The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/acpica/acpi_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Mitsuru IWASAKI
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/8.4/sys/i386/acpica/acpi_machdep.c 237823 2012-06-29 21:25:24Z jhb $");
   29 
   30 #include <sys/param.h>
   31 #include <sys/bus.h>
   32 #include <sys/condvar.h>
   33 #include <sys/conf.h>
   34 #include <sys/fcntl.h>
   35 #include <sys/kernel.h>
   36 #include <sys/malloc.h>
   37 #include <sys/module.h>
   38 #include <sys/poll.h>
   39 #include <sys/sysctl.h>
   40 #include <sys/uio.h>
   41 #include <vm/vm.h>
   42 #include <vm/pmap.h>
   43 
   44 #include <contrib/dev/acpica/include/acpi.h>
   45 #include <contrib/dev/acpica/include/accommon.h>
   46 #include <contrib/dev/acpica/include/actables.h>
   47 
   48 #include <dev/acpica/acpivar.h>
   49 #include <dev/acpica/acpiio.h>
   50 
   51 #include <machine/nexusvar.h>
   52 
   53 /*
   54  * APM driver emulation 
   55  */
   56 
   57 #include <machine/apm_bios.h>
   58 #include <machine/pc/bios.h>
   59 
   60 #include <i386/bios/apm.h>
   61 
   62 uint32_t acpi_resume_beep;
   63 TUNABLE_INT("debug.acpi.resume_beep", &acpi_resume_beep);
   64 SYSCTL_UINT(_debug_acpi, OID_AUTO, resume_beep, CTLFLAG_RW, &acpi_resume_beep,
   65     0, "Beep the PC speaker when resuming");
   66 uint32_t acpi_reset_video;
   67 TUNABLE_INT("hw.acpi.reset_video", &acpi_reset_video);
   68 
   69 static int intr_model = ACPI_INTR_PIC;
   70 static int apm_active;
   71 static struct clonedevs *apm_clones;
   72 
   73 MALLOC_DEFINE(M_APMDEV, "apmdev", "APM device emulation");
   74 
   75 static d_open_t         apmopen;
   76 static d_close_t        apmclose;
   77 static d_write_t        apmwrite;
   78 static d_ioctl_t        apmioctl;
   79 static d_poll_t         apmpoll;
   80 static d_kqfilter_t     apmkqfilter;
   81 static void             apmreadfiltdetach(struct knote *kn);
   82 static int              apmreadfilt(struct knote *kn, long hint);
   83 static struct filterops apm_readfiltops =
   84         { 1, NULL, apmreadfiltdetach, apmreadfilt };
   85 
   86 static struct cdevsw apm_cdevsw = {
   87         .d_version =    D_VERSION,
   88         .d_flags =      D_TRACKCLOSE | D_NEEDMINOR,
   89         .d_open =       apmopen,
   90         .d_close =      apmclose,
   91         .d_write =      apmwrite,
   92         .d_ioctl =      apmioctl,
   93         .d_poll =       apmpoll,
   94         .d_name =       "apm",
   95         .d_kqfilter =   apmkqfilter
   96 };
   97 
   98 static int
   99 acpi_capm_convert_battstate(struct  acpi_battinfo *battp)
  100 {
  101         int     state;
  102 
  103         state = APM_UNKNOWN;
  104 
  105         if (battp->state & ACPI_BATT_STAT_DISCHARG) {
  106                 if (battp->cap >= 50)
  107                         state = 0;      /* high */
  108                 else
  109                         state = 1;      /* low */
  110         }
  111         if (battp->state & ACPI_BATT_STAT_CRITICAL)
  112                 state = 2;              /* critical */
  113         if (battp->state & ACPI_BATT_STAT_CHARGING)
  114                 state = 3;              /* charging */
  115 
  116         /* If still unknown, determine it based on the battery capacity. */
  117         if (state == APM_UNKNOWN) {
  118                 if (battp->cap >= 50)
  119                         state = 0;      /* high */
  120                 else
  121                         state = 1;      /* low */
  122         }
  123 
  124         return (state);
  125 }
  126 
  127 static int
  128 acpi_capm_convert_battflags(struct  acpi_battinfo *battp)
  129 {
  130         int     flags;
  131 
  132         flags = 0;
  133 
  134         if (battp->cap >= 50)
  135                 flags |= APM_BATT_HIGH;
  136         else {
  137                 if (battp->state & ACPI_BATT_STAT_CRITICAL)
  138                         flags |= APM_BATT_CRITICAL;
  139                 else
  140                         flags |= APM_BATT_LOW;
  141         }
  142         if (battp->state & ACPI_BATT_STAT_CHARGING)
  143                 flags |= APM_BATT_CHARGING;
  144         if (battp->state == ACPI_BATT_STAT_NOT_PRESENT)
  145                 flags = APM_BATT_NOT_PRESENT;
  146 
  147         return (flags);
  148 }
  149 
  150 static int
  151 acpi_capm_get_info(apm_info_t aip)
  152 {
  153         int     acline;
  154         struct  acpi_battinfo batt;
  155 
  156         aip->ai_infoversion = 1;
  157         aip->ai_major       = 1;
  158         aip->ai_minor       = 2;
  159         aip->ai_status      = apm_active;
  160         aip->ai_capabilities= 0xff00;   /* unknown */
  161 
  162         if (acpi_acad_get_acline(&acline))
  163                 aip->ai_acline = APM_UNKNOWN;   /* unknown */
  164         else
  165                 aip->ai_acline = acline;        /* on/off */
  166 
  167         if (acpi_battery_get_battinfo(NULL, &batt) != 0) {
  168                 aip->ai_batt_stat = APM_UNKNOWN;
  169                 aip->ai_batt_life = APM_UNKNOWN;
  170                 aip->ai_batt_time = -1;          /* unknown */
  171                 aip->ai_batteries = ~0U;         /* unknown */
  172         } else {
  173                 aip->ai_batt_stat = acpi_capm_convert_battstate(&batt);
  174                 aip->ai_batt_life = batt.cap;
  175                 aip->ai_batt_time = (batt.min == -1) ? -1 : batt.min * 60;
  176                 aip->ai_batteries = acpi_battery_get_units();
  177         }
  178 
  179         return (0);
  180 }
  181 
  182 static int
  183 acpi_capm_get_pwstatus(apm_pwstatus_t app)
  184 {
  185         device_t dev;
  186         int     acline, unit, error;
  187         struct  acpi_battinfo batt;
  188 
  189         if (app->ap_device != PMDV_ALLDEV &&
  190             (app->ap_device < PMDV_BATT0 || app->ap_device > PMDV_BATT_ALL))
  191                 return (1);
  192 
  193         if (app->ap_device == PMDV_ALLDEV)
  194                 error = acpi_battery_get_battinfo(NULL, &batt);
  195         else {
  196                 unit = app->ap_device - PMDV_BATT0;
  197                 dev = devclass_get_device(devclass_find("battery"), unit);
  198                 if (dev != NULL)
  199                         error = acpi_battery_get_battinfo(dev, &batt);
  200                 else
  201                         error = ENXIO;
  202         }
  203         if (error)
  204                 return (1);
  205 
  206         app->ap_batt_stat = acpi_capm_convert_battstate(&batt);
  207         app->ap_batt_flag = acpi_capm_convert_battflags(&batt);
  208         app->ap_batt_life = batt.cap;
  209         app->ap_batt_time = (batt.min == -1) ? -1 : batt.min * 60;
  210 
  211         if (acpi_acad_get_acline(&acline))
  212                 app->ap_acline = APM_UNKNOWN;
  213         else
  214                 app->ap_acline = acline;        /* on/off */
  215 
  216         return (0);
  217 }
  218 
  219 /* Create single-use devices for /dev/apm and /dev/apmctl. */
  220 static void
  221 apm_clone(void *arg, struct ucred *cred, char *name, int namelen,
  222     struct cdev **dev)
  223 {
  224         int ctl_dev, unit;
  225 
  226         if (*dev != NULL)
  227                 return;
  228         if (strcmp(name, "apmctl") == 0)
  229                 ctl_dev = TRUE;
  230         else if (strcmp(name, "apm") == 0)
  231                 ctl_dev = FALSE;
  232         else
  233                 return;
  234 
  235         /* Always create a new device and unit number. */
  236         unit = -1;
  237         if (clone_create(&apm_clones, &apm_cdevsw, &unit, dev, 0)) {
  238                 if (ctl_dev) {
  239                         *dev = make_dev(&apm_cdevsw, unit,
  240                             UID_ROOT, GID_OPERATOR, 0660, "apmctl%d", unit);
  241                 } else {
  242                         *dev = make_dev(&apm_cdevsw, unit,
  243                             UID_ROOT, GID_OPERATOR, 0664, "apm%d", unit);
  244                 }
  245                 if (*dev != NULL) {
  246                         dev_ref(*dev);
  247                         (*dev)->si_flags |= SI_CHEAPCLONE;
  248                 }
  249         }
  250 }
  251 
  252 /* Create a struct for tracking per-device suspend notification. */
  253 static struct apm_clone_data *
  254 apm_create_clone(struct cdev *dev, struct acpi_softc *acpi_sc)
  255 {
  256         struct apm_clone_data *clone;
  257 
  258         clone = malloc(sizeof(*clone), M_APMDEV, M_WAITOK);
  259         clone->cdev = dev;
  260         clone->acpi_sc = acpi_sc;
  261         clone->notify_status = APM_EV_NONE;
  262         bzero(&clone->sel_read, sizeof(clone->sel_read));
  263         knlist_init_mtx(&clone->sel_read.si_note, &acpi_mutex);
  264 
  265         /*
  266          * The acpi device is always managed by devd(8) and is considered
  267          * writable (i.e., ack is required to allow suspend to proceed.)
  268          */
  269         if (strcmp("acpi", devtoname(dev)) == 0)
  270                 clone->flags = ACPI_EVF_DEVD | ACPI_EVF_WRITE;
  271         else
  272                 clone->flags = ACPI_EVF_NONE;
  273 
  274         ACPI_LOCK(acpi);
  275         STAILQ_INSERT_TAIL(&acpi_sc->apm_cdevs, clone, entries);
  276         ACPI_UNLOCK(acpi);
  277         return (clone);
  278 }
  279 
  280 static int
  281 apmopen(struct cdev *dev, int flag, int fmt, struct thread *td)
  282 {
  283         struct  acpi_softc *acpi_sc;
  284         struct  apm_clone_data *clone;
  285 
  286         acpi_sc = devclass_get_softc(devclass_find("acpi"), 0);
  287         clone = apm_create_clone(dev, acpi_sc);
  288         dev->si_drv1 = clone;
  289 
  290         /* If the device is opened for write, record that. */
  291         if ((flag & FWRITE) != 0)
  292                 clone->flags |= ACPI_EVF_WRITE;
  293 
  294         return (0);
  295 }
  296 
  297 static int
  298 apmclose(struct cdev *dev, int flag, int fmt, struct thread *td)
  299 {
  300         struct  apm_clone_data *clone;
  301         struct  acpi_softc *acpi_sc;
  302 
  303         clone = dev->si_drv1;
  304         acpi_sc = clone->acpi_sc;
  305 
  306         /* We are about to lose a reference so check if suspend should occur */
  307         if (acpi_sc->acpi_next_sstate != 0 &&
  308             clone->notify_status != APM_EV_ACKED)
  309                 acpi_AckSleepState(clone, 0);
  310 
  311         /* Remove this clone's data from the list and free it. */
  312         ACPI_LOCK(acpi);
  313         STAILQ_REMOVE(&acpi_sc->apm_cdevs, clone, apm_clone_data, entries);
  314         seldrain(&clone->sel_read);
  315         knlist_destroy(&clone->sel_read.si_note);
  316         ACPI_UNLOCK(acpi);
  317         free(clone, M_APMDEV);
  318         destroy_dev_sched(dev);
  319         return (0);
  320 }
  321 
  322 static int
  323 apmioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
  324 {
  325         int     error;
  326         struct  apm_clone_data *clone;
  327         struct  acpi_softc *acpi_sc;
  328         struct  apm_info info;
  329         struct  apm_event_info *ev_info;
  330         apm_info_old_t aiop;
  331 
  332         error = 0;
  333         clone = dev->si_drv1;
  334         acpi_sc = clone->acpi_sc;
  335 
  336         switch (cmd) {
  337         case APMIO_SUSPEND:
  338                 if ((flag & FWRITE) == 0)
  339                         return (EPERM);
  340                 if (acpi_sc->acpi_next_sstate == 0) {
  341                         if (acpi_sc->acpi_suspend_sx != ACPI_STATE_S5) {
  342                                 error = acpi_ReqSleepState(acpi_sc,
  343                                     acpi_sc->acpi_suspend_sx);
  344                         } else {
  345                                 printf(
  346                         "power off via apm suspend not supported\n");
  347                                 error = ENXIO;
  348                         }
  349                 } else
  350                         error = acpi_AckSleepState(clone, 0);
  351                 break;
  352         case APMIO_STANDBY:
  353                 if ((flag & FWRITE) == 0)
  354                         return (EPERM);
  355                 if (acpi_sc->acpi_next_sstate == 0) {
  356                         if (acpi_sc->acpi_standby_sx != ACPI_STATE_S5) {
  357                                 error = acpi_ReqSleepState(acpi_sc,
  358                                     acpi_sc->acpi_standby_sx);
  359                         } else {
  360                                 printf(
  361                         "power off via apm standby not supported\n");
  362                                 error = ENXIO;
  363                         }
  364                 } else
  365                         error = acpi_AckSleepState(clone, 0);
  366                 break;
  367         case APMIO_NEXTEVENT:
  368                 printf("apm nextevent start\n");
  369                 ACPI_LOCK(acpi);
  370                 if (acpi_sc->acpi_next_sstate != 0 && clone->notify_status ==
  371                     APM_EV_NONE) {
  372                         ev_info = (struct apm_event_info *)addr;
  373                         if (acpi_sc->acpi_next_sstate <= ACPI_STATE_S3)
  374                                 ev_info->type = PMEV_STANDBYREQ;
  375                         else
  376                                 ev_info->type = PMEV_SUSPENDREQ;
  377                         ev_info->index = 0;
  378                         clone->notify_status = APM_EV_NOTIFIED;
  379                         printf("apm event returning %d\n", ev_info->type);
  380                 } else
  381                         error = EAGAIN;
  382                 ACPI_UNLOCK(acpi);
  383                 break;
  384         case APMIO_GETINFO_OLD:
  385                 if (acpi_capm_get_info(&info))
  386                         error = ENXIO;
  387                 aiop = (apm_info_old_t)addr;
  388                 aiop->ai_major = info.ai_major;
  389                 aiop->ai_minor = info.ai_minor;
  390                 aiop->ai_acline = info.ai_acline;
  391                 aiop->ai_batt_stat = info.ai_batt_stat;
  392                 aiop->ai_batt_life = info.ai_batt_life;
  393                 aiop->ai_status = info.ai_status;
  394                 break;
  395         case APMIO_GETINFO:
  396                 if (acpi_capm_get_info((apm_info_t)addr))
  397                         error = ENXIO;
  398                 break;
  399         case APMIO_GETPWSTATUS:
  400                 if (acpi_capm_get_pwstatus((apm_pwstatus_t)addr))
  401                         error = ENXIO;
  402                 break;
  403         case APMIO_ENABLE:
  404                 if ((flag & FWRITE) == 0)
  405                         return (EPERM);
  406                 apm_active = 1;
  407                 break;
  408         case APMIO_DISABLE:
  409                 if ((flag & FWRITE) == 0)
  410                         return (EPERM);
  411                 apm_active = 0;
  412                 break;
  413         case APMIO_HALTCPU:
  414                 break;
  415         case APMIO_NOTHALTCPU:
  416                 break;
  417         case APMIO_DISPLAY:
  418                 if ((flag & FWRITE) == 0)
  419                         return (EPERM);
  420                 break;
  421         case APMIO_BIOS:
  422                 if ((flag & FWRITE) == 0)
  423                         return (EPERM);
  424                 bzero(addr, sizeof(struct apm_bios_arg));
  425                 break;
  426         default:
  427                 error = EINVAL;
  428                 break;
  429         }
  430 
  431         return (error);
  432 }
  433 
  434 static int
  435 apmwrite(struct cdev *dev, struct uio *uio, int ioflag)
  436 {
  437         return (uio->uio_resid);
  438 }
  439 
  440 static int
  441 apmpoll(struct cdev *dev, int events, struct thread *td)
  442 {
  443         struct  apm_clone_data *clone;
  444         int revents;
  445 
  446         revents = 0;
  447         ACPI_LOCK(acpi);
  448         clone = dev->si_drv1;
  449         if (clone->acpi_sc->acpi_next_sstate)
  450                 revents |= events & (POLLIN | POLLRDNORM);
  451         else
  452                 selrecord(td, &clone->sel_read);
  453         ACPI_UNLOCK(acpi);
  454         return (revents);
  455 }
  456 
  457 static int
  458 apmkqfilter(struct cdev *dev, struct knote *kn)
  459 {
  460         struct  apm_clone_data *clone;
  461 
  462         ACPI_LOCK(acpi);
  463         clone = dev->si_drv1;
  464         kn->kn_hook = clone;
  465         kn->kn_fop = &apm_readfiltops;
  466         knlist_add(&clone->sel_read.si_note, kn, 0);
  467         ACPI_UNLOCK(acpi);
  468         return (0);
  469 }
  470 
  471 static void
  472 apmreadfiltdetach(struct knote *kn)
  473 {
  474         struct  apm_clone_data *clone;
  475 
  476         ACPI_LOCK(acpi);
  477         clone = kn->kn_hook;
  478         knlist_remove(&clone->sel_read.si_note, kn, 0);
  479         ACPI_UNLOCK(acpi);
  480 }
  481 
  482 static int
  483 apmreadfilt(struct knote *kn, long hint)
  484 {
  485         struct  apm_clone_data *clone;
  486         int     sleeping;
  487 
  488         ACPI_LOCK(acpi);
  489         clone = kn->kn_hook;
  490         sleeping = clone->acpi_sc->acpi_next_sstate ? 1 : 0;
  491         ACPI_UNLOCK(acpi);
  492         return (sleeping);
  493 }
  494 
  495 int
  496 acpi_machdep_init(device_t dev)
  497 {
  498         struct  acpi_softc *acpi_sc;
  499 
  500         acpi_sc = devclass_get_softc(devclass_find("acpi"), 0);
  501 
  502         /* Create a clone for /dev/acpi also. */
  503         STAILQ_INIT(&acpi_sc->apm_cdevs);
  504         acpi_sc->acpi_clone = apm_create_clone(acpi_sc->acpi_dev_t, acpi_sc);
  505         clone_setup(&apm_clones);
  506         EVENTHANDLER_REGISTER(dev_clone, apm_clone, 0, 1000);
  507         acpi_install_wakeup_handler(acpi_sc);
  508 
  509         if (intr_model == ACPI_INTR_PIC)
  510                 BUS_CONFIG_INTR(dev, AcpiGbl_FADT.SciInterrupt,
  511                     INTR_TRIGGER_LEVEL, INTR_POLARITY_LOW);
  512         else
  513                 acpi_SetIntrModel(intr_model);
  514 
  515         SYSCTL_ADD_UINT(&acpi_sc->acpi_sysctl_ctx,
  516             SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO,
  517             "reset_video", CTLFLAG_RW, &acpi_reset_video, 0,
  518             "Call the VESA reset BIOS vector on the resume path");
  519 
  520         return (0);
  521 }
  522 
  523 void
  524 acpi_SetDefaultIntrModel(int model)
  525 {
  526 
  527         intr_model = model;
  528 }
  529 
  530 /* Check BIOS date.  If 1998 or older, disable ACPI. */
  531 int
  532 acpi_machdep_quirks(int *quirks)
  533 {
  534         char *va;
  535         int year;
  536 
  537         /* BIOS address 0xffff5 contains the date in the format mm/dd/yy. */
  538         va = pmap_mapbios(0xffff0, 16);
  539         sscanf(va + 11, "%2d", &year);
  540         pmap_unmapbios((vm_offset_t)va, 16);
  541 
  542         /* 
  543          * Date must be >= 1/1/1999 or we don't trust ACPI.  Note that this
  544          * check must be changed by my 114th birthday.
  545          */
  546         if (year > 90 && year < 99)
  547                 *quirks = ACPI_Q_BROKEN;
  548 
  549         return (0);
  550 }
  551 
  552 void
  553 acpi_cpu_c1()
  554 {
  555         __asm __volatile("sti; hlt");
  556 }
  557 
  558 /*
  559  * Support for mapping ACPI tables during early boot.  This abuses the
  560  * crashdump map because the kernel cannot allocate KVA in
  561  * pmap_mapbios() when this is used.  This makes the following
  562  * assumptions about how we use this KVA: pages 0 and 1 are used to
  563  * map in the header of each table found via the RSDT or XSDT and
  564  * pages 2 to n are used to map in the RSDT or XSDT.  This has to use
  565  * 2 pages for the table headers in case a header spans a page
  566  * boundary.
  567  *
  568  * XXX: We don't ensure the table fits in the available address space
  569  * in the crashdump map.
  570  */
  571 
  572 /*
  573  * Map some memory using the crashdump map.  'offset' is an offset in
  574  * pages into the crashdump map to use for the start of the mapping.
  575  */
  576 static void *
  577 table_map(vm_paddr_t pa, int offset, vm_offset_t length)
  578 {
  579         vm_offset_t va, off;
  580         void *data;
  581 
  582         off = pa & PAGE_MASK;
  583         length = roundup(length + off, PAGE_SIZE);
  584         pa = pa & PG_FRAME;
  585         va = (vm_offset_t)pmap_kenter_temporary(pa, offset) +
  586             (offset * PAGE_SIZE);
  587         data = (void *)(va + off);
  588         length -= PAGE_SIZE;
  589         while (length > 0) {
  590                 va += PAGE_SIZE;
  591                 pa += PAGE_SIZE;
  592                 length -= PAGE_SIZE;
  593                 pmap_kenter(va, pa);
  594                 invlpg(va);
  595         }
  596         return (data);
  597 }
  598 
  599 /* Unmap memory previously mapped with table_map(). */
  600 static void
  601 table_unmap(void *data, vm_offset_t length)
  602 {
  603         vm_offset_t va, off;
  604 
  605         va = (vm_offset_t)data;
  606         off = va & PAGE_MASK;
  607         length = roundup(length + off, PAGE_SIZE);
  608         va &= ~PAGE_MASK;
  609         while (length > 0) {
  610                 pmap_kremove(va);
  611                 invlpg(va);
  612                 va += PAGE_SIZE;
  613                 length -= PAGE_SIZE;
  614         }
  615 }
  616 
  617 /*
  618  * Map a table at a given offset into the crashdump map.  It first
  619  * maps the header to determine the table length and then maps the
  620  * entire table.
  621  */
  622 static void *
  623 map_table(vm_paddr_t pa, int offset, const char *sig)
  624 {
  625         ACPI_TABLE_HEADER *header;
  626         vm_offset_t length;
  627         void *table;
  628 
  629         header = table_map(pa, offset, sizeof(ACPI_TABLE_HEADER));
  630         if (strncmp(header->Signature, sig, ACPI_NAME_SIZE) != 0) {
  631                 table_unmap(header, sizeof(ACPI_TABLE_HEADER));
  632                 return (NULL);
  633         }
  634         length = header->Length;
  635         table_unmap(header, sizeof(ACPI_TABLE_HEADER));
  636         table = table_map(pa, offset, length);
  637         if (ACPI_FAILURE(AcpiTbChecksum(table, length))) {
  638                 if (bootverbose)
  639                         printf("ACPI: Failed checksum for table %s\n", sig);
  640 #if (ACPI_CHECKSUM_ABORT)
  641                 table_unmap(table, length);
  642                 return (NULL);
  643 #endif
  644         }
  645         return (table);
  646 }
  647 
  648 /*
  649  * See if a given ACPI table is the requested table.  Returns the
  650  * length of the able if it matches or zero on failure.
  651  */
  652 static int
  653 probe_table(vm_paddr_t address, const char *sig)
  654 {
  655         ACPI_TABLE_HEADER *table;
  656 
  657         table = table_map(address, 0, sizeof(ACPI_TABLE_HEADER));
  658         if (table == NULL) {
  659                 if (bootverbose)
  660                         printf("ACPI: Failed to map table at 0x%jx\n",
  661                             (uintmax_t)address);
  662                 return (0);
  663         }
  664         if (bootverbose)
  665                 printf("Table '%.4s' at 0x%jx\n", table->Signature,
  666                     (uintmax_t)address);
  667 
  668         if (strncmp(table->Signature, sig, ACPI_NAME_SIZE) != 0) {
  669                 table_unmap(table, sizeof(ACPI_TABLE_HEADER));
  670                 return (0);
  671         }
  672         table_unmap(table, sizeof(ACPI_TABLE_HEADER));
  673         return (1);
  674 }
  675 
  676 /*
  677  * Try to map a table at a given physical address previously returned
  678  * by acpi_find_table().
  679  */
  680 void *
  681 acpi_map_table(vm_paddr_t pa, const char *sig)
  682 {
  683 
  684         return (map_table(pa, 0, sig));
  685 }
  686 
  687 /* Unmap a table previously mapped via acpi_map_table(). */
  688 void
  689 acpi_unmap_table(void *table)
  690 {
  691         ACPI_TABLE_HEADER *header;
  692 
  693         header = (ACPI_TABLE_HEADER *)table;
  694         table_unmap(table, header->Length);
  695 }
  696 
  697 /*
  698  * Return the physical address of the requested table or zero if one
  699  * is not found.
  700  */
  701 vm_paddr_t
  702 acpi_find_table(const char *sig)
  703 {
  704         ACPI_PHYSICAL_ADDRESS rsdp_ptr;
  705         ACPI_TABLE_RSDP *rsdp;
  706         ACPI_TABLE_RSDT *rsdt;
  707         ACPI_TABLE_XSDT *xsdt;
  708         ACPI_TABLE_HEADER *table;
  709         vm_paddr_t addr;
  710         int i, count;
  711 
  712         if (resource_disabled("acpi", 0))
  713                 return (0);
  714 
  715         /*
  716          * Map in the RSDP.  Since ACPI uses AcpiOsMapMemory() which in turn
  717          * calls pmap_mapbios() to find the RSDP, we assume that we can use
  718          * pmap_mapbios() to map the RSDP.
  719          */
  720         if ((rsdp_ptr = AcpiOsGetRootPointer()) == 0)
  721                 return (0);
  722         rsdp = pmap_mapbios(rsdp_ptr, sizeof(ACPI_TABLE_RSDP));
  723         if (rsdp == NULL) {
  724                 if (bootverbose)
  725                         printf("ACPI: Failed to map RSDP\n");
  726                 return (0);
  727         }
  728 
  729         /*
  730          * For ACPI >= 2.0, use the XSDT if it is available.
  731          * Otherwise, use the RSDT.  We map the XSDT or RSDT at page 2
  732          * in the crashdump area.  Pages 0 and 1 are used to map in the
  733          * headers of candidate ACPI tables.
  734          */
  735         addr = 0;
  736         if (rsdp->Revision >= 2 && rsdp->XsdtPhysicalAddress != 0) {
  737                 /*
  738                  * AcpiOsGetRootPointer only verifies the checksum for
  739                  * the version 1.0 portion of the RSDP.  Version 2.0 has
  740                  * an additional checksum that we verify first.
  741                  */
  742                 if (AcpiTbChecksum((UINT8 *)rsdp, ACPI_RSDP_XCHECKSUM_LENGTH)) {
  743                         if (bootverbose)
  744                                 printf("ACPI: RSDP failed extended checksum\n");
  745                         return (0);
  746                 }
  747                 xsdt = map_table(rsdp->XsdtPhysicalAddress, 2, ACPI_SIG_XSDT);
  748                 if (xsdt == NULL) {
  749                         if (bootverbose)
  750                                 printf("ACPI: Failed to map XSDT\n");
  751                         return (0);
  752                 }
  753                 count = (xsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) /
  754                     sizeof(UINT64);
  755                 for (i = 0; i < count; i++)
  756                         if (probe_table(xsdt->TableOffsetEntry[i], sig)) {
  757                                 addr = xsdt->TableOffsetEntry[i];
  758                                 break;
  759                         }
  760                 acpi_unmap_table(xsdt);
  761         } else {
  762                 rsdt = map_table(rsdp->RsdtPhysicalAddress, 2, ACPI_SIG_RSDT);
  763                 if (rsdt == NULL) {
  764                         if (bootverbose)
  765                                 printf("ACPI: Failed to map RSDT\n");
  766                         return (0);
  767                 }
  768                 count = (rsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) /
  769                     sizeof(UINT32);
  770                 for (i = 0; i < count; i++)
  771                         if (probe_table(rsdt->TableOffsetEntry[i], sig)) {
  772                                 addr = rsdt->TableOffsetEntry[i];
  773                                 break;
  774                         }
  775                 acpi_unmap_table(rsdt);
  776         }
  777         pmap_unmapbios((vm_offset_t)rsdp, sizeof(ACPI_TABLE_RSDP));
  778         if (addr == 0) {
  779                 if (bootverbose)
  780                         printf("ACPI: No %s table found\n", sig);
  781                 return (0);
  782         }
  783         if (bootverbose)
  784                 printf("%s: Found table at 0x%jx\n", sig, (uintmax_t)addr);
  785 
  786         /*
  787          * Verify that we can map the full table and that its checksum is
  788          * correct, etc.
  789          */
  790         table = map_table(addr, 0, sig);
  791         if (table == NULL)
  792                 return (0);
  793         acpi_unmap_table(table);
  794 
  795         return (addr);
  796 }
  797 
  798 /*
  799  * ACPI nexus(4) driver.
  800  */
  801 static int
  802 nexus_acpi_probe(device_t dev)
  803 {
  804         int error;
  805 
  806         error = acpi_identify();
  807         if (error)
  808                 return (error);
  809 
  810         return (BUS_PROBE_DEFAULT);
  811 }
  812 
  813 static int
  814 nexus_acpi_attach(device_t dev)
  815 {
  816 
  817         nexus_init_resources();
  818         bus_generic_probe(dev);
  819         if (BUS_ADD_CHILD(dev, 10, "acpi", 0) == NULL)
  820                 panic("failed to add acpi0 device");
  821 
  822         return (bus_generic_attach(dev));
  823 }
  824 
  825 static device_method_t nexus_acpi_methods[] = {
  826         /* Device interface */
  827         DEVMETHOD(device_probe,         nexus_acpi_probe),
  828         DEVMETHOD(device_attach,        nexus_acpi_attach),
  829 
  830         { 0, 0 }
  831 };
  832 
  833 DEFINE_CLASS_1(nexus, nexus_acpi_driver, nexus_acpi_methods, 1, nexus_driver);
  834 static devclass_t nexus_devclass;
  835 
  836 DRIVER_MODULE(nexus_acpi, root, nexus_acpi_driver, nexus_devclass, 0, 0);

Cache object: b1fd3578c73f327f09900ab8e74fdaf8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.