 g_raid3_bump_syncid(struct g_raid3_softc *sc)
  808 {
  809         struct g_raid3_disk *disk;
  810         u_int n;
  811 
  812         g_topology_assert_not();
  813         sx_assert(&sc->sc_lock, SX_XLOCKED);
  814         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
  815             ("%s called with no active disks (device=%s).", __func__,
  816             sc->sc_name));
  817 
  818         sc->sc_syncid++;
  819         G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
  820             sc->sc_syncid);
  821         for (n = 0; n < sc->sc_ndisks; n++) {
  822                 disk = &sc->sc_disks[n];
  823                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
  824                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
  825                         disk->d_sync.ds_syncid = sc->sc_syncid;
  826                         g_raid3_update_metadata(disk);
  827                 }
  828         }
  829 }
  830 
  831 static void
  832 g_raid3_bump_genid(struct g_raid3_softc *sc)
  833 {
  834         struct g_raid3_disk *disk;
  835         u_int n;
  836 
  837         g_topology_assert_not();
  838         sx_assert(&sc->sc_lock, SX_XLOCKED);
  839         KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
  840             ("%s called with no active disks (device=%s).", __func__,
  841             sc->sc_name));
  842 
  843         sc->sc_genid++;
  844         G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
  845             sc->sc_genid);
  846         for (n = 0; n < sc->sc_ndisks; n++) {
  847                 disk = &sc->sc_disks[n];
  848                 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
  849                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
  850                         disk->d_genid = sc->sc_genid;
  851                         g_raid3_update_metadata(disk);
  852                 }
  853         }
  854 }
  855 
  856 static int
  857 g_raid3_idle(struct g_raid3_softc *sc, int acw)
  858 {
  859         struct g_raid3_disk *disk;
  860         u_int i;
  861         int timeout;
  862 
  863         g_topology_assert_not();
  864         sx_assert(&sc->sc_lock, SX_XLOCKED);
  865 
  866         if (sc->sc_provider == NULL)
  867                 return (0);
  868         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
  869                 return (0);
  870         if (sc->sc_idle)
  871                 return (0);
  872         if (sc->sc_writes > 0)
  873                 return (0);
  874         if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
  875                 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
  876                 if (timeout > 0)
  877                         return (timeout);
  878         }
  879         sc->sc_idle = 1;
  880         for (i = 0; i < sc->sc_ndisks; i++) {
  881                 disk = &sc->sc_disks[i];
  882                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
  883                         continue;
  884                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
  885                     g_raid3_get_diskname(disk), sc->sc_name);
  886                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
  887                 g_raid3_update_metadata(disk);
  888         }
  889         return (0);
  890 }
  891 
  892 static void
  893 g_raid3_unidle(struct g_raid3_softc *sc)
  894 {
  895         struct g_raid3_disk *disk;
  896         u_int i;
  897 
  898         g_topology_assert_not();
  899         sx_assert(&sc->sc_lock, SX_XLOCKED);
  900 
  901         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
  902                 return;
  903         sc->sc_idle = 0;
  904         sc->sc_last_write = time_uptime;
  905         for (i = 0; i < sc->sc_ndisks; i++) {
  906                 disk = &sc->sc_disks[i];
  907                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
  908                         continue;
  909                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
  910                     g_raid3_get_diskname(disk), sc->sc_name);
  911                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
  912                 g_raid3_update_metadata(disk);
  913         }
  914 }
  915 
  916 /*
  917  * Treat bio_driver1 field in parent bio as list head and field bio_caller1
  918  * in child bio as pointer to the next element on the list.
  919  */
  920 #define G_RAID3_HEAD_BIO(pbp)   (pbp)->bio_driver1
  921 
  922 #define G_RAID3_NEXT_BIO(cbp)   (cbp)->bio_caller1
  923 
  924 #define G_RAID3_FOREACH_BIO(pbp, bp)                                    \
  925         for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;                \
  926             (bp) = G_RAID3_NEXT_BIO(bp))
  927 
  928 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)                        \
  929         for ((bp) = G_RAID3_HEAD_BIO(pbp);                              \
  930             (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);        \
  931             (bp) = (tmpbp))
  932 
  933 static void
  934 g_raid3_init_bio(struct bio *pbp)
  935 {
  936 
  937         G_RAID3_HEAD_BIO(pbp) = NULL;
  938 }
  939 
  940 static void
  941 g_raid3_remove_bio(struct bio *cbp)
  942 {
  943         struct bio *pbp, *bp;
  944 
  945         pbp = cbp->bio_parent;
  946         if (G_RAID3_HEAD_BIO(pbp) == cbp)
  947                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
  948         else {
  949                 G_RAID3_FOREACH_BIO(pbp, bp) {
  950                         if (G_RAID3_NEXT_BIO(bp) == cbp) {
  951                                 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
  952                                 break;
  953                         }
  954                 }
  955         }
  956         G_RAID3_NEXT_BIO(cbp) = NULL;
  957 }
  958 
  959 static void
  960 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
  961 {
  962         struct bio *pbp, *bp;
  963 
  964         g_raid3_remove_bio(sbp);
  965         pbp = dbp->bio_parent;
  966         G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
  967         if (G_RAID3_HEAD_BIO(pbp) == dbp)
  968                 G_RAID3_HEAD_BIO(pbp) = sbp;
  969         else {
  970                 G_RAID3_FOREACH_BIO(pbp, bp) {
  971                         if (G_RAID3_NEXT_BIO(bp) == dbp) {
  972                                 G_RAID3_NEXT_BIO(bp) = sbp;
  973                                 break;
  974                         }
  975                 }
  976         }
  977         G_RAID3_NEXT_BIO(dbp) = NULL;
  978 }
  979 
  980 static void
  981 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
  982 {
  983         struct bio *bp, *pbp;
  984         size_t size;
  985 
  986         pbp = cbp->bio_parent;
  987         pbp->bio_children--;
  988         KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
  989         size = pbp->bio_length / (sc->sc_ndisks - 1);
  990         g_raid3_free(sc, cbp->bio_data, size);
  991         if (G_RAID3_HEAD_BIO(pbp) == cbp) {
  992                 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
  993                 G_RAID3_NEXT_BIO(cbp) = NULL;
  994                 g_destroy_bio(cbp);
  995         } else {
  996                 G_RAID3_FOREACH_BIO(pbp, bp) {
  997                         if (G_RAID3_NEXT_BIO(bp) == cbp)
  998                                 break;
  999                 }
 1000                 if (bp != NULL) {
 1001                         KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
 1002                             ("NULL bp->bio_driver1"));
 1003                         G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
 1004                         G_RAID3_NEXT_BIO(cbp) = NULL;
 1005                 }
 1006                 g_destroy_bio(cbp);
 1007         }
 1008 }
 1009 
 1010 static struct bio *
 1011 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
 1012 {
 1013         struct bio *bp, *cbp;
 1014         size_t size;
 1015         int memflag;
 1016 
 1017         cbp = g_clone_bio(pbp);
 1018         if (cbp == NULL)
 1019                 return (NULL);
 1020         size = pbp->bio_length / (sc->sc_ndisks - 1);
 1021         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
 1022                 memflag = M_WAITOK;
 1023         else
 1024                 memflag = M_NOWAIT;
 1025         cbp->bio_data = g_raid3_alloc(sc, size, memflag);
 1026         if (cbp->bio_data == NULL) {
 1027                 pbp->bio_children--;
 1028                 g_destroy_bio(cbp);
 1029                 return (NULL);
 1030         }
 1031         G_RAID3_NEXT_BIO(cbp) = NULL;
 1032         if (G_RAID3_HEAD_BIO(pbp) == NULL)
 1033                 G_RAID3_HEAD_BIO(pbp) = cbp;
 1034         else {
 1035                 G_RAID3_FOREACH_BIO(pbp, bp) {
 1036                         if (G_RAID3_NEXT_BIO(bp) == NULL) {
 1037                                 G_RAID3_NEXT_BIO(bp) = cbp;
 1038                                 break;
 1039                         }
 1040                 }
 1041         }
 1042         return (cbp);
 1043 }
 1044 
 1045 static void
 1046 g_raid3_scatter(struct bio *pbp)
 1047 {
 1048         struct g_raid3_softc *sc;
 1049         struct g_raid3_disk *disk;
 1050         struct bio *bp, *cbp, *tmpbp;
 1051         off_t atom, cadd, padd, left;
 1052         int first;
 1053 
 1054         sc = pbp->bio_to->geom->softc;
 1055         bp = NULL;
 1056         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
 1057                 /*
 1058                  * Find bio for which we should calculate data.
 1059                  */
 1060                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1061                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
 1062                                 bp = cbp;
 1063                                 break;
 1064                         }
 1065                 }
 1066                 KASSERT(bp != NULL, ("NULL parity bio."));
 1067         }
 1068         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
 1069         cadd = padd = 0;
 1070         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
 1071                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1072                         if (cbp == bp)
 1073                                 continue;
 1074                         bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
 1075                         padd += atom;
 1076                 }
 1077                 cadd += atom;
 1078         }
 1079         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
 1080                 /*
 1081                  * Calculate parity.
 1082                  */
 1083                 first = 1;
 1084                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
 1085                         if (cbp == bp)
 1086                                 continue;
 1087                         if (first) {
 1088                                 bcopy(cbp->bio_data, bp->bio_data,
 1089                                     bp->bio_length);
 1090                                 first = 0;
 1091                         } else {
 1092                                 g_raid3_xor(cbp->bio_data, bp->bio_data,
 1093                                     bp->bio_length);
 1094                         }
 1095                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
 1096                                 g_raid3_destroy_bio(sc, cbp);
 1097                 }
 1098         }
 1099         G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
 1100                 struct g_consumer *cp;
 1101 
 1102                 disk = cbp->bio_caller2;
 1103                 cp = disk->d_consumer;
 1104                 cbp->bio_to = cp->provider;
 1105                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
 1106                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1107                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1108                     cp->acr, cp->acw, cp->ace));
 1109                 cp->index++;
 1110                 sc->sc_writes++;
 1111                 g_io_request(cbp, cp);
 1112         }
 1113 }
 1114 
 1115 static void
 1116 g_raid3_gather(struct bio *pbp)
 1117 {
 1118         struct g_raid3_softc *sc;
 1119         struct g_raid3_disk *disk;
 1120         struct bio *xbp, *fbp, *cbp;
 1121         off_t atom, cadd, padd, left;
 1122 
 1123         sc = pbp->bio_to->geom->softc;
 1124         /*
 1125          * Find bio for which we have to calculate data.
 1126          * While going through this path, check if all requests
 1127          * succeeded, if not, deny whole request.
 1128          * If we're in COMPLETE mode, we allow one request to fail,
 1129          * so if we find one, we're sending it to the parity consumer.
 1130          * If there are more failed requests, we deny whole request.
 1131          */
 1132         xbp = fbp = NULL;
 1133         G_RAID3_FOREACH_BIO(pbp, cbp) {
 1134                 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
 1135                         KASSERT(xbp == NULL, ("More than one parity bio."));
 1136                         xbp = cbp;
 1137                 }
 1138                 if (cbp->bio_error == 0)
 1139                         continue;
 1140                 /*
 1141                  * Found failed request.
 1142                  */
 1143                 if (fbp == NULL) {
 1144                         if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
 1145                                 /*
 1146                                  * We are already in degraded mode, so we can't
 1147                                  * accept any failures.
 1148                                  */
 1149                                 if (pbp->bio_error == 0)
 1150                                         pbp->bio_error = cbp->bio_error;
 1151                         } else {
 1152                                 fbp = cbp;
 1153                         }
 1154                 } else {
 1155                         /*
 1156                          * Next failed request, that's too many.
 1157                          */
 1158                         if (pbp->bio_error == 0)
 1159                                 pbp->bio_error = fbp->bio_error;
 1160                 }
 1161                 disk = cbp->bio_caller2;
 1162                 if (disk == NULL)
 1163                         continue;
 1164                 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
 1165                         disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
 1166                         G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
 1167                             cbp->bio_error);
 1168                 } else {
 1169                         G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
 1170                             cbp->bio_error);
 1171                 }
 1172                 if (g_raid3_disconnect_on_failure &&
 1173                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1174                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
 1175                         g_raid3_event_send(disk,
 1176                             G_RAID3_DISK_STATE_DISCONNECTED,
 1177                             G_RAID3_EVENT_DONTWAIT);
 1178                 }
 1179         }
 1180         if (pbp->bio_error != 0)
 1181                 goto finish;
 1182         if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
 1183                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
 1184                 if (xbp != fbp)
 1185                         g_raid3_replace_bio(xbp, fbp);
 1186                 g_raid3_destroy_bio(sc, fbp);
 1187         } else if (fbp != NULL) {
 1188                 struct g_consumer *cp;
 1189 
 1190                 /*
 1191                  * One request failed, so send the same request to
 1192                  * the parity consumer.
 1193                  */
 1194                 disk = pbp->bio_driver2;
 1195                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
 1196                         pbp->bio_error = fbp->bio_error;
 1197                         goto finish;
 1198                 }
 1199                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
 1200                 pbp->bio_inbed--;
 1201                 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
 1202                 if (disk->d_no == sc->sc_ndisks - 1)
 1203                         fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1204                 fbp->bio_error = 0;
 1205                 fbp->bio_completed = 0;
 1206                 fbp->bio_children = 0;
 1207                 fbp->bio_inbed = 0;
 1208                 cp = disk->d_consumer;
 1209                 fbp->bio_caller2 = disk;
 1210                 fbp->bio_to = cp->provider;
 1211                 G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
 1212                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1213                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1214                     cp->acr, cp->acw, cp->ace));
 1215                 cp->index++;
 1216                 g_io_request(fbp, cp);
 1217                 return;
 1218         }
 1219         if (xbp != NULL) {
 1220                 /*
 1221                  * Calculate parity.
 1222                  */
 1223                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1224                         if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
 1225                                 continue;
 1226                         g_raid3_xor(cbp->bio_data, xbp->bio_data,
 1227                             xbp->bio_length);
 1228                 }
 1229                 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
 1230                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
 1231                         if (!g_raid3_is_zero(xbp)) {
 1232                                 g_raid3_parity_mismatch++;
 1233                                 pbp->bio_error = EIO;
 1234                                 goto finish;
 1235                         }
 1236                         g_raid3_destroy_bio(sc, xbp);
 1237                 }
 1238         }
 1239         atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
 1240         cadd = padd = 0;
 1241         for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
 1242                 G_RAID3_FOREACH_BIO(pbp, cbp) {
 1243                         bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
 1244                         pbp->bio_completed += atom;
 1245                         padd += atom;
 1246                 }
 1247                 cadd += atom;
 1248         }
 1249 finish:
 1250         if (pbp->bio_error == 0)
 1251                 G_RAID3_LOGREQ(3, pbp, "Request finished.");
 1252         else {
 1253                 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
 1254                         G_RAID3_LOGREQ(1, pbp, "Verification error.");
 1255                 else
 1256                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
 1257         }
 1258         pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
 1259         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
 1260                 g_raid3_destroy_bio(sc, cbp);
 1261         g_io_deliver(pbp, pbp->bio_error);
 1262 }
 1263 
 1264 static void
 1265 g_raid3_done(struct bio *bp)
 1266 {
 1267         struct g_raid3_softc *sc;
 1268 
 1269         sc = bp->bio_from->geom->softc;
 1270         bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
 1271         G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
 1272         mtx_lock(&sc->sc_queue_mtx);
 1273         bioq_insert_head(&sc->sc_queue, bp);
 1274         mtx_unlock(&sc->sc_queue_mtx);
 1275         wakeup(sc);
 1276         wakeup(&sc->sc_queue);
 1277 }
 1278 
 1279 static void
 1280 g_raid3_regular_request(struct bio *cbp)
 1281 {
 1282         struct g_raid3_softc *sc;
 1283         struct g_raid3_disk *disk;
 1284         struct bio *pbp;
 1285 
 1286         g_topology_assert_not();
 1287 
 1288         pbp = cbp->bio_parent;
 1289         sc = pbp->bio_to->geom->softc;
 1290         cbp->bio_from->index--;
 1291         if (cbp->bio_cmd == BIO_WRITE)
 1292                 sc->sc_writes--;
 1293         disk = cbp->bio_from->private;
 1294         if (disk == NULL) {
 1295                 g_topology_lock();
 1296                 g_raid3_kill_consumer(sc, cbp->bio_from);
 1297                 g_topology_unlock();
 1298         }
 1299 
 1300         G_RAID3_LOGREQ(3, cbp, "Request finished.");
 1301         pbp->bio_inbed++;
 1302         KASSERT(pbp->bio_inbed <= pbp->bio_children,
 1303             ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
 1304             pbp->bio_children));
 1305         if (pbp->bio_inbed != pbp->bio_children)
 1306                 return;
 1307         switch (pbp->bio_cmd) {
 1308         case BIO_READ:
 1309                 g_raid3_gather(pbp);
 1310                 break;
 1311         case BIO_WRITE:
 1312         case BIO_DELETE:
 1313             {
 1314                 int error = 0;
 1315 
 1316                 pbp->bio_completed = pbp->bio_length;
 1317                 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
 1318                         if (cbp->bio_error == 0) {
 1319                                 g_raid3_destroy_bio(sc, cbp);
 1320                                 continue;
 1321                         }
 1322 
 1323                         if (error == 0)
 1324                                 error = cbp->bio_error;
 1325                         else if (pbp->bio_error == 0) {
 1326                                 /*
 1327                                  * Next failed request, that's too many.
 1328                                  */
 1329                                 pbp->bio_error = error;
 1330                         }
 1331 
 1332                         disk = cbp->bio_caller2;
 1333                         if (disk == NULL) {
 1334                                 g_raid3_destroy_bio(sc, cbp);
 1335                                 continue;
 1336                         }
 1337 
 1338                         if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
 1339                                 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
 1340                                 G_RAID3_LOGREQ(0, cbp,
 1341                                     "Request failed (error=%d).",
 1342                                     cbp->bio_error);
 1343                         } else {
 1344                                 G_RAID3_LOGREQ(1, cbp,
 1345                                     "Request failed (error=%d).",
 1346                                     cbp->bio_error);
 1347                         }
 1348                         if (g_raid3_disconnect_on_failure &&
 1349                             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1350                                 sc->sc_bump_id |= G_RAID3_BUMP_GENID;
 1351                                 g_raid3_event_send(disk,
 1352                                     G_RAID3_DISK_STATE_DISCONNECTED,
 1353                                     G_RAID3_EVENT_DONTWAIT);
 1354                         }
 1355                         g_raid3_destroy_bio(sc, cbp);
 1356                 }
 1357                 if (pbp->bio_error == 0)
 1358                         G_RAID3_LOGREQ(3, pbp, "Request finished.");
 1359                 else
 1360                         G_RAID3_LOGREQ(0, pbp, "Request failed.");
 1361                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
 1362                 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
 1363                 bioq_remove(&sc->sc_inflight, pbp);
 1364                 /* Release delayed sync requests if possible. */
 1365                 g_raid3_sync_release(sc);
 1366                 g_io_deliver(pbp, pbp->bio_error);
 1367                 break;
 1368             }
 1369         }
 1370 }
 1371 
 1372 static void
 1373 g_raid3_sync_done(struct bio *bp)
 1374 {
 1375         struct g_raid3_softc *sc;
 1376 
 1377         G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
 1378         sc = bp->bio_from->geom->softc;
 1379         bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
 1380         mtx_lock(&sc->sc_queue_mtx);
 1381         bioq_insert_head(&sc->sc_queue, bp);
 1382         mtx_unlock(&sc->sc_queue_mtx);
 1383         wakeup(sc);
 1384         wakeup(&sc->sc_queue);
 1385 }
 1386 
 1387 static void
 1388 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
 1389 {
 1390         struct bio_queue_head queue;
 1391         struct g_raid3_disk *disk;
 1392         struct g_consumer *cp;
 1393         struct bio *cbp;
 1394         u_int i;
 1395 
 1396         bioq_init(&queue);
 1397         for (i = 0; i < sc->sc_ndisks; i++) {
 1398                 disk = &sc->sc_disks[i];
 1399                 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
 1400                         continue;
 1401                 cbp = g_clone_bio(bp);
 1402                 if (cbp == NULL) {
 1403                         for (cbp = bioq_first(&queue); cbp != NULL;
 1404                             cbp = bioq_first(&queue)) {
 1405                                 bioq_remove(&queue, cbp);
 1406                                 g_destroy_bio(cbp);
 1407                         }
 1408                         if (bp->bio_error == 0)
 1409                                 bp->bio_error = ENOMEM;
 1410                         g_io_deliver(bp, bp->bio_error);
 1411                         return;
 1412                 }
 1413                 bioq_insert_tail(&queue, cbp);
 1414                 cbp->bio_done = g_std_done;
 1415                 cbp->bio_caller1 = disk;
 1416                 cbp->bio_to = disk->d_consumer->provider;
 1417         }
 1418         for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
 1419                 bioq_remove(&queue, cbp);
 1420                 G_RAID3_LOGREQ(3, cbp, "Sending request.");
 1421                 disk = cbp->bio_caller1;
 1422                 cbp->bio_caller1 = NULL;
 1423                 cp = disk->d_consumer;
 1424                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1425                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1426                     cp->acr, cp->acw, cp->ace));
 1427                 g_io_request(cbp, disk->d_consumer);
 1428         }
 1429 }
 1430 
 1431 static void
 1432 g_raid3_start(struct bio *bp)
 1433 {
 1434         struct g_raid3_softc *sc;
 1435 
 1436         sc = bp->bio_to->geom->softc;
 1437         /*
 1438          * If sc == NULL or there are no valid disks, provider's error
 1439          * should be set and g_raid3_start() should not be called at all.
 1440          */
 1441         KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 1442             sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
 1443             ("Provider's error should be set (error=%d)(device=%s).",
 1444             bp->bio_to->error, bp->bio_to->name));
 1445         G_RAID3_LOGREQ(3, bp, "Request received.");
 1446 
 1447         switch (bp->bio_cmd) {
 1448         case BIO_READ:
 1449         case BIO_WRITE:
 1450         case BIO_DELETE:
 1451                 break;
 1452         case BIO_FLUSH:
 1453                 g_raid3_flush(sc, bp);
 1454                 return;
 1455         case BIO_GETATTR:
 1456         default:
 1457                 g_io_deliver(bp, EOPNOTSUPP);
 1458                 return;
 1459         }
 1460         mtx_lock(&sc->sc_queue_mtx);
 1461         bioq_insert_tail(&sc->sc_queue, bp);
 1462         mtx_unlock(&sc->sc_queue_mtx);
 1463         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
 1464         wakeup(sc);
 1465 }
 1466 
 1467 /*
 1468  * Return TRUE if the given request is colliding with a in-progress
 1469  * synchronization request.
 1470  */
 1471 static int
 1472 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
 1473 {
 1474         struct g_raid3_disk *disk;
 1475         struct bio *sbp;
 1476         off_t rstart, rend, sstart, send;
 1477         int i;
 1478 
 1479         disk = sc->sc_syncdisk;
 1480         if (disk == NULL)
 1481                 return (0);
 1482         rstart = bp->bio_offset;
 1483         rend = bp->bio_offset + bp->bio_length;
 1484         for (i = 0; i < g_raid3_syncreqs; i++) {
 1485                 sbp = disk->d_sync.ds_bios[i];
 1486                 if (sbp == NULL)
 1487                         continue;
 1488                 sstart = sbp->bio_offset;
 1489                 send = sbp->bio_length;
 1490                 if (sbp->bio_cmd == BIO_WRITE) {
 1491                         sstart *= sc->sc_ndisks - 1;
 1492                         send *= sc->sc_ndisks - 1;
 1493                 }
 1494                 send += sstart;
 1495                 if (rend > sstart && rstart < send)
 1496                         return (1);
 1497         }
 1498         return (0);
 1499 }
 1500 
 1501 /*
 1502  * Return TRUE if the given sync request is colliding with a in-progress regular
 1503  * request.
 1504  */
 1505 static int
 1506 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
 1507 {
 1508         off_t rstart, rend, sstart, send;
 1509         struct bio *bp;
 1510 
 1511         if (sc->sc_syncdisk == NULL)
 1512                 return (0);
 1513         sstart = sbp->bio_offset;
 1514         send = sstart + sbp->bio_length;
 1515         TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
 1516                 rstart = bp->bio_offset;
 1517                 rend = bp->bio_offset + bp->bio_length;
 1518                 if (rend > sstart && rstart < send)
 1519                         return (1);
 1520         }
 1521         return (0);
 1522 }
 1523 
 1524 /*
 1525  * Puts request onto delayed queue.
 1526  */
 1527 static void
 1528 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
 1529 {
 1530 
 1531         G_RAID3_LOGREQ(2, bp, "Delaying request.");
 1532         bioq_insert_head(&sc->sc_regular_delayed, bp);
 1533 }
 1534 
 1535 /*
 1536  * Puts synchronization request onto delayed queue.
 1537  */
 1538 static void
 1539 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
 1540 {
 1541 
 1542         G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
 1543         bioq_insert_tail(&sc->sc_sync_delayed, bp);
 1544 }
 1545 
 1546 /*
 1547  * Releases delayed regular requests which don't collide anymore with sync
 1548  * requests.
 1549  */
 1550 static void
 1551 g_raid3_regular_release(struct g_raid3_softc *sc)
 1552 {
 1553         struct bio *bp, *bp2;
 1554 
 1555         TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
 1556                 if (g_raid3_sync_collision(sc, bp))
 1557                         continue;
 1558                 bioq_remove(&sc->sc_regular_delayed, bp);
 1559                 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
 1560                 mtx_lock(&sc->sc_queue_mtx);
 1561                 bioq_insert_head(&sc->sc_queue, bp);
 1562 #if 0
 1563                 /*
 1564                  * wakeup() is not needed, because this function is called from
 1565                  * the worker thread.
 1566                  */
 1567                 wakeup(&sc->sc_queue);
 1568 #endif
 1569                 mtx_unlock(&sc->sc_queue_mtx);
 1570         }
 1571 }
 1572 
 1573 /*
 1574  * Releases delayed sync requests which don't collide anymore with regular
 1575  * requests.
 1576  */
 1577 static void
 1578 g_raid3_sync_release(struct g_raid3_softc *sc)
 1579 {
 1580         struct bio *bp, *bp2;
 1581 
 1582         TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
 1583                 if (g_raid3_regular_collision(sc, bp))
 1584                         continue;
 1585                 bioq_remove(&sc->sc_sync_delayed, bp);
 1586                 G_RAID3_LOGREQ(2, bp,
 1587                     "Releasing delayed synchronization request.");
 1588                 g_io_request(bp, bp->bio_from);
 1589         }
 1590 }
 1591 
 1592 /*
 1593  * Handle synchronization requests.
 1594  * Every synchronization request is two-steps process: first, READ request is
 1595  * send to active provider and then WRITE request (with read data) to the provider
 1596  * beeing synchronized. When WRITE is finished, new synchronization request is
 1597  * send.
 1598  */
 1599 static void
 1600 g_raid3_sync_request(struct bio *bp)
 1601 {
 1602         struct g_raid3_softc *sc;
 1603         struct g_raid3_disk *disk;
 1604 
 1605         bp->bio_from->index--;
 1606         sc = bp->bio_from->geom->softc;
 1607         disk = bp->bio_from->private;
 1608         if (disk == NULL) {
 1609                 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
 1610                 g_topology_lock();
 1611                 g_raid3_kill_consumer(sc, bp->bio_from);
 1612                 g_topology_unlock();
 1613                 free(bp->bio_data, M_RAID3);
 1614                 g_destroy_bio(bp);
 1615                 sx_xlock(&sc->sc_lock);
 1616                 return;
 1617         }
 1618 
 1619         /*
 1620          * Synchronization request.
 1621          */
 1622         switch (bp->bio_cmd) {
 1623         case BIO_READ:
 1624             {
 1625                 struct g_consumer *cp;
 1626                 u_char *dst, *src;
 1627                 off_t left;
 1628                 u_int atom;
 1629 
 1630                 if (bp->bio_error != 0) {
 1631                         G_RAID3_LOGREQ(0, bp,
 1632                             "Synchronization request failed (error=%d).",
 1633                             bp->bio_error);
 1634                         g_destroy_bio(bp);
 1635                         return;
 1636                 }
 1637                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
 1638                 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
 1639                 dst = src = bp->bio_data;
 1640                 if (disk->d_no == sc->sc_ndisks - 1) {
 1641                         u_int n;
 1642 
 1643                         /* Parity component. */
 1644                         for (left = bp->bio_length; left > 0;
 1645                             left -= sc->sc_sectorsize) {
 1646                                 bcopy(src, dst, atom);
 1647                                 src += atom;
 1648                                 for (n = 1; n < sc->sc_ndisks - 1; n++) {
 1649                                         g_raid3_xor(src, dst, atom);
 1650                                         src += atom;
 1651                                 }
 1652                                 dst += atom;
 1653                         }
 1654                 } else {
 1655                         /* Regular component. */
 1656                         src += atom * disk->d_no;
 1657                         for (left = bp->bio_length; left > 0;
 1658                             left -= sc->sc_sectorsize) {
 1659                                 bcopy(src, dst, atom);
 1660                                 src += sc->sc_sectorsize;
 1661                                 dst += atom;
 1662                         }
 1663                 }
 1664                 bp->bio_driver1 = bp->bio_driver2 = NULL;
 1665                 bp->bio_pflags = 0;
 1666                 bp->bio_offset /= sc->sc_ndisks - 1;
 1667                 bp->bio_length /= sc->sc_ndisks - 1;
 1668                 bp->bio_cmd = BIO_WRITE;
 1669                 bp->bio_cflags = 0;
 1670                 bp->bio_children = bp->bio_inbed = 0;
 1671                 cp = disk->d_consumer;
 1672                 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1673                     ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
 1674                     cp->acr, cp->acw, cp->ace));
 1675                 cp->index++;
 1676                 g_io_request(bp, cp);
 1677                 return;
 1678             }
 1679         case BIO_WRITE:
 1680             {
 1681                 struct g_raid3_disk_sync *sync;
 1682                 off_t boffset, moffset;
 1683                 void *data;
 1684                 int i;
 1685 
 1686                 if (bp->bio_error != 0) {
 1687                         G_RAID3_LOGREQ(0, bp,
 1688                             "Synchronization request failed (error=%d).",
 1689                             bp->bio_error);
 1690                         g_destroy_bio(bp);
 1691                         sc->sc_bump_id |= G_RAID3_BUMP_GENID;
 1692                         g_raid3_event_send(disk,
 1693                             G_RAID3_DISK_STATE_DISCONNECTED,
 1694                             G_RAID3_EVENT_DONTWAIT);
 1695                         return;
 1696                 }
 1697                 G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
 1698                 sync = &disk->d_sync;
 1699                 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
 1700                     sync->ds_consumer == NULL ||
 1701                     (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 1702                         /* Don't send more synchronization requests. */
 1703                         sync->ds_inflight--;
 1704                         if (sync->ds_bios != NULL) {
 1705                                 i = (int)(uintptr_t)bp->bio_caller1;
 1706                                 sync->ds_bios[i] = NULL;
 1707                         }
 1708                         free(bp->bio_data, M_RAID3);
 1709                         g_destroy_bio(bp);
 1710                         if (sync->ds_inflight > 0)
 1711                                 return;
 1712                         if (sync->ds_consumer == NULL ||
 1713                             (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 1714                                 return;
 1715                         }
 1716                         /*
 1717                          * Disk up-to-date, activate it.
 1718                          */
 1719                         g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
 1720                             G_RAID3_EVENT_DONTWAIT);
 1721                         return;
 1722                 }
 1723 
 1724                 /* Send next synchronization request. */
 1725                 data = bp->bio_data;
 1726                 bzero(bp, sizeof(*bp));
 1727                 bp->bio_cmd = BIO_READ;
 1728                 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
 1729                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
 1730                 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
 1731                 bp->bio_done = g_raid3_sync_done;
 1732                 bp->bio_data = data;
 1733                 bp->bio_from = sync->ds_consumer;
 1734                 bp->bio_to = sc->sc_provider;
 1735                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
 1736                 sync->ds_consumer->index++;
 1737                 /*
 1738                  * Delay the request if it is colliding with a regular request.
 1739                  */
 1740                 if (g_raid3_regular_collision(sc, bp))
 1741                         g_raid3_sync_delay(sc, bp);
 1742                 else
 1743                         g_io_request(bp, sync->ds_consumer);
 1744 
 1745                 /* Release delayed requests if possible. */
 1746                 g_raid3_regular_release(sc);
 1747 
 1748                 /* Find the smallest offset. */
 1749                 moffset = sc->sc_mediasize;
 1750                 for (i = 0; i < g_raid3_syncreqs; i++) {
 1751                         bp = sync->ds_bios[i];
 1752                         boffset = bp->bio_offset;
 1753                         if (bp->bio_cmd == BIO_WRITE)
 1754                                 boffset *= sc->sc_ndisks - 1;
 1755                         if (boffset < moffset)
 1756                                 moffset = boffset;
 1757                 }
 1758                 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
 1759                         /* Update offset_done on every 100 blocks. */
 1760                         sync->ds_offset_done = moffset;
 1761                         g_raid3_update_metadata(disk);
 1762                 }
 1763                 return;
 1764             }
 1765         default:
 1766                 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
 1767                     bp->bio_cmd, sc->sc_name));
 1768                 break;
 1769         }
 1770 }
 1771 
 1772 static int
 1773 g_raid3_register_request(struct bio *pbp)
 1774 {
 1775         struct g_raid3_softc *sc;
 1776         struct g_raid3_disk *disk;
 1777         struct g_consumer *cp;
 1778         struct bio *cbp, *tmpbp;
 1779         off_t offset, length;
 1780         u_int n, ndisks;
 1781         int round_robin, verify;
 1782 
 1783         ndisks = 0;
 1784         sc = pbp->bio_to->geom->softc;
 1785         if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
 1786             sc->sc_syncdisk == NULL) {
 1787                 g_io_deliver(pbp, EIO);
 1788                 return (0);
 1789         }
 1790         g_raid3_init_bio(pbp);
 1791         length = pbp->bio_length / (sc->sc_ndisks - 1);
 1792         offset = pbp->bio_offset / (sc->sc_ndisks - 1);
 1793         round_robin = verify = 0;
 1794         switch (pbp->bio_cmd) {
 1795         case BIO_READ:
 1796                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
 1797                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1798                         pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
 1799                         verify = 1;
 1800                         ndisks = sc->sc_ndisks;
 1801                 } else {
 1802                         verify = 0;
 1803                         ndisks = sc->sc_ndisks - 1;
 1804                 }
 1805                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
 1806                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 1807                         round_robin = 1;
 1808                 } else {
 1809                         round_robin = 0;
 1810                 }
 1811                 KASSERT(!round_robin || !verify,
 1812                     ("ROUND-ROBIN and VERIFY are mutually exclusive."));
 1813                 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
 1814                 break;
 1815         case BIO_WRITE:
 1816         case BIO_DELETE:
 1817                 /*
 1818                  * Delay the request if it is colliding with a synchronization
 1819                  * request.
 1820                  */
 1821                 if (g_raid3_sync_collision(sc, pbp)) {
 1822                         g_raid3_regular_delay(sc, pbp);
 1823                         return (0);
 1824                 }
 1825 
 1826                 if (sc->sc_idle)
 1827                         g_raid3_unidle(sc);
 1828                 else
 1829                         sc->sc_last_write = time_uptime;
 1830 
 1831                 ndisks = sc->sc_ndisks;
 1832                 break;
 1833         }
 1834         for (n = 0; n < ndisks; n++) {
 1835                 disk = &sc->sc_disks[n];
 1836                 cbp = g_raid3_clone_bio(sc, pbp);
 1837                 if (cbp == NULL) {
 1838                         while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
 1839                                 g_raid3_destroy_bio(sc, cbp);
 1840                         /*
 1841                          * To prevent deadlock, we must run back up
 1842                          * with the ENOMEM for failed requests of any
 1843                          * of our consumers.  Our own sync requests
 1844                          * can stick around, as they are finite.
 1845                          */
 1846                         if ((pbp->bio_cflags &
 1847                             G_RAID3_BIO_CFLAG_REGULAR) != 0) {
 1848                                 g_io_deliver(pbp, ENOMEM);
 1849                                 return (0);
 1850                         }
 1851                         return (ENOMEM);
 1852                 }
 1853                 cbp->bio_offset = offset;
 1854                 cbp->bio_length = length;
 1855                 cbp->bio_done = g_raid3_done;
 1856                 switch (pbp->bio_cmd) {
 1857                 case BIO_READ:
 1858                         if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
 1859                                 /*
 1860                                  * Replace invalid component with the parity
 1861                                  * component.
 1862                                  */
 1863                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
 1864                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1865                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
 1866                         } else if (round_robin &&
 1867                             disk->d_no == sc->sc_round_robin) {
 1868                                 /*
 1869                                  * In round-robin mode skip one data component
 1870                                  * and use parity component when reading.
 1871                                  */
 1872                                 pbp->bio_driver2 = disk;
 1873                                 disk = &sc->sc_disks[sc->sc_ndisks - 1];
 1874                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1875                                 sc->sc_round_robin++;
 1876                                 round_robin = 0;
 1877                         } else if (verify && disk->d_no == sc->sc_ndisks - 1) {
 1878                                 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
 1879                         }
 1880                         break;
 1881                 case BIO_WRITE:
 1882                 case BIO_DELETE:
 1883                         if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
 1884                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
 1885                                 if (n == ndisks - 1) {
 1886                                         /*
 1887                                          * Active parity component, mark it as such.
 1888                                          */
 1889                                         cbp->bio_cflags |=
 1890                                             G_RAID3_BIO_CFLAG_PARITY;
 1891                                 }
 1892                         } else {
 1893                                 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
 1894                                 if (n == ndisks - 1) {
 1895                                         /*
 1896                                          * Parity component is not connected,
 1897                                          * so destroy its request.
 1898                                          */
 1899                                         pbp->bio_pflags |=
 1900                                             G_RAID3_BIO_PFLAG_NOPARITY;
 1901                                         g_raid3_destroy_bio(sc, cbp);
 1902                                         cbp = NULL;
 1903                                 } else {
 1904                                         cbp->bio_cflags |=
 1905                                             G_RAID3_BIO_CFLAG_NODISK;
 1906                                         disk = NULL;
 1907                                 }
 1908                         }
 1909                         break;
 1910                 }
 1911                 if (cbp != NULL)
 1912                         cbp->bio_caller2 = disk;
 1913         }
 1914         switch (pbp->bio_cmd) {
 1915         case BIO_READ:
 1916                 if (round_robin) {
 1917                         /*
 1918                          * If we are in round-robin mode and 'round_robin' is
 1919                          * still 1, it means, that we skipped parity component
 1920                          * for this read and must reset sc_round_robin field.
 1921                          */
 1922                         sc->sc_round_robin = 0;
 1923                 }
 1924                 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
 1925                         disk = cbp->bio_caller2;
 1926                         cp = disk->d_consumer;
 1927                         cbp->bio_to = cp->provider;
 1928                         G_RAID3_LOGREQ(3, cbp, "Sending request.");
 1929                         KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
 1930                             ("Consumer %s not opened (r%dw%de%d).",
 1931                             cp->provider->name, cp->acr, cp->acw, cp->ace));
 1932                         cp->index++;
 1933                         g_io_request(cbp, cp);
 1934                 }
 1935                 break;
 1936         case BIO_WRITE:
 1937         case BIO_DELETE:
 1938                 /*
 1939                  * Put request onto inflight queue, so we can check if new
 1940                  * synchronization requests don't collide with it.
 1941                  */
 1942                 bioq_insert_tail(&sc->sc_inflight, pbp);
 1943 
 1944                 /*
 1945                  * Bump syncid on first write.
 1946                  */
 1947                 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
 1948                         sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
 1949                         g_raid3_bump_syncid(sc);
 1950                 }
 1951                 g_raid3_scatter(pbp);
 1952                 break;
 1953         }
 1954         return (0);
 1955 }
 1956 
 1957 static int
 1958 g_raid3_can_destroy(struct g_raid3_softc *sc)
 1959 {
 1960         struct g_geom *gp;
 1961         struct g_consumer *cp;
 1962 
 1963         g_topology_assert();
 1964         gp = sc->sc_geom;
 1965         if (gp->softc == NULL)
 1966                 return (1);
 1967         LIST_FOREACH(cp, &gp->consumer, consumer) {
 1968                 if (g_raid3_is_busy(sc, cp))
 1969                         return (0);
 1970         }
 1971         gp = sc->sc_sync.ds_geom;
 1972         LIST_FOREACH(cp, &gp->consumer, consumer) {
 1973                 if (g_raid3_is_busy(sc, cp))
 1974                         return (0);
 1975         }
 1976         G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
 1977             sc->sc_name);
 1978         return (1);
 1979 }
 1980 
 1981 static int
 1982 g_raid3_try_destroy(struct g_raid3_softc *sc)
 1983 {
 1984 
 1985         g_topology_assert_not();
 1986         sx_assert(&sc->sc_lock, SX_XLOCKED);
 1987 
 1988         if (sc->sc_rootmount != NULL) {
 1989                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
 1990                     sc->sc_rootmount);
 1991                 root_mount_rel(sc->sc_rootmount);
 1992                 sc->sc_rootmount = NULL;
 1993         }
 1994 
 1995         g_topology_lock();
 1996         if (!g_raid3_can_destroy(sc)) {
 1997                 g_topology_unlock();
 1998                 return (0);
 1999         }
 2000         sc->sc_geom->softc = NULL;
 2001         sc->sc_sync.ds_geom->softc = NULL;
 2002         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
 2003                 g_topology_unlock();
 2004                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
 2005                     &sc->sc_worker);
 2006                 /* Unlock sc_lock here, as it can be destroyed after wakeup. */
 2007                 sx_xunlock(&sc->sc_lock);
 2008                 wakeup(&sc->sc_worker);
 2009                 sc->sc_worker = NULL;
 2010         } else {
 2011                 g_topology_unlock();
 2012                 g_raid3_destroy_device(sc);
 2013                 free(sc->sc_disks, M_RAID3);
 2014                 free(sc, M_RAID3);
 2015         }
 2016         return (1);
 2017 }
 2018 
 2019 /*
 2020  * Worker thread.
 2021  */
 2022 static void
 2023 g_raid3_worker(void *arg)
 2024 {
 2025         struct g_raid3_softc *sc;
 2026         struct g_raid3_event *ep;
 2027         struct bio *bp;
 2028         int timeout;
 2029 
 2030         sc = arg;
 2031         thread_lock(curthread);
 2032         sched_prio(curthread, PRIBIO);
 2033         thread_unlock(curthread);
 2034 
 2035         sx_xlock(&sc->sc_lock);
 2036         for (;;) {
 2037                 G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
 2038                 /*
 2039                  * First take a look at events.
 2040                  * This is important to handle events before any I/O requests.
 2041                  */
 2042                 ep = g_raid3_event_get(sc);
 2043                 if (ep != NULL) {
 2044                         g_raid3_event_remove(sc, ep);
 2045                         if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
 2046                                 /* Update only device status. */
 2047                                 G_RAID3_DEBUG(3,
 2048                                     "Running event for device %s.",
 2049                                     sc->sc_name);
 2050                                 ep->e_error = 0;
 2051                                 g_raid3_update_device(sc, 1);
 2052                         } else {
 2053                                 /* Update disk status. */
 2054                                 G_RAID3_DEBUG(3, "Running event for disk %s.",
 2055                                      g_raid3_get_diskname(ep->e_disk));
 2056                                 ep->e_error = g_raid3_update_disk(ep->e_disk,
 2057                                     ep->e_state);
 2058                                 if (ep->e_error == 0)
 2059                                         g_raid3_update_device(sc, 0);
 2060                         }
 2061                         if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
 2062                                 KASSERT(ep->e_error == 0,
 2063                                     ("Error cannot be handled."));
 2064                                 g_raid3_event_free(ep);
 2065                         } else {
 2066                                 ep->e_flags |= G_RAID3_EVENT_DONE;
 2067                                 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
 2068                                     ep);
 2069                                 mtx_lock(&sc->sc_events_mtx);
 2070                                 wakeup(ep);
 2071                                 mtx_unlock(&sc->sc_events_mtx);
 2072                         }
 2073                         if ((sc->sc_flags &
 2074                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 2075                                 if (g_raid3_try_destroy(sc)) {
 2076                                         curthread->td_pflags &= ~TDP_GEOM;
 2077                                         G_RAID3_DEBUG(1, "Thread exiting.");
 2078                                         kproc_exit(0);
 2079                                 }
 2080                         }
 2081                         G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
 2082                         continue;
 2083                 }
 2084                 /*
 2085                  * Check if we can mark array as CLEAN and if we can't take
 2086                  * how much seconds should we wait.
 2087                  */
 2088                 timeout = g_raid3_idle(sc, -1);
 2089                 /*
 2090                  * Now I/O requests.
 2091                  */
 2092                 /* Get first request from the queue. */
 2093                 mtx_lock(&sc->sc_queue_mtx);
 2094                 bp = bioq_first(&sc->sc_queue);
 2095                 if (bp == NULL) {
 2096                         if ((sc->sc_flags &
 2097                             G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
 2098                                 mtx_unlock(&sc->sc_queue_mtx);
 2099                                 if (g_raid3_try_destroy(sc)) {
 2100                                         curthread->td_pflags &= ~TDP_GEOM;
 2101                                         G_RAID3_DEBUG(1, "Thread exiting.");
 2102                                         kproc_exit(0);
 2103                                 }
 2104                                 mtx_lock(&sc->sc_queue_mtx);
 2105                         }
 2106                         sx_xunlock(&sc->sc_lock);
 2107                         /*
 2108                          * XXX: We can miss an event here, because an event
 2109                          *      can be added without sx-device-lock and without
 2110                          *      mtx-queue-lock. Maybe I should just stop using
 2111                          *      dedicated mutex for events synchronization and
 2112                          *      stick with the queue lock?
 2113                          *      The event will hang here until next I/O request
 2114                          *      or next event is received.
 2115                          */
 2116                         MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
 2117                             timeout * hz);
 2118                         sx_xlock(&sc->sc_lock);
 2119                         G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
 2120                         continue;
 2121                 }
 2122 process:
 2123                 bioq_remove(&sc->sc_queue, bp);
 2124                 mtx_unlock(&sc->sc_queue_mtx);
 2125 
 2126                 if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
 2127                     (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
 2128                         g_raid3_sync_request(bp);       /* READ */
 2129                 } else if (bp->bio_to != sc->sc_provider) {
 2130                         if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
 2131                                 g_raid3_regular_request(bp);
 2132                         else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
 2133                                 g_raid3_sync_request(bp);       /* WRITE */
 2134                         else {
 2135                                 KASSERT(0,
 2136                                     ("Invalid request cflags=0x%hhx to=%s.",
 2137                                     bp->bio_cflags, bp->bio_to->name));
 2138                         }
 2139                 } else if (g_raid3_register_request(bp) != 0) {
 2140                         mtx_lock(&sc->sc_queue_mtx);
 2141                         bioq_insert_head(&sc->sc_queue, bp);
 2142                         /*
 2143                          * We are short in memory, let see if there are finished
 2144                          * request we can free.
 2145                          */
 2146                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
 2147                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
 2148                                         goto process;
 2149                         }
 2150                         /*
 2151                          * No finished regular request, so at least keep
 2152                          * synchronization running.
 2153                          */
 2154                         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
 2155                                 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
 2156                                         goto process;
 2157                         }
 2158                         sx_xunlock(&sc->sc_lock);
 2159                         MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
 2160                             "r3:lowmem", hz / 10);
 2161                         sx_xlock(&sc->sc_lock);
 2162                 }
 2163                 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
 2164         }
 2165 }
 2166 
 2167 static void
 2168 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
 2169 {
 2170 
 2171         sx_assert(&sc->sc_lock, SX_LOCKED);
 2172         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
 2173                 return;
 2174         if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
 2175                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
 2176                     g_raid3_get_diskname(disk), sc->sc_name);
 2177                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
 2178         } else if (sc->sc_idle &&
 2179             (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
 2180                 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
 2181                     g_raid3_get_diskname(disk), sc->sc_name);
 2182                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2183         }
 2184 }
 2185 
 2186 static void
 2187 g_raid3_sync_start(struct g_raid3_softc *sc)
 2188 {
 2189         struct g_raid3_disk *disk;
 2190         struct g_consumer *cp;
 2191         struct bio *bp;
 2192         int error;
 2193         u_int n;
 2194 
 2195         g_topology_assert_not();
 2196         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2197 
 2198         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
 2199             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
 2200             sc->sc_state));
 2201         KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
 2202             sc->sc_name, sc->sc_state));
 2203         disk = NULL;
 2204         for (n = 0; n < sc->sc_ndisks; n++) {
 2205                 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
 2206                         continue;
 2207                 disk = &sc->sc_disks[n];
 2208                 break;
 2209         }
 2210         if (disk == NULL)
 2211                 return;
 2212 
 2213         sx_xunlock(&sc->sc_lock);
 2214         g_topology_lock();
 2215         cp = g_new_consumer(sc->sc_sync.ds_geom);
 2216         error = g_attach(cp, sc->sc_provider);
 2217         KASSERT(error == 0,
 2218             ("Cannot attach to %s (error=%d).", sc->sc_name, error));
 2219         error = g_access(cp, 1, 0, 0);
 2220         KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
 2221         g_topology_unlock();
 2222         sx_xlock(&sc->sc_lock);
 2223 
 2224         G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
 2225             g_raid3_get_diskname(disk));
 2226         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
 2227                 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
 2228         KASSERT(disk->d_sync.ds_consumer == NULL,
 2229             ("Sync consumer already exists (device=%s, disk=%s).",
 2230             sc->sc_name, g_raid3_get_diskname(disk)));
 2231 
 2232         disk->d_sync.ds_consumer = cp;
 2233         disk->d_sync.ds_consumer->private = disk;
 2234         disk->d_sync.ds_consumer->index = 0;
 2235         sc->sc_syncdisk = disk;
 2236 
 2237         /*
 2238          * Allocate memory for synchronization bios and initialize them.
 2239          */
 2240         disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
 2241             M_RAID3, M_WAITOK);
 2242         for (n = 0; n < g_raid3_syncreqs; n++) {
 2243                 bp = g_alloc_bio();
 2244                 disk->d_sync.ds_bios[n] = bp;
 2245                 bp->bio_parent = NULL;
 2246                 bp->bio_cmd = BIO_READ;
 2247                 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
 2248                 bp->bio_cflags = 0;
 2249                 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
 2250                 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
 2251                 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
 2252                 bp->bio_done = g_raid3_sync_done;
 2253                 bp->bio_from = disk->d_sync.ds_consumer;
 2254                 bp->bio_to = sc->sc_provider;
 2255                 bp->bio_caller1 = (void *)(uintptr_t)n;
 2256         }
 2257 
 2258         /* Set the number of in-flight synchronization requests. */
 2259         disk->d_sync.ds_inflight = g_raid3_syncreqs;
 2260 
 2261         /*
 2262          * Fire off first synchronization requests.
 2263          */
 2264         for (n = 0; n < g_raid3_syncreqs; n++) {
 2265                 bp = disk->d_sync.ds_bios[n];
 2266                 G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
 2267                 disk->d_sync.ds_consumer->index++;
 2268                 /*
 2269                  * Delay the request if it is colliding with a regular request.
 2270                  */
 2271                 if (g_raid3_regular_collision(sc, bp))
 2272                         g_raid3_sync_delay(sc, bp);
 2273                 else
 2274                         g_io_request(bp, disk->d_sync.ds_consumer);
 2275         }
 2276 }
 2277 
 2278 /*
 2279  * Stop synchronization process.
 2280  * type: 0 - synchronization finished
 2281  *       1 - synchronization stopped
 2282  */
 2283 static void
 2284 g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
 2285 {
 2286         struct g_raid3_disk *disk;
 2287         struct g_consumer *cp;
 2288 
 2289         g_topology_assert_not();
 2290         sx_assert(&sc->sc_lock, SX_LOCKED);
 2291 
 2292         KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
 2293             ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
 2294             sc->sc_state));
 2295         disk = sc->sc_syncdisk;
 2296         sc->sc_syncdisk = NULL;
 2297         KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
 2298         KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
 2299             ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2300             g_raid3_disk_state2str(disk->d_state)));
 2301         if (disk->d_sync.ds_consumer == NULL)
 2302                 return;
 2303 
 2304         if (type == 0) {
 2305                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
 2306                     sc->sc_name, g_raid3_get_diskname(disk));
 2307         } else /* if (type == 1) */ {
 2308                 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
 2309                     sc->sc_name, g_raid3_get_diskname(disk));
 2310         }
 2311         free(disk->d_sync.ds_bios, M_RAID3);
 2312         disk->d_sync.ds_bios = NULL;
 2313         cp = disk->d_sync.ds_consumer;
 2314         disk->d_sync.ds_consumer = NULL;
 2315         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2316         sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
 2317         g_topology_lock();
 2318         g_raid3_kill_consumer(sc, cp);
 2319         g_topology_unlock();
 2320         sx_xlock(&sc->sc_lock);
 2321 }
 2322 
 2323 static void
 2324 g_raid3_launch_provider(struct g_raid3_softc *sc)
 2325 {
 2326         struct g_provider *pp;
 2327         struct g_raid3_disk *disk;
 2328         int n;
 2329 
 2330         sx_assert(&sc->sc_lock, SX_LOCKED);
 2331 
 2332         g_topology_lock();
 2333         pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
 2334         pp->mediasize = sc->sc_mediasize;
 2335         pp->sectorsize = sc->sc_sectorsize;
 2336         pp->stripesize = 0;
 2337         pp->stripeoffset = 0;
 2338         for (n = 0; n < sc->sc_ndisks; n++) {
 2339                 disk = &sc->sc_disks[n];
 2340                 if (disk->d_consumer && disk->d_consumer->provider &&
 2341                     disk->d_consumer->provider->stripesize > pp->stripesize) {
 2342                         pp->stripesize = disk->d_consumer->provider->stripesize;
 2343                         pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
 2344                 }
 2345         }
 2346         pp->stripesize *= sc->sc_ndisks - 1;
 2347         pp->stripeoffset *= sc->sc_ndisks - 1;
 2348         sc->sc_provider = pp;
 2349         g_error_provider(pp, 0);
 2350         g_topology_unlock();
 2351         G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
 2352             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
 2353 
 2354         if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
 2355                 g_raid3_sync_start(sc);
 2356 }
 2357 
 2358 static void
 2359 g_raid3_destroy_provider(struct g_raid3_softc *sc)
 2360 {
 2361         struct bio *bp;
 2362 
 2363         g_topology_assert_not();
 2364         KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
 2365             sc->sc_name));
 2366 
 2367         g_topology_lock();
 2368         g_error_provider(sc->sc_provider, ENXIO);
 2369         mtx_lock(&sc->sc_queue_mtx);
 2370         while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
 2371                 bioq_remove(&sc->sc_queue, bp);
 2372                 g_io_deliver(bp, ENXIO);
 2373         }
 2374         mtx_unlock(&sc->sc_queue_mtx);
 2375         G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
 2376             sc->sc_provider->name);
 2377         sc->sc_provider->flags |= G_PF_WITHER;
 2378         g_orphan_provider(sc->sc_provider, ENXIO);
 2379         g_topology_unlock();
 2380         sc->sc_provider = NULL;
 2381         if (sc->sc_syncdisk != NULL)
 2382                 g_raid3_sync_stop(sc, 1);
 2383 }
 2384 
 2385 static void
 2386 g_raid3_go(void *arg)
 2387 {
 2388         struct g_raid3_softc *sc;
 2389 
 2390         sc = arg;
 2391         G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
 2392         g_raid3_event_send(sc, 0,
 2393             G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
 2394 }
 2395 
 2396 static u_int
 2397 g_raid3_determine_state(struct g_raid3_disk *disk)
 2398 {
 2399         struct g_raid3_softc *sc;
 2400         u_int state;
 2401 
 2402         sc = disk->d_softc;
 2403         if (sc->sc_syncid == disk->d_sync.ds_syncid) {
 2404                 if ((disk->d_flags &
 2405                     G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
 2406                         /* Disk does not need synchronization. */
 2407                         state = G_RAID3_DISK_STATE_ACTIVE;
 2408                 } else {
 2409                         if ((sc->sc_flags &
 2410                              G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
 2411                             (disk->d_flags &
 2412                              G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
 2413                                 /*
 2414                                  * We can start synchronization from
 2415                                  * the stored offset.
 2416                                  */
 2417                                 state = G_RAID3_DISK_STATE_SYNCHRONIZING;
 2418                         } else {
 2419                                 state = G_RAID3_DISK_STATE_STALE;
 2420                         }
 2421                 }
 2422         } else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
 2423                 /*
 2424                  * Reset all synchronization data for this disk,
 2425                  * because if it even was synchronized, it was
 2426                  * synchronized to disks with different syncid.
 2427                  */
 2428                 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2429                 disk->d_sync.ds_offset = 0;
 2430                 disk->d_sync.ds_offset_done = 0;
 2431                 disk->d_sync.ds_syncid = sc->sc_syncid;
 2432                 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
 2433                     (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
 2434                         state = G_RAID3_DISK_STATE_SYNCHRONIZING;
 2435                 } else {
 2436                         state = G_RAID3_DISK_STATE_STALE;
 2437                 }
 2438         } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
 2439                 /*
 2440                  * Not good, NOT GOOD!
 2441                  * It means that device was started on stale disks
 2442                  * and more fresh disk just arrive.
 2443                  * If there were writes, device is broken, sorry.
 2444                  * I think the best choice here is don't touch
 2445                  * this disk and inform the user loudly.
 2446                  */
 2447                 G_RAID3_DEBUG(0, "Device %s was started before the freshest "
 2448                     "disk (%s) arrives!! It will not be connected to the "
 2449                     "running device.", sc->sc_name,
 2450                     g_raid3_get_diskname(disk));
 2451                 g_raid3_destroy_disk(disk);
 2452                 state = G_RAID3_DISK_STATE_NONE;
 2453                 /* Return immediately, because disk was destroyed. */
 2454                 return (state);
 2455         }
 2456         G_RAID3_DEBUG(3, "State for %s disk: %s.",
 2457             g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
 2458         return (state);
 2459 }
 2460 
 2461 /*
 2462  * Update device state.
 2463  */
 2464 static void
 2465 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
 2466 {
 2467         struct g_raid3_disk *disk;
 2468         u_int state;
 2469 
 2470         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2471 
 2472         switch (sc->sc_state) {
 2473         case G_RAID3_DEVICE_STATE_STARTING:
 2474             {
 2475                 u_int n, ndirty, ndisks, genid, syncid;
 2476 
 2477                 KASSERT(sc->sc_provider == NULL,
 2478                     ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
 2479                 /*
 2480                  * Are we ready? We are, if all disks are connected or
 2481                  * one disk is missing and 'force' is true.
 2482                  */
 2483                 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
 2484                         if (!force)
 2485                                 callout_drain(&sc->sc_callout);
 2486                 } else {
 2487                         if (force) {
 2488                                 /*
 2489                                  * Timeout expired, so destroy device.
 2490                                  */
 2491                                 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 2492                                 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
 2493                                     __LINE__, sc->sc_rootmount);
 2494                                 root_mount_rel(sc->sc_rootmount);
 2495                                 sc->sc_rootmount = NULL;
 2496                         }
 2497                         return;
 2498                 }
 2499 
 2500                 /*
 2501                  * Find the biggest genid.
 2502                  */
 2503                 genid = 0;
 2504                 for (n = 0; n < sc->sc_ndisks; n++) {
 2505                         disk = &sc->sc_disks[n];
 2506                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2507                                 continue;
 2508                         if (disk->d_genid > genid)
 2509                                 genid = disk->d_genid;
 2510                 }
 2511                 sc->sc_genid = genid;
 2512                 /*
 2513                  * Remove all disks without the biggest genid.
 2514                  */
 2515                 for (n = 0; n < sc->sc_ndisks; n++) {
 2516                         disk = &sc->sc_disks[n];
 2517                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2518                                 continue;
 2519                         if (disk->d_genid < genid) {
 2520                                 G_RAID3_DEBUG(0,
 2521                                     "Component %s (device %s) broken, skipping.",
 2522                                     g_raid3_get_diskname(disk), sc->sc_name);
 2523                                 g_raid3_destroy_disk(disk);
 2524                         }
 2525                 }
 2526 
 2527                 /*
 2528                  * There must be at least 'sc->sc_ndisks - 1' components
 2529                  * with the same syncid and without SYNCHRONIZING flag.
 2530                  */
 2531 
 2532                 /*
 2533                  * Find the biggest syncid, number of valid components and
 2534                  * number of dirty components.
 2535                  */
 2536                 ndirty = ndisks = syncid = 0;
 2537                 for (n = 0; n < sc->sc_ndisks; n++) {
 2538                         disk = &sc->sc_disks[n];
 2539                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2540                                 continue;
 2541                         if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
 2542                                 ndirty++;
 2543                         if (disk->d_sync.ds_syncid > syncid) {
 2544                                 syncid = disk->d_sync.ds_syncid;
 2545                                 ndisks = 0;
 2546                         } else if (disk->d_sync.ds_syncid < syncid) {
 2547                                 continue;
 2548                         }
 2549                         if ((disk->d_flags &
 2550                             G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
 2551                                 continue;
 2552                         }
 2553                         ndisks++;
 2554                 }
 2555                 /*
 2556                  * Do we have enough valid components?
 2557                  */
 2558                 if (ndisks + 1 < sc->sc_ndisks) {
 2559                         G_RAID3_DEBUG(0,
 2560                             "Device %s is broken, too few valid components.",
 2561                             sc->sc_name);
 2562                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 2563                         return;
 2564                 }
 2565                 /*
 2566                  * If there is one DIRTY component and all disks are present,
 2567                  * mark it for synchronization. If there is more than one DIRTY
 2568                  * component, mark parity component for synchronization.
 2569                  */
 2570                 if (ndisks == sc->sc_ndisks && ndirty == 1) {
 2571                         for (n = 0; n < sc->sc_ndisks; n++) {
 2572                                 disk = &sc->sc_disks[n];
 2573                                 if ((disk->d_flags &
 2574                                     G_RAID3_DISK_FLAG_DIRTY) == 0) {
 2575                                         continue;
 2576                                 }
 2577                                 disk->d_flags |=
 2578                                     G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2579                         }
 2580                 } else if (ndisks == sc->sc_ndisks && ndirty > 1) {
 2581                         disk = &sc->sc_disks[sc->sc_ndisks - 1];
 2582                         disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2583                 }
 2584 
 2585                 sc->sc_syncid = syncid;
 2586                 if (force) {
 2587                         /* Remember to bump syncid on first write. */
 2588                         sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
 2589                 }
 2590                 if (ndisks == sc->sc_ndisks)
 2591                         state = G_RAID3_DEVICE_STATE_COMPLETE;
 2592                 else /* if (ndisks == sc->sc_ndisks - 1) */
 2593                         state = G_RAID3_DEVICE_STATE_DEGRADED;
 2594                 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
 2595                     sc->sc_name, g_raid3_device_state2str(sc->sc_state),
 2596                     g_raid3_device_state2str(state));
 2597                 sc->sc_state = state;
 2598                 for (n = 0; n < sc->sc_ndisks; n++) {
 2599                         disk = &sc->sc_disks[n];
 2600                         if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
 2601                                 continue;
 2602                         state = g_raid3_determine_state(disk);
 2603                         g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
 2604                         if (state == G_RAID3_DISK_STATE_STALE)
 2605                                 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
 2606                 }
 2607                 break;
 2608             }
 2609         case G_RAID3_DEVICE_STATE_DEGRADED:
 2610                 /*
 2611                  * Genid need to be bumped immediately, so do it here.
 2612                  */
 2613                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
 2614                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
 2615                         g_raid3_bump_genid(sc);
 2616                 }
 2617 
 2618                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
 2619                         return;
 2620                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
 2621                     sc->sc_ndisks - 1) {
 2622                         if (sc->sc_provider != NULL)
 2623                                 g_raid3_destroy_provider(sc);
 2624                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 2625                         return;
 2626                 }
 2627                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
 2628                     sc->sc_ndisks) {
 2629                         state = G_RAID3_DEVICE_STATE_COMPLETE;
 2630                         G_RAID3_DEBUG(1,
 2631                             "Device %s state changed from %s to %s.",
 2632                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
 2633                             g_raid3_device_state2str(state));
 2634                         sc->sc_state = state;
 2635                 }
 2636                 if (sc->sc_provider == NULL)
 2637                         g_raid3_launch_provider(sc);
 2638                 if (sc->sc_rootmount != NULL) {
 2639                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
 2640                             sc->sc_rootmount);
 2641                         root_mount_rel(sc->sc_rootmount);
 2642                         sc->sc_rootmount = NULL;
 2643                 }
 2644                 break;
 2645         case G_RAID3_DEVICE_STATE_COMPLETE:
 2646                 /*
 2647                  * Genid need to be bumped immediately, so do it here.
 2648                  */
 2649                 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
 2650                         sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
 2651                         g_raid3_bump_genid(sc);
 2652                 }
 2653 
 2654                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
 2655                         return;
 2656                 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
 2657                     sc->sc_ndisks - 1,
 2658                     ("Too few ACTIVE components in COMPLETE state (device %s).",
 2659                     sc->sc_name));
 2660                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
 2661                     sc->sc_ndisks - 1) {
 2662                         state = G_RAID3_DEVICE_STATE_DEGRADED;
 2663                         G_RAID3_DEBUG(1,
 2664                             "Device %s state changed from %s to %s.",
 2665                             sc->sc_name, g_raid3_device_state2str(sc->sc_state),
 2666                             g_raid3_device_state2str(state));
 2667                         sc->sc_state = state;
 2668                 }
 2669                 if (sc->sc_provider == NULL)
 2670                         g_raid3_launch_provider(sc);
 2671                 if (sc->sc_rootmount != NULL) {
 2672                         G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
 2673                             sc->sc_rootmount);
 2674                         root_mount_rel(sc->sc_rootmount);
 2675                         sc->sc_rootmount = NULL;
 2676                 }
 2677                 break;
 2678         default:
 2679                 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
 2680                     g_raid3_device_state2str(sc->sc_state)));
 2681                 break;
 2682         }
 2683 }
 2684 
 2685 /*
 2686  * Update disk state and device state if needed.
 2687  */
 2688 #define DISK_STATE_CHANGED()    G_RAID3_DEBUG(1,                        \
 2689         "Disk %s state changed from %s to %s (device %s).",             \
 2690         g_raid3_get_diskname(disk),                                     \
 2691         g_raid3_disk_state2str(disk->d_state),                          \
 2692         g_raid3_disk_state2str(state), sc->sc_name)
 2693 static int
 2694 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
 2695 {
 2696         struct g_raid3_softc *sc;
 2697 
 2698         sc = disk->d_softc;
 2699         sx_assert(&sc->sc_lock, SX_XLOCKED);
 2700 
 2701 again:
 2702         G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
 2703             g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
 2704             g_raid3_disk_state2str(state));
 2705         switch (state) {
 2706         case G_RAID3_DISK_STATE_NEW:
 2707                 /*
 2708                  * Possible scenarios:
 2709                  * 1. New disk arrive.
 2710                  */
 2711                 /* Previous state should be NONE. */
 2712                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
 2713                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2714                     g_raid3_disk_state2str(disk->d_state)));
 2715                 DISK_STATE_CHANGED();
 2716 
 2717                 disk->d_state = state;
 2718                 G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
 2719                     sc->sc_name, g_raid3_get_diskname(disk));
 2720                 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
 2721                         break;
 2722                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2723                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2724                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2725                     g_raid3_device_state2str(sc->sc_state),
 2726                     g_raid3_get_diskname(disk),
 2727                     g_raid3_disk_state2str(disk->d_state)));
 2728                 state = g_raid3_determine_state(disk);
 2729                 if (state != G_RAID3_DISK_STATE_NONE)
 2730                         goto again;
 2731                 break;
 2732         case G_RAID3_DISK_STATE_ACTIVE:
 2733                 /*
 2734                  * Possible scenarios:
 2735                  * 1. New disk does not need synchronization.
 2736                  * 2. Synchronization process finished successfully.
 2737                  */
 2738                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2739                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2740                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2741                     g_raid3_device_state2str(sc->sc_state),
 2742                     g_raid3_get_diskname(disk),
 2743                     g_raid3_disk_state2str(disk->d_state)));
 2744                 /* Previous state should be NEW or SYNCHRONIZING. */
 2745                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
 2746                     disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
 2747                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2748                     g_raid3_disk_state2str(disk->d_state)));
 2749                 DISK_STATE_CHANGED();
 2750 
 2751                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
 2752                         disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
 2753                         disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
 2754                         g_raid3_sync_stop(sc, 0);
 2755                 }
 2756                 disk->d_state = state;
 2757                 disk->d_sync.ds_offset = 0;
 2758                 disk->d_sync.ds_offset_done = 0;
 2759                 g_raid3_update_idle(sc, disk);
 2760                 g_raid3_update_metadata(disk);
 2761                 G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
 2762                     sc->sc_name, g_raid3_get_diskname(disk));
 2763                 break;
 2764         case G_RAID3_DISK_STATE_STALE:
 2765                 /*
 2766                  * Possible scenarios:
 2767                  * 1. Stale disk was connected.
 2768                  */
 2769                 /* Previous state should be NEW. */
 2770                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
 2771                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2772                     g_raid3_disk_state2str(disk->d_state)));
 2773                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2774                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2775                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2776                     g_raid3_device_state2str(sc->sc_state),
 2777                     g_raid3_get_diskname(disk),
 2778                     g_raid3_disk_state2str(disk->d_state)));
 2779                 /*
 2780                  * STALE state is only possible if device is marked
 2781                  * NOAUTOSYNC.
 2782                  */
 2783                 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
 2784                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2785                     g_raid3_device_state2str(sc->sc_state),
 2786                     g_raid3_get_diskname(disk),
 2787                     g_raid3_disk_state2str(disk->d_state)));
 2788                 DISK_STATE_CHANGED();
 2789 
 2790                 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2791                 disk->d_state = state;
 2792                 g_raid3_update_metadata(disk);
 2793                 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
 2794                     sc->sc_name, g_raid3_get_diskname(disk));
 2795                 break;
 2796         case G_RAID3_DISK_STATE_SYNCHRONIZING:
 2797                 /*
 2798                  * Possible scenarios:
 2799                  * 1. Disk which needs synchronization was connected.
 2800                  */
 2801                 /* Previous state should be NEW. */
 2802                 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
 2803                     ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
 2804                     g_raid3_disk_state2str(disk->d_state)));
 2805                 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2806                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
 2807                     ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
 2808                     g_raid3_device_state2str(sc->sc_state),
 2809                     g_raid3_get_diskname(disk),
 2810                     g_raid3_disk_state2str(disk->d_state)));
 2811                 DISK_STATE_CHANGED();
 2812 
 2813                 if (disk->d_state == G_RAID3_DISK_STATE_NEW)
 2814                         disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
 2815                 disk->d_state = state;
 2816                 if (sc->sc_provider != NULL) {
 2817                         g_raid3_sync_start(sc);
 2818                         g_raid3_update_metadata(disk);
 2819                 }
 2820                 break;
 2821         case G_RAID3_DISK_STATE_DISCONNECTED:
 2822                 /*
 2823                  * Possible scenarios:
 2824                  * 1. Device wasn't running yet, but disk disappear.
 2825                  * 2. Disk was active and disapppear.
 2826                  * 3. Disk disappear during synchronization process.
 2827                  */
 2828                 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
 2829                     sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
 2830                         /*
 2831                          * Previous state should be ACTIVE, STALE or
 2832                          * SYNCHRONIZING.
 2833                          */
 2834                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
 2835                             disk->d_state == G_RAID3_DISK_STATE_STALE ||
 2836                             disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
 2837                             ("Wrong disk state (%s, %s).",
 2838                             g_raid3_get_diskname(disk),
 2839                             g_raid3_disk_state2str(disk->d_state)));
 2840                 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
 2841                         /* Previous state should be NEW. */
 2842                         KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
 2843                             ("Wrong disk state (%s, %s).",
 2844                             g_raid3_get_diskname(disk),
 2845                             g_raid3_disk_state2str(disk->d_state)));
 2846                         /*
 2847                          * Reset bumping syncid if disk disappeared in STARTING
 2848                          * state.
 2849                          */
 2850                         if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
 2851                                 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
 2852 #ifdef  INVARIANTS
 2853                 } else {
 2854                         KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
 2855                             sc->sc_name,
 2856                             g_raid3_device_state2str(sc->sc_state),
 2857                             g_raid3_get_diskname(disk),
 2858                             g_raid3_disk_state2str(disk->d_state)));
 2859 #endif
 2860                 }
 2861                 DISK_STATE_CHANGED();
 2862                 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
 2863                     sc->sc_name, g_raid3_get_diskname(disk));
 2864 
 2865                 g_raid3_destroy_disk(disk);
 2866                 break;
 2867         default:
 2868                 KASSERT(1 == 0, ("Unknown state (%u).", state));
 2869                 break;
 2870         }
 2871         return (0);
 2872 }
 2873 #undef  DISK_STATE_CHANGED
 2874 
 2875 int
 2876 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
 2877 {
 2878         struct g_provider *pp;
 2879         u_char *buf;
 2880         int error;
 2881 
 2882         g_topology_assert();
 2883 
 2884         error = g_access(cp, 1, 0, 0);
 2885         if (error != 0)
 2886                 return (error);
 2887         pp = cp->provider;
 2888         g_topology_unlock();
 2889         /* Metadata are stored on last sector. */
 2890         buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
 2891             &error);
 2892         g_topology_lock();
 2893         g_access(cp, -1, 0, 0);
 2894         if (buf == NULL) {
 2895                 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
 2896                     cp->provider->name, error);
 2897                 return (error);
 2898         }
 2899 
 2900         /* Decode metadata. */
 2901         error = raid3_metadata_decode(buf, md);
 2902         g_free(buf);
 2903         if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
 2904                 return (EINVAL);
 2905         if (md->md_version > G_RAID3_VERSION) {
 2906                 G_RAID3_DEBUG(0,
 2907                     "Kernel module is too old to handle metadata from %s.",
 2908                     cp->provider->name);
 2909                 return (EINVAL);
 2910         }
 2911         if (error != 0) {
 2912                 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
 2913                     cp->provider->name);
 2914                 return (error);
 2915         }
 2916         if (md->md_sectorsize > MAXPHYS) {
 2917                 G_RAID3_DEBUG(0, "The blocksize is too big.");
 2918                 return (EINVAL);
 2919         }
 2920 
 2921         return (0);
 2922 }
 2923 
 2924 static int
 2925 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
 2926     struct g_raid3_metadata *md)
 2927 {
 2928 
 2929         if (md->md_no >= sc->sc_ndisks) {
 2930                 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
 2931                     pp->name, md->md_no);
 2932                 return (EINVAL);
 2933         }
 2934         if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
 2935                 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
 2936                     pp->name, md->md_no);
 2937                 return (EEXIST);
 2938         }
 2939         if (md->md_all != sc->sc_ndisks) {
 2940                 G_RAID3_DEBUG(1,
 2941                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2942                     "md_all", pp->name, sc->sc_name);
 2943                 return (EINVAL);
 2944         }
 2945         if ((md->md_mediasize % md->md_sectorsize) != 0) {
 2946                 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
 2947                     "0) on disk %s (device %s), skipping.", pp->name,
 2948                     sc->sc_name);
 2949                 return (EINVAL);
 2950         }
 2951         if (md->md_mediasize != sc->sc_mediasize) {
 2952                 G_RAID3_DEBUG(1,
 2953                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2954                     "md_mediasize", pp->name, sc->sc_name);
 2955                 return (EINVAL);
 2956         }
 2957         if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
 2958                 G_RAID3_DEBUG(1,
 2959                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2960                     "md_mediasize", pp->name, sc->sc_name);
 2961                 return (EINVAL);
 2962         }
 2963         if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
 2964                 G_RAID3_DEBUG(1,
 2965                     "Invalid size of disk %s (device %s), skipping.", pp->name,
 2966                     sc->sc_name);
 2967                 return (EINVAL);
 2968         }
 2969         if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
 2970                 G_RAID3_DEBUG(1,
 2971                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2972                     "md_sectorsize", pp->name, sc->sc_name);
 2973                 return (EINVAL);
 2974         }
 2975         if (md->md_sectorsize != sc->sc_sectorsize) {
 2976                 G_RAID3_DEBUG(1,
 2977                     "Invalid '%s' field on disk %s (device %s), skipping.",
 2978                     "md_sectorsize", pp->name, sc->sc_name);
 2979                 return (EINVAL);
 2980         }
 2981         if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
 2982                 G_RAID3_DEBUG(1,
 2983                     "Invalid sector size of disk %s (device %s), skipping.",
 2984                     pp->name, sc->sc_name);
 2985                 return (EINVAL);
 2986         }
 2987         if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
 2988                 G_RAID3_DEBUG(1,
 2989                     "Invalid device flags on disk %s (device %s), skipping.",
 2990                     pp->name, sc->sc_name);
 2991                 return (EINVAL);
 2992         }
 2993         if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
 2994             (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
 2995                 /*
 2996                  * VERIFY and ROUND-ROBIN options are mutally exclusive.
 2997                  */
 2998                 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
 2999                     "disk %s (device %s), skipping.", pp->name, sc->sc_name);
 3000                 return (EINVAL);
 3001         }
 3002         if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
 3003                 G_RAID3_DEBUG(1,
 3004                     "Invalid disk flags on disk %s (device %s), skipping.",
 3005                     pp->name, sc->sc_name);
 3006                 return (EINVAL);
 3007         }
 3008         return (0);
 3009 }
 3010 
 3011 int
 3012 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
 3013     struct g_raid3_metadata *md)
 3014 {
 3015         struct g_raid3_disk *disk;
 3016         int error;
 3017 
 3018         g_topology_assert_not();
 3019         G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
 3020 
 3021         error = g_raid3_check_metadata(sc, pp, md);
 3022         if (error != 0)
 3023                 return (error);
 3024         if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
 3025             md->md_genid < sc->sc_genid) {
 3026                 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
 3027                     pp->name, sc->sc_name);
 3028                 return (EINVAL);
 3029         }
 3030         disk = g_raid3_init_disk(sc, pp, md, &error);
 3031         if (disk == NULL)
 3032                 return (error);
 3033         error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
 3034             G_RAID3_EVENT_WAIT);
 3035         if (error != 0)
 3036                 return (error);
 3037         if (md->md_version < G_RAID3_VERSION) {
 3038                 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
 3039                     pp->name, md->md_version, G_RAID3_VERSION);
 3040                 g_raid3_update_metadata(disk);
 3041         }
 3042         return (0);
 3043 }
 3044 
 3045 static void
 3046 g_raid3_destroy_delayed(void *arg, int flag)
 3047 {
 3048         struct g_raid3_softc *sc;
 3049         int error;
 3050 
 3051         if (flag == EV_CANCEL) {
 3052                 G_RAID3_DEBUG(1, "Destroying canceled.");
 3053                 return;
 3054         }
 3055         sc = arg;
 3056         g_topology_unlock();
 3057         sx_xlock(&sc->sc_lock);
 3058         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
 3059             ("DESTROY flag set on %s.", sc->sc_name));
 3060         KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
 3061             ("DESTROYING flag not set on %s.", sc->sc_name));
 3062         G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
 3063         error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
 3064         if (error != 0) {
 3065                 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
 3066                 sx_xunlock(&sc->sc_lock);
 3067         }
 3068         g_topology_lock();
 3069 }
 3070 
 3071 static int
 3072 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
 3073 {
 3074         struct g_raid3_softc *sc;
 3075         int dcr, dcw, dce, error = 0;
 3076 
 3077         g_topology_assert();
 3078         G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
 3079             acw, ace);
 3080 
 3081         sc = pp->geom->softc;
 3082         if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
 3083                 return (0);
 3084         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
 3085 
 3086         dcr = pp->acr + acr;
 3087         dcw = pp->acw + acw;
 3088         dce = pp->ace + ace;
 3089 
 3090         g_topology_unlock();
 3091         sx_xlock(&sc->sc_lock);
 3092         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
 3093             g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
 3094                 if (acr > 0 || acw > 0 || ace > 0)
 3095                         error = ENXIO;
 3096                 goto end;
 3097         }
 3098         if (dcw == 0 && !sc->sc_idle)
 3099                 g_raid3_idle(sc, dcw);
 3100         if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
 3101                 if (acr > 0 || acw > 0 || ace > 0) {
 3102                         error = ENXIO;
 3103                         goto end;
 3104                 }
 3105                 if (dcr == 0 && dcw == 0 && dce == 0) {
 3106                         g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
 3107                             sc, NULL);
 3108                 }
 3109         }
 3110 end:
 3111         sx_xunlock(&sc->sc_lock);
 3112         g_topology_lock();
 3113         return (error);
 3114 }
 3115 
 3116 static struct g_geom *
 3117 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
 3118 {
 3119         struct g_raid3_softc *sc;
 3120         struct g_geom *gp;
 3121         int error, timeout;
 3122         u_int n;
 3123 
 3124         g_topology_assert();
 3125         G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
 3126 
 3127         /* One disk is minimum. */
 3128         if (md->md_all < 1)
 3129                 return (NULL);
 3130         /*
 3131          * Action geom.
 3132          */
 3133         gp = g_new_geomf(mp, "%s", md->md_name);
 3134         sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
 3135         sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
 3136             M_WAITOK | M_ZERO);
 3137         gp->start = g_raid3_start;
 3138         gp->orphan = g_raid3_orphan;
 3139         gp->access = g_raid3_access;
 3140         gp->dumpconf = g_raid3_dumpconf;
 3141 
 3142         sc->sc_id = md->md_id;
 3143         sc->sc_mediasize = md->md_mediasize;
 3144         sc->sc_sectorsize = md->md_sectorsize;
 3145         sc->sc_ndisks = md->md_all;
 3146         sc->sc_round_robin = 0;
 3147         sc->sc_flags = md->md_mflags;
 3148         sc->sc_bump_id = 0;
 3149         sc->sc_idle = 1;
 3150         sc->sc_last_write = time_uptime;
 3151         sc->sc_writes = 0;
 3152         for (n = 0; n < sc->sc_ndisks; n++) {
 3153                 sc->sc_disks[n].d_softc = sc;
 3154                 sc->sc_disks[n].d_no = n;
 3155                 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
 3156         }
 3157         sx_init(&sc->sc_lock, "graid3:lock");
 3158         bioq_init(&sc->sc_queue);
 3159         mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
 3160         bioq_init(&sc->sc_regular_delayed);
 3161         bioq_init(&sc->sc_inflight);
 3162         bioq_init(&sc->sc_sync_delayed);
 3163         TAILQ_INIT(&sc->sc_events);
 3164         mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
 3165         callout_init(&sc->sc_callout, CALLOUT_MPSAFE);
 3166         sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
 3167         gp->softc = sc;
 3168         sc->sc_geom = gp;
 3169         sc->sc_provider = NULL;
 3170         /*
 3171          * Synchronization geom.
 3172          */
 3173         gp = g_new_geomf(mp, "%s.sync", md->md_name);
 3174         gp->softc = sc;
 3175         gp->orphan = g_raid3_orphan;
 3176         sc->sc_sync.ds_geom = gp;
 3177 
 3178         if (!g_raid3_use_malloc) {
 3179                 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
 3180                     65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
 3181                     UMA_ALIGN_PTR, 0);
 3182                 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
 3183                 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
 3184                 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
 3185                     sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
 3186                 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
 3187                     16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
 3188                     UMA_ALIGN_PTR, 0);
 3189                 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
 3190                 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
 3191                 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
 3192                     sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
 3193                 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
 3194                     4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
 3195                     UMA_ALIGN_PTR, 0);
 3196                 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
 3197                 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
 3198                 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
 3199                     sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
 3200         }
 3201 
 3202         error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
 3203             "g_raid3 %s", md->md_name);
 3204         if (error != 0) {
 3205                 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
 3206                     sc->sc_name);
 3207                 if (!g_raid3_use_malloc) {
 3208                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
 3209                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
 3210                         uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
 3211                 }
 3212                 g_destroy_geom(sc->sc_sync.ds_geom);
 3213                 mtx_destroy(&sc->sc_events_mtx);
 3214                 mtx_destroy(&sc->sc_queue_mtx);
 3215                 sx_destroy(&sc->sc_lock);
 3216                 g_destroy_geom(sc->sc_geom);
 3217                 free(sc->sc_disks, M_RAID3);
 3218                 free(sc, M_RAID3);
 3219                 return (NULL);
 3220         }
 3221 
 3222         G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
 3223             sc->sc_name, sc->sc_ndisks, sc->sc_id);
 3224 
 3225         sc->sc_rootmount = root_mount_hold("GRAID3");
 3226         G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
 3227 
 3228         /*
 3229          * Run timeout.
 3230          */
 3231         timeout = atomic_load_acq_int(&g_raid3_timeout);
 3232         callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
 3233         return (sc->sc_geom);
 3234 }
 3235 
 3236 int
 3237 g_raid3_destroy(struct g_raid3_softc *sc, int how)
 3238 {
 3239         struct g_provider *pp;
 3240 
 3241         g_topology_assert_not();
 3242         if (sc == NULL)
 3243                 return (ENXIO);
 3244         sx_assert(&sc->sc_lock, SX_XLOCKED);
 3245 
 3246         pp = sc->sc_provider;
 3247         if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
 3248                 switch (how) {
 3249                 case G_RAID3_DESTROY_SOFT:
 3250                         G_RAID3_DEBUG(1,
 3251                             "Device %s is still open (r%dw%de%d).", pp->name,
 3252                             pp->acr, pp->acw, pp->ace);
 3253                         return (EBUSY);
 3254                 case G_RAID3_DESTROY_DELAYED:
 3255                         G_RAID3_DEBUG(1,
 3256                             "Device %s will be destroyed on last close.",
 3257                             pp->name);
 3258                         if (sc->sc_syncdisk != NULL)
 3259                                 g_raid3_sync_stop(sc, 1);
 3260                         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
 3261                         return (EBUSY);
 3262                 case G_RAID3_DESTROY_HARD:
 3263                         G_RAID3_DEBUG(1, "Device %s is still open, so it "
 3264                             "can't be definitely removed.", pp->name);
 3265                         break;
 3266                 }
 3267         }
 3268 
 3269         g_topology_lock();
 3270         if (sc->sc_geom->softc == NULL) {
 3271                 g_topology_unlock();
 3272                 return (0);
 3273         }
 3274         sc->sc_geom->softc = NULL;
 3275         sc->sc_sync.ds_geom->softc = NULL;
 3276         g_topology_unlock();
 3277 
 3278         sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
 3279         sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
 3280         G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
 3281         sx_xunlock(&sc->sc_lock);
 3282         mtx_lock(&sc->sc_queue_mtx);
 3283         wakeup(sc);
 3284         wakeup(&sc->sc_queue);
 3285         mtx_unlock(&sc->sc_queue_mtx);
 3286         G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
 3287         while (sc->sc_worker != NULL)
 3288                 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
 3289         G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
 3290         sx_xlock(&sc->sc_lock);
 3291         g_raid3_destroy_device(sc);
 3292         free(sc->sc_disks, M_RAID3);
 3293         free(sc, M_RAID3);
 3294         return (0);
 3295 }
 3296 
 3297 static void
 3298 g_raid3_taste_orphan(struct g_consumer *cp)
 3299 {
 3300 
 3301         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
 3302             cp->provider->name));
 3303 }
 3304 
 3305 static struct g_geom *
 3306 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
 3307 {
 3308         struct g_raid3_metadata md;
 3309         struct g_raid3_softc *sc;
 3310         struct g_consumer *cp;
 3311         struct g_geom *gp;
 3312         int error;
 3313 
 3314         g_topology_assert();
 3315         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
 3316         G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
 3317 
 3318         gp = g_new_geomf(mp, "raid3:taste");
 3319         /* This orphan function should be never called. */
 3320         gp->orphan = g_raid3_taste_orphan;
 3321         cp = g_new_consumer(gp);
 3322         g_attach(cp, pp);
 3323         error = g_raid3_read_metadata(cp, &md);
 3324         g_detach(cp);
 3325         g_destroy_consumer(cp);
 3326         g_destroy_geom(gp);
 3327         if (error != 0)
 3328                 return (NULL);
 3329         gp = NULL;
 3330 
 3331         if (md.md_provider[0] != '\0' &&
 3332             !g_compare_names(md.md_provider, pp->name))
 3333                 return (NULL);
 3334         if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
 3335                 return (NULL);
 3336         if (g_raid3_debug >= 2)
 3337                 raid3_metadata_dump(&md);
 3338 
 3339         /*
 3340          * Let's check if device already exists.
 3341          */
 3342         sc = NULL;
 3343         LIST_FOREACH(gp, &mp->geom, geom) {
 3344                 sc = gp->softc;
 3345                 if (sc == NULL)
 3346                         continue;
 3347                 if (sc->sc_sync.ds_geom == gp)
 3348                         continue;
 3349                 if (strcmp(md.md_name, sc->sc_name) != 0)
 3350                         continue;
 3351                 if (md.md_id != sc->sc_id) {
 3352                         G_RAID3_DEBUG(0, "Device %s already configured.",
 3353                             sc->sc_name);
 3354                         return (NULL);
 3355                 }
 3356                 break;
 3357         }
 3358         if (gp == NULL) {
 3359                 gp = g_raid3_create(mp, &md);
 3360                 if (gp == NULL) {
 3361                         G_RAID3_DEBUG(0, "Cannot create device %s.",
 3362                             md.md_name);
 3363                         return (NULL);
 3364                 }
 3365                 sc = gp->softc;
 3366         }
 3367         G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
 3368         g_topology_unlock();
 3369         sx_xlock(&sc->sc_lock);
 3370         error = g_raid3_add_disk(sc, pp, &md);
 3371         if (error != 0) {
 3372                 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
 3373                     pp->name, gp->name, error);
 3374                 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
 3375                     sc->sc_ndisks) {
 3376                         g_cancel_event(sc);
 3377                         g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
 3378                         g_topology_lock();
 3379                         return (NULL);
 3380                 }
 3381                 gp = NULL;
 3382         }
 3383         sx_xunlock(&sc->sc_lock);
 3384         g_topology_lock();
 3385         return (gp);
 3386 }
 3387 
 3388 static int
 3389 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
 3390     struct g_geom *gp)
 3391 {
 3392         struct g_raid3_softc *sc;
 3393         int error;
 3394 
 3395         g_topology_unlock();
 3396         sc = gp->softc;
 3397         sx_xlock(&sc->sc_lock);
 3398         g_cancel_event(sc);
 3399         error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
 3400         if (error != 0)
 3401                 sx_xunlock(&sc->sc_lock);
 3402         g_topology_lock();
 3403         return (error);
 3404 }
 3405 
 3406 static void
 3407 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
 3408     struct g_consumer *cp, struct g_provider *pp)
 3409 {
 3410         struct g_raid3_softc *sc;
 3411 
 3412         g_topology_assert();
 3413 
 3414         sc = gp->softc;
 3415         if (sc == NULL)
 3416                 return;
 3417         /* Skip synchronization geom. */
 3418         if (gp == sc->sc_sync.ds_geom)
 3419                 return;
 3420         if (pp != NULL) {
 3421                 /* Nothing here. */
 3422         } else if (cp != NULL) {
 3423                 struct g_raid3_disk *disk;
 3424 
 3425                 disk = cp->private;
 3426                 if (disk == NULL)
 3427                         return;
 3428                 g_topology_unlock();
 3429                 sx_xlock(&sc->sc_lock);
 3430                 sbuf_printf(sb, "%s<Type>", indent);
 3431                 if (disk->d_no == sc->sc_ndisks - 1)
 3432                         sbuf_printf(sb, "PARITY");
 3433                 else
 3434                         sbuf_printf(sb, "DATA");
 3435                 sbuf_printf(sb, "</Type>\n");
 3436                 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
 3437                     (u_int)disk->d_no);
 3438                 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
 3439                         sbuf_printf(sb, "%s<Synchronized>", indent);
 3440                         if (disk->d_sync.ds_offset == 0)
 3441                                 sbuf_printf(sb, "0%%");
 3442                         else {
 3443                                 sbuf_printf(sb, "%u%%",
 3444                                     (u_int)((disk->d_sync.ds_offset * 100) /
 3445                                     (sc->sc_mediasize / (sc->sc_ndisks - 1))));
 3446                         }
 3447                         sbuf_printf(sb, "</Synchronized>\n");
 3448                 }
 3449                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
 3450                     disk->d_sync.ds_syncid);
 3451                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
 3452                 sbuf_printf(sb, "%s<Flags>", indent);
 3453                 if (disk->d_flags == 0)
 3454                         sbuf_printf(sb, "NONE");
 3455                 else {
 3456                         int first = 1;
 3457 
 3458 #define ADD_FLAG(flag, name)    do {                                    \
 3459         if ((disk->d_flags & (flag)) != 0) {                            \
 3460                 if (!first)                                             \
 3461                         sbuf_printf(sb, ", ");                          \
 3462                 else                                                    \
 3463                         first = 0;                                      \
 3464                 sbuf_printf(sb, name);                                  \
 3465         }                                                               \
 3466 } while (0)
 3467                         ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
 3468                         ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
 3469                         ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
 3470                             "SYNCHRONIZING");
 3471                         ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
 3472                         ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
 3473 #undef  ADD_FLAG
 3474                 }
 3475                 sbuf_printf(sb, "</Flags>\n");
 3476                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 3477                     g_raid3_disk_state2str(disk->d_state));
 3478                 sx_xunlock(&sc->sc_lock);
 3479                 g_topology_lock();
 3480         } else {
 3481                 g_topology_unlock();
 3482                 sx_xlock(&sc->sc_lock);
 3483                 if (!g_raid3_use_malloc) {
 3484                         sbuf_printf(sb,
 3485                             "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
 3486                             sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
 3487                         sbuf_printf(sb,
 3488                             "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
 3489                             sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
 3490                         sbuf_printf(sb,
 3491                             "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
 3492                             sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
 3493                         sbuf_printf(sb,
 3494                             "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
 3495                             sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
 3496                         sbuf_printf(sb,
 3497                             "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
 3498                             sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
 3499                         sbuf_printf(sb,
 3500                             "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
 3501                             sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
 3502                 }
 3503                 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
 3504                 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
 3505                 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
 3506                 sbuf_printf(sb, "%s<Flags>", indent);
 3507                 if (sc->sc_flags == 0)
 3508                         sbuf_printf(sb, "NONE");
 3509                 else {
 3510                         int first = 1;
 3511 
 3512 #define ADD_FLAG(flag, name)    do {                                    \
 3513         if ((sc->sc_flags & (flag)) != 0) {                             \
 3514                 if (!first)                                             \
 3515                         sbuf_printf(sb, ", ");                          \
 3516                 else                                                    \
 3517                         first = 0;                                      \
 3518                 sbuf_printf(sb, name);                                  \
 3519         }                                                               \
 3520 } while (0)
 3521                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
 3522                         ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
 3523                         ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
 3524                             "ROUND-ROBIN");
 3525                         ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
 3526 #undef  ADD_FLAG
 3527                 }
 3528                 sbuf_printf(sb, "</Flags>\n");
 3529                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
 3530                     sc->sc_ndisks);
 3531                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
 3532                     g_raid3_device_state2str(sc->sc_state));
 3533                 sx_xunlock(&sc->sc_lock);
 3534                 g_topology_lock();
 3535         }
 3536 }
 3537 
 3538 static void
 3539 g_raid3_shutdown_pre_sync(void *arg, int howto)
 3540 {
 3541         struct g_class *mp;
 3542         struct g_geom *gp, *gp2;
 3543         struct g_raid3_softc *sc;
 3544         int error;
 3545 
 3546         mp = arg;
 3547         DROP_GIANT();
 3548         g_topology_lock();
 3549         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
 3550                 if ((sc = gp->softc) == NULL)
 3551                         continue;
 3552                 /* Skip synchronization geom. */
 3553                 if (gp == sc->sc_sync.ds_geom)
 3554                         continue;
 3555                 g_topology_unlock();
 3556                 sx_xlock(&sc->sc_lock);
 3557                 g_cancel_event(sc);
 3558                 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
 3559                 if (error != 0)
 3560                         sx_xunlock(&sc->sc_lock);
 3561                 g_topology_lock();
 3562         }
 3563         g_topology_unlock();
 3564         PICKUP_GIANT();
 3565 }
 3566 
 3567 static void
 3568 g_raid3_init(struct g_class *mp)
 3569 {
 3570 
 3571         g_raid3_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync,
 3572             g_raid3_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST);
 3573         if (g_raid3_pre_sync == NULL)
 3574                 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
 3575 }
 3576 
 3577 static void
 3578 g_raid3_fini(struct g_class *mp)
 3579 {
 3580 
 3581         if (g_raid3_pre_sync != NULL)
 3582                 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid3_pre_sync);
 3583 }
 3584 
 3585 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);

Cache object: 5ed6bf8ac13f5f9b254049f92eb28bfe


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.