The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/10.1/sys/i386/i386/machdep.c 271541 2014-09-13 18:27:47Z pfg $");
   42 
   43 #include "opt_apic.h"
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_mp_watchdog.h"
   55 #include "opt_npx.h"
   56 #include "opt_perfmon.h"
   57 #include "opt_platform.h"
   58 #include "opt_xbox.h"
   59 #include "opt_kdtrace.h"
   60 
   61 #include <sys/param.h>
   62 #include <sys/proc.h>
   63 #include <sys/systm.h>
   64 #include <sys/bio.h>
   65 #include <sys/buf.h>
   66 #include <sys/bus.h>
   67 #include <sys/callout.h>
   68 #include <sys/cons.h>
   69 #include <sys/cpu.h>
   70 #include <sys/eventhandler.h>
   71 #include <sys/exec.h>
   72 #include <sys/imgact.h>
   73 #include <sys/kdb.h>
   74 #include <sys/kernel.h>
   75 #include <sys/ktr.h>
   76 #include <sys/linker.h>
   77 #include <sys/lock.h>
   78 #include <sys/malloc.h>
   79 #include <sys/memrange.h>
   80 #include <sys/msgbuf.h>
   81 #include <sys/mutex.h>
   82 #include <sys/pcpu.h>
   83 #include <sys/ptrace.h>
   84 #include <sys/reboot.h>
   85 #include <sys/rwlock.h>
   86 #include <sys/sched.h>
   87 #include <sys/signalvar.h>
   88 #ifdef SMP
   89 #include <sys/smp.h>
   90 #endif
   91 #include <sys/syscallsubr.h>
   92 #include <sys/sysctl.h>
   93 #include <sys/sysent.h>
   94 #include <sys/sysproto.h>
   95 #include <sys/ucontext.h>
   96 #include <sys/vmmeter.h>
   97 
   98 #include <vm/vm.h>
   99 #include <vm/vm_extern.h>
  100 #include <vm/vm_kern.h>
  101 #include <vm/vm_page.h>
  102 #include <vm/vm_map.h>
  103 #include <vm/vm_object.h>
  104 #include <vm/vm_pager.h>
  105 #include <vm/vm_param.h>
  106 
  107 #ifdef DDB
  108 #ifndef KDB
  109 #error KDB must be enabled in order for DDB to work!
  110 #endif
  111 #include <ddb/ddb.h>
  112 #include <ddb/db_sym.h>
  113 #endif
  114 
  115 #include <isa/rtc.h>
  116 
  117 #include <net/netisr.h>
  118 
  119 #include <machine/bootinfo.h>
  120 #include <machine/clock.h>
  121 #include <machine/cpu.h>
  122 #include <machine/cputypes.h>
  123 #include <machine/intr_machdep.h>
  124 #include <x86/mca.h>
  125 #include <machine/md_var.h>
  126 #include <machine/metadata.h>
  127 #include <machine/mp_watchdog.h>
  128 #include <machine/pc/bios.h>
  129 #include <machine/pcb.h>
  130 #include <machine/pcb_ext.h>
  131 #include <machine/proc.h>
  132 #include <machine/reg.h>
  133 #include <machine/sigframe.h>
  134 #include <machine/specialreg.h>
  135 #include <machine/vm86.h>
  136 #ifdef PERFMON
  137 #include <machine/perfmon.h>
  138 #endif
  139 #ifdef SMP
  140 #include <machine/smp.h>
  141 #endif
  142 #ifdef FDT
  143 #include <x86/fdt.h>
  144 #endif
  145 
  146 #ifdef DEV_APIC
  147 #include <machine/apicvar.h>
  148 #endif
  149 
  150 #ifdef DEV_ISA
  151 #include <x86/isa/icu.h>
  152 #endif
  153 
  154 #ifdef XBOX
  155 #include <machine/xbox.h>
  156 
  157 int arch_i386_is_xbox = 0;
  158 uint32_t arch_i386_xbox_memsize = 0;
  159 #endif
  160 
  161 #ifdef XEN
  162 /* XEN includes */
  163 #include <xen/xen-os.h>
  164 #include <xen/hypervisor.h>
  165 #include <machine/xen/xenvar.h>
  166 #include <machine/xen/xenfunc.h>
  167 #include <xen/xen_intr.h>
  168 
  169 void Xhypervisor_callback(void);
  170 void failsafe_callback(void);
  171 
  172 extern trap_info_t trap_table[];
  173 struct proc_ldt default_proc_ldt;
  174 extern int init_first;
  175 int running_xen = 1;
  176 extern unsigned long physfree;
  177 #endif /* XEN */
  178 
  179 /* Sanity check for __curthread() */
  180 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  181 
  182 extern void init386(int first);
  183 extern void dblfault_handler(void);
  184 
  185 extern void printcpuinfo(void); /* XXX header file */
  186 extern void finishidentcpu(void);
  187 extern void panicifcpuunsupported(void);
  188 
  189 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  190 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  191 
  192 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  193 #define CPU_ENABLE_SSE
  194 #endif
  195 
  196 static void cpu_startup(void *);
  197 static void fpstate_drop(struct thread *td);
  198 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  199 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  200 #ifdef CPU_ENABLE_SSE
  201 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  202 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  203 #endif /* CPU_ENABLE_SSE */
  204 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  205 
  206 #ifdef DDB
  207 extern vm_offset_t ksym_start, ksym_end;
  208 #endif
  209 
  210 /* Intel ICH registers */
  211 #define ICH_PMBASE      0x400
  212 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  213 
  214 int     _udatasel, _ucodesel;
  215 u_int   basemem;
  216 
  217 int cold = 1;
  218 
  219 #ifdef COMPAT_43
  220 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  221 #endif
  222 #ifdef COMPAT_FREEBSD4
  223 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  224 #endif
  225 
  226 long Maxmem = 0;
  227 long realmem = 0;
  228 
  229 #ifdef PAE
  230 FEATURE(pae, "Physical Address Extensions");
  231 #endif
  232 
  233 /*
  234  * The number of PHYSMAP entries must be one less than the number of
  235  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  236  * physical address that is accessible by ISA DMA is split into two
  237  * PHYSSEG entries.
  238  */
  239 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  240 
  241 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  242 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  243 
  244 /* must be 2 less so 0 0 can signal end of chunks */
  245 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  246 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  247 
  248 struct kva_md_info kmi;
  249 
  250 static struct trapframe proc0_tf;
  251 struct pcpu __pcpu[MAXCPU];
  252 
  253 struct mtx icu_lock;
  254 
  255 struct mem_range_softc mem_range_softc;
  256 
  257 static void
  258 cpu_startup(dummy)
  259         void *dummy;
  260 {
  261         uintmax_t memsize;
  262         char *sysenv;
  263         
  264         /*
  265          * On MacBooks, we need to disallow the legacy USB circuit to
  266          * generate an SMI# because this can cause several problems,
  267          * namely: incorrect CPU frequency detection and failure to
  268          * start the APs.
  269          * We do this by disabling a bit in the SMI_EN (SMI Control and
  270          * Enable register) of the Intel ICH LPC Interface Bridge.
  271          */
  272         sysenv = getenv("smbios.system.product");
  273         if (sysenv != NULL) {
  274                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  275                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  276                     strncmp(sysenv, "MacBook4,1", 10) == 0 ||
  277                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  278                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  279                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  280                     strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
  281                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  282                         if (bootverbose)
  283                                 printf("Disabling LEGACY_USB_EN bit on "
  284                                     "Intel ICH.\n");
  285                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  286                 }
  287                 freeenv(sysenv);
  288         }
  289 
  290         /*
  291          * Good {morning,afternoon,evening,night}.
  292          */
  293         startrtclock();
  294         printcpuinfo();
  295         panicifcpuunsupported();
  296 #ifdef PERFMON
  297         perfmon_init();
  298 #endif
  299 
  300         /*
  301          * Display physical memory if SMBIOS reports reasonable amount.
  302          */
  303         memsize = 0;
  304         sysenv = getenv("smbios.memory.enabled");
  305         if (sysenv != NULL) {
  306                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  307                 freeenv(sysenv);
  308         }
  309         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  310                 memsize = ptoa((uintmax_t)Maxmem);
  311         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  312         realmem = atop(memsize);
  313 
  314         /*
  315          * Display any holes after the first chunk of extended memory.
  316          */
  317         if (bootverbose) {
  318                 int indx;
  319 
  320                 printf("Physical memory chunk(s):\n");
  321                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  322                         vm_paddr_t size;
  323 
  324                         size = phys_avail[indx + 1] - phys_avail[indx];
  325                         printf(
  326                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  327                             (uintmax_t)phys_avail[indx],
  328                             (uintmax_t)phys_avail[indx + 1] - 1,
  329                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  330                 }
  331         }
  332 
  333         vm_ksubmap_init(&kmi);
  334 
  335         printf("avail memory = %ju (%ju MB)\n",
  336             ptoa((uintmax_t)cnt.v_free_count),
  337             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  338 
  339         /*
  340          * Set up buffers, so they can be used to read disk labels.
  341          */
  342         bufinit();
  343         vm_pager_bufferinit();
  344 #ifndef XEN
  345         cpu_setregs();
  346 #endif
  347 }
  348 
  349 /*
  350  * Send an interrupt to process.
  351  *
  352  * Stack is set up to allow sigcode stored
  353  * at top to call routine, followed by kcall
  354  * to sigreturn routine below.  After sigreturn
  355  * resets the signal mask, the stack, and the
  356  * frame pointer, it returns to the user
  357  * specified pc, psl.
  358  */
  359 #ifdef COMPAT_43
  360 static void
  361 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  362 {
  363         struct osigframe sf, *fp;
  364         struct proc *p;
  365         struct thread *td;
  366         struct sigacts *psp;
  367         struct trapframe *regs;
  368         int sig;
  369         int oonstack;
  370 
  371         td = curthread;
  372         p = td->td_proc;
  373         PROC_LOCK_ASSERT(p, MA_OWNED);
  374         sig = ksi->ksi_signo;
  375         psp = p->p_sigacts;
  376         mtx_assert(&psp->ps_mtx, MA_OWNED);
  377         regs = td->td_frame;
  378         oonstack = sigonstack(regs->tf_esp);
  379 
  380         /* Allocate space for the signal handler context. */
  381         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  382             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  383                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  384                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  385 #if defined(COMPAT_43)
  386                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  387 #endif
  388         } else
  389                 fp = (struct osigframe *)regs->tf_esp - 1;
  390 
  391         /* Translate the signal if appropriate. */
  392         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  393                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  394 
  395         /* Build the argument list for the signal handler. */
  396         sf.sf_signum = sig;
  397         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  398         bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
  399         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  400                 /* Signal handler installed with SA_SIGINFO. */
  401                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  402                 sf.sf_siginfo.si_signo = sig;
  403                 sf.sf_siginfo.si_code = ksi->ksi_code;
  404                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  405                 sf.sf_addr = 0;
  406         } else {
  407                 /* Old FreeBSD-style arguments. */
  408                 sf.sf_arg2 = ksi->ksi_code;
  409                 sf.sf_addr = (register_t)ksi->ksi_addr;
  410                 sf.sf_ahu.sf_handler = catcher;
  411         }
  412         mtx_unlock(&psp->ps_mtx);
  413         PROC_UNLOCK(p);
  414 
  415         /* Save most if not all of trap frame. */
  416         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  417         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  418         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  419         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  420         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  421         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  422         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  423         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  424         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  425         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  426         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  427         sf.sf_siginfo.si_sc.sc_gs = rgs();
  428         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  429 
  430         /* Build the signal context to be used by osigreturn(). */
  431         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  432         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  433         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  434         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  435         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  436         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  437         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  438         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  439 
  440         /*
  441          * If we're a vm86 process, we want to save the segment registers.
  442          * We also change eflags to be our emulated eflags, not the actual
  443          * eflags.
  444          */
  445         if (regs->tf_eflags & PSL_VM) {
  446                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  447                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  448                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  449 
  450                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  451                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  452                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  453                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  454 
  455                 if (vm86->vm86_has_vme == 0)
  456                         sf.sf_siginfo.si_sc.sc_ps =
  457                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  458                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  459 
  460                 /* See sendsig() for comments. */
  461                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  462         }
  463 
  464         /*
  465          * Copy the sigframe out to the user's stack.
  466          */
  467         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  468 #ifdef DEBUG
  469                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  470 #endif
  471                 PROC_LOCK(p);
  472                 sigexit(td, SIGILL);
  473         }
  474 
  475         regs->tf_esp = (int)fp;
  476         if (p->p_sysent->sv_sigcode_base != 0) {
  477                 regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
  478                     szosigcode;
  479         } else {
  480                 /* a.out sysentvec does not use shared page */
  481                 regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
  482         }
  483         regs->tf_eflags &= ~(PSL_T | PSL_D);
  484         regs->tf_cs = _ucodesel;
  485         regs->tf_ds = _udatasel;
  486         regs->tf_es = _udatasel;
  487         regs->tf_fs = _udatasel;
  488         load_gs(_udatasel);
  489         regs->tf_ss = _udatasel;
  490         PROC_LOCK(p);
  491         mtx_lock(&psp->ps_mtx);
  492 }
  493 #endif /* COMPAT_43 */
  494 
  495 #ifdef COMPAT_FREEBSD4
  496 static void
  497 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  498 {
  499         struct sigframe4 sf, *sfp;
  500         struct proc *p;
  501         struct thread *td;
  502         struct sigacts *psp;
  503         struct trapframe *regs;
  504         int sig;
  505         int oonstack;
  506 
  507         td = curthread;
  508         p = td->td_proc;
  509         PROC_LOCK_ASSERT(p, MA_OWNED);
  510         sig = ksi->ksi_signo;
  511         psp = p->p_sigacts;
  512         mtx_assert(&psp->ps_mtx, MA_OWNED);
  513         regs = td->td_frame;
  514         oonstack = sigonstack(regs->tf_esp);
  515 
  516         /* Save user context. */
  517         bzero(&sf, sizeof(sf));
  518         sf.sf_uc.uc_sigmask = *mask;
  519         sf.sf_uc.uc_stack = td->td_sigstk;
  520         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  521             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  522         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  523         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  524         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  525         bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
  526             sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
  527         bzero(sf.sf_uc.uc_mcontext.__spare__,
  528             sizeof(sf.sf_uc.uc_mcontext.__spare__));
  529         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  530 
  531         /* Allocate space for the signal handler context. */
  532         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  533             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  534                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  535                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  536 #if defined(COMPAT_43)
  537                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  538 #endif
  539         } else
  540                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  541 
  542         /* Translate the signal if appropriate. */
  543         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  544                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  545 
  546         /* Build the argument list for the signal handler. */
  547         sf.sf_signum = sig;
  548         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  549         bzero(&sf.sf_si, sizeof(sf.sf_si));
  550         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  551                 /* Signal handler installed with SA_SIGINFO. */
  552                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  553                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  554 
  555                 /* Fill in POSIX parts */
  556                 sf.sf_si.si_signo = sig;
  557                 sf.sf_si.si_code = ksi->ksi_code;
  558                 sf.sf_si.si_addr = ksi->ksi_addr;
  559         } else {
  560                 /* Old FreeBSD-style arguments. */
  561                 sf.sf_siginfo = ksi->ksi_code;
  562                 sf.sf_addr = (register_t)ksi->ksi_addr;
  563                 sf.sf_ahu.sf_handler = catcher;
  564         }
  565         mtx_unlock(&psp->ps_mtx);
  566         PROC_UNLOCK(p);
  567 
  568         /*
  569          * If we're a vm86 process, we want to save the segment registers.
  570          * We also change eflags to be our emulated eflags, not the actual
  571          * eflags.
  572          */
  573         if (regs->tf_eflags & PSL_VM) {
  574                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  575                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  576 
  577                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  578                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  579                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  580                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  581 
  582                 if (vm86->vm86_has_vme == 0)
  583                         sf.sf_uc.uc_mcontext.mc_eflags =
  584                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  585                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  586 
  587                 /*
  588                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  589                  * syscalls made by the signal handler.  This just avoids
  590                  * wasting time for our lazy fixup of such faults.  PSL_NT
  591                  * does nothing in vm86 mode, but vm86 programs can set it
  592                  * almost legitimately in probes for old cpu types.
  593                  */
  594                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  595         }
  596 
  597         /*
  598          * Copy the sigframe out to the user's stack.
  599          */
  600         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  601 #ifdef DEBUG
  602                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  603 #endif
  604                 PROC_LOCK(p);
  605                 sigexit(td, SIGILL);
  606         }
  607 
  608         regs->tf_esp = (int)sfp;
  609         regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
  610             szfreebsd4_sigcode;
  611         regs->tf_eflags &= ~(PSL_T | PSL_D);
  612         regs->tf_cs = _ucodesel;
  613         regs->tf_ds = _udatasel;
  614         regs->tf_es = _udatasel;
  615         regs->tf_fs = _udatasel;
  616         regs->tf_ss = _udatasel;
  617         PROC_LOCK(p);
  618         mtx_lock(&psp->ps_mtx);
  619 }
  620 #endif  /* COMPAT_FREEBSD4 */
  621 
  622 void
  623 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  624 {
  625         struct sigframe sf, *sfp;
  626         struct proc *p;
  627         struct thread *td;
  628         struct sigacts *psp;
  629         char *sp;
  630         struct trapframe *regs;
  631         struct segment_descriptor *sdp;
  632         int sig;
  633         int oonstack;
  634 
  635         td = curthread;
  636         p = td->td_proc;
  637         PROC_LOCK_ASSERT(p, MA_OWNED);
  638         sig = ksi->ksi_signo;
  639         psp = p->p_sigacts;
  640         mtx_assert(&psp->ps_mtx, MA_OWNED);
  641 #ifdef COMPAT_FREEBSD4
  642         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  643                 freebsd4_sendsig(catcher, ksi, mask);
  644                 return;
  645         }
  646 #endif
  647 #ifdef COMPAT_43
  648         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  649                 osendsig(catcher, ksi, mask);
  650                 return;
  651         }
  652 #endif
  653         regs = td->td_frame;
  654         oonstack = sigonstack(regs->tf_esp);
  655 
  656         /* Save user context. */
  657         bzero(&sf, sizeof(sf));
  658         sf.sf_uc.uc_sigmask = *mask;
  659         sf.sf_uc.uc_stack = td->td_sigstk;
  660         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  661             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  662         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  663         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  664         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  665         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  666         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  667         fpstate_drop(td);
  668         /*
  669          * Unconditionally fill the fsbase and gsbase into the mcontext.
  670          */
  671         sdp = &td->td_pcb->pcb_fsd;
  672         sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
  673             sdp->sd_lobase;
  674         sdp = &td->td_pcb->pcb_gsd;
  675         sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
  676             sdp->sd_lobase;
  677         sf.sf_uc.uc_mcontext.mc_flags = 0;
  678         bzero(sf.sf_uc.uc_mcontext.mc_spare2,
  679             sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
  680         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  681 
  682         /* Allocate space for the signal handler context. */
  683         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  684             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  685                 sp = td->td_sigstk.ss_sp +
  686                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  687 #if defined(COMPAT_43)
  688                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  689 #endif
  690         } else
  691                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  692         /* Align to 16 bytes. */
  693         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  694 
  695         /* Translate the signal if appropriate. */
  696         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  697                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  698 
  699         /* Build the argument list for the signal handler. */
  700         sf.sf_signum = sig;
  701         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  702         bzero(&sf.sf_si, sizeof(sf.sf_si));
  703         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  704                 /* Signal handler installed with SA_SIGINFO. */
  705                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  706                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  707 
  708                 /* Fill in POSIX parts */
  709                 sf.sf_si = ksi->ksi_info;
  710                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  711         } else {
  712                 /* Old FreeBSD-style arguments. */
  713                 sf.sf_siginfo = ksi->ksi_code;
  714                 sf.sf_addr = (register_t)ksi->ksi_addr;
  715                 sf.sf_ahu.sf_handler = catcher;
  716         }
  717         mtx_unlock(&psp->ps_mtx);
  718         PROC_UNLOCK(p);
  719 
  720         /*
  721          * If we're a vm86 process, we want to save the segment registers.
  722          * We also change eflags to be our emulated eflags, not the actual
  723          * eflags.
  724          */
  725         if (regs->tf_eflags & PSL_VM) {
  726                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  727                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  728 
  729                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  730                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  731                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  732                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  733 
  734                 if (vm86->vm86_has_vme == 0)
  735                         sf.sf_uc.uc_mcontext.mc_eflags =
  736                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  737                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  738 
  739                 /*
  740                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  741                  * syscalls made by the signal handler.  This just avoids
  742                  * wasting time for our lazy fixup of such faults.  PSL_NT
  743                  * does nothing in vm86 mode, but vm86 programs can set it
  744                  * almost legitimately in probes for old cpu types.
  745                  */
  746                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  747         }
  748 
  749         /*
  750          * Copy the sigframe out to the user's stack.
  751          */
  752         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  753 #ifdef DEBUG
  754                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  755 #endif
  756                 PROC_LOCK(p);
  757                 sigexit(td, SIGILL);
  758         }
  759 
  760         regs->tf_esp = (int)sfp;
  761         regs->tf_eip = p->p_sysent->sv_sigcode_base;
  762         if (regs->tf_eip == 0)
  763                 regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
  764         regs->tf_eflags &= ~(PSL_T | PSL_D);
  765         regs->tf_cs = _ucodesel;
  766         regs->tf_ds = _udatasel;
  767         regs->tf_es = _udatasel;
  768         regs->tf_fs = _udatasel;
  769         regs->tf_ss = _udatasel;
  770         PROC_LOCK(p);
  771         mtx_lock(&psp->ps_mtx);
  772 }
  773 
  774 /*
  775  * System call to cleanup state after a signal
  776  * has been taken.  Reset signal mask and
  777  * stack state from context left by sendsig (above).
  778  * Return to previous pc and psl as specified by
  779  * context left by sendsig. Check carefully to
  780  * make sure that the user has not modified the
  781  * state to gain improper privileges.
  782  *
  783  * MPSAFE
  784  */
  785 #ifdef COMPAT_43
  786 int
  787 osigreturn(td, uap)
  788         struct thread *td;
  789         struct osigreturn_args /* {
  790                 struct osigcontext *sigcntxp;
  791         } */ *uap;
  792 {
  793         struct osigcontext sc;
  794         struct trapframe *regs;
  795         struct osigcontext *scp;
  796         int eflags, error;
  797         ksiginfo_t ksi;
  798 
  799         regs = td->td_frame;
  800         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  801         if (error != 0)
  802                 return (error);
  803         scp = &sc;
  804         eflags = scp->sc_ps;
  805         if (eflags & PSL_VM) {
  806                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  807                 struct vm86_kernel *vm86;
  808 
  809                 /*
  810                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  811                  * set up the vm86 area, and we can't enter vm86 mode.
  812                  */
  813                 if (td->td_pcb->pcb_ext == 0)
  814                         return (EINVAL);
  815                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  816                 if (vm86->vm86_inited == 0)
  817                         return (EINVAL);
  818 
  819                 /* Go back to user mode if both flags are set. */
  820                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  821                         ksiginfo_init_trap(&ksi);
  822                         ksi.ksi_signo = SIGBUS;
  823                         ksi.ksi_code = BUS_OBJERR;
  824                         ksi.ksi_addr = (void *)regs->tf_eip;
  825                         trapsignal(td, &ksi);
  826                 }
  827 
  828                 if (vm86->vm86_has_vme) {
  829                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  830                             (eflags & VME_USERCHANGE) | PSL_VM;
  831                 } else {
  832                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  833                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  834                             (eflags & VM_USERCHANGE) | PSL_VM;
  835                 }
  836                 tf->tf_vm86_ds = scp->sc_ds;
  837                 tf->tf_vm86_es = scp->sc_es;
  838                 tf->tf_vm86_fs = scp->sc_fs;
  839                 tf->tf_vm86_gs = scp->sc_gs;
  840                 tf->tf_ds = _udatasel;
  841                 tf->tf_es = _udatasel;
  842                 tf->tf_fs = _udatasel;
  843         } else {
  844                 /*
  845                  * Don't allow users to change privileged or reserved flags.
  846                  */
  847                 if (!EFL_SECURE(eflags, regs->tf_eflags)) {
  848                         return (EINVAL);
  849                 }
  850 
  851                 /*
  852                  * Don't allow users to load a valid privileged %cs.  Let the
  853                  * hardware check for invalid selectors, excess privilege in
  854                  * other selectors, invalid %eip's and invalid %esp's.
  855                  */
  856                 if (!CS_SECURE(scp->sc_cs)) {
  857                         ksiginfo_init_trap(&ksi);
  858                         ksi.ksi_signo = SIGBUS;
  859                         ksi.ksi_code = BUS_OBJERR;
  860                         ksi.ksi_trapno = T_PROTFLT;
  861                         ksi.ksi_addr = (void *)regs->tf_eip;
  862                         trapsignal(td, &ksi);
  863                         return (EINVAL);
  864                 }
  865                 regs->tf_ds = scp->sc_ds;
  866                 regs->tf_es = scp->sc_es;
  867                 regs->tf_fs = scp->sc_fs;
  868         }
  869 
  870         /* Restore remaining registers. */
  871         regs->tf_eax = scp->sc_eax;
  872         regs->tf_ebx = scp->sc_ebx;
  873         regs->tf_ecx = scp->sc_ecx;
  874         regs->tf_edx = scp->sc_edx;
  875         regs->tf_esi = scp->sc_esi;
  876         regs->tf_edi = scp->sc_edi;
  877         regs->tf_cs = scp->sc_cs;
  878         regs->tf_ss = scp->sc_ss;
  879         regs->tf_isp = scp->sc_isp;
  880         regs->tf_ebp = scp->sc_fp;
  881         regs->tf_esp = scp->sc_sp;
  882         regs->tf_eip = scp->sc_pc;
  883         regs->tf_eflags = eflags;
  884 
  885 #if defined(COMPAT_43)
  886         if (scp->sc_onstack & 1)
  887                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  888         else
  889                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  890 #endif
  891         kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
  892             SIGPROCMASK_OLD);
  893         return (EJUSTRETURN);
  894 }
  895 #endif /* COMPAT_43 */
  896 
  897 #ifdef COMPAT_FREEBSD4
  898 /*
  899  * MPSAFE
  900  */
  901 int
  902 freebsd4_sigreturn(td, uap)
  903         struct thread *td;
  904         struct freebsd4_sigreturn_args /* {
  905                 const ucontext4 *sigcntxp;
  906         } */ *uap;
  907 {
  908         struct ucontext4 uc;
  909         struct trapframe *regs;
  910         struct ucontext4 *ucp;
  911         int cs, eflags, error;
  912         ksiginfo_t ksi;
  913 
  914         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  915         if (error != 0)
  916                 return (error);
  917         ucp = &uc;
  918         regs = td->td_frame;
  919         eflags = ucp->uc_mcontext.mc_eflags;
  920         if (eflags & PSL_VM) {
  921                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  922                 struct vm86_kernel *vm86;
  923 
  924                 /*
  925                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  926                  * set up the vm86 area, and we can't enter vm86 mode.
  927                  */
  928                 if (td->td_pcb->pcb_ext == 0)
  929                         return (EINVAL);
  930                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  931                 if (vm86->vm86_inited == 0)
  932                         return (EINVAL);
  933 
  934                 /* Go back to user mode if both flags are set. */
  935                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  936                         ksiginfo_init_trap(&ksi);
  937                         ksi.ksi_signo = SIGBUS;
  938                         ksi.ksi_code = BUS_OBJERR;
  939                         ksi.ksi_addr = (void *)regs->tf_eip;
  940                         trapsignal(td, &ksi);
  941                 }
  942                 if (vm86->vm86_has_vme) {
  943                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  944                             (eflags & VME_USERCHANGE) | PSL_VM;
  945                 } else {
  946                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  947                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  948                             (eflags & VM_USERCHANGE) | PSL_VM;
  949                 }
  950                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  951                 tf->tf_eflags = eflags;
  952                 tf->tf_vm86_ds = tf->tf_ds;
  953                 tf->tf_vm86_es = tf->tf_es;
  954                 tf->tf_vm86_fs = tf->tf_fs;
  955                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  956                 tf->tf_ds = _udatasel;
  957                 tf->tf_es = _udatasel;
  958                 tf->tf_fs = _udatasel;
  959         } else {
  960                 /*
  961                  * Don't allow users to change privileged or reserved flags.
  962                  */
  963                 if (!EFL_SECURE(eflags, regs->tf_eflags)) {
  964                         uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
  965                             td->td_proc->p_pid, td->td_name, eflags);
  966                         return (EINVAL);
  967                 }
  968 
  969                 /*
  970                  * Don't allow users to load a valid privileged %cs.  Let the
  971                  * hardware check for invalid selectors, excess privilege in
  972                  * other selectors, invalid %eip's and invalid %esp's.
  973                  */
  974                 cs = ucp->uc_mcontext.mc_cs;
  975                 if (!CS_SECURE(cs)) {
  976                         uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
  977                             td->td_proc->p_pid, td->td_name, cs);
  978                         ksiginfo_init_trap(&ksi);
  979                         ksi.ksi_signo = SIGBUS;
  980                         ksi.ksi_code = BUS_OBJERR;
  981                         ksi.ksi_trapno = T_PROTFLT;
  982                         ksi.ksi_addr = (void *)regs->tf_eip;
  983                         trapsignal(td, &ksi);
  984                         return (EINVAL);
  985                 }
  986 
  987                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  988         }
  989 
  990 #if defined(COMPAT_43)
  991         if (ucp->uc_mcontext.mc_onstack & 1)
  992                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  993         else
  994                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  995 #endif
  996         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  997         return (EJUSTRETURN);
  998 }
  999 #endif  /* COMPAT_FREEBSD4 */
 1000 
 1001 /*
 1002  * MPSAFE
 1003  */
 1004 int
 1005 sys_sigreturn(td, uap)
 1006         struct thread *td;
 1007         struct sigreturn_args /* {
 1008                 const struct __ucontext *sigcntxp;
 1009         } */ *uap;
 1010 {
 1011         ucontext_t uc;
 1012         struct trapframe *regs;
 1013         ucontext_t *ucp;
 1014         int cs, eflags, error, ret;
 1015         ksiginfo_t ksi;
 1016 
 1017         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
 1018         if (error != 0)
 1019                 return (error);
 1020         ucp = &uc;
 1021         regs = td->td_frame;
 1022         eflags = ucp->uc_mcontext.mc_eflags;
 1023         if (eflags & PSL_VM) {
 1024                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
 1025                 struct vm86_kernel *vm86;
 1026 
 1027                 /*
 1028                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
 1029                  * set up the vm86 area, and we can't enter vm86 mode.
 1030                  */
 1031                 if (td->td_pcb->pcb_ext == 0)
 1032                         return (EINVAL);
 1033                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
 1034                 if (vm86->vm86_inited == 0)
 1035                         return (EINVAL);
 1036 
 1037                 /* Go back to user mode if both flags are set. */
 1038                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
 1039                         ksiginfo_init_trap(&ksi);
 1040                         ksi.ksi_signo = SIGBUS;
 1041                         ksi.ksi_code = BUS_OBJERR;
 1042                         ksi.ksi_addr = (void *)regs->tf_eip;
 1043                         trapsignal(td, &ksi);
 1044                 }
 1045 
 1046                 if (vm86->vm86_has_vme) {
 1047                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
 1048                             (eflags & VME_USERCHANGE) | PSL_VM;
 1049                 } else {
 1050                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
 1051                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
 1052                             (eflags & VM_USERCHANGE) | PSL_VM;
 1053                 }
 1054                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
 1055                 tf->tf_eflags = eflags;
 1056                 tf->tf_vm86_ds = tf->tf_ds;
 1057                 tf->tf_vm86_es = tf->tf_es;
 1058                 tf->tf_vm86_fs = tf->tf_fs;
 1059                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
 1060                 tf->tf_ds = _udatasel;
 1061                 tf->tf_es = _udatasel;
 1062                 tf->tf_fs = _udatasel;
 1063         } else {
 1064                 /*
 1065                  * Don't allow users to change privileged or reserved flags.
 1066                  */
 1067                 if (!EFL_SECURE(eflags, regs->tf_eflags)) {
 1068                         uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
 1069                             td->td_proc->p_pid, td->td_name, eflags);
 1070                         return (EINVAL);
 1071                 }
 1072 
 1073                 /*
 1074                  * Don't allow users to load a valid privileged %cs.  Let the
 1075                  * hardware check for invalid selectors, excess privilege in
 1076                  * other selectors, invalid %eip's and invalid %esp's.
 1077                  */
 1078                 cs = ucp->uc_mcontext.mc_cs;
 1079                 if (!CS_SECURE(cs)) {
 1080                         uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
 1081                             td->td_proc->p_pid, td->td_name, cs);
 1082                         ksiginfo_init_trap(&ksi);
 1083                         ksi.ksi_signo = SIGBUS;
 1084                         ksi.ksi_code = BUS_OBJERR;
 1085                         ksi.ksi_trapno = T_PROTFLT;
 1086                         ksi.ksi_addr = (void *)regs->tf_eip;
 1087                         trapsignal(td, &ksi);
 1088                         return (EINVAL);
 1089                 }
 1090 
 1091                 ret = set_fpcontext(td, &ucp->uc_mcontext);
 1092                 if (ret != 0)
 1093                         return (ret);
 1094                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1095         }
 1096 
 1097 #if defined(COMPAT_43)
 1098         if (ucp->uc_mcontext.mc_onstack & 1)
 1099                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1100         else
 1101                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1102 #endif
 1103 
 1104         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1105         return (EJUSTRETURN);
 1106 }
 1107 
 1108 /*
 1109  * Machine dependent boot() routine
 1110  *
 1111  * I haven't seen anything to put here yet
 1112  * Possibly some stuff might be grafted back here from boot()
 1113  */
 1114 void
 1115 cpu_boot(int howto)
 1116 {
 1117 }
 1118 
 1119 /*
 1120  * Flush the D-cache for non-DMA I/O so that the I-cache can
 1121  * be made coherent later.
 1122  */
 1123 void
 1124 cpu_flush_dcache(void *ptr, size_t len)
 1125 {
 1126         /* Not applicable */
 1127 }
 1128 
 1129 /* Get current clock frequency for the given cpu id. */
 1130 int
 1131 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1132 {
 1133         uint64_t tsc1, tsc2;
 1134         uint64_t acnt, mcnt, perf;
 1135         register_t reg;
 1136 
 1137         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1138                 return (EINVAL);
 1139         if ((cpu_feature & CPUID_TSC) == 0)
 1140                 return (EOPNOTSUPP);
 1141 
 1142         /*
 1143          * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
 1144          * DELAY(9) based logic fails.
 1145          */
 1146         if (tsc_is_invariant && !tsc_perf_stat)
 1147                 return (EOPNOTSUPP);
 1148 
 1149 #ifdef SMP
 1150         if (smp_cpus > 1) {
 1151                 /* Schedule ourselves on the indicated cpu. */
 1152                 thread_lock(curthread);
 1153                 sched_bind(curthread, cpu_id);
 1154                 thread_unlock(curthread);
 1155         }
 1156 #endif
 1157 
 1158         /* Calibrate by measuring a short delay. */
 1159         reg = intr_disable();
 1160         if (tsc_is_invariant) {
 1161                 wrmsr(MSR_MPERF, 0);
 1162                 wrmsr(MSR_APERF, 0);
 1163                 tsc1 = rdtsc();
 1164                 DELAY(1000);
 1165                 mcnt = rdmsr(MSR_MPERF);
 1166                 acnt = rdmsr(MSR_APERF);
 1167                 tsc2 = rdtsc();
 1168                 intr_restore(reg);
 1169                 perf = 1000 * acnt / mcnt;
 1170                 *rate = (tsc2 - tsc1) * perf;
 1171         } else {
 1172                 tsc1 = rdtsc();
 1173                 DELAY(1000);
 1174                 tsc2 = rdtsc();
 1175                 intr_restore(reg);
 1176                 *rate = (tsc2 - tsc1) * 1000;
 1177         }
 1178 
 1179 #ifdef SMP
 1180         if (smp_cpus > 1) {
 1181                 thread_lock(curthread);
 1182                 sched_unbind(curthread);
 1183                 thread_unlock(curthread);
 1184         }
 1185 #endif
 1186 
 1187         return (0);
 1188 }
 1189 
 1190 #ifdef XEN
 1191 
 1192 static void
 1193 idle_block(void)
 1194 {
 1195 
 1196         HYPERVISOR_sched_op(SCHEDOP_block, 0);
 1197 }
 1198 
 1199 void
 1200 cpu_halt(void)
 1201 {
 1202         HYPERVISOR_shutdown(SHUTDOWN_poweroff);
 1203 }
 1204 
 1205 int scheduler_running;
 1206 
 1207 static void
 1208 cpu_idle_hlt(sbintime_t sbt)
 1209 {
 1210 
 1211         scheduler_running = 1;
 1212         enable_intr();
 1213         idle_block();
 1214 }
 1215 
 1216 #else
 1217 /*
 1218  * Shutdown the CPU as much as possible
 1219  */
 1220 void
 1221 cpu_halt(void)
 1222 {
 1223         for (;;)
 1224                 halt();
 1225 }
 1226 
 1227 #endif
 1228 
 1229 void (*cpu_idle_hook)(sbintime_t) = NULL;       /* ACPI idle hook. */
 1230 static int      cpu_ident_amdc1e = 0;   /* AMD C1E supported. */
 1231 static int      idle_mwait = 1;         /* Use MONITOR/MWAIT for short idle. */
 1232 TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
 1233 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
 1234     0, "Use MONITOR/MWAIT for short idle");
 1235 
 1236 #define STATE_RUNNING   0x0
 1237 #define STATE_MWAIT     0x1
 1238 #define STATE_SLEEPING  0x2
 1239 
 1240 static void
 1241 cpu_idle_acpi(sbintime_t sbt)
 1242 {
 1243         int *state;
 1244 
 1245         state = (int *)PCPU_PTR(monitorbuf);
 1246         *state = STATE_SLEEPING;
 1247 
 1248         /* See comments in cpu_idle_hlt(). */
 1249         disable_intr();
 1250         if (sched_runnable())
 1251                 enable_intr();
 1252         else if (cpu_idle_hook)
 1253                 cpu_idle_hook(sbt);
 1254         else
 1255                 __asm __volatile("sti; hlt");
 1256         *state = STATE_RUNNING;
 1257 }
 1258 
 1259 #ifndef XEN
 1260 static void
 1261 cpu_idle_hlt(sbintime_t sbt)
 1262 {
 1263         int *state;
 1264 
 1265         state = (int *)PCPU_PTR(monitorbuf);
 1266         *state = STATE_SLEEPING;
 1267 
 1268         /*
 1269          * Since we may be in a critical section from cpu_idle(), if
 1270          * an interrupt fires during that critical section we may have
 1271          * a pending preemption.  If the CPU halts, then that thread
 1272          * may not execute until a later interrupt awakens the CPU.
 1273          * To handle this race, check for a runnable thread after
 1274          * disabling interrupts and immediately return if one is
 1275          * found.  Also, we must absolutely guarentee that hlt is
 1276          * the next instruction after sti.  This ensures that any
 1277          * interrupt that fires after the call to disable_intr() will
 1278          * immediately awaken the CPU from hlt.  Finally, please note
 1279          * that on x86 this works fine because of interrupts enabled only
 1280          * after the instruction following sti takes place, while IF is set
 1281          * to 1 immediately, allowing hlt instruction to acknowledge the
 1282          * interrupt.
 1283          */
 1284         disable_intr();
 1285         if (sched_runnable())
 1286                 enable_intr();
 1287         else
 1288                 __asm __volatile("sti; hlt");
 1289         *state = STATE_RUNNING;
 1290 }
 1291 #endif
 1292 
 1293 /*
 1294  * MWAIT cpu power states.  Lower 4 bits are sub-states.
 1295  */
 1296 #define MWAIT_C0        0xf0
 1297 #define MWAIT_C1        0x00
 1298 #define MWAIT_C2        0x10
 1299 #define MWAIT_C3        0x20
 1300 #define MWAIT_C4        0x30
 1301 
 1302 static void
 1303 cpu_idle_mwait(sbintime_t sbt)
 1304 {
 1305         int *state;
 1306 
 1307         state = (int *)PCPU_PTR(monitorbuf);
 1308         *state = STATE_MWAIT;
 1309 
 1310         /* See comments in cpu_idle_hlt(). */
 1311         disable_intr();
 1312         if (sched_runnable()) {
 1313                 enable_intr();
 1314                 *state = STATE_RUNNING;
 1315                 return;
 1316         }
 1317         cpu_monitor(state, 0, 0);
 1318         if (*state == STATE_MWAIT)
 1319                 __asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
 1320         else
 1321                 enable_intr();
 1322         *state = STATE_RUNNING;
 1323 }
 1324 
 1325 static void
 1326 cpu_idle_spin(sbintime_t sbt)
 1327 {
 1328         int *state;
 1329         int i;
 1330 
 1331         state = (int *)PCPU_PTR(monitorbuf);
 1332         *state = STATE_RUNNING;
 1333 
 1334         /*
 1335          * The sched_runnable() call is racy but as long as there is
 1336          * a loop missing it one time will have just a little impact if any 
 1337          * (and it is much better than missing the check at all).
 1338          */
 1339         for (i = 0; i < 1000; i++) {
 1340                 if (sched_runnable())
 1341                         return;
 1342                 cpu_spinwait();
 1343         }
 1344 }
 1345 
 1346 /*
 1347  * C1E renders the local APIC timer dead, so we disable it by
 1348  * reading the Interrupt Pending Message register and clearing
 1349  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
 1350  * 
 1351  * Reference:
 1352  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
 1353  *   #32559 revision 3.00+
 1354  */
 1355 #define MSR_AMDK8_IPM           0xc0010055
 1356 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
 1357 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
 1358 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
 1359 
 1360 static void
 1361 cpu_probe_amdc1e(void)
 1362 {
 1363 
 1364         /*
 1365          * Detect the presence of C1E capability mostly on latest
 1366          * dual-cores (or future) k8 family.
 1367          */
 1368         if (cpu_vendor_id == CPU_VENDOR_AMD &&
 1369             (cpu_id & 0x00000f00) == 0x00000f00 &&
 1370             (cpu_id & 0x0fff0000) >=  0x00040000) {
 1371                 cpu_ident_amdc1e = 1;
 1372         }
 1373 }
 1374 
 1375 #ifdef XEN
 1376 void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
 1377 #else
 1378 void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
 1379 #endif
 1380 
 1381 void
 1382 cpu_idle(int busy)
 1383 {
 1384 #ifndef XEN
 1385         uint64_t msr;
 1386 #endif
 1387         sbintime_t sbt = -1;
 1388 
 1389         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
 1390             busy, curcpu);
 1391 #if defined(MP_WATCHDOG) && !defined(XEN)
 1392         ap_watchdog(PCPU_GET(cpuid));
 1393 #endif
 1394 #ifndef XEN
 1395         /* If we are busy - try to use fast methods. */
 1396         if (busy) {
 1397                 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
 1398                         cpu_idle_mwait(busy);
 1399                         goto out;
 1400                 }
 1401         }
 1402 #endif
 1403 
 1404         /* If we have time - switch timers into idle mode. */
 1405         if (!busy) {
 1406                 critical_enter();
 1407                 sbt = cpu_idleclock();
 1408         }
 1409 
 1410 #ifndef XEN
 1411         /* Apply AMD APIC timer C1E workaround. */
 1412         if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
 1413                 msr = rdmsr(MSR_AMDK8_IPM);
 1414                 if (msr & AMDK8_CMPHALT)
 1415                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
 1416         }
 1417 #endif
 1418 
 1419         /* Call main idle method. */
 1420         cpu_idle_fn(sbt);
 1421 
 1422         /* Switch timers mack into active mode. */
 1423         if (!busy) {
 1424                 cpu_activeclock();
 1425                 critical_exit();
 1426         }
 1427 #ifndef XEN
 1428 out:
 1429 #endif
 1430         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
 1431             busy, curcpu);
 1432 }
 1433 
 1434 int
 1435 cpu_idle_wakeup(int cpu)
 1436 {
 1437         struct pcpu *pcpu;
 1438         int *state;
 1439 
 1440         pcpu = pcpu_find(cpu);
 1441         state = (int *)pcpu->pc_monitorbuf;
 1442         /*
 1443          * This doesn't need to be atomic since missing the race will
 1444          * simply result in unnecessary IPIs.
 1445          */
 1446         if (*state == STATE_SLEEPING)
 1447                 return (0);
 1448         if (*state == STATE_MWAIT)
 1449                 *state = STATE_RUNNING;
 1450         return (1);
 1451 }
 1452 
 1453 /*
 1454  * Ordered by speed/power consumption.
 1455  */
 1456 struct {
 1457         void    *id_fn;
 1458         char    *id_name;
 1459 } idle_tbl[] = {
 1460         { cpu_idle_spin, "spin" },
 1461         { cpu_idle_mwait, "mwait" },
 1462         { cpu_idle_hlt, "hlt" },
 1463         { cpu_idle_acpi, "acpi" },
 1464         { NULL, NULL }
 1465 };
 1466 
 1467 static int
 1468 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
 1469 {
 1470         char *avail, *p;
 1471         int error;
 1472         int i;
 1473 
 1474         avail = malloc(256, M_TEMP, M_WAITOK);
 1475         p = avail;
 1476         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1477                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1478                     (cpu_feature2 & CPUID2_MON) == 0)
 1479                         continue;
 1480                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
 1481                     cpu_idle_hook == NULL)
 1482                         continue;
 1483                 p += sprintf(p, "%s%s", p != avail ? ", " : "",
 1484                     idle_tbl[i].id_name);
 1485         }
 1486         error = sysctl_handle_string(oidp, avail, 0, req);
 1487         free(avail, M_TEMP);
 1488         return (error);
 1489 }
 1490 
 1491 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
 1492     0, 0, idle_sysctl_available, "A", "list of available idle functions");
 1493 
 1494 static int
 1495 idle_sysctl(SYSCTL_HANDLER_ARGS)
 1496 {
 1497         char buf[16];
 1498         int error;
 1499         char *p;
 1500         int i;
 1501 
 1502         p = "unknown";
 1503         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1504                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
 1505                         p = idle_tbl[i].id_name;
 1506                         break;
 1507                 }
 1508         }
 1509         strncpy(buf, p, sizeof(buf));
 1510         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 1511         if (error != 0 || req->newptr == NULL)
 1512                 return (error);
 1513         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1514                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1515                     (cpu_feature2 & CPUID2_MON) == 0)
 1516                         continue;
 1517                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
 1518                     cpu_idle_hook == NULL)
 1519                         continue;
 1520                 if (strcmp(idle_tbl[i].id_name, buf))
 1521                         continue;
 1522                 cpu_idle_fn = idle_tbl[i].id_fn;
 1523                 return (0);
 1524         }
 1525         return (EINVAL);
 1526 }
 1527 
 1528 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
 1529     idle_sysctl, "A", "currently selected idle function");
 1530 
 1531 /*
 1532  * Reset registers to default values on exec.
 1533  */
 1534 void
 1535 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
 1536 {
 1537         struct trapframe *regs = td->td_frame;
 1538         struct pcb *pcb = td->td_pcb;
 1539 
 1540         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1541         pcb->pcb_gs = _udatasel;
 1542         load_gs(_udatasel);
 1543 
 1544         mtx_lock_spin(&dt_lock);
 1545         if (td->td_proc->p_md.md_ldt)
 1546                 user_ldt_free(td);
 1547         else
 1548                 mtx_unlock_spin(&dt_lock);
 1549   
 1550         bzero((char *)regs, sizeof(struct trapframe));
 1551         regs->tf_eip = imgp->entry_addr;
 1552         regs->tf_esp = stack;
 1553         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1554         regs->tf_ss = _udatasel;
 1555         regs->tf_ds = _udatasel;
 1556         regs->tf_es = _udatasel;
 1557         regs->tf_fs = _udatasel;
 1558         regs->tf_cs = _ucodesel;
 1559 
 1560         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1561         regs->tf_ebx = imgp->ps_strings;
 1562 
 1563         /*
 1564          * Reset the hardware debug registers if they were in use.
 1565          * They won't have any meaning for the newly exec'd process.  
 1566          */
 1567         if (pcb->pcb_flags & PCB_DBREGS) {
 1568                 pcb->pcb_dr0 = 0;
 1569                 pcb->pcb_dr1 = 0;
 1570                 pcb->pcb_dr2 = 0;
 1571                 pcb->pcb_dr3 = 0;
 1572                 pcb->pcb_dr6 = 0;
 1573                 pcb->pcb_dr7 = 0;
 1574                 if (pcb == curpcb) {
 1575                         /*
 1576                          * Clear the debug registers on the running
 1577                          * CPU, otherwise they will end up affecting
 1578                          * the next process we switch to.
 1579                          */
 1580                         reset_dbregs();
 1581                 }
 1582                 pcb->pcb_flags &= ~PCB_DBREGS;
 1583         }
 1584 
 1585         /*
 1586          * Initialize the math emulator (if any) for the current process.
 1587          * Actually, just clear the bit that says that the emulator has
 1588          * been initialized.  Initialization is delayed until the process
 1589          * traps to the emulator (if it is done at all) mainly because
 1590          * emulators don't provide an entry point for initialization.
 1591          */
 1592         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1593         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1594 
 1595         /*
 1596          * Drop the FP state if we hold it, so that the process gets a
 1597          * clean FP state if it uses the FPU again.
 1598          */
 1599         fpstate_drop(td);
 1600 
 1601         /*
 1602          * XXX - Linux emulator
 1603          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1604          * on it.
 1605          */
 1606         td->td_retval[1] = 0;
 1607 }
 1608 
 1609 void
 1610 cpu_setregs(void)
 1611 {
 1612         unsigned int cr0;
 1613 
 1614         cr0 = rcr0();
 1615 
 1616         /*
 1617          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1618          *
 1619          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1620          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1621          * bit to control the trap, because setting the CR0_EM bit does
 1622          * not cause WAIT instructions to trap.  It's important to trap
 1623          * WAIT instructions - otherwise the "wait" variants of no-wait
 1624          * control instructions would degenerate to the "no-wait" variants
 1625          * after FP context switches but work correctly otherwise.  It's
 1626          * particularly important to trap WAITs when there is no NPX -
 1627          * otherwise the "wait" variants would always degenerate.
 1628          *
 1629          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1630          * Setting it should fail or do nothing on lesser processors.
 1631          */
 1632         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1633         load_cr0(cr0);
 1634         load_gs(_udatasel);
 1635 }
 1636 
 1637 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1638 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1639         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1640 
 1641 static char bootmethod[16] = "BIOS";
 1642 SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
 1643     "System firmware boot method");
 1644 
 1645 /*
 1646  * Initialize 386 and configure to run kernel
 1647  */
 1648 
 1649 /*
 1650  * Initialize segments & interrupt table
 1651  */
 1652 
 1653 int _default_ldt;
 1654 
 1655 #ifdef XEN
 1656 union descriptor *gdt;
 1657 union descriptor *ldt;
 1658 #else
 1659 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1660 union descriptor ldt[NLDT];             /* local descriptor table */
 1661 #endif
 1662 static struct gate_descriptor idt0[NIDT];
 1663 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1664 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1665 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1666 
 1667 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1668 extern int has_f00f_bug;
 1669 #endif
 1670 
 1671 static struct i386tss dblfault_tss;
 1672 static char dblfault_stack[PAGE_SIZE];
 1673 
 1674 extern  vm_offset_t     proc0kstack;
 1675 
 1676 
 1677 /*
 1678  * software prototypes -- in more palatable form.
 1679  *
 1680  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1681  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1682  */
 1683 struct soft_segment_descriptor gdt_segs[] = {
 1684 /* GNULL_SEL    0 Null Descriptor */
 1685 {       .ssd_base = 0x0,
 1686         .ssd_limit = 0x0,
 1687         .ssd_type = 0,
 1688         .ssd_dpl = SEL_KPL,
 1689         .ssd_p = 0,
 1690         .ssd_xx = 0, .ssd_xx1 = 0,
 1691         .ssd_def32 = 0,
 1692         .ssd_gran = 0           },
 1693 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1694 {       .ssd_base = 0x0,
 1695         .ssd_limit = 0xfffff,
 1696         .ssd_type = SDT_MEMRWA,
 1697         .ssd_dpl = SEL_KPL,
 1698         .ssd_p = 1,
 1699         .ssd_xx = 0, .ssd_xx1 = 0,
 1700         .ssd_def32 = 1,
 1701         .ssd_gran = 1           },
 1702 /* GUFS_SEL     2 %fs Descriptor for user */
 1703 {       .ssd_base = 0x0,
 1704         .ssd_limit = 0xfffff,
 1705         .ssd_type = SDT_MEMRWA,
 1706         .ssd_dpl = SEL_UPL,
 1707         .ssd_p = 1,
 1708         .ssd_xx = 0, .ssd_xx1 = 0,
 1709         .ssd_def32 = 1,
 1710         .ssd_gran = 1           },
 1711 /* GUGS_SEL     3 %gs Descriptor for user */
 1712 {       .ssd_base = 0x0,
 1713         .ssd_limit = 0xfffff,
 1714         .ssd_type = SDT_MEMRWA,
 1715         .ssd_dpl = SEL_UPL,
 1716         .ssd_p = 1,
 1717         .ssd_xx = 0, .ssd_xx1 = 0,
 1718         .ssd_def32 = 1,
 1719         .ssd_gran = 1           },
 1720 /* GCODE_SEL    4 Code Descriptor for kernel */
 1721 {       .ssd_base = 0x0,
 1722         .ssd_limit = 0xfffff,
 1723         .ssd_type = SDT_MEMERA,
 1724         .ssd_dpl = SEL_KPL,
 1725         .ssd_p = 1,
 1726         .ssd_xx = 0, .ssd_xx1 = 0,
 1727         .ssd_def32 = 1,
 1728         .ssd_gran = 1           },
 1729 /* GDATA_SEL    5 Data Descriptor for kernel */
 1730 {       .ssd_base = 0x0,
 1731         .ssd_limit = 0xfffff,
 1732         .ssd_type = SDT_MEMRWA,
 1733         .ssd_dpl = SEL_KPL,
 1734         .ssd_p = 1,
 1735         .ssd_xx = 0, .ssd_xx1 = 0,
 1736         .ssd_def32 = 1,
 1737         .ssd_gran = 1           },
 1738 /* GUCODE_SEL   6 Code Descriptor for user */
 1739 {       .ssd_base = 0x0,
 1740         .ssd_limit = 0xfffff,
 1741         .ssd_type = SDT_MEMERA,
 1742         .ssd_dpl = SEL_UPL,
 1743         .ssd_p = 1,
 1744         .ssd_xx = 0, .ssd_xx1 = 0,
 1745         .ssd_def32 = 1,
 1746         .ssd_gran = 1           },
 1747 /* GUDATA_SEL   7 Data Descriptor for user */
 1748 {       .ssd_base = 0x0,
 1749         .ssd_limit = 0xfffff,
 1750         .ssd_type = SDT_MEMRWA,
 1751         .ssd_dpl = SEL_UPL,
 1752         .ssd_p = 1,
 1753         .ssd_xx = 0, .ssd_xx1 = 0,
 1754         .ssd_def32 = 1,
 1755         .ssd_gran = 1           },
 1756 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1757 {       .ssd_base = 0x400,
 1758         .ssd_limit = 0xfffff,
 1759         .ssd_type = SDT_MEMRWA,
 1760         .ssd_dpl = SEL_KPL,
 1761         .ssd_p = 1,
 1762         .ssd_xx = 0, .ssd_xx1 = 0,
 1763         .ssd_def32 = 1,
 1764         .ssd_gran = 1           },
 1765 #ifndef XEN
 1766 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1767 {
 1768         .ssd_base = 0x0,
 1769         .ssd_limit = sizeof(struct i386tss)-1,
 1770         .ssd_type = SDT_SYS386TSS,
 1771         .ssd_dpl = 0,
 1772         .ssd_p = 1,
 1773         .ssd_xx = 0, .ssd_xx1 = 0,
 1774         .ssd_def32 = 0,
 1775         .ssd_gran = 0           },
 1776 /* GLDT_SEL     10 LDT Descriptor */
 1777 {       .ssd_base = (int) ldt,
 1778         .ssd_limit = sizeof(ldt)-1,
 1779         .ssd_type = SDT_SYSLDT,
 1780         .ssd_dpl = SEL_UPL,
 1781         .ssd_p = 1,
 1782         .ssd_xx = 0, .ssd_xx1 = 0,
 1783         .ssd_def32 = 0,
 1784         .ssd_gran = 0           },
 1785 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1786 {       .ssd_base = (int) ldt,
 1787         .ssd_limit = (512 * sizeof(union descriptor)-1),
 1788         .ssd_type = SDT_SYSLDT,
 1789         .ssd_dpl = 0,
 1790         .ssd_p = 1,
 1791         .ssd_xx = 0, .ssd_xx1 = 0,
 1792         .ssd_def32 = 0,
 1793         .ssd_gran = 0           },
 1794 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1795 {       .ssd_base = (int) &dblfault_tss,
 1796         .ssd_limit = sizeof(struct i386tss)-1,
 1797         .ssd_type = SDT_SYS386TSS,
 1798         .ssd_dpl = 0,
 1799         .ssd_p = 1,
 1800         .ssd_xx = 0, .ssd_xx1 = 0,
 1801         .ssd_def32 = 0,
 1802         .ssd_gran = 0           },
 1803 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1804 {       .ssd_base = 0,
 1805         .ssd_limit = 0xfffff,
 1806         .ssd_type = SDT_MEMERA,
 1807         .ssd_dpl = 0,
 1808         .ssd_p = 1,
 1809         .ssd_xx = 0, .ssd_xx1 = 0,
 1810         .ssd_def32 = 0,
 1811         .ssd_gran = 1           },
 1812 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1813 {       .ssd_base = 0,
 1814         .ssd_limit = 0xfffff,
 1815         .ssd_type = SDT_MEMERA,
 1816         .ssd_dpl = 0,
 1817         .ssd_p = 1,
 1818         .ssd_xx = 0, .ssd_xx1 = 0,
 1819         .ssd_def32 = 0,
 1820         .ssd_gran = 1           },
 1821 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1822 {       .ssd_base = 0,
 1823         .ssd_limit = 0xfffff,
 1824         .ssd_type = SDT_MEMRWA,
 1825         .ssd_dpl = 0,
 1826         .ssd_p = 1,
 1827         .ssd_xx = 0, .ssd_xx1 = 0,
 1828         .ssd_def32 = 1,
 1829         .ssd_gran = 1           },
 1830 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1831 {       .ssd_base = 0,
 1832         .ssd_limit = 0xfffff,
 1833         .ssd_type = SDT_MEMRWA,
 1834         .ssd_dpl = 0,
 1835         .ssd_p = 1,
 1836         .ssd_xx = 0, .ssd_xx1 = 0,
 1837         .ssd_def32 = 0,
 1838         .ssd_gran = 1           },
 1839 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1840 {       .ssd_base = 0,
 1841         .ssd_limit = 0xfffff,
 1842         .ssd_type = SDT_MEMRWA,
 1843         .ssd_dpl = 0,
 1844         .ssd_p = 1,
 1845         .ssd_xx = 0, .ssd_xx1 = 0,
 1846         .ssd_def32 = 0,
 1847         .ssd_gran = 1           },
 1848 /* GNDIS_SEL    18 NDIS Descriptor */
 1849 {       .ssd_base = 0x0,
 1850         .ssd_limit = 0x0,
 1851         .ssd_type = 0,
 1852         .ssd_dpl = 0,
 1853         .ssd_p = 0,
 1854         .ssd_xx = 0, .ssd_xx1 = 0,
 1855         .ssd_def32 = 0,
 1856         .ssd_gran = 0           },
 1857 #endif /* !XEN */
 1858 };
 1859 
 1860 static struct soft_segment_descriptor ldt_segs[] = {
 1861         /* Null Descriptor - overwritten by call gate */
 1862 {       .ssd_base = 0x0,
 1863         .ssd_limit = 0x0,
 1864         .ssd_type = 0,
 1865         .ssd_dpl = 0,
 1866         .ssd_p = 0,
 1867         .ssd_xx = 0, .ssd_xx1 = 0,
 1868         .ssd_def32 = 0,
 1869         .ssd_gran = 0           },
 1870         /* Null Descriptor - overwritten by call gate */
 1871 {       .ssd_base = 0x0,
 1872         .ssd_limit = 0x0,
 1873         .ssd_type = 0,
 1874         .ssd_dpl = 0,
 1875         .ssd_p = 0,
 1876         .ssd_xx = 0, .ssd_xx1 = 0,
 1877         .ssd_def32 = 0,
 1878         .ssd_gran = 0           },
 1879         /* Null Descriptor - overwritten by call gate */
 1880 {       .ssd_base = 0x0,
 1881         .ssd_limit = 0x0,
 1882         .ssd_type = 0,
 1883         .ssd_dpl = 0,
 1884         .ssd_p = 0,
 1885         .ssd_xx = 0, .ssd_xx1 = 0,
 1886         .ssd_def32 = 0,
 1887         .ssd_gran = 0           },
 1888         /* Code Descriptor for user */
 1889 {       .ssd_base = 0x0,
 1890         .ssd_limit = 0xfffff,
 1891         .ssd_type = SDT_MEMERA,
 1892         .ssd_dpl = SEL_UPL,
 1893         .ssd_p = 1,
 1894         .ssd_xx = 0, .ssd_xx1 = 0,
 1895         .ssd_def32 = 1,
 1896         .ssd_gran = 1           },
 1897         /* Null Descriptor - overwritten by call gate */
 1898 {       .ssd_base = 0x0,
 1899         .ssd_limit = 0x0,
 1900         .ssd_type = 0,
 1901         .ssd_dpl = 0,
 1902         .ssd_p = 0,
 1903         .ssd_xx = 0, .ssd_xx1 = 0,
 1904         .ssd_def32 = 0,
 1905         .ssd_gran = 0           },
 1906         /* Data Descriptor for user */
 1907 {       .ssd_base = 0x0,
 1908         .ssd_limit = 0xfffff,
 1909         .ssd_type = SDT_MEMRWA,
 1910         .ssd_dpl = SEL_UPL,
 1911         .ssd_p = 1,
 1912         .ssd_xx = 0, .ssd_xx1 = 0,
 1913         .ssd_def32 = 1,
 1914         .ssd_gran = 1           },
 1915 };
 1916 
 1917 void
 1918 setidt(idx, func, typ, dpl, selec)
 1919         int idx;
 1920         inthand_t *func;
 1921         int typ;
 1922         int dpl;
 1923         int selec;
 1924 {
 1925         struct gate_descriptor *ip;
 1926 
 1927         ip = idt + idx;
 1928         ip->gd_looffset = (int)func;
 1929         ip->gd_selector = selec;
 1930         ip->gd_stkcpy = 0;
 1931         ip->gd_xx = 0;
 1932         ip->gd_type = typ;
 1933         ip->gd_dpl = dpl;
 1934         ip->gd_p = 1;
 1935         ip->gd_hioffset = ((int)func)>>16 ;
 1936 }
 1937 
 1938 extern inthand_t
 1939         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1940         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1941         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1942         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1943         IDTVEC(xmm),
 1944 #ifdef KDTRACE_HOOKS
 1945         IDTVEC(dtrace_ret),
 1946 #endif
 1947 #ifdef XENHVM
 1948         IDTVEC(xen_intr_upcall),
 1949 #endif
 1950         IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1951 
 1952 #ifdef DDB
 1953 /*
 1954  * Display the index and function name of any IDT entries that don't use
 1955  * the default 'rsvd' entry point.
 1956  */
 1957 DB_SHOW_COMMAND(idt, db_show_idt)
 1958 {
 1959         struct gate_descriptor *ip;
 1960         int idx;
 1961         uintptr_t func;
 1962 
 1963         ip = idt;
 1964         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1965                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1966                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1967                         db_printf("%3d\t", idx);
 1968                         db_printsym(func, DB_STGY_PROC);
 1969                         db_printf("\n");
 1970                 }
 1971                 ip++;
 1972         }
 1973 }
 1974 
 1975 /* Show privileged registers. */
 1976 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1977 {
 1978         uint64_t idtr, gdtr;
 1979 
 1980         idtr = ridt();
 1981         db_printf("idtr\t0x%08x/%04x\n",
 1982             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 1983         gdtr = rgdt();
 1984         db_printf("gdtr\t0x%08x/%04x\n",
 1985             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 1986         db_printf("ldtr\t0x%04x\n", rldt());
 1987         db_printf("tr\t0x%04x\n", rtr());
 1988         db_printf("cr0\t0x%08x\n", rcr0());
 1989         db_printf("cr2\t0x%08x\n", rcr2());
 1990         db_printf("cr3\t0x%08x\n", rcr3());
 1991         db_printf("cr4\t0x%08x\n", rcr4());
 1992 }
 1993 #endif
 1994 
 1995 void
 1996 sdtossd(sd, ssd)
 1997         struct segment_descriptor *sd;
 1998         struct soft_segment_descriptor *ssd;
 1999 {
 2000         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 2001         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 2002         ssd->ssd_type  = sd->sd_type;
 2003         ssd->ssd_dpl   = sd->sd_dpl;
 2004         ssd->ssd_p     = sd->sd_p;
 2005         ssd->ssd_def32 = sd->sd_def32;
 2006         ssd->ssd_gran  = sd->sd_gran;
 2007 }
 2008 
 2009 #ifndef XEN
 2010 static int
 2011 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 2012 {
 2013         int i, insert_idx, physmap_idx;
 2014 
 2015         physmap_idx = *physmap_idxp;
 2016         
 2017         if (boothowto & RB_VERBOSE)
 2018                 printf("SMAP type=%02x base=%016llx len=%016llx\n",
 2019                     smap->type, smap->base, smap->length);
 2020 
 2021         if (smap->type != SMAP_TYPE_MEMORY)
 2022                 return (1);
 2023 
 2024         if (smap->length == 0)
 2025                 return (1);
 2026 
 2027 #ifndef PAE
 2028         if (smap->base > 0xffffffff) {
 2029                 printf("%uK of memory above 4GB ignored\n",
 2030                     (u_int)(smap->length / 1024));
 2031                 return (1);
 2032         }
 2033 #endif
 2034 
 2035         /*
 2036          * Find insertion point while checking for overlap.  Start off by
 2037          * assuming the new entry will be added to the end.
 2038          */
 2039         insert_idx = physmap_idx + 2;
 2040         for (i = 0; i <= physmap_idx; i += 2) {
 2041                 if (smap->base < physmap[i + 1]) {
 2042                         if (smap->base + smap->length <= physmap[i]) {
 2043                                 insert_idx = i;
 2044                                 break;
 2045                         }
 2046                         if (boothowto & RB_VERBOSE)
 2047                                 printf(
 2048                     "Overlapping memory regions, ignoring second region\n");
 2049                         return (1);
 2050                 }
 2051         }
 2052 
 2053         /* See if we can prepend to the next entry. */
 2054         if (insert_idx <= physmap_idx &&
 2055             smap->base + smap->length == physmap[insert_idx]) {
 2056                 physmap[insert_idx] = smap->base;
 2057                 return (1);
 2058         }
 2059 
 2060         /* See if we can append to the previous entry. */
 2061         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
 2062                 physmap[insert_idx - 1] += smap->length;
 2063                 return (1);
 2064         }
 2065 
 2066         physmap_idx += 2;
 2067         *physmap_idxp = physmap_idx;
 2068         if (physmap_idx == PHYSMAP_SIZE) {
 2069                 printf(
 2070                 "Too many segments in the physical address map, giving up\n");
 2071                 return (0);
 2072         }
 2073 
 2074         /*
 2075          * Move the last 'N' entries down to make room for the new
 2076          * entry if needed.
 2077          */
 2078         for (i = physmap_idx; i > insert_idx; i -= 2) {
 2079                 physmap[i] = physmap[i - 2];
 2080                 physmap[i + 1] = physmap[i - 1];
 2081         }
 2082 
 2083         /* Insert the new entry. */
 2084         physmap[insert_idx] = smap->base;
 2085         physmap[insert_idx + 1] = smap->base + smap->length;
 2086         return (1);
 2087 }
 2088 
 2089 static void
 2090 basemem_setup(void)
 2091 {
 2092         vm_paddr_t pa;
 2093         pt_entry_t *pte;
 2094         int i;
 2095 
 2096         if (basemem > 640) {
 2097                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 2098                         basemem);
 2099                 basemem = 640;
 2100         }
 2101 
 2102         /*
 2103          * XXX if biosbasemem is now < 640, there is a `hole'
 2104          * between the end of base memory and the start of
 2105          * ISA memory.  The hole may be empty or it may
 2106          * contain BIOS code or data.  Map it read/write so
 2107          * that the BIOS can write to it.  (Memory from 0 to
 2108          * the physical end of the kernel is mapped read-only
 2109          * to begin with and then parts of it are remapped.
 2110          * The parts that aren't remapped form holes that
 2111          * remain read-only and are unused by the kernel.
 2112          * The base memory area is below the physical end of
 2113          * the kernel and right now forms a read-only hole.
 2114          * The part of it from PAGE_SIZE to
 2115          * (trunc_page(biosbasemem * 1024) - 1) will be
 2116          * remapped and used by the kernel later.)
 2117          *
 2118          * This code is similar to the code used in
 2119          * pmap_mapdev, but since no memory needs to be
 2120          * allocated we simply change the mapping.
 2121          */
 2122         for (pa = trunc_page(basemem * 1024);
 2123              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 2124                 pmap_kenter(KERNBASE + pa, pa);
 2125 
 2126         /*
 2127          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 2128          * the vm86 page table so that vm86 can scribble on them using
 2129          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 2130          * page 0, at least as initialized here?
 2131          */
 2132         pte = (pt_entry_t *)vm86paddr;
 2133         for (i = basemem / 4; i < 160; i++)
 2134                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 2135 }
 2136 #endif
 2137 
 2138 /*
 2139  * Populate the (physmap) array with base/bound pairs describing the
 2140  * available physical memory in the system, then test this memory and
 2141  * build the phys_avail array describing the actually-available memory.
 2142  *
 2143  * If we cannot accurately determine the physical memory map, then use
 2144  * value from the 0xE801 call, and failing that, the RTC.
 2145  *
 2146  * Total memory size may be set by the kernel environment variable
 2147  * hw.physmem or the compile-time define MAXMEM.
 2148  *
 2149  * XXX first should be vm_paddr_t.
 2150  */
 2151 static void
 2152 getmemsize(int first)
 2153 {
 2154         int has_smap, off, physmap_idx, pa_indx, da_indx;
 2155         u_long physmem_tunable, memtest;
 2156         vm_paddr_t physmap[PHYSMAP_SIZE];
 2157         pt_entry_t *pte;
 2158         quad_t dcons_addr, dcons_size;
 2159 #ifndef XEN
 2160         int hasbrokenint12, i, res;
 2161         u_int extmem;
 2162         struct vm86frame vmf;
 2163         struct vm86context vmc;
 2164         vm_paddr_t pa;
 2165         struct bios_smap *smap, *smapbase, *smapend;
 2166         u_int32_t smapsize;
 2167         caddr_t kmdp;
 2168 #endif
 2169 
 2170         has_smap = 0;
 2171 #if defined(XEN)
 2172         Maxmem = xen_start_info->nr_pages - init_first;
 2173         physmem = Maxmem;
 2174         basemem = 0;
 2175         physmap[0] = init_first << PAGE_SHIFT;
 2176         physmap[1] = ptoa(Maxmem) - round_page(msgbufsize);
 2177         physmap_idx = 0;
 2178 #else
 2179 #ifdef XBOX
 2180         if (arch_i386_is_xbox) {
 2181                 /*
 2182                  * We queried the memory size before, so chop off 4MB for
 2183                  * the framebuffer and inform the OS of this.
 2184                  */
 2185                 physmap[0] = 0;
 2186                 physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
 2187                 physmap_idx = 0;
 2188                 goto physmap_done;
 2189         }
 2190 #endif
 2191         bzero(&vmf, sizeof(vmf));
 2192         bzero(physmap, sizeof(physmap));
 2193         basemem = 0;
 2194 
 2195         /*
 2196          * Check if the loader supplied an SMAP memory map.  If so,
 2197          * use that and do not make any VM86 calls.
 2198          */
 2199         physmap_idx = 0;
 2200         smapbase = NULL;
 2201         kmdp = preload_search_by_type("elf kernel");
 2202         if (kmdp == NULL)
 2203                 kmdp = preload_search_by_type("elf32 kernel");
 2204         if (kmdp != NULL)
 2205                 smapbase = (struct bios_smap *)preload_search_info(kmdp,
 2206                     MODINFO_METADATA | MODINFOMD_SMAP);
 2207         if (smapbase != NULL) {
 2208                 /*
 2209                  * subr_module.c says:
 2210                  * "Consumer may safely assume that size value precedes data."
 2211                  * ie: an int32_t immediately precedes SMAP.
 2212                  */
 2213                 smapsize = *((u_int32_t *)smapbase - 1);
 2214                 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 2215                 has_smap = 1;
 2216 
 2217                 for (smap = smapbase; smap < smapend; smap++)
 2218                         if (!add_smap_entry(smap, physmap, &physmap_idx))
 2219                                 break;
 2220                 goto have_smap;
 2221         }
 2222 
 2223         /*
 2224          * Some newer BIOSes have a broken INT 12H implementation
 2225          * which causes a kernel panic immediately.  In this case, we
 2226          * need use the SMAP to determine the base memory size.
 2227          */
 2228         hasbrokenint12 = 0;
 2229         TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
 2230         if (hasbrokenint12 == 0) {
 2231                 /* Use INT12 to determine base memory size. */
 2232                 vm86_intcall(0x12, &vmf);
 2233                 basemem = vmf.vmf_ax;
 2234                 basemem_setup();
 2235         }
 2236 
 2237         /*
 2238          * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
 2239          * the kernel page table so we can use it as a buffer.  The
 2240          * kernel will unmap this page later.
 2241          */
 2242         pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
 2243         vmc.npages = 0;
 2244         smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
 2245         res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
 2246         KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
 2247 
 2248         vmf.vmf_ebx = 0;
 2249         do {
 2250                 vmf.vmf_eax = 0xE820;
 2251                 vmf.vmf_edx = SMAP_SIG;
 2252                 vmf.vmf_ecx = sizeof(struct bios_smap);
 2253                 i = vm86_datacall(0x15, &vmf, &vmc);
 2254                 if (i || vmf.vmf_eax != SMAP_SIG)
 2255                         break;
 2256                 has_smap = 1;
 2257                 if (!add_smap_entry(smap, physmap, &physmap_idx))
 2258                         break;
 2259         } while (vmf.vmf_ebx != 0);
 2260 
 2261 have_smap:
 2262         /*
 2263          * If we didn't fetch the "base memory" size from INT12,
 2264          * figure it out from the SMAP (or just guess).
 2265          */
 2266         if (basemem == 0) {
 2267                 for (i = 0; i <= physmap_idx; i += 2) {
 2268                         if (physmap[i] == 0x00000000) {
 2269                                 basemem = physmap[i + 1] / 1024;
 2270                                 break;
 2271                         }
 2272                 }
 2273 
 2274                 /* XXX: If we couldn't find basemem from SMAP, just guess. */
 2275                 if (basemem == 0)
 2276                         basemem = 640;
 2277                 basemem_setup();
 2278         }
 2279 
 2280         if (physmap[1] != 0)
 2281                 goto physmap_done;
 2282 
 2283         /*
 2284          * If we failed to find an SMAP, figure out the extended
 2285          * memory size.  We will then build a simple memory map with
 2286          * two segments, one for "base memory" and the second for
 2287          * "extended memory".  Note that "extended memory" starts at a
 2288          * physical address of 1MB and that both basemem and extmem
 2289          * are in units of 1KB.
 2290          *
 2291          * First, try to fetch the extended memory size via INT 15:E801.
 2292          */
 2293         vmf.vmf_ax = 0xE801;
 2294         if (vm86_intcall(0x15, &vmf) == 0) {
 2295                 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
 2296         } else {
 2297                 /*
 2298                  * If INT15:E801 fails, this is our last ditch effort
 2299                  * to determine the extended memory size.  Currently
 2300                  * we prefer the RTC value over INT15:88.
 2301                  */
 2302 #if 0
 2303                 vmf.vmf_ah = 0x88;
 2304                 vm86_intcall(0x15, &vmf);
 2305                 extmem = vmf.vmf_ax;
 2306 #else
 2307                 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
 2308 #endif
 2309         }
 2310 
 2311         /*
 2312          * Special hack for chipsets that still remap the 384k hole when
 2313          * there's 16MB of memory - this really confuses people that
 2314          * are trying to use bus mastering ISA controllers with the
 2315          * "16MB limit"; they only have 16MB, but the remapping puts
 2316          * them beyond the limit.
 2317          *
 2318          * If extended memory is between 15-16MB (16-17MB phys address range),
 2319          *      chop it to 15MB.
 2320          */
 2321         if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
 2322                 extmem = 15 * 1024;
 2323 
 2324         physmap[0] = 0;
 2325         physmap[1] = basemem * 1024;
 2326         physmap_idx = 2;
 2327         physmap[physmap_idx] = 0x100000;
 2328         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 2329 
 2330 physmap_done:
 2331 #endif  
 2332         /*
 2333          * Now, physmap contains a map of physical memory.
 2334          */
 2335 
 2336 #ifdef SMP
 2337         /* make hole for AP bootstrap code */
 2338         physmap[1] = mp_bootaddress(physmap[1]);
 2339 #endif
 2340 
 2341         /*
 2342          * Maxmem isn't the "maximum memory", it's one larger than the
 2343          * highest page of the physical address space.  It should be
 2344          * called something like "Maxphyspage".  We may adjust this 
 2345          * based on ``hw.physmem'' and the results of the memory test.
 2346          */
 2347         Maxmem = atop(physmap[physmap_idx + 1]);
 2348 
 2349 #ifdef MAXMEM
 2350         Maxmem = MAXMEM / 4;
 2351 #endif
 2352 
 2353         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 2354                 Maxmem = atop(physmem_tunable);
 2355 
 2356         /*
 2357          * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
 2358          * the amount of memory in the system.
 2359          */
 2360         if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
 2361                 Maxmem = atop(physmap[physmap_idx + 1]);
 2362 
 2363         /*
 2364          * By default enable the memory test on real hardware, and disable
 2365          * it if we appear to be running in a VM.  This avoids touching all
 2366          * pages unnecessarily, which doesn't matter on real hardware but is
 2367          * bad for shared VM hosts.  Use a general name so that
 2368          * one could eventually do more with the code than just disable it.
 2369          */
 2370         memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
 2371         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 2372 
 2373         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 2374             (boothowto & RB_VERBOSE))
 2375                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 2376 
 2377         /*
 2378          * If Maxmem has been increased beyond what the system has detected,
 2379          * extend the last memory segment to the new limit.
 2380          */ 
 2381         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 2382                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 2383 
 2384         /* call pmap initialization to make new kernel address space */
 2385         pmap_bootstrap(first);
 2386 
 2387         /*
 2388          * Size up each available chunk of physical memory.
 2389          */
 2390         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 2391         pa_indx = 0;
 2392         da_indx = 1;
 2393         phys_avail[pa_indx++] = physmap[0];
 2394         phys_avail[pa_indx] = physmap[0];
 2395         dump_avail[da_indx] = physmap[0];
 2396         pte = CMAP3;
 2397 
 2398         /*
 2399          * Get dcons buffer address
 2400          */
 2401         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 2402             getenv_quad("dcons.size", &dcons_size) == 0)
 2403                 dcons_addr = 0;
 2404 
 2405 #ifndef XEN
 2406         /*
 2407          * physmap is in bytes, so when converting to page boundaries,
 2408          * round up the start address and round down the end address.
 2409          */
 2410         for (i = 0; i <= physmap_idx; i += 2) {
 2411                 vm_paddr_t end;
 2412 
 2413                 end = ptoa((vm_paddr_t)Maxmem);
 2414                 if (physmap[i + 1] < end)
 2415                         end = trunc_page(physmap[i + 1]);
 2416                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 2417                         int tmp, page_bad, full;
 2418                         int *ptr = (int *)CADDR3;
 2419 
 2420                         full = FALSE;
 2421                         /*
 2422                          * block out kernel memory as not available.
 2423                          */
 2424                         if (pa >= KERNLOAD && pa < first)
 2425                                 goto do_dump_avail;
 2426 
 2427                         /*
 2428                          * block out dcons buffer
 2429                          */
 2430                         if (dcons_addr > 0
 2431                             && pa >= trunc_page(dcons_addr)
 2432                             && pa < dcons_addr + dcons_size)
 2433                                 goto do_dump_avail;
 2434 
 2435                         page_bad = FALSE;
 2436                         if (memtest == 0)
 2437                                 goto skip_memtest;
 2438 
 2439                         /*
 2440                          * map page into kernel: valid, read/write,non-cacheable
 2441                          */
 2442                         *pte = pa | PG_V | PG_RW | PG_N;
 2443                         invltlb();
 2444 
 2445                         tmp = *(int *)ptr;
 2446                         /*
 2447                          * Test for alternating 1's and 0's
 2448                          */
 2449                         *(volatile int *)ptr = 0xaaaaaaaa;
 2450                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 2451                                 page_bad = TRUE;
 2452                         /*
 2453                          * Test for alternating 0's and 1's
 2454                          */
 2455                         *(volatile int *)ptr = 0x55555555;
 2456                         if (*(volatile int *)ptr != 0x55555555)
 2457                                 page_bad = TRUE;
 2458                         /*
 2459                          * Test for all 1's
 2460                          */
 2461                         *(volatile int *)ptr = 0xffffffff;
 2462                         if (*(volatile int *)ptr != 0xffffffff)
 2463                                 page_bad = TRUE;
 2464                         /*
 2465                          * Test for all 0's
 2466                          */
 2467                         *(volatile int *)ptr = 0x0;
 2468                         if (*(volatile int *)ptr != 0x0)
 2469                                 page_bad = TRUE;
 2470                         /*
 2471                          * Restore original value.
 2472                          */
 2473                         *(int *)ptr = tmp;
 2474 
 2475 skip_memtest:
 2476                         /*
 2477                          * Adjust array of valid/good pages.
 2478                          */
 2479                         if (page_bad == TRUE)
 2480                                 continue;
 2481                         /*
 2482                          * If this good page is a continuation of the
 2483                          * previous set of good pages, then just increase
 2484                          * the end pointer. Otherwise start a new chunk.
 2485                          * Note that "end" points one higher than end,
 2486                          * making the range >= start and < end.
 2487                          * If we're also doing a speculative memory
 2488                          * test and we at or past the end, bump up Maxmem
 2489                          * so that we keep going. The first bad page
 2490                          * will terminate the loop.
 2491                          */
 2492                         if (phys_avail[pa_indx] == pa) {
 2493                                 phys_avail[pa_indx] += PAGE_SIZE;
 2494                         } else {
 2495                                 pa_indx++;
 2496                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 2497                                         printf(
 2498                 "Too many holes in the physical address space, giving up\n");
 2499                                         pa_indx--;
 2500                                         full = TRUE;
 2501                                         goto do_dump_avail;
 2502                                 }
 2503                                 phys_avail[pa_indx++] = pa;     /* start */
 2504                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2505                         }
 2506                         physmem++;
 2507 do_dump_avail:
 2508                         if (dump_avail[da_indx] == pa) {
 2509                                 dump_avail[da_indx] += PAGE_SIZE;
 2510                         } else {
 2511                                 da_indx++;
 2512                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2513                                         da_indx--;
 2514                                         goto do_next;
 2515                                 }
 2516                                 dump_avail[da_indx++] = pa;     /* start */
 2517                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2518                         }
 2519 do_next:
 2520                         if (full)
 2521                                 break;
 2522                 }
 2523         }
 2524         *pte = 0;
 2525         invltlb();
 2526 #else
 2527         phys_avail[0] = physfree;
 2528         phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2529         dump_avail[0] = 0;      
 2530         dump_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2531         
 2532 #endif
 2533         
 2534         /*
 2535          * XXX
 2536          * The last chunk must contain at least one page plus the message
 2537          * buffer to avoid complicating other code (message buffer address
 2538          * calculation, etc.).
 2539          */
 2540         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2541             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 2542                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2543                 phys_avail[pa_indx--] = 0;
 2544                 phys_avail[pa_indx--] = 0;
 2545         }
 2546 
 2547         Maxmem = atop(phys_avail[pa_indx]);
 2548 
 2549         /* Trim off space for the message buffer. */
 2550         phys_avail[pa_indx] -= round_page(msgbufsize);
 2551 
 2552         /* Map the message buffer. */
 2553         for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
 2554                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2555                     off);
 2556 
 2557         PT_UPDATES_FLUSH();
 2558 }
 2559 
 2560 #ifdef XEN
 2561 #define MTOPSIZE (1<<(14 + PAGE_SHIFT))
 2562 
 2563 void
 2564 init386(first)
 2565         int first;
 2566 {
 2567         unsigned long gdtmachpfn;
 2568         int error, gsel_tss, metadata_missing, x, pa;
 2569         size_t kstack0_sz;
 2570         struct pcpu *pc;
 2571         struct callback_register event = {
 2572                 .type = CALLBACKTYPE_event,
 2573                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
 2574         };
 2575         struct callback_register failsafe = {
 2576                 .type = CALLBACKTYPE_failsafe,
 2577                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
 2578         };
 2579 
 2580         thread0.td_kstack = proc0kstack;
 2581         thread0.td_kstack_pages = KSTACK_PAGES;
 2582         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 2583         thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
 2584 
 2585         /*
 2586          * This may be done better later if it gets more high level
 2587          * components in it. If so just link td->td_proc here.
 2588          */
 2589         proc_linkup0(&proc0, &thread0);
 2590 
 2591         metadata_missing = 0;
 2592         if (xen_start_info->mod_start) {
 2593                 preload_metadata = (caddr_t)xen_start_info->mod_start;
 2594                 preload_bootstrap_relocate(KERNBASE);
 2595         } else {
 2596                 metadata_missing = 1;
 2597         }
 2598         if (envmode == 1)
 2599                 kern_envp = static_env;
 2600         else if ((caddr_t)xen_start_info->cmd_line)
 2601                 kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
 2602 
 2603         boothowto |= xen_boothowto(kern_envp);
 2604         
 2605         /* Init basic tunables, hz etc */
 2606         init_param1();
 2607 
 2608         /*
 2609          * XEN occupies a portion of the upper virtual address space 
 2610          * At its base it manages an array mapping machine page frames 
 2611          * to physical page frames - hence we need to be able to 
 2612          * access 4GB - (64MB  - 4MB + 64k) 
 2613          */
 2614         gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2615         gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2616         gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2617         gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2618         gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2619         gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2620         gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2621         gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2622 
 2623         pc = &__pcpu[0];
 2624         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2625         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2626 
 2627         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
 2628         bzero(gdt, PAGE_SIZE);
 2629         for (x = 0; x < NGDT; x++)
 2630                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2631 
 2632         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2633 
 2634         gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
 2635         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
 2636         PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);    
 2637         lgdt(&r_gdt);
 2638         gdtset = 1;
 2639 
 2640         if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
 2641                 panic("set_trap_table failed - error %d\n", error);
 2642         }
 2643         
 2644         error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
 2645         if (error == 0)
 2646                 error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
 2647 #if     CONFIG_XEN_COMPAT <= 0x030002
 2648         if (error == -ENOXENSYS)
 2649                 HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
 2650                     (unsigned long)Xhypervisor_callback,
 2651                     GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
 2652 #endif
 2653         pcpu_init(pc, 0, sizeof(struct pcpu));
 2654         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2655                 pmap_kenter(pa + KERNBASE, pa);
 2656         dpcpu_init((void *)(first + KERNBASE), 0);
 2657         first += DPCPU_SIZE;
 2658         physfree += DPCPU_SIZE;
 2659         init_first += DPCPU_SIZE / PAGE_SIZE;
 2660 
 2661         PCPU_SET(prvspace, pc);
 2662         PCPU_SET(curthread, &thread0);
 2663         PCPU_SET(curpcb, thread0.td_pcb);
 2664 
 2665         /*
 2666          * Initialize mutexes.
 2667          *
 2668          * icu_lock: in order to allow an interrupt to occur in a critical
 2669          *           section, to set pcpu->ipending (etc...) properly, we
 2670          *           must be able to get the icu lock, so it can't be
 2671          *           under witness.
 2672          */
 2673         mutex_init();
 2674         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2675 
 2676         /* make ldt memory segments */
 2677         PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
 2678         bzero(ldt, PAGE_SIZE);
 2679         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2680         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2681         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2682                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2683 
 2684         default_proc_ldt.ldt_base = (caddr_t)ldt;
 2685         default_proc_ldt.ldt_len = 6;
 2686         _default_ldt = (int)&default_proc_ldt;
 2687         PCPU_SET(currentldt, _default_ldt);
 2688         PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
 2689         xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
 2690         
 2691 #if defined(XEN_PRIVILEGED)
 2692         /*
 2693          * Initialize the i8254 before the console so that console
 2694          * initialization can use DELAY().
 2695          */
 2696         i8254_init();
 2697 #endif
 2698         
 2699         /*
 2700          * Initialize the console before we print anything out.
 2701          */
 2702         cninit();
 2703 
 2704         if (metadata_missing)
 2705                 printf("WARNING: loader(8) metadata is missing!\n");
 2706 
 2707 #ifdef DEV_ISA
 2708 #ifdef DEV_ATPIC
 2709         elcr_probe();
 2710         atpic_startup();
 2711 #else
 2712         /* Reset and mask the atpics and leave them shut down. */
 2713         atpic_reset();
 2714 
 2715         /*
 2716          * Point the ICU spurious interrupt vectors at the APIC spurious
 2717          * interrupt handler.
 2718          */
 2719         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2720             GSEL(GCODE_SEL, SEL_KPL));
 2721         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2722             GSEL(GCODE_SEL, SEL_KPL));
 2723 #endif
 2724 #endif
 2725 
 2726 #ifdef DDB
 2727         ksym_start = bootinfo.bi_symtab;
 2728         ksym_end = bootinfo.bi_esymtab;
 2729 #endif
 2730 
 2731         kdb_init();
 2732 
 2733 #ifdef KDB
 2734         if (boothowto & RB_KDB)
 2735                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2736 #endif
 2737 
 2738         finishidentcpu();       /* Final stage of CPU initialization */
 2739         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2740             GSEL(GCODE_SEL, SEL_KPL));
 2741         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2742             GSEL(GCODE_SEL, SEL_KPL));
 2743         initializecpu();        /* Initialize CPU registers */
 2744 
 2745         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2746         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2747         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2748             kstack0_sz - sizeof(struct pcb) - 16);
 2749         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2750         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2751         HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
 2752             PCPU_GET(common_tss.tss_esp0));
 2753         
 2754         /* pointer to selector slot for %fs/%gs */
 2755         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2756 
 2757         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2758             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2759         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2760             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2761 #ifdef PAE
 2762         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 2763 #else
 2764         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2765 #endif
 2766         dblfault_tss.tss_eip = (int)dblfault_handler;
 2767         dblfault_tss.tss_eflags = PSL_KERNEL;
 2768         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2769             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2770         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2771         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2772         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2773 
 2774         vm86_initialize();
 2775         getmemsize(first);
 2776         init_param2(physmem);
 2777 
 2778         /* now running on new page tables, configured,and u/iom is accessible */
 2779 
 2780         msgbufinit(msgbufp, msgbufsize);
 2781         /* transfer to user mode */
 2782 
 2783         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2784         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2785 
 2786         /* setup proc 0's pcb */
 2787         thread0.td_pcb->pcb_flags = 0;
 2788 #ifdef PAE
 2789         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 2790 #else
 2791         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2792 #endif
 2793         thread0.td_pcb->pcb_ext = 0;
 2794         thread0.td_frame = &proc0_tf;
 2795         thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
 2796         thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
 2797 
 2798         cpu_probe_amdc1e();
 2799 }
 2800 
 2801 #else
 2802 void
 2803 init386(first)
 2804         int first;
 2805 {
 2806         struct gate_descriptor *gdp;
 2807         int gsel_tss, metadata_missing, x, pa;
 2808         size_t kstack0_sz;
 2809         struct pcpu *pc;
 2810 
 2811         thread0.td_kstack = proc0kstack;
 2812         thread0.td_kstack_pages = KSTACK_PAGES;
 2813         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 2814         thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
 2815 
 2816         /*
 2817          * This may be done better later if it gets more high level
 2818          * components in it. If so just link td->td_proc here.
 2819          */
 2820         proc_linkup0(&proc0, &thread0);
 2821 
 2822         metadata_missing = 0;
 2823         if (bootinfo.bi_modulep) {
 2824                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 2825                 preload_bootstrap_relocate(KERNBASE);
 2826         } else {
 2827                 metadata_missing = 1;
 2828         }
 2829         if (envmode == 1)
 2830                 kern_envp = static_env;
 2831         else if (bootinfo.bi_envp)
 2832                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 2833 
 2834         /* Init basic tunables, hz etc */
 2835         init_param1();
 2836 
 2837         /*
 2838          * Make gdt memory segments.  All segments cover the full 4GB
 2839          * of address space and permissions are enforced at page level.
 2840          */
 2841         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 2842         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 2843         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 2844         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 2845         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 2846         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 2847 
 2848         pc = &__pcpu[0];
 2849         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 2850         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2851         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2852 
 2853         for (x = 0; x < NGDT; x++)
 2854                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2855 
 2856         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 2857         r_gdt.rd_base =  (int) gdt;
 2858         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2859         lgdt(&r_gdt);
 2860 
 2861         pcpu_init(pc, 0, sizeof(struct pcpu));
 2862         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2863                 pmap_kenter(pa + KERNBASE, pa);
 2864         dpcpu_init((void *)(first + KERNBASE), 0);
 2865         first += DPCPU_SIZE;
 2866         PCPU_SET(prvspace, pc);
 2867         PCPU_SET(curthread, &thread0);
 2868         PCPU_SET(curpcb, thread0.td_pcb);
 2869 
 2870         /*
 2871          * Initialize mutexes.
 2872          *
 2873          * icu_lock: in order to allow an interrupt to occur in a critical
 2874          *           section, to set pcpu->ipending (etc...) properly, we
 2875          *           must be able to get the icu lock, so it can't be
 2876          *           under witness.
 2877          */
 2878         mutex_init();
 2879         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2880 
 2881         /* make ldt memory segments */
 2882         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2883         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2884         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2885                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2886 
 2887         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2888         lldt(_default_ldt);
 2889         PCPU_SET(currentldt, _default_ldt);
 2890 
 2891         /* exceptions */
 2892         for (x = 0; x < NIDT; x++)
 2893                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2894                     GSEL(GCODE_SEL, SEL_KPL));
 2895         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2896             GSEL(GCODE_SEL, SEL_KPL));
 2897         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2898             GSEL(GCODE_SEL, SEL_KPL));
 2899         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2900             GSEL(GCODE_SEL, SEL_KPL));
 2901         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2902             GSEL(GCODE_SEL, SEL_KPL));
 2903         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2904             GSEL(GCODE_SEL, SEL_KPL));
 2905         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2906             GSEL(GCODE_SEL, SEL_KPL));
 2907         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2908             GSEL(GCODE_SEL, SEL_KPL));
 2909         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2910             , GSEL(GCODE_SEL, SEL_KPL));
 2911         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2912         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2913             GSEL(GCODE_SEL, SEL_KPL));
 2914         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2915             GSEL(GCODE_SEL, SEL_KPL));
 2916         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2917             GSEL(GCODE_SEL, SEL_KPL));
 2918         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2919             GSEL(GCODE_SEL, SEL_KPL));
 2920         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2921             GSEL(GCODE_SEL, SEL_KPL));
 2922         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2923             GSEL(GCODE_SEL, SEL_KPL));
 2924         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2925             GSEL(GCODE_SEL, SEL_KPL));
 2926         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2927             GSEL(GCODE_SEL, SEL_KPL));
 2928         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2929             GSEL(GCODE_SEL, SEL_KPL));
 2930         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2931             GSEL(GCODE_SEL, SEL_KPL));
 2932         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2933             GSEL(GCODE_SEL, SEL_KPL));
 2934 #ifdef KDTRACE_HOOKS
 2935         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
 2936             GSEL(GCODE_SEL, SEL_KPL));
 2937 #endif
 2938 #ifdef XENHVM
 2939         setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_UPL,
 2940             GSEL(GCODE_SEL, SEL_KPL));
 2941 #endif
 2942 
 2943         r_idt.rd_limit = sizeof(idt0) - 1;
 2944         r_idt.rd_base = (int) idt;
 2945         lidt(&r_idt);
 2946 
 2947 #ifdef XBOX
 2948         /*
 2949          * The following code queries the PCI ID of 0:0:0. For the XBOX,
 2950          * This should be 0x10de / 0x02a5.
 2951          *
 2952          * This is exactly what Linux does.
 2953          */
 2954         outl(0xcf8, 0x80000000);
 2955         if (inl(0xcfc) == 0x02a510de) {
 2956                 arch_i386_is_xbox = 1;
 2957                 pic16l_setled(XBOX_LED_GREEN);
 2958 
 2959                 /*
 2960                  * We are an XBOX, but we may have either 64MB or 128MB of
 2961                  * memory. The PCI host bridge should be programmed for this,
 2962                  * so we just query it. 
 2963                  */
 2964                 outl(0xcf8, 0x80000084);
 2965                 arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
 2966         }
 2967 #endif /* XBOX */
 2968 
 2969         /*
 2970          * Initialize the i8254 before the console so that console
 2971          * initialization can use DELAY().
 2972          */
 2973         i8254_init();
 2974 
 2975         /*
 2976          * Initialize the console before we print anything out.
 2977          */
 2978         cninit();
 2979 
 2980         if (metadata_missing)
 2981                 printf("WARNING: loader(8) metadata is missing!\n");
 2982 
 2983 #ifdef DEV_ISA
 2984 #ifdef DEV_ATPIC
 2985         elcr_probe();
 2986         atpic_startup();
 2987 #else
 2988         /* Reset and mask the atpics and leave them shut down. */
 2989         atpic_reset();
 2990 
 2991         /*
 2992          * Point the ICU spurious interrupt vectors at the APIC spurious
 2993          * interrupt handler.
 2994          */
 2995         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2996             GSEL(GCODE_SEL, SEL_KPL));
 2997         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2998             GSEL(GCODE_SEL, SEL_KPL));
 2999 #endif
 3000 #endif
 3001 
 3002 #ifdef DDB
 3003         ksym_start = bootinfo.bi_symtab;
 3004         ksym_end = bootinfo.bi_esymtab;
 3005 #endif
 3006 
 3007         kdb_init();
 3008 
 3009 #ifdef KDB
 3010         if (boothowto & RB_KDB)
 3011                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 3012 #endif
 3013 
 3014         finishidentcpu();       /* Final stage of CPU initialization */
 3015         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 3016             GSEL(GCODE_SEL, SEL_KPL));
 3017         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 3018             GSEL(GCODE_SEL, SEL_KPL));
 3019         initializecpu();        /* Initialize CPU registers */
 3020 
 3021         /* make an initial tss so cpu can get interrupt stack on syscall! */
 3022         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 3023         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 3024             kstack0_sz - sizeof(struct pcb) - 16);
 3025         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 3026         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 3027         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 3028         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 3029         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 3030         ltr(gsel_tss);
 3031 
 3032         /* pointer to selector slot for %fs/%gs */
 3033         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 3034 
 3035         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 3036             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 3037         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 3038             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 3039 #ifdef PAE
 3040         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 3041 #else
 3042         dblfault_tss.tss_cr3 = (int)IdlePTD;
 3043 #endif
 3044         dblfault_tss.tss_eip = (int)dblfault_handler;
 3045         dblfault_tss.tss_eflags = PSL_KERNEL;
 3046         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 3047             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 3048         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 3049         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 3050         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 3051 
 3052         vm86_initialize();
 3053         getmemsize(first);
 3054         init_param2(physmem);
 3055 
 3056         /* now running on new page tables, configured,and u/iom is accessible */
 3057 
 3058         msgbufinit(msgbufp, msgbufsize);
 3059 
 3060         /* make a call gate to reenter kernel with */
 3061         gdp = &ldt[LSYS5CALLS_SEL].gd;
 3062 
 3063         x = (int) &IDTVEC(lcall_syscall);
 3064         gdp->gd_looffset = x;
 3065         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 3066         gdp->gd_stkcpy = 1;
 3067         gdp->gd_type = SDT_SYS386CGT;
 3068         gdp->gd_dpl = SEL_UPL;
 3069         gdp->gd_p = 1;
 3070         gdp->gd_hioffset = x >> 16;
 3071 
 3072         /* XXX does this work? */
 3073         /* XXX yes! */
 3074         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 3075         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 3076 
 3077         /* transfer to user mode */
 3078 
 3079         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 3080         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 3081 
 3082         /* setup proc 0's pcb */
 3083         thread0.td_pcb->pcb_flags = 0;
 3084 #ifdef PAE
 3085         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 3086 #else
 3087         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 3088 #endif
 3089         thread0.td_pcb->pcb_ext = 0;
 3090         thread0.td_frame = &proc0_tf;
 3091 
 3092         cpu_probe_amdc1e();
 3093 
 3094 #ifdef FDT
 3095         x86_init_fdt();
 3096 #endif
 3097 }
 3098 #endif
 3099 
 3100 void
 3101 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 3102 {
 3103 
 3104         pcpu->pc_acpi_id = 0xffffffff;
 3105 }
 3106 
 3107 void
 3108 spinlock_enter(void)
 3109 {
 3110         struct thread *td;
 3111         register_t flags;
 3112 
 3113         td = curthread;
 3114         if (td->td_md.md_spinlock_count == 0) {
 3115                 flags = intr_disable();
 3116                 td->td_md.md_spinlock_count = 1;
 3117                 td->td_md.md_saved_flags = flags;
 3118         } else
 3119                 td->td_md.md_spinlock_count++;
 3120         critical_enter();
 3121 }
 3122 
 3123 void
 3124 spinlock_exit(void)
 3125 {
 3126         struct thread *td;
 3127         register_t flags;
 3128 
 3129         td = curthread;
 3130         critical_exit();
 3131         flags = td->td_md.md_saved_flags;
 3132         td->td_md.md_spinlock_count--;
 3133         if (td->td_md.md_spinlock_count == 0)
 3134                 intr_restore(flags);
 3135 }
 3136 
 3137 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 3138 static void f00f_hack(void *unused);
 3139 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 3140 
 3141 static void
 3142 f00f_hack(void *unused)
 3143 {
 3144         struct gate_descriptor *new_idt;
 3145         vm_offset_t tmp;
 3146 
 3147         if (!has_f00f_bug)
 3148                 return;
 3149 
 3150         GIANT_REQUIRED;
 3151 
 3152         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 3153 
 3154         tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
 3155         if (tmp == 0)
 3156                 panic("kmem_malloc returned 0");
 3157 
 3158         /* Put the problematic entry (#6) at the end of the lower page. */
 3159         new_idt = (struct gate_descriptor*)
 3160             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 3161         bcopy(idt, new_idt, sizeof(idt0));
 3162         r_idt.rd_base = (u_int)new_idt;
 3163         lidt(&r_idt);
 3164         idt = new_idt;
 3165         pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
 3166 }
 3167 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 3168 
 3169 /*
 3170  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 3171  * we want to start a backtrace from the function that caused us to enter
 3172  * the debugger. We have the context in the trapframe, but base the trace
 3173  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 3174  * enough for a backtrace.
 3175  */
 3176 void
 3177 makectx(struct trapframe *tf, struct pcb *pcb)
 3178 {
 3179 
 3180         pcb->pcb_edi = tf->tf_edi;
 3181         pcb->pcb_esi = tf->tf_esi;
 3182         pcb->pcb_ebp = tf->tf_ebp;
 3183         pcb->pcb_ebx = tf->tf_ebx;
 3184         pcb->pcb_eip = tf->tf_eip;
 3185         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 3186 }
 3187 
 3188 int
 3189 ptrace_set_pc(struct thread *td, u_long addr)
 3190 {
 3191 
 3192         td->td_frame->tf_eip = addr;
 3193         return (0);
 3194 }
 3195 
 3196 int
 3197 ptrace_single_step(struct thread *td)
 3198 {
 3199         td->td_frame->tf_eflags |= PSL_T;
 3200         return (0);
 3201 }
 3202 
 3203 int
 3204 ptrace_clear_single_step(struct thread *td)
 3205 {
 3206         td->td_frame->tf_eflags &= ~PSL_T;
 3207         return (0);
 3208 }
 3209 
 3210 int
 3211 fill_regs(struct thread *td, struct reg *regs)
 3212 {
 3213         struct pcb *pcb;
 3214         struct trapframe *tp;
 3215 
 3216         tp = td->td_frame;
 3217         pcb = td->td_pcb;
 3218         regs->r_gs = pcb->pcb_gs;
 3219         return (fill_frame_regs(tp, regs));
 3220 }
 3221 
 3222 int
 3223 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 3224 {
 3225         regs->r_fs = tp->tf_fs;
 3226         regs->r_es = tp->tf_es;
 3227         regs->r_ds = tp->tf_ds;
 3228         regs->r_edi = tp->tf_edi;
 3229         regs->r_esi = tp->tf_esi;
 3230         regs->r_ebp = tp->tf_ebp;
 3231         regs->r_ebx = tp->tf_ebx;
 3232         regs->r_edx = tp->tf_edx;
 3233         regs->r_ecx = tp->tf_ecx;
 3234         regs->r_eax = tp->tf_eax;
 3235         regs->r_eip = tp->tf_eip;
 3236         regs->r_cs = tp->tf_cs;
 3237         regs->r_eflags = tp->tf_eflags;
 3238         regs->r_esp = tp->tf_esp;
 3239         regs->r_ss = tp->tf_ss;
 3240         return (0);
 3241 }
 3242 
 3243 int
 3244 set_regs(struct thread *td, struct reg *regs)
 3245 {
 3246         struct pcb *pcb;
 3247         struct trapframe *tp;
 3248 
 3249         tp = td->td_frame;
 3250         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 3251             !CS_SECURE(regs->r_cs))
 3252                 return (EINVAL);
 3253         pcb = td->td_pcb;
 3254         tp->tf_fs = regs->r_fs;
 3255         tp->tf_es = regs->r_es;
 3256         tp->tf_ds = regs->r_ds;
 3257         tp->tf_edi = regs->r_edi;
 3258         tp->tf_esi = regs->r_esi;
 3259         tp->tf_ebp = regs->r_ebp;
 3260         tp->tf_ebx = regs->r_ebx;
 3261         tp->tf_edx = regs->r_edx;
 3262         tp->tf_ecx = regs->r_ecx;
 3263         tp->tf_eax = regs->r_eax;
 3264         tp->tf_eip = regs->r_eip;
 3265         tp->tf_cs = regs->r_cs;
 3266         tp->tf_eflags = regs->r_eflags;
 3267         tp->tf_esp = regs->r_esp;
 3268         tp->tf_ss = regs->r_ss;
 3269         pcb->pcb_gs = regs->r_gs;
 3270         return (0);
 3271 }
 3272 
 3273 #ifdef CPU_ENABLE_SSE
 3274 static void
 3275 fill_fpregs_xmm(sv_xmm, sv_87)
 3276         struct savexmm *sv_xmm;
 3277         struct save87 *sv_87;
 3278 {
 3279         register struct env87 *penv_87 = &sv_87->sv_env;
 3280         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3281         int i;
 3282 
 3283         bzero(sv_87, sizeof(*sv_87));
 3284 
 3285         /* FPU control/status */
 3286         penv_87->en_cw = penv_xmm->en_cw;
 3287         penv_87->en_sw = penv_xmm->en_sw;
 3288         penv_87->en_tw = penv_xmm->en_tw;
 3289         penv_87->en_fip = penv_xmm->en_fip;
 3290         penv_87->en_fcs = penv_xmm->en_fcs;
 3291         penv_87->en_opcode = penv_xmm->en_opcode;
 3292         penv_87->en_foo = penv_xmm->en_foo;
 3293         penv_87->en_fos = penv_xmm->en_fos;
 3294 
 3295         /* FPU registers */
 3296         for (i = 0; i < 8; ++i)
 3297                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 3298 }
 3299 
 3300 static void
 3301 set_fpregs_xmm(sv_87, sv_xmm)
 3302         struct save87 *sv_87;
 3303         struct savexmm *sv_xmm;
 3304 {
 3305         register struct env87 *penv_87 = &sv_87->sv_env;
 3306         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3307         int i;
 3308 
 3309         /* FPU control/status */
 3310         penv_xmm->en_cw = penv_87->en_cw;
 3311         penv_xmm->en_sw = penv_87->en_sw;
 3312         penv_xmm->en_tw = penv_87->en_tw;
 3313         penv_xmm->en_fip = penv_87->en_fip;
 3314         penv_xmm->en_fcs = penv_87->en_fcs;
 3315         penv_xmm->en_opcode = penv_87->en_opcode;
 3316         penv_xmm->en_foo = penv_87->en_foo;
 3317         penv_xmm->en_fos = penv_87->en_fos;
 3318 
 3319         /* FPU registers */
 3320         for (i = 0; i < 8; ++i)
 3321                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 3322 }
 3323 #endif /* CPU_ENABLE_SSE */
 3324 
 3325 int
 3326 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 3327 {
 3328 
 3329         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 3330             P_SHOULDSTOP(td->td_proc),
 3331             ("not suspended thread %p", td));
 3332 #ifdef DEV_NPX
 3333         npxgetregs(td);
 3334 #else
 3335         bzero(fpregs, sizeof(*fpregs));
 3336 #endif
 3337 #ifdef CPU_ENABLE_SSE
 3338         if (cpu_fxsr)
 3339                 fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm,
 3340                     (struct save87 *)fpregs);
 3341         else
 3342 #endif /* CPU_ENABLE_SSE */
 3343                 bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs,
 3344                     sizeof(*fpregs));
 3345         return (0);
 3346 }
 3347 
 3348 int
 3349 set_fpregs(struct thread *td, struct fpreg *fpregs)
 3350 {
 3351 
 3352 #ifdef CPU_ENABLE_SSE
 3353         if (cpu_fxsr)
 3354                 set_fpregs_xmm((struct save87 *)fpregs,
 3355                     &td->td_pcb->pcb_user_save.sv_xmm);
 3356         else
 3357 #endif /* CPU_ENABLE_SSE */
 3358                 bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87,
 3359                     sizeof(*fpregs));
 3360 #ifdef DEV_NPX
 3361         npxuserinited(td);
 3362 #endif
 3363         return (0);
 3364 }
 3365 
 3366 /*
 3367  * Get machine context.
 3368  */
 3369 int
 3370 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 3371 {
 3372         struct trapframe *tp;
 3373         struct segment_descriptor *sdp;
 3374 
 3375         tp = td->td_frame;
 3376 
 3377         PROC_LOCK(curthread->td_proc);
 3378         mcp->mc_onstack = sigonstack(tp->tf_esp);
 3379         PROC_UNLOCK(curthread->td_proc);
 3380         mcp->mc_gs = td->td_pcb->pcb_gs;
 3381         mcp->mc_fs = tp->tf_fs;
 3382         mcp->mc_es = tp->tf_es;
 3383         mcp->mc_ds = tp->tf_ds;
 3384         mcp->mc_edi = tp->tf_edi;
 3385         mcp->mc_esi = tp->tf_esi;
 3386         mcp->mc_ebp = tp->tf_ebp;
 3387         mcp->mc_isp = tp->tf_isp;
 3388         mcp->mc_eflags = tp->tf_eflags;
 3389         if (flags & GET_MC_CLEAR_RET) {
 3390                 mcp->mc_eax = 0;
 3391                 mcp->mc_edx = 0;
 3392                 mcp->mc_eflags &= ~PSL_C;
 3393         } else {
 3394                 mcp->mc_eax = tp->tf_eax;
 3395                 mcp->mc_edx = tp->tf_edx;
 3396         }
 3397         mcp->mc_ebx = tp->tf_ebx;
 3398         mcp->mc_ecx = tp->tf_ecx;
 3399         mcp->mc_eip = tp->tf_eip;
 3400         mcp->mc_cs = tp->tf_cs;
 3401         mcp->mc_esp = tp->tf_esp;
 3402         mcp->mc_ss = tp->tf_ss;
 3403         mcp->mc_len = sizeof(*mcp);
 3404         get_fpcontext(td, mcp);
 3405         sdp = &td->td_pcb->pcb_fsd;
 3406         mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3407         sdp = &td->td_pcb->pcb_gsd;
 3408         mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3409         mcp->mc_flags = 0;
 3410         bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
 3411         return (0);
 3412 }
 3413 
 3414 /*
 3415  * Set machine context.
 3416  *
 3417  * However, we don't set any but the user modifiable flags, and we won't
 3418  * touch the cs selector.
 3419  */
 3420 int
 3421 set_mcontext(struct thread *td, const mcontext_t *mcp)
 3422 {
 3423         struct trapframe *tp;
 3424         int eflags, ret;
 3425 
 3426         tp = td->td_frame;
 3427         if (mcp->mc_len != sizeof(*mcp))
 3428                 return (EINVAL);
 3429         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 3430             (tp->tf_eflags & ~PSL_USERCHANGE);
 3431         if ((ret = set_fpcontext(td, mcp)) == 0) {
 3432                 tp->tf_fs = mcp->mc_fs;
 3433                 tp->tf_es = mcp->mc_es;
 3434                 tp->tf_ds = mcp->mc_ds;
 3435                 tp->tf_edi = mcp->mc_edi;
 3436                 tp->tf_esi = mcp->mc_esi;
 3437                 tp->tf_ebp = mcp->mc_ebp;
 3438                 tp->tf_ebx = mcp->mc_ebx;
 3439                 tp->tf_edx = mcp->mc_edx;
 3440                 tp->tf_ecx = mcp->mc_ecx;
 3441                 tp->tf_eax = mcp->mc_eax;
 3442                 tp->tf_eip = mcp->mc_eip;
 3443                 tp->tf_eflags = eflags;
 3444                 tp->tf_esp = mcp->mc_esp;
 3445                 tp->tf_ss = mcp->mc_ss;
 3446                 td->td_pcb->pcb_gs = mcp->mc_gs;
 3447                 ret = 0;
 3448         }
 3449         return (ret);
 3450 }
 3451 
 3452 static void
 3453 get_fpcontext(struct thread *td, mcontext_t *mcp)
 3454 {
 3455 
 3456 #ifndef DEV_NPX
 3457         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 3458         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 3459         bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 3460 #else
 3461         mcp->mc_ownedfp = npxgetregs(td);
 3462         bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate[0],
 3463             sizeof(mcp->mc_fpstate));
 3464         mcp->mc_fpformat = npxformat();
 3465 #endif
 3466 }
 3467 
 3468 static int
 3469 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 3470 {
 3471 
 3472         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 3473                 return (0);
 3474         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 3475             mcp->mc_fpformat != _MC_FPFMT_XMM)
 3476                 return (EINVAL);
 3477         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 3478                 /* We don't care what state is left in the FPU or PCB. */
 3479                 fpstate_drop(td);
 3480         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 3481             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 3482 #ifdef DEV_NPX
 3483 #ifdef CPU_ENABLE_SSE
 3484                 if (cpu_fxsr)
 3485                         ((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env.
 3486                             en_mxcsr &= cpu_mxcsr_mask;
 3487 #endif
 3488                 npxsetregs(td, (union savefpu *)&mcp->mc_fpstate);
 3489 #endif
 3490         } else
 3491                 return (EINVAL);
 3492         return (0);
 3493 }
 3494 
 3495 static void
 3496 fpstate_drop(struct thread *td)
 3497 {
 3498 
 3499         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 3500         critical_enter();
 3501 #ifdef DEV_NPX
 3502         if (PCPU_GET(fpcurthread) == td)
 3503                 npxdrop();
 3504 #endif
 3505         /*
 3506          * XXX force a full drop of the npx.  The above only drops it if we
 3507          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 3508          *
 3509          * XXX I don't much like npxgetregs()'s semantics of doing a full
 3510          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 3511          * We only need to drop to !PCB_INITDONE in sendsig().  But
 3512          * sendsig() is the only caller of npxgetregs()... perhaps we just
 3513          * have too many layers.
 3514          */
 3515         curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
 3516             PCB_NPXUSERINITDONE);
 3517         critical_exit();
 3518 }
 3519 
 3520 int
 3521 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 3522 {
 3523         struct pcb *pcb;
 3524 
 3525         if (td == NULL) {
 3526                 dbregs->dr[0] = rdr0();
 3527                 dbregs->dr[1] = rdr1();
 3528                 dbregs->dr[2] = rdr2();
 3529                 dbregs->dr[3] = rdr3();
 3530                 dbregs->dr[4] = rdr4();
 3531                 dbregs->dr[5] = rdr5();
 3532                 dbregs->dr[6] = rdr6();
 3533                 dbregs->dr[7] = rdr7();
 3534         } else {
 3535                 pcb = td->td_pcb;
 3536                 dbregs->dr[0] = pcb->pcb_dr0;
 3537                 dbregs->dr[1] = pcb->pcb_dr1;
 3538                 dbregs->dr[2] = pcb->pcb_dr2;
 3539                 dbregs->dr[3] = pcb->pcb_dr3;
 3540                 dbregs->dr[4] = 0;
 3541                 dbregs->dr[5] = 0;
 3542                 dbregs->dr[6] = pcb->pcb_dr6;
 3543                 dbregs->dr[7] = pcb->pcb_dr7;
 3544         }
 3545         return (0);
 3546 }
 3547 
 3548 int
 3549 set_dbregs(struct thread *td, struct dbreg *dbregs)
 3550 {
 3551         struct pcb *pcb;
 3552         int i;
 3553 
 3554         if (td == NULL) {
 3555                 load_dr0(dbregs->dr[0]);
 3556                 load_dr1(dbregs->dr[1]);
 3557                 load_dr2(dbregs->dr[2]);
 3558                 load_dr3(dbregs->dr[3]);
 3559                 load_dr4(dbregs->dr[4]);
 3560                 load_dr5(dbregs->dr[5]);
 3561                 load_dr6(dbregs->dr[6]);
 3562                 load_dr7(dbregs->dr[7]);
 3563         } else {
 3564                 /*
 3565                  * Don't let an illegal value for dr7 get set.  Specifically,
 3566                  * check for undefined settings.  Setting these bit patterns
 3567                  * result in undefined behaviour and can lead to an unexpected
 3568                  * TRCTRAP.
 3569                  */
 3570                 for (i = 0; i < 4; i++) {
 3571                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 3572                                 return (EINVAL);
 3573                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 3574                                 return (EINVAL);
 3575                 }
 3576                 
 3577                 pcb = td->td_pcb;
 3578                 
 3579                 /*
 3580                  * Don't let a process set a breakpoint that is not within the
 3581                  * process's address space.  If a process could do this, it
 3582                  * could halt the system by setting a breakpoint in the kernel
 3583                  * (if ddb was enabled).  Thus, we need to check to make sure
 3584                  * that no breakpoints are being enabled for addresses outside
 3585                  * process's address space.
 3586                  *
 3587                  * XXX - what about when the watched area of the user's
 3588                  * address space is written into from within the kernel
 3589                  * ... wouldn't that still cause a breakpoint to be generated
 3590                  * from within kernel mode?
 3591                  */
 3592 
 3593                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 3594                         /* dr0 is enabled */
 3595                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 3596                                 return (EINVAL);
 3597                 }
 3598                         
 3599                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 3600                         /* dr1 is enabled */
 3601                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 3602                                 return (EINVAL);
 3603                 }
 3604                         
 3605                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 3606                         /* dr2 is enabled */
 3607                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 3608                                 return (EINVAL);
 3609                 }
 3610                         
 3611                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 3612                         /* dr3 is enabled */
 3613                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 3614                                 return (EINVAL);
 3615                 }
 3616 
 3617                 pcb->pcb_dr0 = dbregs->dr[0];
 3618                 pcb->pcb_dr1 = dbregs->dr[1];
 3619                 pcb->pcb_dr2 = dbregs->dr[2];
 3620                 pcb->pcb_dr3 = dbregs->dr[3];
 3621                 pcb->pcb_dr6 = dbregs->dr[6];
 3622                 pcb->pcb_dr7 = dbregs->dr[7];
 3623 
 3624                 pcb->pcb_flags |= PCB_DBREGS;
 3625         }
 3626 
 3627         return (0);
 3628 }
 3629 
 3630 /*
 3631  * Return > 0 if a hardware breakpoint has been hit, and the
 3632  * breakpoint was in user space.  Return 0, otherwise.
 3633  */
 3634 int
 3635 user_dbreg_trap(void)
 3636 {
 3637         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 3638         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 3639         int nbp;            /* number of breakpoints that triggered */
 3640         caddr_t addr[4];    /* breakpoint addresses */
 3641         int i;
 3642         
 3643         dr7 = rdr7();
 3644         if ((dr7 & 0x000000ff) == 0) {
 3645                 /*
 3646                  * all GE and LE bits in the dr7 register are zero,
 3647                  * thus the trap couldn't have been caused by the
 3648                  * hardware debug registers
 3649                  */
 3650                 return 0;
 3651         }
 3652 
 3653         nbp = 0;
 3654         dr6 = rdr6();
 3655         bp = dr6 & 0x0000000f;
 3656 
 3657         if (!bp) {
 3658                 /*
 3659                  * None of the breakpoint bits are set meaning this
 3660                  * trap was not caused by any of the debug registers
 3661                  */
 3662                 return 0;
 3663         }
 3664 
 3665         /*
 3666          * at least one of the breakpoints were hit, check to see
 3667          * which ones and if any of them are user space addresses
 3668          */
 3669 
 3670         if (bp & 0x01) {
 3671                 addr[nbp++] = (caddr_t)rdr0();
 3672         }
 3673         if (bp & 0x02) {
 3674                 addr[nbp++] = (caddr_t)rdr1();
 3675         }
 3676         if (bp & 0x04) {
 3677                 addr[nbp++] = (caddr_t)rdr2();
 3678         }
 3679         if (bp & 0x08) {
 3680                 addr[nbp++] = (caddr_t)rdr3();
 3681         }
 3682 
 3683         for (i = 0; i < nbp; i++) {
 3684                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 3685                         /*
 3686                          * addr[i] is in user space
 3687                          */
 3688                         return nbp;
 3689                 }
 3690         }
 3691 
 3692         /*
 3693          * None of the breakpoints are in user space.
 3694          */
 3695         return 0;
 3696 }
 3697 
 3698 #ifdef KDB
 3699 
 3700 /*
 3701  * Provide inb() and outb() as functions.  They are normally only available as
 3702  * inline functions, thus cannot be called from the debugger.
 3703  */
 3704 
 3705 /* silence compiler warnings */
 3706 u_char inb_(u_short);
 3707 void outb_(u_short, u_char);
 3708 
 3709 u_char
 3710 inb_(u_short port)
 3711 {
 3712         return inb(port);
 3713 }
 3714 
 3715 void
 3716 outb_(u_short port, u_char data)
 3717 {
 3718         outb(port, data);
 3719 }
 3720 
 3721 #endif /* KDB */

Cache object: 1df4759d13148531a7b24d2713844e4e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.