The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/acpica/acpi_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Mitsuru IWASAKI
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/8.2/sys/i386/acpica/acpi_machdep.c 205708 2010-03-26 18:58:22Z jhb $");
   29 
   30 #include <sys/param.h>
   31 #include <sys/bus.h>
   32 #include <sys/condvar.h>
   33 #include <sys/conf.h>
   34 #include <sys/fcntl.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/poll.h>
   39 #include <sys/sysctl.h>
   40 #include <sys/uio.h>
   41 #include <vm/vm.h>
   42 #include <vm/pmap.h>
   43 
   44 #include <contrib/dev/acpica/include/acpi.h>
   45 #include <contrib/dev/acpica/include/accommon.h>
   46 #include <contrib/dev/acpica/include/actables.h>
   47 
   48 #include <dev/acpica/acpivar.h>
   49 #include <dev/acpica/acpiio.h>
   50 
   51 #include <machine/nexusvar.h>
   52 
   53 /*
   54  * APM driver emulation 
   55  */
   56 
   57 #include <machine/apm_bios.h>
   58 #include <machine/pc/bios.h>
   59 
   60 #include <i386/bios/apm.h>
   61 
   62 SYSCTL_DECL(_debug_acpi);
   63 
   64 uint32_t acpi_resume_beep;
   65 TUNABLE_INT("debug.acpi.resume_beep", &acpi_resume_beep);
   66 SYSCTL_UINT(_debug_acpi, OID_AUTO, resume_beep, CTLFLAG_RW, &acpi_resume_beep,
   67     0, "Beep the PC speaker when resuming");
   68 uint32_t acpi_reset_video;
   69 TUNABLE_INT("hw.acpi.reset_video", &acpi_reset_video);
   70 
   71 static int intr_model = ACPI_INTR_PIC;
   72 static int apm_active;
   73 static struct clonedevs *apm_clones;
   74 
   75 MALLOC_DEFINE(M_APMDEV, "apmdev", "APM device emulation");
   76 
   77 static d_open_t         apmopen;
   78 static d_close_t        apmclose;
   79 static d_write_t        apmwrite;
   80 static d_ioctl_t        apmioctl;
   81 static d_poll_t         apmpoll;
   82 static d_kqfilter_t     apmkqfilter;
   83 static void             apmreadfiltdetach(struct knote *kn);
   84 static int              apmreadfilt(struct knote *kn, long hint);
   85 static struct filterops apm_readfiltops =
   86         { 1, NULL, apmreadfiltdetach, apmreadfilt };
   87 
   88 static struct cdevsw apm_cdevsw = {
   89         .d_version =    D_VERSION,
   90         .d_flags =      D_TRACKCLOSE | D_NEEDMINOR,
   91         .d_open =       apmopen,
   92         .d_close =      apmclose,
   93         .d_write =      apmwrite,
   94         .d_ioctl =      apmioctl,
   95         .d_poll =       apmpoll,
   96         .d_name =       "apm",
   97         .d_kqfilter =   apmkqfilter
   98 };
   99 
  100 static int
  101 acpi_capm_convert_battstate(struct  acpi_battinfo *battp)
  102 {
  103         int     state;
  104 
  105         state = APM_UNKNOWN;
  106 
  107         if (battp->state & ACPI_BATT_STAT_DISCHARG) {
  108                 if (battp->cap >= 50)
  109                         state = 0;      /* high */
  110                 else
  111                         state = 1;      /* low */
  112         }
  113         if (battp->state & ACPI_BATT_STAT_CRITICAL)
  114                 state = 2;              /* critical */
  115         if (battp->state & ACPI_BATT_STAT_CHARGING)
  116                 state = 3;              /* charging */
  117 
  118         /* If still unknown, determine it based on the battery capacity. */
  119         if (state == APM_UNKNOWN) {
  120                 if (battp->cap >= 50)
  121                         state = 0;      /* high */
  122                 else
  123                         state = 1;      /* low */
  124         }
  125 
  126         return (state);
  127 }
  128 
  129 static int
  130 acpi_capm_convert_battflags(struct  acpi_battinfo *battp)
  131 {
  132         int     flags;
  133 
  134         flags = 0;
  135 
  136         if (battp->cap >= 50)
  137                 flags |= APM_BATT_HIGH;
  138         else {
  139                 if (battp->state & ACPI_BATT_STAT_CRITICAL)
  140                         flags |= APM_BATT_CRITICAL;
  141                 else
  142                         flags |= APM_BATT_LOW;
  143         }
  144         if (battp->state & ACPI_BATT_STAT_CHARGING)
  145                 flags |= APM_BATT_CHARGING;
  146         if (battp->state == ACPI_BATT_STAT_NOT_PRESENT)
  147                 flags = APM_BATT_NOT_PRESENT;
  148 
  149         return (flags);
  150 }
  151 
  152 static int
  153 acpi_capm_get_info(apm_info_t aip)
  154 {
  155         int     acline;
  156         struct  acpi_battinfo batt;
  157 
  158         aip->ai_infoversion = 1;
  159         aip->ai_major       = 1;
  160         aip->ai_minor       = 2;
  161         aip->ai_status      = apm_active;
  162         aip->ai_capabilities= 0xff00;   /* unknown */
  163 
  164         if (acpi_acad_get_acline(&acline))
  165                 aip->ai_acline = APM_UNKNOWN;   /* unknown */
  166         else
  167                 aip->ai_acline = acline;        /* on/off */
  168 
  169         if (acpi_battery_get_battinfo(NULL, &batt) != 0) {
  170                 aip->ai_batt_stat = APM_UNKNOWN;
  171                 aip->ai_batt_life = APM_UNKNOWN;
  172                 aip->ai_batt_time = -1;          /* unknown */
  173                 aip->ai_batteries = ~0U;         /* unknown */
  174         } else {
  175                 aip->ai_batt_stat = acpi_capm_convert_battstate(&batt);
  176                 aip->ai_batt_life = batt.cap;
  177                 aip->ai_batt_time = (batt.min == -1) ? -1 : batt.min * 60;
  178                 aip->ai_batteries = acpi_battery_get_units();
  179         }
  180 
  181         return (0);
  182 }
  183 
  184 static int
  185 acpi_capm_get_pwstatus(apm_pwstatus_t app)
  186 {
  187         device_t dev;
  188         int     acline, unit, error;
  189         struct  acpi_battinfo batt;
  190 
  191         if (app->ap_device != PMDV_ALLDEV &&
  192             (app->ap_device < PMDV_BATT0 || app->ap_device > PMDV_BATT_ALL))
  193                 return (1);
  194 
  195         if (app->ap_device == PMDV_ALLDEV)
  196                 error = acpi_battery_get_battinfo(NULL, &batt);
  197         else {
  198                 unit = app->ap_device - PMDV_BATT0;
  199                 dev = devclass_get_device(devclass_find("battery"), unit);
  200                 if (dev != NULL)
  201                         error = acpi_battery_get_battinfo(dev, &batt);
  202                 else
  203                         error = ENXIO;
  204         }
  205         if (error)
  206                 return (1);
  207 
  208         app->ap_batt_stat = acpi_capm_convert_battstate(&batt);
  209         app->ap_batt_flag = acpi_capm_convert_battflags(&batt);
  210         app->ap_batt_life = batt.cap;
  211         app->ap_batt_time = (batt.min == -1) ? -1 : batt.min * 60;
  212 
  213         if (acpi_acad_get_acline(&acline))
  214                 app->ap_acline = APM_UNKNOWN;
  215         else
  216                 app->ap_acline = acline;        /* on/off */
  217 
  218         return (0);
  219 }
  220 
  221 /* Create single-use devices for /dev/apm and /dev/apmctl. */
  222 static void
  223 apm_clone(void *arg, struct ucred *cred, char *name, int namelen,
  224     struct cdev **dev)
  225 {
  226         int ctl_dev, unit;
  227 
  228         if (*dev != NULL)
  229                 return;
  230         if (strcmp(name, "apmctl") == 0)
  231                 ctl_dev = TRUE;
  232         else if (strcmp(name, "apm") == 0)
  233                 ctl_dev = FALSE;
  234         else
  235                 return;
  236 
  237         /* Always create a new device and unit number. */
  238         unit = -1;
  239         if (clone_create(&apm_clones, &apm_cdevsw, &unit, dev, 0)) {
  240                 if (ctl_dev) {
  241                         *dev = make_dev(&apm_cdevsw, unit,
  242                             UID_ROOT, GID_OPERATOR, 0660, "apmctl%d", unit);
  243                 } else {
  244                         *dev = make_dev(&apm_cdevsw, unit,
  245                             UID_ROOT, GID_OPERATOR, 0664, "apm%d", unit);
  246                 }
  247                 if (*dev != NULL) {
  248                         dev_ref(*dev);
  249                         (*dev)->si_flags |= SI_CHEAPCLONE;
  250                 }
  251         }
  252 }
  253 
  254 /* Create a struct for tracking per-device suspend notification. */
  255 static struct apm_clone_data *
  256 apm_create_clone(struct cdev *dev, struct acpi_softc *acpi_sc)
  257 {
  258         struct apm_clone_data *clone;
  259 
  260         clone = malloc(sizeof(*clone), M_APMDEV, M_WAITOK);
  261         clone->cdev = dev;
  262         clone->acpi_sc = acpi_sc;
  263         clone->notify_status = APM_EV_NONE;
  264         bzero(&clone->sel_read, sizeof(clone->sel_read));
  265         knlist_init_mtx(&clone->sel_read.si_note, &acpi_mutex);
  266 
  267         /*
  268          * The acpi device is always managed by devd(8) and is considered
  269          * writable (i.e., ack is required to allow suspend to proceed.)
  270          */
  271         if (strcmp("acpi", devtoname(dev)) == 0)
  272                 clone->flags = ACPI_EVF_DEVD | ACPI_EVF_WRITE;
  273         else
  274                 clone->flags = ACPI_EVF_NONE;
  275 
  276         ACPI_LOCK(acpi);
  277         STAILQ_INSERT_TAIL(&acpi_sc->apm_cdevs, clone, entries);
  278         ACPI_UNLOCK(acpi);
  279         return (clone);
  280 }
  281 
  282 static int
  283 apmopen(struct cdev *dev, int flag, int fmt, struct thread *td)
  284 {
  285         struct  acpi_softc *acpi_sc;
  286         struct  apm_clone_data *clone;
  287 
  288         acpi_sc = devclass_get_softc(devclass_find("acpi"), 0);
  289         clone = apm_create_clone(dev, acpi_sc);
  290         dev->si_drv1 = clone;
  291 
  292         /* If the device is opened for write, record that. */
  293         if ((flag & FWRITE) != 0)
  294                 clone->flags |= ACPI_EVF_WRITE;
  295 
  296         return (0);
  297 }
  298 
  299 static int
  300 apmclose(struct cdev *dev, int flag, int fmt, struct thread *td)
  301 {
  302         struct  apm_clone_data *clone;
  303         struct  acpi_softc *acpi_sc;
  304 
  305         clone = dev->si_drv1;
  306         acpi_sc = clone->acpi_sc;
  307 
  308         /* We are about to lose a reference so check if suspend should occur */
  309         if (acpi_sc->acpi_next_sstate != 0 &&
  310             clone->notify_status != APM_EV_ACKED)
  311                 acpi_AckSleepState(clone, 0);
  312 
  313         /* Remove this clone's data from the list and free it. */
  314         ACPI_LOCK(acpi);
  315         STAILQ_REMOVE(&acpi_sc->apm_cdevs, clone, apm_clone_data, entries);
  316         knlist_destroy(&clone->sel_read.si_note);
  317         ACPI_UNLOCK(acpi);
  318         free(clone, M_APMDEV);
  319         destroy_dev_sched(dev);
  320         return (0);
  321 }
  322 
  323 static int
  324 apmioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
  325 {
  326         int     error;
  327         struct  apm_clone_data *clone;
  328         struct  acpi_softc *acpi_sc;
  329         struct  apm_info info;
  330         struct  apm_event_info *ev_info;
  331         apm_info_old_t aiop;
  332 
  333         error = 0;
  334         clone = dev->si_drv1;
  335         acpi_sc = clone->acpi_sc;
  336 
  337         switch (cmd) {
  338         case APMIO_SUSPEND:
  339                 if ((flag & FWRITE) == 0)
  340                         return (EPERM);
  341                 if (acpi_sc->acpi_next_sstate == 0) {
  342                         if (acpi_sc->acpi_suspend_sx != ACPI_STATE_S5) {
  343                                 error = acpi_ReqSleepState(acpi_sc,
  344                                     acpi_sc->acpi_suspend_sx);
  345                         } else {
  346                                 printf(
  347                         "power off via apm suspend not supported\n");
  348                                 error = ENXIO;
  349                         }
  350                 } else
  351                         error = acpi_AckSleepState(clone, 0);
  352                 break;
  353         case APMIO_STANDBY:
  354                 if ((flag & FWRITE) == 0)
  355                         return (EPERM);
  356                 if (acpi_sc->acpi_next_sstate == 0) {
  357                         if (acpi_sc->acpi_standby_sx != ACPI_STATE_S5) {
  358                                 error = acpi_ReqSleepState(acpi_sc,
  359                                     acpi_sc->acpi_standby_sx);
  360                         } else {
  361                                 printf(
  362                         "power off via apm standby not supported\n");
  363                                 error = ENXIO;
  364                         }
  365                 } else
  366                         error = acpi_AckSleepState(clone, 0);
  367                 break;
  368         case APMIO_NEXTEVENT:
  369                 printf("apm nextevent start\n");
  370                 ACPI_LOCK(acpi);
  371                 if (acpi_sc->acpi_next_sstate != 0 && clone->notify_status ==
  372                     APM_EV_NONE) {
  373                         ev_info = (struct apm_event_info *)addr;
  374                         if (acpi_sc->acpi_next_sstate <= ACPI_STATE_S3)
  375                                 ev_info->type = PMEV_STANDBYREQ;
  376                         else
  377                                 ev_info->type = PMEV_SUSPENDREQ;
  378                         ev_info->index = 0;
  379                         clone->notify_status = APM_EV_NOTIFIED;
  380                         printf("apm event returning %d\n", ev_info->type);
  381                 } else
  382                         error = EAGAIN;
  383                 ACPI_UNLOCK(acpi);
  384                 break;
  385         case APMIO_GETINFO_OLD:
  386                 if (acpi_capm_get_info(&info))
  387                         error = ENXIO;
  388                 aiop = (apm_info_old_t)addr;
  389                 aiop->ai_major = info.ai_major;
  390                 aiop->ai_minor = info.ai_minor;
  391                 aiop->ai_acline = info.ai_acline;
  392                 aiop->ai_batt_stat = info.ai_batt_stat;
  393                 aiop->ai_batt_life = info.ai_batt_life;
  394                 aiop->ai_status = info.ai_status;
  395                 break;
  396         case APMIO_GETINFO:
  397                 if (acpi_capm_get_info((apm_info_t)addr))
  398                         error = ENXIO;
  399                 break;
  400         case APMIO_GETPWSTATUS:
  401                 if (acpi_capm_get_pwstatus((apm_pwstatus_t)addr))
  402                         error = ENXIO;
  403                 break;
  404         case APMIO_ENABLE:
  405                 if ((flag & FWRITE) == 0)
  406                         return (EPERM);
  407                 apm_active = 1;
  408                 break;
  409         case APMIO_DISABLE:
  410                 if ((flag & FWRITE) == 0)
  411                         return (EPERM);
  412                 apm_active = 0;
  413                 break;
  414         case APMIO_HALTCPU:
  415                 break;
  416         case APMIO_NOTHALTCPU:
  417                 break;
  418         case APMIO_DISPLAY:
  419                 if ((flag & FWRITE) == 0)
  420                         return (EPERM);
  421                 break;
  422         case APMIO_BIOS:
  423                 if ((flag & FWRITE) == 0)
  424                         return (EPERM);
  425                 bzero(addr, sizeof(struct apm_bios_arg));
  426                 break;
  427         default:
  428                 error = EINVAL;
  429                 break;
  430         }
  431 
  432         return (error);
  433 }
  434 
  435 static int
  436 apmwrite(struct cdev *dev, struct uio *uio, int ioflag)
  437 {
  438         return (uio->uio_resid);
  439 }
  440 
  441 static int
  442 apmpoll(struct cdev *dev, int events, struct thread *td)
  443 {
  444         struct  apm_clone_data *clone;
  445         int revents;
  446 
  447         revents = 0;
  448         ACPI_LOCK(acpi);
  449         clone = dev->si_drv1;
  450         if (clone->acpi_sc->acpi_next_sstate)
  451                 revents |= events & (POLLIN | POLLRDNORM);
  452         else
  453                 selrecord(td, &clone->sel_read);
  454         ACPI_UNLOCK(acpi);
  455         return (revents);
  456 }
  457 
  458 static int
  459 apmkqfilter(struct cdev *dev, struct knote *kn)
  460 {
  461         struct  apm_clone_data *clone;
  462 
  463         ACPI_LOCK(acpi);
  464         clone = dev->si_drv1;
  465         kn->kn_hook = clone;
  466         kn->kn_fop = &apm_readfiltops;
  467         knlist_add(&clone->sel_read.si_note, kn, 0);
  468         ACPI_UNLOCK(acpi);
  469         return (0);
  470 }
  471 
  472 static void
  473 apmreadfiltdetach(struct knote *kn)
  474 {
  475         struct  apm_clone_data *clone;
  476 
  477         ACPI_LOCK(acpi);
  478         clone = kn->kn_hook;
  479         knlist_remove(&clone->sel_read.si_note, kn, 0);
  480         ACPI_UNLOCK(acpi);
  481 }
  482 
  483 static int
  484 apmreadfilt(struct knote *kn, long hint)
  485 {
  486         struct  apm_clone_data *clone;
  487         int     sleeping;
  488 
  489         ACPI_LOCK(acpi);
  490         clone = kn->kn_hook;
  491         sleeping = clone->acpi_sc->acpi_next_sstate ? 1 : 0;
  492         ACPI_UNLOCK(acpi);
  493         return (sleeping);
  494 }
  495 
  496 int
  497 acpi_machdep_init(device_t dev)
  498 {
  499         struct  acpi_softc *acpi_sc;
  500 
  501         acpi_sc = devclass_get_softc(devclass_find("acpi"), 0);
  502 
  503         /* Create a clone for /dev/acpi also. */
  504         STAILQ_INIT(&acpi_sc->apm_cdevs);
  505         acpi_sc->acpi_clone = apm_create_clone(acpi_sc->acpi_dev_t, acpi_sc);
  506         clone_setup(&apm_clones);
  507         EVENTHANDLER_REGISTER(dev_clone, apm_clone, 0, 1000);
  508         acpi_install_wakeup_handler(acpi_sc);
  509 
  510         if (intr_model == ACPI_INTR_PIC)
  511                 BUS_CONFIG_INTR(dev, AcpiGbl_FADT.SciInterrupt,
  512                     INTR_TRIGGER_LEVEL, INTR_POLARITY_LOW);
  513         else
  514                 acpi_SetIntrModel(intr_model);
  515 
  516         SYSCTL_ADD_UINT(&acpi_sc->acpi_sysctl_ctx,
  517             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO,
  518             "reset_video", CTLFLAG_RW, &acpi_reset_video, 0,
  519             "Call the VESA reset BIOS vector on the resume path");
  520 
  521         return (0);
  522 }
  523 
  524 void
  525 acpi_SetDefaultIntrModel(int model)
  526 {
  527 
  528         intr_model = model;
  529 }
  530 
  531 /* Check BIOS date.  If 1998 or older, disable ACPI. */
  532 int
  533 acpi_machdep_quirks(int *quirks)
  534 {
  535         char *va;
  536         int year;
  537 
  538         /* BIOS address 0xffff5 contains the date in the format mm/dd/yy. */
  539         va = pmap_mapbios(0xffff0, 16);
  540         sscanf(va + 11, "%2d", &year);
  541         pmap_unmapbios((vm_offset_t)va, 16);
  542 
  543         /* 
  544          * Date must be >= 1/1/1999 or we don't trust ACPI.  Note that this
  545          * check must be changed by my 114th birthday.
  546          */
  547         if (year > 90 && year < 99)
  548                 *quirks = ACPI_Q_BROKEN;
  549 
  550         return (0);
  551 }
  552 
  553 void
  554 acpi_cpu_c1()
  555 {
  556         __asm __volatile("sti; hlt");
  557 }
  558 
  559 /*
  560  * Support for mapping ACPI tables during early boot.  This abuses the
  561  * crashdump map because the kernel cannot allocate KVA in
  562  * pmap_mapbios() when this is used.  This makes the following
  563  * assumptions about how we use this KVA: pages 0 and 1 are used to
  564  * map in the header of each table found via the RSDT or XSDT and
  565  * pages 2 to n are used to map in the RSDT or XSDT.  This has to use
  566  * 2 pages for the table headers in case a header spans a page
  567  * boundary.
  568  *
  569  * XXX: We don't ensure the table fits in the available address space
  570  * in the crashdump map.
  571  */
  572 
  573 /*
  574  * Map some memory using the crashdump map.  'offset' is an offset in
  575  * pages into the crashdump map to use for the start of the mapping.
  576  */
  577 static void *
  578 table_map(vm_paddr_t pa, int offset, vm_offset_t length)
  579 {
  580         vm_offset_t va, off;
  581         void *data;
  582 
  583         off = pa & PAGE_MASK;
  584         length = roundup(length + off, PAGE_SIZE);
  585         pa = pa & PG_FRAME;
  586         va = (vm_offset_t)pmap_kenter_temporary(pa, offset) +
  587             (offset * PAGE_SIZE);
  588         data = (void *)(va + off);
  589         length -= PAGE_SIZE;
  590         while (length > 0) {
  591                 va += PAGE_SIZE;
  592                 pa += PAGE_SIZE;
  593                 length -= PAGE_SIZE;
  594                 pmap_kenter(va, pa);
  595                 invlpg(va);
  596         }
  597         return (data);
  598 }
  599 
  600 /* Unmap memory previously mapped with table_map(). */
  601 static void
  602 table_unmap(void *data, vm_offset_t length)
  603 {
  604         vm_offset_t va, off;
  605 
  606         va = (vm_offset_t)data;
  607         off = va & PAGE_MASK;
  608         length = roundup(length + off, PAGE_SIZE);
  609         va &= ~PAGE_MASK;
  610         while (length > 0) {
  611                 pmap_kremove(va);
  612                 invlpg(va);
  613                 va += PAGE_SIZE;
  614                 length -= PAGE_SIZE;
  615         }
  616 }
  617 
  618 /*
  619  * Map a table at a given offset into the crashdump map.  It first
  620  * maps the header to determine the table length and then maps the
  621  * entire table.
  622  */
  623 static void *
  624 map_table(vm_paddr_t pa, int offset, const char *sig)
  625 {
  626         ACPI_TABLE_HEADER *header;
  627         vm_offset_t length;
  628         void *table;
  629 
  630         header = table_map(pa, offset, sizeof(ACPI_TABLE_HEADER));
  631         if (strncmp(header->Signature, sig, ACPI_NAME_SIZE) != 0) {
  632                 table_unmap(header, sizeof(ACPI_TABLE_HEADER));
  633                 return (NULL);
  634         }
  635         length = header->Length;
  636         table_unmap(header, sizeof(ACPI_TABLE_HEADER));
  637         table = table_map(pa, offset, length);
  638         if (ACPI_FAILURE(AcpiTbChecksum(table, length))) {
  639                 if (bootverbose)
  640                         printf("ACPI: Failed checksum for table %s\n", sig);
  641 #if (ACPI_CHECKSUM_ABORT)
  642                 table_unmap(table, length);
  643                 return (NULL);
  644 #endif
  645         }
  646         return (table);
  647 }
  648 
  649 /*
  650  * See if a given ACPI table is the requested table.  Returns the
  651  * length of the able if it matches or zero on failure.
  652  */
  653 static int
  654 probe_table(vm_paddr_t address, const char *sig)
  655 {
  656         ACPI_TABLE_HEADER *table;
  657 
  658         table = table_map(address, 0, sizeof(ACPI_TABLE_HEADER));
  659         if (table == NULL) {
  660                 if (bootverbose)
  661                         printf("ACPI: Failed to map table at 0x%jx\n",
  662                             (uintmax_t)address);
  663                 return (0);
  664         }
  665         if (bootverbose)
  666                 printf("Table '%.4s' at 0x%jx\n", table->Signature,
  667                     (uintmax_t)address);
  668 
  669         if (strncmp(table->Signature, sig, ACPI_NAME_SIZE) != 0) {
  670                 table_unmap(table, sizeof(ACPI_TABLE_HEADER));
  671                 return (0);
  672         }
  673         table_unmap(table, sizeof(ACPI_TABLE_HEADER));
  674         return (1);
  675 }
  676 
  677 /*
  678  * Try to map a table at a given physical address previously returned
  679  * by acpi_find_table().
  680  */
  681 void *
  682 acpi_map_table(vm_paddr_t pa, const char *sig)
  683 {
  684 
  685         return (map_table(pa, 0, sig));
  686 }
  687 
  688 /* Unmap a table previously mapped via acpi_map_table(). */
  689 void
  690 acpi_unmap_table(void *table)
  691 {
  692         ACPI_TABLE_HEADER *header;
  693 
  694         header = (ACPI_TABLE_HEADER *)table;
  695         table_unmap(table, header->Length);
  696 }
  697 
  698 /*
  699  * Return the physical address of the requested table or zero if one
  700  * is not found.
  701  */
  702 vm_paddr_t
  703 acpi_find_table(const char *sig)
  704 {
  705         ACPI_PHYSICAL_ADDRESS rsdp_ptr;
  706         ACPI_TABLE_RSDP *rsdp;
  707         ACPI_TABLE_RSDT *rsdt;
  708         ACPI_TABLE_XSDT *xsdt;
  709         ACPI_TABLE_HEADER *table;
  710         vm_paddr_t addr;
  711         int i, count;
  712 
  713         if (resource_disabled("acpi", 0))
  714                 return (0);
  715 
  716         /*
  717          * Map in the RSDP.  Since ACPI uses AcpiOsMapMemory() which in turn
  718          * calls pmap_mapbios() to find the RSDP, we assume that we can use
  719          * pmap_mapbios() to map the RSDP.
  720          */
  721         if ((rsdp_ptr = AcpiOsGetRootPointer()) == 0)
  722                 return (0);
  723         rsdp = pmap_mapbios(rsdp_ptr, sizeof(ACPI_TABLE_RSDP));
  724         if (rsdp == NULL) {
  725                 if (bootverbose)
  726                         printf("ACPI: Failed to map RSDP\n");
  727                 return (0);
  728         }
  729 
  730         /*
  731          * For ACPI >= 2.0, use the XSDT if it is available.
  732          * Otherwise, use the RSDT.  We map the XSDT or RSDT at page 2
  733          * in the crashdump area.  Pages 0 and 1 are used to map in the
  734          * headers of candidate ACPI tables.
  735          */
  736         addr = 0;
  737         if (rsdp->Revision >= 2 && rsdp->XsdtPhysicalAddress != 0) {
  738                 /*
  739                  * AcpiOsGetRootPointer only verifies the checksum for
  740                  * the version 1.0 portion of the RSDP.  Version 2.0 has
  741                  * an additional checksum that we verify first.
  742                  */
  743                 if (AcpiTbChecksum((UINT8 *)rsdp, ACPI_RSDP_XCHECKSUM_LENGTH)) {
  744                         if (bootverbose)
  745                                 printf("ACPI: RSDP failed extended checksum\n");
  746                         return (0);
  747                 }
  748                 xsdt = map_table(rsdp->XsdtPhysicalAddress, 2, ACPI_SIG_XSDT);
  749                 if (xsdt == NULL) {
  750                         if (bootverbose)
  751                                 printf("ACPI: Failed to map XSDT\n");
  752                         return (0);
  753                 }
  754                 count = (xsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) /
  755                     sizeof(UINT64);
  756                 for (i = 0; i < count; i++)
  757                         if (probe_table(xsdt->TableOffsetEntry[i], sig)) {
  758                                 addr = xsdt->TableOffsetEntry[i];
  759                                 break;
  760                         }
  761                 acpi_unmap_table(xsdt);
  762         } else {
  763                 rsdt = map_table(rsdp->RsdtPhysicalAddress, 2, ACPI_SIG_RSDT);
  764                 if (rsdt == NULL) {
  765                         if (bootverbose)
  766                                 printf("ACPI: Failed to map RSDT\n");
  767                         return (0);
  768                 }
  769                 count = (rsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) /
  770                     sizeof(UINT32);
  771                 for (i = 0; i < count; i++)
  772                         if (probe_table(rsdt->TableOffsetEntry[i], sig)) {
  773                                 addr = rsdt->TableOffsetEntry[i];
  774                                 break;
  775                         }
  776                 acpi_unmap_table(rsdt);
  777         }
  778         pmap_unmapbios((vm_offset_t)rsdp, sizeof(ACPI_TABLE_RSDP));
  779         if (addr == 0) {
  780                 if (bootverbose)
  781                         printf("ACPI: No %s table found\n", sig);
  782                 return (0);
  783         }
  784         if (bootverbose)
  785                 printf("%s: Found table at 0x%jx\n", sig, (uintmax_t)addr);
  786 
  787         /*
  788          * Verify that we can map the full table and that its checksum is
  789          * correct, etc.
  790          */
  791         table = map_table(addr, 0, sig);
  792         if (table == NULL)
  793                 return (0);
  794         acpi_unmap_table(table);
  795 
  796         return (addr);
  797 }
  798 
  799 /*
  800  * ACPI nexus(4) driver.
  801  */
  802 static int
  803 nexus_acpi_probe(device_t dev)
  804 {
  805         int error;
  806 
  807         error = acpi_identify();
  808         if (error)
  809                 return (error);
  810 
  811         return (BUS_PROBE_DEFAULT);
  812 }
  813 
  814 static int
  815 nexus_acpi_attach(device_t dev)
  816 {
  817 
  818         nexus_init_resources();
  819         bus_generic_probe(dev);
  820         if (BUS_ADD_CHILD(dev, 10, "acpi", 0) == NULL)
  821                 panic("failed to add acpi0 device");
  822 
  823         return (bus_generic_attach(dev));
  824 }
  825 
  826 static device_method_t nexus_acpi_methods[] = {
  827         /* Device interface */
  828         DEVMETHOD(device_probe,         nexus_acpi_probe),
  829         DEVMETHOD(device_attach,        nexus_acpi_attach),
  830 
  831         { 0, 0 }
  832 };
  833 
  834 DEFINE_CLASS_1(nexus, nexus_acpi_driver, nexus_acpi_methods, 1, nexus_driver);
  835 static devclass_t nexus_devclass;
  836 
  837 DRIVER_MODULE(nexus_acpi, root, nexus_acpi_driver, nexus_devclass, 0, 0);

Cache object: 40d9681213a2eb767a0053a02981d696


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.