1 /*-
2 * Copyright (c) 2001 Mitsuru IWASAKI
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/condvar.h>
33 #include <sys/conf.h>
34 #include <sys/fcntl.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/poll.h>
39 #include <sys/sysctl.h>
40 #include <sys/uio.h>
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43
44 #include <contrib/dev/acpica/include/acpi.h>
45 #include <contrib/dev/acpica/include/accommon.h>
46 #include <contrib/dev/acpica/include/actables.h>
47
48 #include <dev/acpica/acpivar.h>
49 #include <dev/acpica/acpiio.h>
50
51 #include <machine/nexusvar.h>
52
53 /*
54 * APM driver emulation
55 */
56
57 #include <machine/apm_bios.h>
58 #include <machine/pc/bios.h>
59
60 #include <i386/bios/apm.h>
61
62 uint32_t acpi_resume_beep;
63 TUNABLE_INT("debug.acpi.resume_beep", &acpi_resume_beep);
64 SYSCTL_UINT(_debug_acpi, OID_AUTO, resume_beep, CTLFLAG_RW, &acpi_resume_beep,
65 0, "Beep the PC speaker when resuming");
66 uint32_t acpi_reset_video;
67 TUNABLE_INT("hw.acpi.reset_video", &acpi_reset_video);
68
69 static int intr_model = ACPI_INTR_PIC;
70 static int apm_active;
71 static struct clonedevs *apm_clones;
72
73 MALLOC_DEFINE(M_APMDEV, "apmdev", "APM device emulation");
74
75 static d_open_t apmopen;
76 static d_close_t apmclose;
77 static d_write_t apmwrite;
78 static d_ioctl_t apmioctl;
79 static d_poll_t apmpoll;
80 static d_kqfilter_t apmkqfilter;
81 static void apmreadfiltdetach(struct knote *kn);
82 static int apmreadfilt(struct knote *kn, long hint);
83 static struct filterops apm_readfiltops =
84 { 1, NULL, apmreadfiltdetach, apmreadfilt };
85
86 static struct cdevsw apm_cdevsw = {
87 .d_version = D_VERSION,
88 .d_flags = D_TRACKCLOSE | D_NEEDMINOR,
89 .d_open = apmopen,
90 .d_close = apmclose,
91 .d_write = apmwrite,
92 .d_ioctl = apmioctl,
93 .d_poll = apmpoll,
94 .d_name = "apm",
95 .d_kqfilter = apmkqfilter
96 };
97
98 static int
99 acpi_capm_convert_battstate(struct acpi_battinfo *battp)
100 {
101 int state;
102
103 state = APM_UNKNOWN;
104
105 if (battp->state & ACPI_BATT_STAT_DISCHARG) {
106 if (battp->cap >= 50)
107 state = 0; /* high */
108 else
109 state = 1; /* low */
110 }
111 if (battp->state & ACPI_BATT_STAT_CRITICAL)
112 state = 2; /* critical */
113 if (battp->state & ACPI_BATT_STAT_CHARGING)
114 state = 3; /* charging */
115
116 /* If still unknown, determine it based on the battery capacity. */
117 if (state == APM_UNKNOWN) {
118 if (battp->cap >= 50)
119 state = 0; /* high */
120 else
121 state = 1; /* low */
122 }
123
124 return (state);
125 }
126
127 static int
128 acpi_capm_convert_battflags(struct acpi_battinfo *battp)
129 {
130 int flags;
131
132 flags = 0;
133
134 if (battp->cap >= 50)
135 flags |= APM_BATT_HIGH;
136 else {
137 if (battp->state & ACPI_BATT_STAT_CRITICAL)
138 flags |= APM_BATT_CRITICAL;
139 else
140 flags |= APM_BATT_LOW;
141 }
142 if (battp->state & ACPI_BATT_STAT_CHARGING)
143 flags |= APM_BATT_CHARGING;
144 if (battp->state == ACPI_BATT_STAT_NOT_PRESENT)
145 flags = APM_BATT_NOT_PRESENT;
146
147 return (flags);
148 }
149
150 static int
151 acpi_capm_get_info(apm_info_t aip)
152 {
153 int acline;
154 struct acpi_battinfo batt;
155
156 aip->ai_infoversion = 1;
157 aip->ai_major = 1;
158 aip->ai_minor = 2;
159 aip->ai_status = apm_active;
160 aip->ai_capabilities= 0xff00; /* unknown */
161
162 if (acpi_acad_get_acline(&acline))
163 aip->ai_acline = APM_UNKNOWN; /* unknown */
164 else
165 aip->ai_acline = acline; /* on/off */
166
167 if (acpi_battery_get_battinfo(NULL, &batt) != 0) {
168 aip->ai_batt_stat = APM_UNKNOWN;
169 aip->ai_batt_life = APM_UNKNOWN;
170 aip->ai_batt_time = -1; /* unknown */
171 aip->ai_batteries = ~0U; /* unknown */
172 } else {
173 aip->ai_batt_stat = acpi_capm_convert_battstate(&batt);
174 aip->ai_batt_life = batt.cap;
175 aip->ai_batt_time = (batt.min == -1) ? -1 : batt.min * 60;
176 aip->ai_batteries = acpi_battery_get_units();
177 }
178
179 return (0);
180 }
181
182 static int
183 acpi_capm_get_pwstatus(apm_pwstatus_t app)
184 {
185 device_t dev;
186 int acline, unit, error;
187 struct acpi_battinfo batt;
188
189 if (app->ap_device != PMDV_ALLDEV &&
190 (app->ap_device < PMDV_BATT0 || app->ap_device > PMDV_BATT_ALL))
191 return (1);
192
193 if (app->ap_device == PMDV_ALLDEV)
194 error = acpi_battery_get_battinfo(NULL, &batt);
195 else {
196 unit = app->ap_device - PMDV_BATT0;
197 dev = devclass_get_device(devclass_find("battery"), unit);
198 if (dev != NULL)
199 error = acpi_battery_get_battinfo(dev, &batt);
200 else
201 error = ENXIO;
202 }
203 if (error)
204 return (1);
205
206 app->ap_batt_stat = acpi_capm_convert_battstate(&batt);
207 app->ap_batt_flag = acpi_capm_convert_battflags(&batt);
208 app->ap_batt_life = batt.cap;
209 app->ap_batt_time = (batt.min == -1) ? -1 : batt.min * 60;
210
211 if (acpi_acad_get_acline(&acline))
212 app->ap_acline = APM_UNKNOWN;
213 else
214 app->ap_acline = acline; /* on/off */
215
216 return (0);
217 }
218
219 /* Create single-use devices for /dev/apm and /dev/apmctl. */
220 static void
221 apm_clone(void *arg, struct ucred *cred, char *name, int namelen,
222 struct cdev **dev)
223 {
224 int ctl_dev, unit;
225
226 if (*dev != NULL)
227 return;
228 if (strcmp(name, "apmctl") == 0)
229 ctl_dev = TRUE;
230 else if (strcmp(name, "apm") == 0)
231 ctl_dev = FALSE;
232 else
233 return;
234
235 /* Always create a new device and unit number. */
236 unit = -1;
237 if (clone_create(&apm_clones, &apm_cdevsw, &unit, dev, 0)) {
238 if (ctl_dev) {
239 *dev = make_dev(&apm_cdevsw, unit,
240 UID_ROOT, GID_OPERATOR, 0660, "apmctl%d", unit);
241 } else {
242 *dev = make_dev(&apm_cdevsw, unit,
243 UID_ROOT, GID_OPERATOR, 0664, "apm%d", unit);
244 }
245 if (*dev != NULL) {
246 dev_ref(*dev);
247 (*dev)->si_flags |= SI_CHEAPCLONE;
248 }
249 }
250 }
251
252 /* Create a struct for tracking per-device suspend notification. */
253 static struct apm_clone_data *
254 apm_create_clone(struct cdev *dev, struct acpi_softc *acpi_sc)
255 {
256 struct apm_clone_data *clone;
257
258 clone = malloc(sizeof(*clone), M_APMDEV, M_WAITOK);
259 clone->cdev = dev;
260 clone->acpi_sc = acpi_sc;
261 clone->notify_status = APM_EV_NONE;
262 bzero(&clone->sel_read, sizeof(clone->sel_read));
263 knlist_init_mtx(&clone->sel_read.si_note, &acpi_mutex);
264
265 /*
266 * The acpi device is always managed by devd(8) and is considered
267 * writable (i.e., ack is required to allow suspend to proceed.)
268 */
269 if (strcmp("acpi", devtoname(dev)) == 0)
270 clone->flags = ACPI_EVF_DEVD | ACPI_EVF_WRITE;
271 else
272 clone->flags = ACPI_EVF_NONE;
273
274 ACPI_LOCK(acpi);
275 STAILQ_INSERT_TAIL(&acpi_sc->apm_cdevs, clone, entries);
276 ACPI_UNLOCK(acpi);
277 return (clone);
278 }
279
280 static int
281 apmopen(struct cdev *dev, int flag, int fmt, struct thread *td)
282 {
283 struct acpi_softc *acpi_sc;
284 struct apm_clone_data *clone;
285
286 acpi_sc = devclass_get_softc(devclass_find("acpi"), 0);
287 clone = apm_create_clone(dev, acpi_sc);
288 dev->si_drv1 = clone;
289
290 /* If the device is opened for write, record that. */
291 if ((flag & FWRITE) != 0)
292 clone->flags |= ACPI_EVF_WRITE;
293
294 return (0);
295 }
296
297 static int
298 apmclose(struct cdev *dev, int flag, int fmt, struct thread *td)
299 {
300 struct apm_clone_data *clone;
301 struct acpi_softc *acpi_sc;
302
303 clone = dev->si_drv1;
304 acpi_sc = clone->acpi_sc;
305
306 /* We are about to lose a reference so check if suspend should occur */
307 if (acpi_sc->acpi_next_sstate != 0 &&
308 clone->notify_status != APM_EV_ACKED)
309 acpi_AckSleepState(clone, 0);
310
311 /* Remove this clone's data from the list and free it. */
312 ACPI_LOCK(acpi);
313 STAILQ_REMOVE(&acpi_sc->apm_cdevs, clone, apm_clone_data, entries);
314 seldrain(&clone->sel_read);
315 knlist_destroy(&clone->sel_read.si_note);
316 ACPI_UNLOCK(acpi);
317 free(clone, M_APMDEV);
318 destroy_dev_sched(dev);
319 return (0);
320 }
321
322 static int
323 apmioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
324 {
325 int error;
326 struct apm_clone_data *clone;
327 struct acpi_softc *acpi_sc;
328 struct apm_info info;
329 struct apm_event_info *ev_info;
330 apm_info_old_t aiop;
331
332 error = 0;
333 clone = dev->si_drv1;
334 acpi_sc = clone->acpi_sc;
335
336 switch (cmd) {
337 case APMIO_SUSPEND:
338 if ((flag & FWRITE) == 0)
339 return (EPERM);
340 if (acpi_sc->acpi_next_sstate == 0) {
341 if (acpi_sc->acpi_suspend_sx != ACPI_STATE_S5) {
342 error = acpi_ReqSleepState(acpi_sc,
343 acpi_sc->acpi_suspend_sx);
344 } else {
345 printf(
346 "power off via apm suspend not supported\n");
347 error = ENXIO;
348 }
349 } else
350 error = acpi_AckSleepState(clone, 0);
351 break;
352 case APMIO_STANDBY:
353 if ((flag & FWRITE) == 0)
354 return (EPERM);
355 if (acpi_sc->acpi_next_sstate == 0) {
356 if (acpi_sc->acpi_standby_sx != ACPI_STATE_S5) {
357 error = acpi_ReqSleepState(acpi_sc,
358 acpi_sc->acpi_standby_sx);
359 } else {
360 printf(
361 "power off via apm standby not supported\n");
362 error = ENXIO;
363 }
364 } else
365 error = acpi_AckSleepState(clone, 0);
366 break;
367 case APMIO_NEXTEVENT:
368 printf("apm nextevent start\n");
369 ACPI_LOCK(acpi);
370 if (acpi_sc->acpi_next_sstate != 0 && clone->notify_status ==
371 APM_EV_NONE) {
372 ev_info = (struct apm_event_info *)addr;
373 if (acpi_sc->acpi_next_sstate <= ACPI_STATE_S3)
374 ev_info->type = PMEV_STANDBYREQ;
375 else
376 ev_info->type = PMEV_SUSPENDREQ;
377 ev_info->index = 0;
378 clone->notify_status = APM_EV_NOTIFIED;
379 printf("apm event returning %d\n", ev_info->type);
380 } else
381 error = EAGAIN;
382 ACPI_UNLOCK(acpi);
383 break;
384 case APMIO_GETINFO_OLD:
385 if (acpi_capm_get_info(&info))
386 error = ENXIO;
387 aiop = (apm_info_old_t)addr;
388 aiop->ai_major = info.ai_major;
389 aiop->ai_minor = info.ai_minor;
390 aiop->ai_acline = info.ai_acline;
391 aiop->ai_batt_stat = info.ai_batt_stat;
392 aiop->ai_batt_life = info.ai_batt_life;
393 aiop->ai_status = info.ai_status;
394 break;
395 case APMIO_GETINFO:
396 if (acpi_capm_get_info((apm_info_t)addr))
397 error = ENXIO;
398 break;
399 case APMIO_GETPWSTATUS:
400 if (acpi_capm_get_pwstatus((apm_pwstatus_t)addr))
401 error = ENXIO;
402 break;
403 case APMIO_ENABLE:
404 if ((flag & FWRITE) == 0)
405 return (EPERM);
406 apm_active = 1;
407 break;
408 case APMIO_DISABLE:
409 if ((flag & FWRITE) == 0)
410 return (EPERM);
411 apm_active = 0;
412 break;
413 case APMIO_HALTCPU:
414 break;
415 case APMIO_NOTHALTCPU:
416 break;
417 case APMIO_DISPLAY:
418 if ((flag & FWRITE) == 0)
419 return (EPERM);
420 break;
421 case APMIO_BIOS:
422 if ((flag & FWRITE) == 0)
423 return (EPERM);
424 bzero(addr, sizeof(struct apm_bios_arg));
425 break;
426 default:
427 error = EINVAL;
428 break;
429 }
430
431 return (error);
432 }
433
434 static int
435 apmwrite(struct cdev *dev, struct uio *uio, int ioflag)
436 {
437 return (uio->uio_resid);
438 }
439
440 static int
441 apmpoll(struct cdev *dev, int events, struct thread *td)
442 {
443 struct apm_clone_data *clone;
444 int revents;
445
446 revents = 0;
447 ACPI_LOCK(acpi);
448 clone = dev->si_drv1;
449 if (clone->acpi_sc->acpi_next_sstate)
450 revents |= events & (POLLIN | POLLRDNORM);
451 else
452 selrecord(td, &clone->sel_read);
453 ACPI_UNLOCK(acpi);
454 return (revents);
455 }
456
457 static int
458 apmkqfilter(struct cdev *dev, struct knote *kn)
459 {
460 struct apm_clone_data *clone;
461
462 ACPI_LOCK(acpi);
463 clone = dev->si_drv1;
464 kn->kn_hook = clone;
465 kn->kn_fop = &apm_readfiltops;
466 knlist_add(&clone->sel_read.si_note, kn, 0);
467 ACPI_UNLOCK(acpi);
468 return (0);
469 }
470
471 static void
472 apmreadfiltdetach(struct knote *kn)
473 {
474 struct apm_clone_data *clone;
475
476 ACPI_LOCK(acpi);
477 clone = kn->kn_hook;
478 knlist_remove(&clone->sel_read.si_note, kn, 0);
479 ACPI_UNLOCK(acpi);
480 }
481
482 static int
483 apmreadfilt(struct knote *kn, long hint)
484 {
485 struct apm_clone_data *clone;
486 int sleeping;
487
488 ACPI_LOCK(acpi);
489 clone = kn->kn_hook;
490 sleeping = clone->acpi_sc->acpi_next_sstate ? 1 : 0;
491 ACPI_UNLOCK(acpi);
492 return (sleeping);
493 }
494
495 int
496 acpi_machdep_init(device_t dev)
497 {
498 struct acpi_softc *acpi_sc;
499
500 acpi_sc = devclass_get_softc(devclass_find("acpi"), 0);
501
502 /* Create a clone for /dev/acpi also. */
503 STAILQ_INIT(&acpi_sc->apm_cdevs);
504 acpi_sc->acpi_clone = apm_create_clone(acpi_sc->acpi_dev_t, acpi_sc);
505 clone_setup(&apm_clones);
506 EVENTHANDLER_REGISTER(dev_clone, apm_clone, 0, 1000);
507 acpi_install_wakeup_handler(acpi_sc);
508
509 if (intr_model == ACPI_INTR_PIC)
510 BUS_CONFIG_INTR(dev, AcpiGbl_FADT.SciInterrupt,
511 INTR_TRIGGER_LEVEL, INTR_POLARITY_LOW);
512 else
513 acpi_SetIntrModel(intr_model);
514
515 SYSCTL_ADD_UINT(&acpi_sc->acpi_sysctl_ctx,
516 SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO,
517 "reset_video", CTLFLAG_RW, &acpi_reset_video, 0,
518 "Call the VESA reset BIOS vector on the resume path");
519
520 return (0);
521 }
522
523 void
524 acpi_SetDefaultIntrModel(int model)
525 {
526
527 intr_model = model;
528 }
529
530 /* Check BIOS date. If 1998 or older, disable ACPI. */
531 int
532 acpi_machdep_quirks(int *quirks)
533 {
534 char *va;
535 int year;
536
537 /* BIOS address 0xffff5 contains the date in the format mm/dd/yy. */
538 va = pmap_mapbios(0xffff0, 16);
539 sscanf(va + 11, "%2d", &year);
540 pmap_unmapbios((vm_offset_t)va, 16);
541
542 /*
543 * Date must be >= 1/1/1999 or we don't trust ACPI. Note that this
544 * check must be changed by my 114th birthday.
545 */
546 if (year > 90 && year < 99)
547 *quirks = ACPI_Q_BROKEN;
548
549 return (0);
550 }
551
552 void
553 acpi_cpu_c1()
554 {
555 __asm __volatile("sti; hlt");
556 }
557
558 /*
559 * Support for mapping ACPI tables during early boot. This abuses the
560 * crashdump map because the kernel cannot allocate KVA in
561 * pmap_mapbios() when this is used. This makes the following
562 * assumptions about how we use this KVA: pages 0 and 1 are used to
563 * map in the header of each table found via the RSDT or XSDT and
564 * pages 2 to n are used to map in the RSDT or XSDT. This has to use
565 * 2 pages for the table headers in case a header spans a page
566 * boundary.
567 *
568 * XXX: We don't ensure the table fits in the available address space
569 * in the crashdump map.
570 */
571
572 /*
573 * Map some memory using the crashdump map. 'offset' is an offset in
574 * pages into the crashdump map to use for the start of the mapping.
575 */
576 static void *
577 table_map(vm_paddr_t pa, int offset, vm_offset_t length)
578 {
579 vm_offset_t va, off;
580 void *data;
581
582 off = pa & PAGE_MASK;
583 length = roundup(length + off, PAGE_SIZE);
584 pa = pa & PG_FRAME;
585 va = (vm_offset_t)pmap_kenter_temporary(pa, offset) +
586 (offset * PAGE_SIZE);
587 data = (void *)(va + off);
588 length -= PAGE_SIZE;
589 while (length > 0) {
590 va += PAGE_SIZE;
591 pa += PAGE_SIZE;
592 length -= PAGE_SIZE;
593 pmap_kenter(va, pa);
594 invlpg(va);
595 }
596 return (data);
597 }
598
599 /* Unmap memory previously mapped with table_map(). */
600 static void
601 table_unmap(void *data, vm_offset_t length)
602 {
603 vm_offset_t va, off;
604
605 va = (vm_offset_t)data;
606 off = va & PAGE_MASK;
607 length = roundup(length + off, PAGE_SIZE);
608 va &= ~PAGE_MASK;
609 while (length > 0) {
610 pmap_kremove(va);
611 invlpg(va);
612 va += PAGE_SIZE;
613 length -= PAGE_SIZE;
614 }
615 }
616
617 /*
618 * Map a table at a given offset into the crashdump map. It first
619 * maps the header to determine the table length and then maps the
620 * entire table.
621 */
622 static void *
623 map_table(vm_paddr_t pa, int offset, const char *sig)
624 {
625 ACPI_TABLE_HEADER *header;
626 vm_offset_t length;
627 void *table;
628
629 header = table_map(pa, offset, sizeof(ACPI_TABLE_HEADER));
630 if (strncmp(header->Signature, sig, ACPI_NAME_SIZE) != 0) {
631 table_unmap(header, sizeof(ACPI_TABLE_HEADER));
632 return (NULL);
633 }
634 length = header->Length;
635 table_unmap(header, sizeof(ACPI_TABLE_HEADER));
636 table = table_map(pa, offset, length);
637 if (ACPI_FAILURE(AcpiTbChecksum(table, length))) {
638 if (bootverbose)
639 printf("ACPI: Failed checksum for table %s\n", sig);
640 #if (ACPI_CHECKSUM_ABORT)
641 table_unmap(table, length);
642 return (NULL);
643 #endif
644 }
645 return (table);
646 }
647
648 /*
649 * See if a given ACPI table is the requested table. Returns the
650 * length of the able if it matches or zero on failure.
651 */
652 static int
653 probe_table(vm_paddr_t address, const char *sig)
654 {
655 ACPI_TABLE_HEADER *table;
656
657 table = table_map(address, 0, sizeof(ACPI_TABLE_HEADER));
658 if (table == NULL) {
659 if (bootverbose)
660 printf("ACPI: Failed to map table at 0x%jx\n",
661 (uintmax_t)address);
662 return (0);
663 }
664 if (bootverbose)
665 printf("Table '%.4s' at 0x%jx\n", table->Signature,
666 (uintmax_t)address);
667
668 if (strncmp(table->Signature, sig, ACPI_NAME_SIZE) != 0) {
669 table_unmap(table, sizeof(ACPI_TABLE_HEADER));
670 return (0);
671 }
672 table_unmap(table, sizeof(ACPI_TABLE_HEADER));
673 return (1);
674 }
675
676 /*
677 * Try to map a table at a given physical address previously returned
678 * by acpi_find_table().
679 */
680 void *
681 acpi_map_table(vm_paddr_t pa, const char *sig)
682 {
683
684 return (map_table(pa, 0, sig));
685 }
686
687 /* Unmap a table previously mapped via acpi_map_table(). */
688 void
689 acpi_unmap_table(void *table)
690 {
691 ACPI_TABLE_HEADER *header;
692
693 header = (ACPI_TABLE_HEADER *)table;
694 table_unmap(table, header->Length);
695 }
696
697 /*
698 * Return the physical address of the requested table or zero if one
699 * is not found.
700 */
701 vm_paddr_t
702 acpi_find_table(const char *sig)
703 {
704 ACPI_PHYSICAL_ADDRESS rsdp_ptr;
705 ACPI_TABLE_RSDP *rsdp;
706 ACPI_TABLE_RSDT *rsdt;
707 ACPI_TABLE_XSDT *xsdt;
708 ACPI_TABLE_HEADER *table;
709 vm_paddr_t addr;
710 int i, count;
711
712 if (resource_disabled("acpi", 0))
713 return (0);
714
715 /*
716 * Map in the RSDP. Since ACPI uses AcpiOsMapMemory() which in turn
717 * calls pmap_mapbios() to find the RSDP, we assume that we can use
718 * pmap_mapbios() to map the RSDP.
719 */
720 if ((rsdp_ptr = AcpiOsGetRootPointer()) == 0)
721 return (0);
722 rsdp = pmap_mapbios(rsdp_ptr, sizeof(ACPI_TABLE_RSDP));
723 if (rsdp == NULL) {
724 if (bootverbose)
725 printf("ACPI: Failed to map RSDP\n");
726 return (0);
727 }
728
729 /*
730 * For ACPI >= 2.0, use the XSDT if it is available.
731 * Otherwise, use the RSDT. We map the XSDT or RSDT at page 2
732 * in the crashdump area. Pages 0 and 1 are used to map in the
733 * headers of candidate ACPI tables.
734 */
735 addr = 0;
736 if (rsdp->Revision >= 2 && rsdp->XsdtPhysicalAddress != 0) {
737 /*
738 * AcpiOsGetRootPointer only verifies the checksum for
739 * the version 1.0 portion of the RSDP. Version 2.0 has
740 * an additional checksum that we verify first.
741 */
742 if (AcpiTbChecksum((UINT8 *)rsdp, ACPI_RSDP_XCHECKSUM_LENGTH)) {
743 if (bootverbose)
744 printf("ACPI: RSDP failed extended checksum\n");
745 return (0);
746 }
747 xsdt = map_table(rsdp->XsdtPhysicalAddress, 2, ACPI_SIG_XSDT);
748 if (xsdt == NULL) {
749 if (bootverbose)
750 printf("ACPI: Failed to map XSDT\n");
751 return (0);
752 }
753 count = (xsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) /
754 sizeof(UINT64);
755 for (i = 0; i < count; i++)
756 if (probe_table(xsdt->TableOffsetEntry[i], sig)) {
757 addr = xsdt->TableOffsetEntry[i];
758 break;
759 }
760 acpi_unmap_table(xsdt);
761 } else {
762 rsdt = map_table(rsdp->RsdtPhysicalAddress, 2, ACPI_SIG_RSDT);
763 if (rsdt == NULL) {
764 if (bootverbose)
765 printf("ACPI: Failed to map RSDT\n");
766 return (0);
767 }
768 count = (rsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) /
769 sizeof(UINT32);
770 for (i = 0; i < count; i++)
771 if (probe_table(rsdt->TableOffsetEntry[i], sig)) {
772 addr = rsdt->TableOffsetEntry[i];
773 break;
774 }
775 acpi_unmap_table(rsdt);
776 }
777 pmap_unmapbios((vm_offset_t)rsdp, sizeof(ACPI_TABLE_RSDP));
778 if (addr == 0) {
779 if (bootverbose)
780 printf("ACPI: No %s table found\n", sig);
781 return (0);
782 }
783 if (bootverbose)
784 printf("%s: Found table at 0x%jx\n", sig, (uintmax_t)addr);
785
786 /*
787 * Verify that we can map the full table and that its checksum is
788 * correct, etc.
789 */
790 table = map_table(addr, 0, sig);
791 if (table == NULL)
792 return (0);
793 acpi_unmap_table(table);
794
795 return (addr);
796 }
797
798 /*
799 * ACPI nexus(4) driver.
800 */
801 static int
802 nexus_acpi_probe(device_t dev)
803 {
804 int error;
805
806 error = acpi_identify();
807 if (error)
808 return (error);
809
810 return (BUS_PROBE_DEFAULT);
811 }
812
813 static int
814 nexus_acpi_attach(device_t dev)
815 {
816
817 nexus_init_resources();
818 bus_generic_probe(dev);
819 if (BUS_ADD_CHILD(dev, 10, "acpi", 0) == NULL)
820 panic("failed to add acpi0 device");
821
822 return (bus_generic_attach(dev));
823 }
824
825 static device_method_t nexus_acpi_methods[] = {
826 /* Device interface */
827 DEVMETHOD(device_probe, nexus_acpi_probe),
828 DEVMETHOD(device_attach, nexus_acpi_attach),
829
830 { 0, 0 }
831 };
832
833 DEFINE_CLASS_1(nexus, nexus_acpi_driver, nexus_acpi_methods, 1, nexus_driver);
834 static devclass_t nexus_devclass;
835
836 DRIVER_MODULE(nexus_acpi, root, nexus_acpi_driver, nexus_devclass, 0, 0);
Cache object: 8e663b2616a87dd0bd1952129b9b48e9
|