The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/10.2/sys/i386/i386/machdep.c 282066 2015-04-27 08:06:33Z kib $");
   42 
   43 #include "opt_apic.h"
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_mp_watchdog.h"
   55 #include "opt_npx.h"
   56 #include "opt_perfmon.h"
   57 #include "opt_platform.h"
   58 #include "opt_xbox.h"
   59 #include "opt_kdtrace.h"
   60 
   61 #include <sys/param.h>
   62 #include <sys/proc.h>
   63 #include <sys/systm.h>
   64 #include <sys/bio.h>
   65 #include <sys/buf.h>
   66 #include <sys/bus.h>
   67 #include <sys/callout.h>
   68 #include <sys/cons.h>
   69 #include <sys/cpu.h>
   70 #include <sys/eventhandler.h>
   71 #include <sys/exec.h>
   72 #include <sys/imgact.h>
   73 #include <sys/kdb.h>
   74 #include <sys/kernel.h>
   75 #include <sys/ktr.h>
   76 #include <sys/linker.h>
   77 #include <sys/lock.h>
   78 #include <sys/malloc.h>
   79 #include <sys/memrange.h>
   80 #include <sys/msgbuf.h>
   81 #include <sys/mutex.h>
   82 #include <sys/pcpu.h>
   83 #include <sys/ptrace.h>
   84 #include <sys/reboot.h>
   85 #include <sys/rwlock.h>
   86 #include <sys/sched.h>
   87 #include <sys/signalvar.h>
   88 #ifdef SMP
   89 #include <sys/smp.h>
   90 #endif
   91 #include <sys/syscallsubr.h>
   92 #include <sys/sysctl.h>
   93 #include <sys/sysent.h>
   94 #include <sys/sysproto.h>
   95 #include <sys/ucontext.h>
   96 #include <sys/vmmeter.h>
   97 
   98 #include <vm/vm.h>
   99 #include <vm/vm_extern.h>
  100 #include <vm/vm_kern.h>
  101 #include <vm/vm_page.h>
  102 #include <vm/vm_map.h>
  103 #include <vm/vm_object.h>
  104 #include <vm/vm_pager.h>
  105 #include <vm/vm_param.h>
  106 
  107 #ifdef DDB
  108 #ifndef KDB
  109 #error KDB must be enabled in order for DDB to work!
  110 #endif
  111 #include <ddb/ddb.h>
  112 #include <ddb/db_sym.h>
  113 #endif
  114 
  115 #ifdef PC98
  116 #include <pc98/pc98/pc98_machdep.h>
  117 #else
  118 #include <isa/rtc.h>
  119 #endif
  120 
  121 #include <net/netisr.h>
  122 
  123 #include <machine/bootinfo.h>
  124 #include <machine/clock.h>
  125 #include <machine/cpu.h>
  126 #include <machine/cputypes.h>
  127 #include <machine/intr_machdep.h>
  128 #include <x86/mca.h>
  129 #include <machine/md_var.h>
  130 #include <machine/metadata.h>
  131 #include <machine/mp_watchdog.h>
  132 #include <machine/pc/bios.h>
  133 #include <machine/pcb.h>
  134 #include <machine/pcb_ext.h>
  135 #include <machine/proc.h>
  136 #include <machine/reg.h>
  137 #include <machine/sigframe.h>
  138 #include <machine/specialreg.h>
  139 #include <machine/vm86.h>
  140 #ifdef PERFMON
  141 #include <machine/perfmon.h>
  142 #endif
  143 #ifdef SMP
  144 #include <machine/smp.h>
  145 #endif
  146 #ifdef FDT
  147 #include <x86/fdt.h>
  148 #endif
  149 
  150 #ifdef DEV_APIC
  151 #include <machine/apicvar.h>
  152 #endif
  153 
  154 #ifdef DEV_ISA
  155 #include <x86/isa/icu.h>
  156 #endif
  157 
  158 #ifdef XBOX
  159 #include <machine/xbox.h>
  160 
  161 int arch_i386_is_xbox = 0;
  162 uint32_t arch_i386_xbox_memsize = 0;
  163 #endif
  164 
  165 #ifdef XEN
  166 /* XEN includes */
  167 #include <xen/xen-os.h>
  168 #include <xen/hypervisor.h>
  169 #include <machine/xen/xenvar.h>
  170 #include <machine/xen/xenfunc.h>
  171 #include <xen/xen_intr.h>
  172 
  173 void Xhypervisor_callback(void);
  174 void failsafe_callback(void);
  175 
  176 extern trap_info_t trap_table[];
  177 struct proc_ldt default_proc_ldt;
  178 extern int init_first;
  179 int running_xen = 1;
  180 extern unsigned long physfree;
  181 #endif /* XEN */
  182 
  183 /* Sanity check for __curthread() */
  184 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  185 
  186 extern register_t init386(int first);
  187 extern void dblfault_handler(void);
  188 
  189 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  190 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  191 
  192 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  193 #define CPU_ENABLE_SSE
  194 #endif
  195 
  196 static void cpu_startup(void *);
  197 static void fpstate_drop(struct thread *td);
  198 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
  199     char *xfpusave, size_t xfpusave_len);
  200 static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
  201     char *xfpustate, size_t xfpustate_len);
  202 #ifdef CPU_ENABLE_SSE
  203 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  204 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  205 #endif /* CPU_ENABLE_SSE */
  206 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  207 
  208 #ifdef DDB
  209 extern vm_offset_t ksym_start, ksym_end;
  210 #endif
  211 
  212 /* Intel ICH registers */
  213 #define ICH_PMBASE      0x400
  214 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  215 
  216 int     _udatasel, _ucodesel;
  217 u_int   basemem;
  218 
  219 #ifdef PC98
  220 int     need_pre_dma_flush;     /* If 1, use wbinvd befor DMA transfer. */
  221 int     need_post_dma_flush;    /* If 1, use invd after DMA transfer. */
  222 
  223 static int      ispc98 = 1;
  224 SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
  225 #endif
  226 
  227 int cold = 1;
  228 
  229 #ifdef COMPAT_43
  230 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  231 #endif
  232 #ifdef COMPAT_FREEBSD4
  233 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  234 #endif
  235 
  236 long Maxmem = 0;
  237 long realmem = 0;
  238 
  239 #ifdef PAE
  240 FEATURE(pae, "Physical Address Extensions");
  241 #endif
  242 
  243 /*
  244  * The number of PHYSMAP entries must be one less than the number of
  245  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  246  * physical address that is accessible by ISA DMA is split into two
  247  * PHYSSEG entries.
  248  */
  249 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  250 
  251 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  252 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  253 
  254 /* must be 2 less so 0 0 can signal end of chunks */
  255 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  256 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  257 
  258 struct kva_md_info kmi;
  259 
  260 static struct trapframe proc0_tf;
  261 struct pcpu __pcpu[MAXCPU];
  262 
  263 struct mtx icu_lock;
  264 
  265 struct mem_range_softc mem_range_softc;
  266 
  267 static void
  268 cpu_startup(dummy)
  269         void *dummy;
  270 {
  271         uintmax_t memsize;
  272         char *sysenv;
  273 
  274 #ifndef PC98
  275         /*
  276          * On MacBooks, we need to disallow the legacy USB circuit to
  277          * generate an SMI# because this can cause several problems,
  278          * namely: incorrect CPU frequency detection and failure to
  279          * start the APs.
  280          * We do this by disabling a bit in the SMI_EN (SMI Control and
  281          * Enable register) of the Intel ICH LPC Interface Bridge.
  282          */
  283         sysenv = getenv("smbios.system.product");
  284         if (sysenv != NULL) {
  285                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  286                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  287                     strncmp(sysenv, "MacBook4,1", 10) == 0 ||
  288                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  289                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  290                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  291                     strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
  292                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  293                         if (bootverbose)
  294                                 printf("Disabling LEGACY_USB_EN bit on "
  295                                     "Intel ICH.\n");
  296                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  297                 }
  298                 freeenv(sysenv);
  299         }
  300 #endif /* !PC98 */
  301 
  302         /*
  303          * Good {morning,afternoon,evening,night}.
  304          */
  305         startrtclock();
  306         printcpuinfo();
  307         panicifcpuunsupported();
  308 #ifdef PERFMON
  309         perfmon_init();
  310 #endif
  311 
  312         /*
  313          * Display physical memory if SMBIOS reports reasonable amount.
  314          */
  315         memsize = 0;
  316         sysenv = getenv("smbios.memory.enabled");
  317         if (sysenv != NULL) {
  318                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  319                 freeenv(sysenv);
  320         }
  321         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  322                 memsize = ptoa((uintmax_t)Maxmem);
  323         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  324         realmem = atop(memsize);
  325 
  326         /*
  327          * Display any holes after the first chunk of extended memory.
  328          */
  329         if (bootverbose) {
  330                 int indx;
  331 
  332                 printf("Physical memory chunk(s):\n");
  333                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  334                         vm_paddr_t size;
  335 
  336                         size = phys_avail[indx + 1] - phys_avail[indx];
  337                         printf(
  338                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  339                             (uintmax_t)phys_avail[indx],
  340                             (uintmax_t)phys_avail[indx + 1] - 1,
  341                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  342                 }
  343         }
  344 
  345         vm_ksubmap_init(&kmi);
  346 
  347         printf("avail memory = %ju (%ju MB)\n",
  348             ptoa((uintmax_t)cnt.v_free_count),
  349             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  350 
  351         /*
  352          * Set up buffers, so they can be used to read disk labels.
  353          */
  354         bufinit();
  355         vm_pager_bufferinit();
  356 #ifndef XEN
  357         cpu_setregs();
  358 #endif
  359 }
  360 
  361 /*
  362  * Send an interrupt to process.
  363  *
  364  * Stack is set up to allow sigcode stored
  365  * at top to call routine, followed by call
  366  * to sigreturn routine below.  After sigreturn
  367  * resets the signal mask, the stack, and the
  368  * frame pointer, it returns to the user
  369  * specified pc, psl.
  370  */
  371 #ifdef COMPAT_43
  372 static void
  373 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  374 {
  375         struct osigframe sf, *fp;
  376         struct proc *p;
  377         struct thread *td;
  378         struct sigacts *psp;
  379         struct trapframe *regs;
  380         int sig;
  381         int oonstack;
  382 
  383         td = curthread;
  384         p = td->td_proc;
  385         PROC_LOCK_ASSERT(p, MA_OWNED);
  386         sig = ksi->ksi_signo;
  387         psp = p->p_sigacts;
  388         mtx_assert(&psp->ps_mtx, MA_OWNED);
  389         regs = td->td_frame;
  390         oonstack = sigonstack(regs->tf_esp);
  391 
  392         /* Allocate space for the signal handler context. */
  393         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  394             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  395                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  396                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  397 #if defined(COMPAT_43)
  398                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  399 #endif
  400         } else
  401                 fp = (struct osigframe *)regs->tf_esp - 1;
  402 
  403         /* Translate the signal if appropriate. */
  404         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  405                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  406 
  407         /* Build the argument list for the signal handler. */
  408         sf.sf_signum = sig;
  409         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  410         bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
  411         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  412                 /* Signal handler installed with SA_SIGINFO. */
  413                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  414                 sf.sf_siginfo.si_signo = sig;
  415                 sf.sf_siginfo.si_code = ksi->ksi_code;
  416                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  417                 sf.sf_addr = 0;
  418         } else {
  419                 /* Old FreeBSD-style arguments. */
  420                 sf.sf_arg2 = ksi->ksi_code;
  421                 sf.sf_addr = (register_t)ksi->ksi_addr;
  422                 sf.sf_ahu.sf_handler = catcher;
  423         }
  424         mtx_unlock(&psp->ps_mtx);
  425         PROC_UNLOCK(p);
  426 
  427         /* Save most if not all of trap frame. */
  428         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  429         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  430         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  431         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  432         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  433         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  434         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  435         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  436         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  437         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  438         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  439         sf.sf_siginfo.si_sc.sc_gs = rgs();
  440         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  441 
  442         /* Build the signal context to be used by osigreturn(). */
  443         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  444         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  445         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  446         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  447         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  448         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  449         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  450         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  451 
  452         /*
  453          * If we're a vm86 process, we want to save the segment registers.
  454          * We also change eflags to be our emulated eflags, not the actual
  455          * eflags.
  456          */
  457         if (regs->tf_eflags & PSL_VM) {
  458                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  459                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  460                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  461 
  462                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  463                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  464                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  465                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  466 
  467                 if (vm86->vm86_has_vme == 0)
  468                         sf.sf_siginfo.si_sc.sc_ps =
  469                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  470                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  471 
  472                 /* See sendsig() for comments. */
  473                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  474         }
  475 
  476         /*
  477          * Copy the sigframe out to the user's stack.
  478          */
  479         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  480 #ifdef DEBUG
  481                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  482 #endif
  483                 PROC_LOCK(p);
  484                 sigexit(td, SIGILL);
  485         }
  486 
  487         regs->tf_esp = (int)fp;
  488         if (p->p_sysent->sv_sigcode_base != 0) {
  489                 regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
  490                     szosigcode;
  491         } else {
  492                 /* a.out sysentvec does not use shared page */
  493                 regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
  494         }
  495         regs->tf_eflags &= ~(PSL_T | PSL_D);
  496         regs->tf_cs = _ucodesel;
  497         regs->tf_ds = _udatasel;
  498         regs->tf_es = _udatasel;
  499         regs->tf_fs = _udatasel;
  500         load_gs(_udatasel);
  501         regs->tf_ss = _udatasel;
  502         PROC_LOCK(p);
  503         mtx_lock(&psp->ps_mtx);
  504 }
  505 #endif /* COMPAT_43 */
  506 
  507 #ifdef COMPAT_FREEBSD4
  508 static void
  509 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  510 {
  511         struct sigframe4 sf, *sfp;
  512         struct proc *p;
  513         struct thread *td;
  514         struct sigacts *psp;
  515         struct trapframe *regs;
  516         int sig;
  517         int oonstack;
  518 
  519         td = curthread;
  520         p = td->td_proc;
  521         PROC_LOCK_ASSERT(p, MA_OWNED);
  522         sig = ksi->ksi_signo;
  523         psp = p->p_sigacts;
  524         mtx_assert(&psp->ps_mtx, MA_OWNED);
  525         regs = td->td_frame;
  526         oonstack = sigonstack(regs->tf_esp);
  527 
  528         /* Save user context. */
  529         bzero(&sf, sizeof(sf));
  530         sf.sf_uc.uc_sigmask = *mask;
  531         sf.sf_uc.uc_stack = td->td_sigstk;
  532         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  533             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  534         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  535         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  536         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  537         bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
  538             sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
  539         bzero(sf.sf_uc.uc_mcontext.__spare__,
  540             sizeof(sf.sf_uc.uc_mcontext.__spare__));
  541         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  542 
  543         /* Allocate space for the signal handler context. */
  544         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  545             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  546                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  547                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  548 #if defined(COMPAT_43)
  549                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  550 #endif
  551         } else
  552                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  553 
  554         /* Translate the signal if appropriate. */
  555         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  556                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  557 
  558         /* Build the argument list for the signal handler. */
  559         sf.sf_signum = sig;
  560         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  561         bzero(&sf.sf_si, sizeof(sf.sf_si));
  562         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  563                 /* Signal handler installed with SA_SIGINFO. */
  564                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  565                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  566 
  567                 /* Fill in POSIX parts */
  568                 sf.sf_si.si_signo = sig;
  569                 sf.sf_si.si_code = ksi->ksi_code;
  570                 sf.sf_si.si_addr = ksi->ksi_addr;
  571         } else {
  572                 /* Old FreeBSD-style arguments. */
  573                 sf.sf_siginfo = ksi->ksi_code;
  574                 sf.sf_addr = (register_t)ksi->ksi_addr;
  575                 sf.sf_ahu.sf_handler = catcher;
  576         }
  577         mtx_unlock(&psp->ps_mtx);
  578         PROC_UNLOCK(p);
  579 
  580         /*
  581          * If we're a vm86 process, we want to save the segment registers.
  582          * We also change eflags to be our emulated eflags, not the actual
  583          * eflags.
  584          */
  585         if (regs->tf_eflags & PSL_VM) {
  586                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  587                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  588 
  589                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  590                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  591                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  592                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  593 
  594                 if (vm86->vm86_has_vme == 0)
  595                         sf.sf_uc.uc_mcontext.mc_eflags =
  596                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  597                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  598 
  599                 /*
  600                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  601                  * syscalls made by the signal handler.  This just avoids
  602                  * wasting time for our lazy fixup of such faults.  PSL_NT
  603                  * does nothing in vm86 mode, but vm86 programs can set it
  604                  * almost legitimately in probes for old cpu types.
  605                  */
  606                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  607         }
  608 
  609         /*
  610          * Copy the sigframe out to the user's stack.
  611          */
  612         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  613 #ifdef DEBUG
  614                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  615 #endif
  616                 PROC_LOCK(p);
  617                 sigexit(td, SIGILL);
  618         }
  619 
  620         regs->tf_esp = (int)sfp;
  621         regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
  622             szfreebsd4_sigcode;
  623         regs->tf_eflags &= ~(PSL_T | PSL_D);
  624         regs->tf_cs = _ucodesel;
  625         regs->tf_ds = _udatasel;
  626         regs->tf_es = _udatasel;
  627         regs->tf_fs = _udatasel;
  628         regs->tf_ss = _udatasel;
  629         PROC_LOCK(p);
  630         mtx_lock(&psp->ps_mtx);
  631 }
  632 #endif  /* COMPAT_FREEBSD4 */
  633 
  634 void
  635 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  636 {
  637         struct sigframe sf, *sfp;
  638         struct proc *p;
  639         struct thread *td;
  640         struct sigacts *psp;
  641         char *sp;
  642         struct trapframe *regs;
  643         struct segment_descriptor *sdp;
  644         char *xfpusave;
  645         size_t xfpusave_len;
  646         int sig;
  647         int oonstack;
  648 
  649         td = curthread;
  650         p = td->td_proc;
  651         PROC_LOCK_ASSERT(p, MA_OWNED);
  652         sig = ksi->ksi_signo;
  653         psp = p->p_sigacts;
  654         mtx_assert(&psp->ps_mtx, MA_OWNED);
  655 #ifdef COMPAT_FREEBSD4
  656         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  657                 freebsd4_sendsig(catcher, ksi, mask);
  658                 return;
  659         }
  660 #endif
  661 #ifdef COMPAT_43
  662         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  663                 osendsig(catcher, ksi, mask);
  664                 return;
  665         }
  666 #endif
  667         regs = td->td_frame;
  668         oonstack = sigonstack(regs->tf_esp);
  669 
  670 #ifdef CPU_ENABLE_SSE
  671         if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) {
  672                 xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu);
  673                 xfpusave = __builtin_alloca(xfpusave_len);
  674         } else {
  675 #else
  676         {
  677 #endif
  678                 xfpusave_len = 0;
  679                 xfpusave = NULL;
  680         }
  681 
  682         /* Save user context. */
  683         bzero(&sf, sizeof(sf));
  684         sf.sf_uc.uc_sigmask = *mask;
  685         sf.sf_uc.uc_stack = td->td_sigstk;
  686         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  687             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  688         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  689         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  690         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  691         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  692         get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
  693         fpstate_drop(td);
  694         /*
  695          * Unconditionally fill the fsbase and gsbase into the mcontext.
  696          */
  697         sdp = &td->td_pcb->pcb_fsd;
  698         sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
  699             sdp->sd_lobase;
  700         sdp = &td->td_pcb->pcb_gsd;
  701         sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
  702             sdp->sd_lobase;
  703         bzero(sf.sf_uc.uc_mcontext.mc_spare2,
  704             sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
  705         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  706 
  707         /* Allocate space for the signal handler context. */
  708         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  709             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  710                 sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
  711 #if defined(COMPAT_43)
  712                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  713 #endif
  714         } else
  715                 sp = (char *)regs->tf_esp - 128;
  716         if (xfpusave != NULL) {
  717                 sp -= xfpusave_len;
  718                 sp = (char *)((unsigned int)sp & ~0x3F);
  719                 sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
  720         }
  721         sp -= sizeof(struct sigframe);
  722 
  723         /* Align to 16 bytes. */
  724         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  725 
  726         /* Translate the signal if appropriate. */
  727         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  728                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  729 
  730         /* Build the argument list for the signal handler. */
  731         sf.sf_signum = sig;
  732         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  733         bzero(&sf.sf_si, sizeof(sf.sf_si));
  734         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  735                 /* Signal handler installed with SA_SIGINFO. */
  736                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  737                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  738 
  739                 /* Fill in POSIX parts */
  740                 sf.sf_si = ksi->ksi_info;
  741                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  742         } else {
  743                 /* Old FreeBSD-style arguments. */
  744                 sf.sf_siginfo = ksi->ksi_code;
  745                 sf.sf_addr = (register_t)ksi->ksi_addr;
  746                 sf.sf_ahu.sf_handler = catcher;
  747         }
  748         mtx_unlock(&psp->ps_mtx);
  749         PROC_UNLOCK(p);
  750 
  751         /*
  752          * If we're a vm86 process, we want to save the segment registers.
  753          * We also change eflags to be our emulated eflags, not the actual
  754          * eflags.
  755          */
  756         if (regs->tf_eflags & PSL_VM) {
  757                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  758                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  759 
  760                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  761                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  762                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  763                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  764 
  765                 if (vm86->vm86_has_vme == 0)
  766                         sf.sf_uc.uc_mcontext.mc_eflags =
  767                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  768                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  769 
  770                 /*
  771                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  772                  * syscalls made by the signal handler.  This just avoids
  773                  * wasting time for our lazy fixup of such faults.  PSL_NT
  774                  * does nothing in vm86 mode, but vm86 programs can set it
  775                  * almost legitimately in probes for old cpu types.
  776                  */
  777                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  778         }
  779 
  780         /*
  781          * Copy the sigframe out to the user's stack.
  782          */
  783         if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  784             (xfpusave != NULL && copyout(xfpusave,
  785             (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
  786             != 0)) {
  787 #ifdef DEBUG
  788                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  789 #endif
  790                 PROC_LOCK(p);
  791                 sigexit(td, SIGILL);
  792         }
  793 
  794         regs->tf_esp = (int)sfp;
  795         regs->tf_eip = p->p_sysent->sv_sigcode_base;
  796         if (regs->tf_eip == 0)
  797                 regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
  798         regs->tf_eflags &= ~(PSL_T | PSL_D);
  799         regs->tf_cs = _ucodesel;
  800         regs->tf_ds = _udatasel;
  801         regs->tf_es = _udatasel;
  802         regs->tf_fs = _udatasel;
  803         regs->tf_ss = _udatasel;
  804         PROC_LOCK(p);
  805         mtx_lock(&psp->ps_mtx);
  806 }
  807 
  808 /*
  809  * System call to cleanup state after a signal
  810  * has been taken.  Reset signal mask and
  811  * stack state from context left by sendsig (above).
  812  * Return to previous pc and psl as specified by
  813  * context left by sendsig. Check carefully to
  814  * make sure that the user has not modified the
  815  * state to gain improper privileges.
  816  *
  817  * MPSAFE
  818  */
  819 #ifdef COMPAT_43
  820 int
  821 osigreturn(td, uap)
  822         struct thread *td;
  823         struct osigreturn_args /* {
  824                 struct osigcontext *sigcntxp;
  825         } */ *uap;
  826 {
  827         struct osigcontext sc;
  828         struct trapframe *regs;
  829         struct osigcontext *scp;
  830         int eflags, error;
  831         ksiginfo_t ksi;
  832 
  833         regs = td->td_frame;
  834         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  835         if (error != 0)
  836                 return (error);
  837         scp = &sc;
  838         eflags = scp->sc_ps;
  839         if (eflags & PSL_VM) {
  840                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  841                 struct vm86_kernel *vm86;
  842 
  843                 /*
  844                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  845                  * set up the vm86 area, and we can't enter vm86 mode.
  846                  */
  847                 if (td->td_pcb->pcb_ext == 0)
  848                         return (EINVAL);
  849                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  850                 if (vm86->vm86_inited == 0)
  851                         return (EINVAL);
  852 
  853                 /* Go back to user mode if both flags are set. */
  854                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  855                         ksiginfo_init_trap(&ksi);
  856                         ksi.ksi_signo = SIGBUS;
  857                         ksi.ksi_code = BUS_OBJERR;
  858                         ksi.ksi_addr = (void *)regs->tf_eip;
  859                         trapsignal(td, &ksi);
  860                 }
  861 
  862                 if (vm86->vm86_has_vme) {
  863                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  864                             (eflags & VME_USERCHANGE) | PSL_VM;
  865                 } else {
  866                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  867                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  868                             (eflags & VM_USERCHANGE) | PSL_VM;
  869                 }
  870                 tf->tf_vm86_ds = scp->sc_ds;
  871                 tf->tf_vm86_es = scp->sc_es;
  872                 tf->tf_vm86_fs = scp->sc_fs;
  873                 tf->tf_vm86_gs = scp->sc_gs;
  874                 tf->tf_ds = _udatasel;
  875                 tf->tf_es = _udatasel;
  876                 tf->tf_fs = _udatasel;
  877         } else {
  878                 /*
  879                  * Don't allow users to change privileged or reserved flags.
  880                  */
  881                 if (!EFL_SECURE(eflags, regs->tf_eflags)) {
  882                         return (EINVAL);
  883                 }
  884 
  885                 /*
  886                  * Don't allow users to load a valid privileged %cs.  Let the
  887                  * hardware check for invalid selectors, excess privilege in
  888                  * other selectors, invalid %eip's and invalid %esp's.
  889                  */
  890                 if (!CS_SECURE(scp->sc_cs)) {
  891                         ksiginfo_init_trap(&ksi);
  892                         ksi.ksi_signo = SIGBUS;
  893                         ksi.ksi_code = BUS_OBJERR;
  894                         ksi.ksi_trapno = T_PROTFLT;
  895                         ksi.ksi_addr = (void *)regs->tf_eip;
  896                         trapsignal(td, &ksi);
  897                         return (EINVAL);
  898                 }
  899                 regs->tf_ds = scp->sc_ds;
  900                 regs->tf_es = scp->sc_es;
  901                 regs->tf_fs = scp->sc_fs;
  902         }
  903 
  904         /* Restore remaining registers. */
  905         regs->tf_eax = scp->sc_eax;
  906         regs->tf_ebx = scp->sc_ebx;
  907         regs->tf_ecx = scp->sc_ecx;
  908         regs->tf_edx = scp->sc_edx;
  909         regs->tf_esi = scp->sc_esi;
  910         regs->tf_edi = scp->sc_edi;
  911         regs->tf_cs = scp->sc_cs;
  912         regs->tf_ss = scp->sc_ss;
  913         regs->tf_isp = scp->sc_isp;
  914         regs->tf_ebp = scp->sc_fp;
  915         regs->tf_esp = scp->sc_sp;
  916         regs->tf_eip = scp->sc_pc;
  917         regs->tf_eflags = eflags;
  918 
  919 #if defined(COMPAT_43)
  920         if (scp->sc_onstack & 1)
  921                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  922         else
  923                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  924 #endif
  925         kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
  926             SIGPROCMASK_OLD);
  927         return (EJUSTRETURN);
  928 }
  929 #endif /* COMPAT_43 */
  930 
  931 #ifdef COMPAT_FREEBSD4
  932 /*
  933  * MPSAFE
  934  */
  935 int
  936 freebsd4_sigreturn(td, uap)
  937         struct thread *td;
  938         struct freebsd4_sigreturn_args /* {
  939                 const ucontext4 *sigcntxp;
  940         } */ *uap;
  941 {
  942         struct ucontext4 uc;
  943         struct trapframe *regs;
  944         struct ucontext4 *ucp;
  945         int cs, eflags, error;
  946         ksiginfo_t ksi;
  947 
  948         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  949         if (error != 0)
  950                 return (error);
  951         ucp = &uc;
  952         regs = td->td_frame;
  953         eflags = ucp->uc_mcontext.mc_eflags;
  954         if (eflags & PSL_VM) {
  955                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  956                 struct vm86_kernel *vm86;
  957 
  958                 /*
  959                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  960                  * set up the vm86 area, and we can't enter vm86 mode.
  961                  */
  962                 if (td->td_pcb->pcb_ext == 0)
  963                         return (EINVAL);
  964                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  965                 if (vm86->vm86_inited == 0)
  966                         return (EINVAL);
  967 
  968                 /* Go back to user mode if both flags are set. */
  969                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  970                         ksiginfo_init_trap(&ksi);
  971                         ksi.ksi_signo = SIGBUS;
  972                         ksi.ksi_code = BUS_OBJERR;
  973                         ksi.ksi_addr = (void *)regs->tf_eip;
  974                         trapsignal(td, &ksi);
  975                 }
  976                 if (vm86->vm86_has_vme) {
  977                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  978                             (eflags & VME_USERCHANGE) | PSL_VM;
  979                 } else {
  980                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  981                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  982                             (eflags & VM_USERCHANGE) | PSL_VM;
  983                 }
  984                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  985                 tf->tf_eflags = eflags;
  986                 tf->tf_vm86_ds = tf->tf_ds;
  987                 tf->tf_vm86_es = tf->tf_es;
  988                 tf->tf_vm86_fs = tf->tf_fs;
  989                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  990                 tf->tf_ds = _udatasel;
  991                 tf->tf_es = _udatasel;
  992                 tf->tf_fs = _udatasel;
  993         } else {
  994                 /*
  995                  * Don't allow users to change privileged or reserved flags.
  996                  */
  997                 if (!EFL_SECURE(eflags, regs->tf_eflags)) {
  998                         uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
  999                             td->td_proc->p_pid, td->td_name, eflags);
 1000                         return (EINVAL);
 1001                 }
 1002 
 1003                 /*
 1004                  * Don't allow users to load a valid privileged %cs.  Let the
 1005                  * hardware check for invalid selectors, excess privilege in
 1006                  * other selectors, invalid %eip's and invalid %esp's.
 1007                  */
 1008                 cs = ucp->uc_mcontext.mc_cs;
 1009                 if (!CS_SECURE(cs)) {
 1010                         uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
 1011                             td->td_proc->p_pid, td->td_name, cs);
 1012                         ksiginfo_init_trap(&ksi);
 1013                         ksi.ksi_signo = SIGBUS;
 1014                         ksi.ksi_code = BUS_OBJERR;
 1015                         ksi.ksi_trapno = T_PROTFLT;
 1016                         ksi.ksi_addr = (void *)regs->tf_eip;
 1017                         trapsignal(td, &ksi);
 1018                         return (EINVAL);
 1019                 }
 1020 
 1021                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1022         }
 1023 
 1024 #if defined(COMPAT_43)
 1025         if (ucp->uc_mcontext.mc_onstack & 1)
 1026                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1027         else
 1028                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1029 #endif
 1030         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1031         return (EJUSTRETURN);
 1032 }
 1033 #endif  /* COMPAT_FREEBSD4 */
 1034 
 1035 /*
 1036  * MPSAFE
 1037  */
 1038 int
 1039 sys_sigreturn(td, uap)
 1040         struct thread *td;
 1041         struct sigreturn_args /* {
 1042                 const struct __ucontext *sigcntxp;
 1043         } */ *uap;
 1044 {
 1045         ucontext_t uc;
 1046         struct proc *p;
 1047         struct trapframe *regs;
 1048         ucontext_t *ucp;
 1049         char *xfpustate;
 1050         size_t xfpustate_len;
 1051         int cs, eflags, error, ret;
 1052         ksiginfo_t ksi;
 1053 
 1054         p = td->td_proc;
 1055 
 1056         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
 1057         if (error != 0)
 1058                 return (error);
 1059         ucp = &uc;
 1060         if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
 1061                 uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
 1062                     td->td_name, ucp->uc_mcontext.mc_flags);
 1063                 return (EINVAL);
 1064         }
 1065         regs = td->td_frame;
 1066         eflags = ucp->uc_mcontext.mc_eflags;
 1067         if (eflags & PSL_VM) {
 1068                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
 1069                 struct vm86_kernel *vm86;
 1070 
 1071                 /*
 1072                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
 1073                  * set up the vm86 area, and we can't enter vm86 mode.
 1074                  */
 1075                 if (td->td_pcb->pcb_ext == 0)
 1076                         return (EINVAL);
 1077                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
 1078                 if (vm86->vm86_inited == 0)
 1079                         return (EINVAL);
 1080 
 1081                 /* Go back to user mode if both flags are set. */
 1082                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
 1083                         ksiginfo_init_trap(&ksi);
 1084                         ksi.ksi_signo = SIGBUS;
 1085                         ksi.ksi_code = BUS_OBJERR;
 1086                         ksi.ksi_addr = (void *)regs->tf_eip;
 1087                         trapsignal(td, &ksi);
 1088                 }
 1089 
 1090                 if (vm86->vm86_has_vme) {
 1091                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
 1092                             (eflags & VME_USERCHANGE) | PSL_VM;
 1093                 } else {
 1094                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
 1095                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
 1096                             (eflags & VM_USERCHANGE) | PSL_VM;
 1097                 }
 1098                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
 1099                 tf->tf_eflags = eflags;
 1100                 tf->tf_vm86_ds = tf->tf_ds;
 1101                 tf->tf_vm86_es = tf->tf_es;
 1102                 tf->tf_vm86_fs = tf->tf_fs;
 1103                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
 1104                 tf->tf_ds = _udatasel;
 1105                 tf->tf_es = _udatasel;
 1106                 tf->tf_fs = _udatasel;
 1107         } else {
 1108                 /*
 1109                  * Don't allow users to change privileged or reserved flags.
 1110                  */
 1111                 if (!EFL_SECURE(eflags, regs->tf_eflags)) {
 1112                         uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
 1113                             td->td_proc->p_pid, td->td_name, eflags);
 1114                         return (EINVAL);
 1115                 }
 1116 
 1117                 /*
 1118                  * Don't allow users to load a valid privileged %cs.  Let the
 1119                  * hardware check for invalid selectors, excess privilege in
 1120                  * other selectors, invalid %eip's and invalid %esp's.
 1121                  */
 1122                 cs = ucp->uc_mcontext.mc_cs;
 1123                 if (!CS_SECURE(cs)) {
 1124                         uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
 1125                             td->td_proc->p_pid, td->td_name, cs);
 1126                         ksiginfo_init_trap(&ksi);
 1127                         ksi.ksi_signo = SIGBUS;
 1128                         ksi.ksi_code = BUS_OBJERR;
 1129                         ksi.ksi_trapno = T_PROTFLT;
 1130                         ksi.ksi_addr = (void *)regs->tf_eip;
 1131                         trapsignal(td, &ksi);
 1132                         return (EINVAL);
 1133                 }
 1134 
 1135                 if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
 1136                         xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
 1137                         if (xfpustate_len > cpu_max_ext_state_size -
 1138                             sizeof(union savefpu)) {
 1139                                 uprintf(
 1140                             "pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
 1141                                     p->p_pid, td->td_name, xfpustate_len);
 1142                                 return (EINVAL);
 1143                         }
 1144                         xfpustate = __builtin_alloca(xfpustate_len);
 1145                         error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
 1146                             xfpustate, xfpustate_len);
 1147                         if (error != 0) {
 1148                                 uprintf(
 1149         "pid %d (%s): sigreturn copying xfpustate failed\n",
 1150                                     p->p_pid, td->td_name);
 1151                                 return (error);
 1152                         }
 1153                 } else {
 1154                         xfpustate = NULL;
 1155                         xfpustate_len = 0;
 1156                 }
 1157                 ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate,
 1158                     xfpustate_len);
 1159                 if (ret != 0)
 1160                         return (ret);
 1161                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1162         }
 1163 
 1164 #if defined(COMPAT_43)
 1165         if (ucp->uc_mcontext.mc_onstack & 1)
 1166                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1167         else
 1168                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1169 #endif
 1170 
 1171         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1172         return (EJUSTRETURN);
 1173 }
 1174 
 1175 /*
 1176  * Machine dependent boot() routine
 1177  *
 1178  * I haven't seen anything to put here yet
 1179  * Possibly some stuff might be grafted back here from boot()
 1180  */
 1181 void
 1182 cpu_boot(int howto)
 1183 {
 1184 }
 1185 
 1186 /*
 1187  * Flush the D-cache for non-DMA I/O so that the I-cache can
 1188  * be made coherent later.
 1189  */
 1190 void
 1191 cpu_flush_dcache(void *ptr, size_t len)
 1192 {
 1193         /* Not applicable */
 1194 }
 1195 
 1196 /* Get current clock frequency for the given cpu id. */
 1197 int
 1198 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1199 {
 1200         uint64_t tsc1, tsc2;
 1201         uint64_t acnt, mcnt, perf;
 1202         register_t reg;
 1203 
 1204         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1205                 return (EINVAL);
 1206         if ((cpu_feature & CPUID_TSC) == 0)
 1207                 return (EOPNOTSUPP);
 1208 
 1209         /*
 1210          * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
 1211          * DELAY(9) based logic fails.
 1212          */
 1213         if (tsc_is_invariant && !tsc_perf_stat)
 1214                 return (EOPNOTSUPP);
 1215 
 1216 #ifdef SMP
 1217         if (smp_cpus > 1) {
 1218                 /* Schedule ourselves on the indicated cpu. */
 1219                 thread_lock(curthread);
 1220                 sched_bind(curthread, cpu_id);
 1221                 thread_unlock(curthread);
 1222         }
 1223 #endif
 1224 
 1225         /* Calibrate by measuring a short delay. */
 1226         reg = intr_disable();
 1227         if (tsc_is_invariant) {
 1228                 wrmsr(MSR_MPERF, 0);
 1229                 wrmsr(MSR_APERF, 0);
 1230                 tsc1 = rdtsc();
 1231                 DELAY(1000);
 1232                 mcnt = rdmsr(MSR_MPERF);
 1233                 acnt = rdmsr(MSR_APERF);
 1234                 tsc2 = rdtsc();
 1235                 intr_restore(reg);
 1236                 perf = 1000 * acnt / mcnt;
 1237                 *rate = (tsc2 - tsc1) * perf;
 1238         } else {
 1239                 tsc1 = rdtsc();
 1240                 DELAY(1000);
 1241                 tsc2 = rdtsc();
 1242                 intr_restore(reg);
 1243                 *rate = (tsc2 - tsc1) * 1000;
 1244         }
 1245 
 1246 #ifdef SMP
 1247         if (smp_cpus > 1) {
 1248                 thread_lock(curthread);
 1249                 sched_unbind(curthread);
 1250                 thread_unlock(curthread);
 1251         }
 1252 #endif
 1253 
 1254         return (0);
 1255 }
 1256 
 1257 #ifdef XEN
 1258 
 1259 static void
 1260 idle_block(void)
 1261 {
 1262 
 1263         HYPERVISOR_sched_op(SCHEDOP_block, 0);
 1264 }
 1265 
 1266 void
 1267 cpu_halt(void)
 1268 {
 1269         HYPERVISOR_shutdown(SHUTDOWN_poweroff);
 1270 }
 1271 
 1272 int scheduler_running;
 1273 
 1274 static void
 1275 cpu_idle_hlt(sbintime_t sbt)
 1276 {
 1277 
 1278         scheduler_running = 1;
 1279         enable_intr();
 1280         idle_block();
 1281 }
 1282 
 1283 #else
 1284 /*
 1285  * Shutdown the CPU as much as possible
 1286  */
 1287 void
 1288 cpu_halt(void)
 1289 {
 1290         for (;;)
 1291                 halt();
 1292 }
 1293 
 1294 #endif
 1295 
 1296 void (*cpu_idle_hook)(sbintime_t) = NULL;       /* ACPI idle hook. */
 1297 static int      cpu_ident_amdc1e = 0;   /* AMD C1E supported. */
 1298 static int      idle_mwait = 1;         /* Use MONITOR/MWAIT for short idle. */
 1299 TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
 1300 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
 1301     0, "Use MONITOR/MWAIT for short idle");
 1302 
 1303 #define STATE_RUNNING   0x0
 1304 #define STATE_MWAIT     0x1
 1305 #define STATE_SLEEPING  0x2
 1306 
 1307 #ifndef PC98
 1308 static void
 1309 cpu_idle_acpi(sbintime_t sbt)
 1310 {
 1311         int *state;
 1312 
 1313         state = (int *)PCPU_PTR(monitorbuf);
 1314         *state = STATE_SLEEPING;
 1315 
 1316         /* See comments in cpu_idle_hlt(). */
 1317         disable_intr();
 1318         if (sched_runnable())
 1319                 enable_intr();
 1320         else if (cpu_idle_hook)
 1321                 cpu_idle_hook(sbt);
 1322         else
 1323                 __asm __volatile("sti; hlt");
 1324         *state = STATE_RUNNING;
 1325 }
 1326 #endif /* !PC98 */
 1327 
 1328 #ifndef XEN
 1329 static void
 1330 cpu_idle_hlt(sbintime_t sbt)
 1331 {
 1332         int *state;
 1333 
 1334         state = (int *)PCPU_PTR(monitorbuf);
 1335         *state = STATE_SLEEPING;
 1336 
 1337         /*
 1338          * Since we may be in a critical section from cpu_idle(), if
 1339          * an interrupt fires during that critical section we may have
 1340          * a pending preemption.  If the CPU halts, then that thread
 1341          * may not execute until a later interrupt awakens the CPU.
 1342          * To handle this race, check for a runnable thread after
 1343          * disabling interrupts and immediately return if one is
 1344          * found.  Also, we must absolutely guarentee that hlt is
 1345          * the next instruction after sti.  This ensures that any
 1346          * interrupt that fires after the call to disable_intr() will
 1347          * immediately awaken the CPU from hlt.  Finally, please note
 1348          * that on x86 this works fine because of interrupts enabled only
 1349          * after the instruction following sti takes place, while IF is set
 1350          * to 1 immediately, allowing hlt instruction to acknowledge the
 1351          * interrupt.
 1352          */
 1353         disable_intr();
 1354         if (sched_runnable())
 1355                 enable_intr();
 1356         else
 1357                 __asm __volatile("sti; hlt");
 1358         *state = STATE_RUNNING;
 1359 }
 1360 #endif
 1361 
 1362 static void
 1363 cpu_idle_mwait(sbintime_t sbt)
 1364 {
 1365         int *state;
 1366 
 1367         state = (int *)PCPU_PTR(monitorbuf);
 1368         *state = STATE_MWAIT;
 1369 
 1370         /* See comments in cpu_idle_hlt(). */
 1371         disable_intr();
 1372         if (sched_runnable()) {
 1373                 enable_intr();
 1374                 *state = STATE_RUNNING;
 1375                 return;
 1376         }
 1377         cpu_monitor(state, 0, 0);
 1378         if (*state == STATE_MWAIT)
 1379                 __asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
 1380         else
 1381                 enable_intr();
 1382         *state = STATE_RUNNING;
 1383 }
 1384 
 1385 static void
 1386 cpu_idle_spin(sbintime_t sbt)
 1387 {
 1388         int *state;
 1389         int i;
 1390 
 1391         state = (int *)PCPU_PTR(monitorbuf);
 1392         *state = STATE_RUNNING;
 1393 
 1394         /*
 1395          * The sched_runnable() call is racy but as long as there is
 1396          * a loop missing it one time will have just a little impact if any 
 1397          * (and it is much better than missing the check at all).
 1398          */
 1399         for (i = 0; i < 1000; i++) {
 1400                 if (sched_runnable())
 1401                         return;
 1402                 cpu_spinwait();
 1403         }
 1404 }
 1405 
 1406 /*
 1407  * C1E renders the local APIC timer dead, so we disable it by
 1408  * reading the Interrupt Pending Message register and clearing
 1409  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
 1410  * 
 1411  * Reference:
 1412  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
 1413  *   #32559 revision 3.00+
 1414  */
 1415 #define MSR_AMDK8_IPM           0xc0010055
 1416 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
 1417 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
 1418 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
 1419 
 1420 static void
 1421 cpu_probe_amdc1e(void)
 1422 {
 1423 
 1424         /*
 1425          * Detect the presence of C1E capability mostly on latest
 1426          * dual-cores (or future) k8 family.
 1427          */
 1428         if (cpu_vendor_id == CPU_VENDOR_AMD &&
 1429             (cpu_id & 0x00000f00) == 0x00000f00 &&
 1430             (cpu_id & 0x0fff0000) >=  0x00040000) {
 1431                 cpu_ident_amdc1e = 1;
 1432         }
 1433 }
 1434 
 1435 #if defined(PC98) || defined(XEN)
 1436 void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
 1437 #else
 1438 void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
 1439 #endif
 1440 
 1441 void
 1442 cpu_idle(int busy)
 1443 {
 1444 #ifndef XEN
 1445         uint64_t msr;
 1446 #endif
 1447         sbintime_t sbt = -1;
 1448 
 1449         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
 1450             busy, curcpu);
 1451 #if defined(MP_WATCHDOG) && !defined(XEN)
 1452         ap_watchdog(PCPU_GET(cpuid));
 1453 #endif
 1454 #ifndef XEN
 1455         /* If we are busy - try to use fast methods. */
 1456         if (busy) {
 1457                 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
 1458                         cpu_idle_mwait(busy);
 1459                         goto out;
 1460                 }
 1461         }
 1462 #endif
 1463 
 1464         /* If we have time - switch timers into idle mode. */
 1465         if (!busy) {
 1466                 critical_enter();
 1467                 sbt = cpu_idleclock();
 1468         }
 1469 
 1470 #ifndef XEN
 1471         /* Apply AMD APIC timer C1E workaround. */
 1472         if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
 1473                 msr = rdmsr(MSR_AMDK8_IPM);
 1474                 if (msr & AMDK8_CMPHALT)
 1475                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
 1476         }
 1477 #endif
 1478 
 1479         /* Call main idle method. */
 1480         cpu_idle_fn(sbt);
 1481 
 1482         /* Switch timers mack into active mode. */
 1483         if (!busy) {
 1484                 cpu_activeclock();
 1485                 critical_exit();
 1486         }
 1487 #ifndef XEN
 1488 out:
 1489 #endif
 1490         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
 1491             busy, curcpu);
 1492 }
 1493 
 1494 int
 1495 cpu_idle_wakeup(int cpu)
 1496 {
 1497         struct pcpu *pcpu;
 1498         int *state;
 1499 
 1500         pcpu = pcpu_find(cpu);
 1501         state = (int *)pcpu->pc_monitorbuf;
 1502         /*
 1503          * This doesn't need to be atomic since missing the race will
 1504          * simply result in unnecessary IPIs.
 1505          */
 1506         if (*state == STATE_SLEEPING)
 1507                 return (0);
 1508         if (*state == STATE_MWAIT)
 1509                 *state = STATE_RUNNING;
 1510         return (1);
 1511 }
 1512 
 1513 /*
 1514  * Ordered by speed/power consumption.
 1515  */
 1516 struct {
 1517         void    *id_fn;
 1518         char    *id_name;
 1519 } idle_tbl[] = {
 1520         { cpu_idle_spin, "spin" },
 1521         { cpu_idle_mwait, "mwait" },
 1522         { cpu_idle_hlt, "hlt" },
 1523 #ifndef PC98
 1524         { cpu_idle_acpi, "acpi" },
 1525 #endif
 1526         { NULL, NULL }
 1527 };
 1528 
 1529 static int
 1530 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
 1531 {
 1532         char *avail, *p;
 1533         int error;
 1534         int i;
 1535 
 1536         avail = malloc(256, M_TEMP, M_WAITOK);
 1537         p = avail;
 1538         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1539                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1540                     (cpu_feature2 & CPUID2_MON) == 0)
 1541                         continue;
 1542 #ifndef PC98
 1543                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
 1544                     cpu_idle_hook == NULL)
 1545                         continue;
 1546 #endif
 1547                 p += sprintf(p, "%s%s", p != avail ? ", " : "",
 1548                     idle_tbl[i].id_name);
 1549         }
 1550         error = sysctl_handle_string(oidp, avail, 0, req);
 1551         free(avail, M_TEMP);
 1552         return (error);
 1553 }
 1554 
 1555 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
 1556     0, 0, idle_sysctl_available, "A", "list of available idle functions");
 1557 
 1558 static int
 1559 idle_sysctl(SYSCTL_HANDLER_ARGS)
 1560 {
 1561         char buf[16];
 1562         int error;
 1563         char *p;
 1564         int i;
 1565 
 1566         p = "unknown";
 1567         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1568                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
 1569                         p = idle_tbl[i].id_name;
 1570                         break;
 1571                 }
 1572         }
 1573         strncpy(buf, p, sizeof(buf));
 1574         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 1575         if (error != 0 || req->newptr == NULL)
 1576                 return (error);
 1577         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1578                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1579                     (cpu_feature2 & CPUID2_MON) == 0)
 1580                         continue;
 1581 #ifndef PC98
 1582                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
 1583                     cpu_idle_hook == NULL)
 1584                         continue;
 1585 #endif
 1586                 if (strcmp(idle_tbl[i].id_name, buf))
 1587                         continue;
 1588                 cpu_idle_fn = idle_tbl[i].id_fn;
 1589                 return (0);
 1590         }
 1591         return (EINVAL);
 1592 }
 1593 
 1594 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
 1595     idle_sysctl, "A", "currently selected idle function");
 1596 
 1597 /*
 1598  * Reset registers to default values on exec.
 1599  */
 1600 void
 1601 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
 1602 {
 1603         struct trapframe *regs = td->td_frame;
 1604         struct pcb *pcb = td->td_pcb;
 1605 
 1606         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1607         pcb->pcb_gs = _udatasel;
 1608         load_gs(_udatasel);
 1609 
 1610         mtx_lock_spin(&dt_lock);
 1611         if (td->td_proc->p_md.md_ldt)
 1612                 user_ldt_free(td);
 1613         else
 1614                 mtx_unlock_spin(&dt_lock);
 1615   
 1616         bzero((char *)regs, sizeof(struct trapframe));
 1617         regs->tf_eip = imgp->entry_addr;
 1618         regs->tf_esp = stack;
 1619         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1620         regs->tf_ss = _udatasel;
 1621         regs->tf_ds = _udatasel;
 1622         regs->tf_es = _udatasel;
 1623         regs->tf_fs = _udatasel;
 1624         regs->tf_cs = _ucodesel;
 1625 
 1626         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1627         regs->tf_ebx = imgp->ps_strings;
 1628 
 1629         /*
 1630          * Reset the hardware debug registers if they were in use.
 1631          * They won't have any meaning for the newly exec'd process.  
 1632          */
 1633         if (pcb->pcb_flags & PCB_DBREGS) {
 1634                 pcb->pcb_dr0 = 0;
 1635                 pcb->pcb_dr1 = 0;
 1636                 pcb->pcb_dr2 = 0;
 1637                 pcb->pcb_dr3 = 0;
 1638                 pcb->pcb_dr6 = 0;
 1639                 pcb->pcb_dr7 = 0;
 1640                 if (pcb == curpcb) {
 1641                         /*
 1642                          * Clear the debug registers on the running
 1643                          * CPU, otherwise they will end up affecting
 1644                          * the next process we switch to.
 1645                          */
 1646                         reset_dbregs();
 1647                 }
 1648                 pcb->pcb_flags &= ~PCB_DBREGS;
 1649         }
 1650 
 1651         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1652 
 1653         /*
 1654          * Drop the FP state if we hold it, so that the process gets a
 1655          * clean FP state if it uses the FPU again.
 1656          */
 1657         fpstate_drop(td);
 1658 
 1659         /*
 1660          * XXX - Linux emulator
 1661          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1662          * on it.
 1663          */
 1664         td->td_retval[1] = 0;
 1665 }
 1666 
 1667 void
 1668 cpu_setregs(void)
 1669 {
 1670         unsigned int cr0;
 1671 
 1672         cr0 = rcr0();
 1673 
 1674         /*
 1675          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1676          *
 1677          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1678          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1679          * bit to control the trap, because setting the CR0_EM bit does
 1680          * not cause WAIT instructions to trap.  It's important to trap
 1681          * WAIT instructions - otherwise the "wait" variants of no-wait
 1682          * control instructions would degenerate to the "no-wait" variants
 1683          * after FP context switches but work correctly otherwise.  It's
 1684          * particularly important to trap WAITs when there is no NPX -
 1685          * otherwise the "wait" variants would always degenerate.
 1686          *
 1687          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1688          * Setting it should fail or do nothing on lesser processors.
 1689          */
 1690         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1691         load_cr0(cr0);
 1692         load_gs(_udatasel);
 1693 }
 1694 
 1695 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1696 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1697         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1698 
 1699 static char bootmethod[16] = "BIOS";
 1700 SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
 1701     "System firmware boot method");
 1702 
 1703 /*
 1704  * Initialize 386 and configure to run kernel
 1705  */
 1706 
 1707 /*
 1708  * Initialize segments & interrupt table
 1709  */
 1710 
 1711 int _default_ldt;
 1712 
 1713 #ifdef XEN
 1714 union descriptor *gdt;
 1715 union descriptor *ldt;
 1716 #else
 1717 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1718 union descriptor ldt[NLDT];             /* local descriptor table */
 1719 #endif
 1720 static struct gate_descriptor idt0[NIDT];
 1721 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1722 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1723 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1724 
 1725 static struct i386tss dblfault_tss;
 1726 static char dblfault_stack[PAGE_SIZE];
 1727 
 1728 extern  vm_offset_t     proc0kstack;
 1729 
 1730 
 1731 /*
 1732  * software prototypes -- in more palatable form.
 1733  *
 1734  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1735  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1736  */
 1737 struct soft_segment_descriptor gdt_segs[] = {
 1738 /* GNULL_SEL    0 Null Descriptor */
 1739 {       .ssd_base = 0x0,
 1740         .ssd_limit = 0x0,
 1741         .ssd_type = 0,
 1742         .ssd_dpl = SEL_KPL,
 1743         .ssd_p = 0,
 1744         .ssd_xx = 0, .ssd_xx1 = 0,
 1745         .ssd_def32 = 0,
 1746         .ssd_gran = 0           },
 1747 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1748 {       .ssd_base = 0x0,
 1749         .ssd_limit = 0xfffff,
 1750         .ssd_type = SDT_MEMRWA,
 1751         .ssd_dpl = SEL_KPL,
 1752         .ssd_p = 1,
 1753         .ssd_xx = 0, .ssd_xx1 = 0,
 1754         .ssd_def32 = 1,
 1755         .ssd_gran = 1           },
 1756 /* GUFS_SEL     2 %fs Descriptor for user */
 1757 {       .ssd_base = 0x0,
 1758         .ssd_limit = 0xfffff,
 1759         .ssd_type = SDT_MEMRWA,
 1760         .ssd_dpl = SEL_UPL,
 1761         .ssd_p = 1,
 1762         .ssd_xx = 0, .ssd_xx1 = 0,
 1763         .ssd_def32 = 1,
 1764         .ssd_gran = 1           },
 1765 /* GUGS_SEL     3 %gs Descriptor for user */
 1766 {       .ssd_base = 0x0,
 1767         .ssd_limit = 0xfffff,
 1768         .ssd_type = SDT_MEMRWA,
 1769         .ssd_dpl = SEL_UPL,
 1770         .ssd_p = 1,
 1771         .ssd_xx = 0, .ssd_xx1 = 0,
 1772         .ssd_def32 = 1,
 1773         .ssd_gran = 1           },
 1774 /* GCODE_SEL    4 Code Descriptor for kernel */
 1775 {       .ssd_base = 0x0,
 1776         .ssd_limit = 0xfffff,
 1777         .ssd_type = SDT_MEMERA,
 1778         .ssd_dpl = SEL_KPL,
 1779         .ssd_p = 1,
 1780         .ssd_xx = 0, .ssd_xx1 = 0,
 1781         .ssd_def32 = 1,
 1782         .ssd_gran = 1           },
 1783 /* GDATA_SEL    5 Data Descriptor for kernel */
 1784 {       .ssd_base = 0x0,
 1785         .ssd_limit = 0xfffff,
 1786         .ssd_type = SDT_MEMRWA,
 1787         .ssd_dpl = SEL_KPL,
 1788         .ssd_p = 1,
 1789         .ssd_xx = 0, .ssd_xx1 = 0,
 1790         .ssd_def32 = 1,
 1791         .ssd_gran = 1           },
 1792 /* GUCODE_SEL   6 Code Descriptor for user */
 1793 {       .ssd_base = 0x0,
 1794         .ssd_limit = 0xfffff,
 1795         .ssd_type = SDT_MEMERA,
 1796         .ssd_dpl = SEL_UPL,
 1797         .ssd_p = 1,
 1798         .ssd_xx = 0, .ssd_xx1 = 0,
 1799         .ssd_def32 = 1,
 1800         .ssd_gran = 1           },
 1801 /* GUDATA_SEL   7 Data Descriptor for user */
 1802 {       .ssd_base = 0x0,
 1803         .ssd_limit = 0xfffff,
 1804         .ssd_type = SDT_MEMRWA,
 1805         .ssd_dpl = SEL_UPL,
 1806         .ssd_p = 1,
 1807         .ssd_xx = 0, .ssd_xx1 = 0,
 1808         .ssd_def32 = 1,
 1809         .ssd_gran = 1           },
 1810 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1811 {       .ssd_base = 0x400,
 1812         .ssd_limit = 0xfffff,
 1813         .ssd_type = SDT_MEMRWA,
 1814         .ssd_dpl = SEL_KPL,
 1815         .ssd_p = 1,
 1816         .ssd_xx = 0, .ssd_xx1 = 0,
 1817         .ssd_def32 = 1,
 1818         .ssd_gran = 1           },
 1819 #ifndef XEN
 1820 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1821 {
 1822         .ssd_base = 0x0,
 1823         .ssd_limit = sizeof(struct i386tss)-1,
 1824         .ssd_type = SDT_SYS386TSS,
 1825         .ssd_dpl = 0,
 1826         .ssd_p = 1,
 1827         .ssd_xx = 0, .ssd_xx1 = 0,
 1828         .ssd_def32 = 0,
 1829         .ssd_gran = 0           },
 1830 /* GLDT_SEL     10 LDT Descriptor */
 1831 {       .ssd_base = (int) ldt,
 1832         .ssd_limit = sizeof(ldt)-1,
 1833         .ssd_type = SDT_SYSLDT,
 1834         .ssd_dpl = SEL_UPL,
 1835         .ssd_p = 1,
 1836         .ssd_xx = 0, .ssd_xx1 = 0,
 1837         .ssd_def32 = 0,
 1838         .ssd_gran = 0           },
 1839 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1840 {       .ssd_base = (int) ldt,
 1841         .ssd_limit = (512 * sizeof(union descriptor)-1),
 1842         .ssd_type = SDT_SYSLDT,
 1843         .ssd_dpl = 0,
 1844         .ssd_p = 1,
 1845         .ssd_xx = 0, .ssd_xx1 = 0,
 1846         .ssd_def32 = 0,
 1847         .ssd_gran = 0           },
 1848 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1849 {       .ssd_base = (int) &dblfault_tss,
 1850         .ssd_limit = sizeof(struct i386tss)-1,
 1851         .ssd_type = SDT_SYS386TSS,
 1852         .ssd_dpl = 0,
 1853         .ssd_p = 1,
 1854         .ssd_xx = 0, .ssd_xx1 = 0,
 1855         .ssd_def32 = 0,
 1856         .ssd_gran = 0           },
 1857 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1858 {       .ssd_base = 0,
 1859         .ssd_limit = 0xfffff,
 1860         .ssd_type = SDT_MEMERA,
 1861         .ssd_dpl = 0,
 1862         .ssd_p = 1,
 1863         .ssd_xx = 0, .ssd_xx1 = 0,
 1864         .ssd_def32 = 0,
 1865         .ssd_gran = 1           },
 1866 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1867 {       .ssd_base = 0,
 1868         .ssd_limit = 0xfffff,
 1869         .ssd_type = SDT_MEMERA,
 1870         .ssd_dpl = 0,
 1871         .ssd_p = 1,
 1872         .ssd_xx = 0, .ssd_xx1 = 0,
 1873         .ssd_def32 = 0,
 1874         .ssd_gran = 1           },
 1875 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1876 {       .ssd_base = 0,
 1877         .ssd_limit = 0xfffff,
 1878         .ssd_type = SDT_MEMRWA,
 1879         .ssd_dpl = 0,
 1880         .ssd_p = 1,
 1881         .ssd_xx = 0, .ssd_xx1 = 0,
 1882         .ssd_def32 = 1,
 1883         .ssd_gran = 1           },
 1884 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1885 {       .ssd_base = 0,
 1886         .ssd_limit = 0xfffff,
 1887         .ssd_type = SDT_MEMRWA,
 1888         .ssd_dpl = 0,
 1889         .ssd_p = 1,
 1890         .ssd_xx = 0, .ssd_xx1 = 0,
 1891         .ssd_def32 = 0,
 1892         .ssd_gran = 1           },
 1893 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1894 {       .ssd_base = 0,
 1895         .ssd_limit = 0xfffff,
 1896         .ssd_type = SDT_MEMRWA,
 1897         .ssd_dpl = 0,
 1898         .ssd_p = 1,
 1899         .ssd_xx = 0, .ssd_xx1 = 0,
 1900         .ssd_def32 = 0,
 1901         .ssd_gran = 1           },
 1902 /* GNDIS_SEL    18 NDIS Descriptor */
 1903 {       .ssd_base = 0x0,
 1904         .ssd_limit = 0x0,
 1905         .ssd_type = 0,
 1906         .ssd_dpl = 0,
 1907         .ssd_p = 0,
 1908         .ssd_xx = 0, .ssd_xx1 = 0,
 1909         .ssd_def32 = 0,
 1910         .ssd_gran = 0           },
 1911 #endif /* !XEN */
 1912 };
 1913 
 1914 static struct soft_segment_descriptor ldt_segs[] = {
 1915         /* Null Descriptor - overwritten by call gate */
 1916 {       .ssd_base = 0x0,
 1917         .ssd_limit = 0x0,
 1918         .ssd_type = 0,
 1919         .ssd_dpl = 0,
 1920         .ssd_p = 0,
 1921         .ssd_xx = 0, .ssd_xx1 = 0,
 1922         .ssd_def32 = 0,
 1923         .ssd_gran = 0           },
 1924         /* Null Descriptor - overwritten by call gate */
 1925 {       .ssd_base = 0x0,
 1926         .ssd_limit = 0x0,
 1927         .ssd_type = 0,
 1928         .ssd_dpl = 0,
 1929         .ssd_p = 0,
 1930         .ssd_xx = 0, .ssd_xx1 = 0,
 1931         .ssd_def32 = 0,
 1932         .ssd_gran = 0           },
 1933         /* Null Descriptor - overwritten by call gate */
 1934 {       .ssd_base = 0x0,
 1935         .ssd_limit = 0x0,
 1936         .ssd_type = 0,
 1937         .ssd_dpl = 0,
 1938         .ssd_p = 0,
 1939         .ssd_xx = 0, .ssd_xx1 = 0,
 1940         .ssd_def32 = 0,
 1941         .ssd_gran = 0           },
 1942         /* Code Descriptor for user */
 1943 {       .ssd_base = 0x0,
 1944         .ssd_limit = 0xfffff,
 1945         .ssd_type = SDT_MEMERA,
 1946         .ssd_dpl = SEL_UPL,
 1947         .ssd_p = 1,
 1948         .ssd_xx = 0, .ssd_xx1 = 0,
 1949         .ssd_def32 = 1,
 1950         .ssd_gran = 1           },
 1951         /* Null Descriptor - overwritten by call gate */
 1952 {       .ssd_base = 0x0,
 1953         .ssd_limit = 0x0,
 1954         .ssd_type = 0,
 1955         .ssd_dpl = 0,
 1956         .ssd_p = 0,
 1957         .ssd_xx = 0, .ssd_xx1 = 0,
 1958         .ssd_def32 = 0,
 1959         .ssd_gran = 0           },
 1960         /* Data Descriptor for user */
 1961 {       .ssd_base = 0x0,
 1962         .ssd_limit = 0xfffff,
 1963         .ssd_type = SDT_MEMRWA,
 1964         .ssd_dpl = SEL_UPL,
 1965         .ssd_p = 1,
 1966         .ssd_xx = 0, .ssd_xx1 = 0,
 1967         .ssd_def32 = 1,
 1968         .ssd_gran = 1           },
 1969 };
 1970 
 1971 void
 1972 setidt(idx, func, typ, dpl, selec)
 1973         int idx;
 1974         inthand_t *func;
 1975         int typ;
 1976         int dpl;
 1977         int selec;
 1978 {
 1979         struct gate_descriptor *ip;
 1980 
 1981         ip = idt + idx;
 1982         ip->gd_looffset = (int)func;
 1983         ip->gd_selector = selec;
 1984         ip->gd_stkcpy = 0;
 1985         ip->gd_xx = 0;
 1986         ip->gd_type = typ;
 1987         ip->gd_dpl = dpl;
 1988         ip->gd_p = 1;
 1989         ip->gd_hioffset = ((int)func)>>16 ;
 1990 }
 1991 
 1992 extern inthand_t
 1993         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1994         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1995         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1996         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1997         IDTVEC(xmm),
 1998 #ifdef KDTRACE_HOOKS
 1999         IDTVEC(dtrace_ret),
 2000 #endif
 2001 #ifdef XENHVM
 2002         IDTVEC(xen_intr_upcall),
 2003 #endif
 2004         IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 2005 
 2006 #ifdef DDB
 2007 /*
 2008  * Display the index and function name of any IDT entries that don't use
 2009  * the default 'rsvd' entry point.
 2010  */
 2011 DB_SHOW_COMMAND(idt, db_show_idt)
 2012 {
 2013         struct gate_descriptor *ip;
 2014         int idx;
 2015         uintptr_t func;
 2016 
 2017         ip = idt;
 2018         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 2019                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 2020                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 2021                         db_printf("%3d\t", idx);
 2022                         db_printsym(func, DB_STGY_PROC);
 2023                         db_printf("\n");
 2024                 }
 2025                 ip++;
 2026         }
 2027 }
 2028 
 2029 /* Show privileged registers. */
 2030 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 2031 {
 2032         uint64_t idtr, gdtr;
 2033 
 2034         idtr = ridt();
 2035         db_printf("idtr\t0x%08x/%04x\n",
 2036             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 2037         gdtr = rgdt();
 2038         db_printf("gdtr\t0x%08x/%04x\n",
 2039             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 2040         db_printf("ldtr\t0x%04x\n", rldt());
 2041         db_printf("tr\t0x%04x\n", rtr());
 2042         db_printf("cr0\t0x%08x\n", rcr0());
 2043         db_printf("cr2\t0x%08x\n", rcr2());
 2044         db_printf("cr3\t0x%08x\n", rcr3());
 2045         db_printf("cr4\t0x%08x\n", rcr4());
 2046 }
 2047 #endif
 2048 
 2049 void
 2050 sdtossd(sd, ssd)
 2051         struct segment_descriptor *sd;
 2052         struct soft_segment_descriptor *ssd;
 2053 {
 2054         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 2055         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 2056         ssd->ssd_type  = sd->sd_type;
 2057         ssd->ssd_dpl   = sd->sd_dpl;
 2058         ssd->ssd_p     = sd->sd_p;
 2059         ssd->ssd_def32 = sd->sd_def32;
 2060         ssd->ssd_gran  = sd->sd_gran;
 2061 }
 2062 
 2063 #if !defined(PC98) && !defined(XEN)
 2064 static int
 2065 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 2066 {
 2067         int i, insert_idx, physmap_idx;
 2068 
 2069         physmap_idx = *physmap_idxp;
 2070         
 2071         if (boothowto & RB_VERBOSE)
 2072                 printf("SMAP type=%02x base=%016llx len=%016llx\n",
 2073                     smap->type, smap->base, smap->length);
 2074 
 2075         if (smap->type != SMAP_TYPE_MEMORY)
 2076                 return (1);
 2077 
 2078         if (smap->length == 0)
 2079                 return (1);
 2080 
 2081 #ifndef PAE
 2082         if (smap->base > 0xffffffff) {
 2083                 printf("%uK of memory above 4GB ignored\n",
 2084                     (u_int)(smap->length / 1024));
 2085                 return (1);
 2086         }
 2087 #endif
 2088 
 2089         /*
 2090          * Find insertion point while checking for overlap.  Start off by
 2091          * assuming the new entry will be added to the end.
 2092          */
 2093         insert_idx = physmap_idx + 2;
 2094         for (i = 0; i <= physmap_idx; i += 2) {
 2095                 if (smap->base < physmap[i + 1]) {
 2096                         if (smap->base + smap->length <= physmap[i]) {
 2097                                 insert_idx = i;
 2098                                 break;
 2099                         }
 2100                         if (boothowto & RB_VERBOSE)
 2101                                 printf(
 2102                     "Overlapping memory regions, ignoring second region\n");
 2103                         return (1);
 2104                 }
 2105         }
 2106 
 2107         /* See if we can prepend to the next entry. */
 2108         if (insert_idx <= physmap_idx &&
 2109             smap->base + smap->length == physmap[insert_idx]) {
 2110                 physmap[insert_idx] = smap->base;
 2111                 return (1);
 2112         }
 2113 
 2114         /* See if we can append to the previous entry. */
 2115         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
 2116                 physmap[insert_idx - 1] += smap->length;
 2117                 return (1);
 2118         }
 2119 
 2120         physmap_idx += 2;
 2121         *physmap_idxp = physmap_idx;
 2122         if (physmap_idx == PHYSMAP_SIZE) {
 2123                 printf(
 2124                 "Too many segments in the physical address map, giving up\n");
 2125                 return (0);
 2126         }
 2127 
 2128         /*
 2129          * Move the last 'N' entries down to make room for the new
 2130          * entry if needed.
 2131          */
 2132         for (i = physmap_idx; i > insert_idx; i -= 2) {
 2133                 physmap[i] = physmap[i - 2];
 2134                 physmap[i + 1] = physmap[i - 1];
 2135         }
 2136 
 2137         /* Insert the new entry. */
 2138         physmap[insert_idx] = smap->base;
 2139         physmap[insert_idx + 1] = smap->base + smap->length;
 2140         return (1);
 2141 }
 2142 #endif /* !PC98 && !XEN */
 2143 
 2144 #ifndef XEN
 2145 static void
 2146 basemem_setup(void)
 2147 {
 2148         vm_paddr_t pa;
 2149         pt_entry_t *pte;
 2150         int i;
 2151 
 2152         if (basemem > 640) {
 2153                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 2154                         basemem);
 2155                 basemem = 640;
 2156         }
 2157 
 2158         /*
 2159          * XXX if biosbasemem is now < 640, there is a `hole'
 2160          * between the end of base memory and the start of
 2161          * ISA memory.  The hole may be empty or it may
 2162          * contain BIOS code or data.  Map it read/write so
 2163          * that the BIOS can write to it.  (Memory from 0 to
 2164          * the physical end of the kernel is mapped read-only
 2165          * to begin with and then parts of it are remapped.
 2166          * The parts that aren't remapped form holes that
 2167          * remain read-only and are unused by the kernel.
 2168          * The base memory area is below the physical end of
 2169          * the kernel and right now forms a read-only hole.
 2170          * The part of it from PAGE_SIZE to
 2171          * (trunc_page(biosbasemem * 1024) - 1) will be
 2172          * remapped and used by the kernel later.)
 2173          *
 2174          * This code is similar to the code used in
 2175          * pmap_mapdev, but since no memory needs to be
 2176          * allocated we simply change the mapping.
 2177          */
 2178         for (pa = trunc_page(basemem * 1024);
 2179              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 2180                 pmap_kenter(KERNBASE + pa, pa);
 2181 
 2182         /*
 2183          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 2184          * the vm86 page table so that vm86 can scribble on them using
 2185          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 2186          * page 0, at least as initialized here?
 2187          */
 2188         pte = (pt_entry_t *)vm86paddr;
 2189         for (i = basemem / 4; i < 160; i++)
 2190                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 2191 }
 2192 #endif /* !XEN */
 2193 
 2194 /*
 2195  * Populate the (physmap) array with base/bound pairs describing the
 2196  * available physical memory in the system, then test this memory and
 2197  * build the phys_avail array describing the actually-available memory.
 2198  *
 2199  * If we cannot accurately determine the physical memory map, then use
 2200  * value from the 0xE801 call, and failing that, the RTC.
 2201  *
 2202  * Total memory size may be set by the kernel environment variable
 2203  * hw.physmem or the compile-time define MAXMEM.
 2204  *
 2205  * XXX first should be vm_paddr_t.
 2206  */
 2207 #ifdef PC98
 2208 static void
 2209 getmemsize(int first)
 2210 {
 2211         int off, physmap_idx, pa_indx, da_indx;
 2212         u_long physmem_tunable, memtest;
 2213         vm_paddr_t physmap[PHYSMAP_SIZE];
 2214         pt_entry_t *pte;
 2215         quad_t dcons_addr, dcons_size;
 2216         int i;
 2217         int pg_n;
 2218         u_int extmem;
 2219         u_int under16;
 2220         vm_paddr_t pa;
 2221 
 2222         bzero(physmap, sizeof(physmap));
 2223 
 2224         /* XXX - some of EPSON machines can't use PG_N */
 2225         pg_n = PG_N;
 2226         if (pc98_machine_type & M_EPSON_PC98) {
 2227                 switch (epson_machine_id) {
 2228 #ifdef WB_CACHE
 2229                 default:
 2230 #endif
 2231                 case EPSON_PC486_HX:
 2232                 case EPSON_PC486_HG:
 2233                 case EPSON_PC486_HA:
 2234                         pg_n = 0;
 2235                         break;
 2236                 }
 2237         }
 2238 
 2239         under16 = pc98_getmemsize(&basemem, &extmem);
 2240         basemem_setup();
 2241 
 2242         physmap[0] = 0;
 2243         physmap[1] = basemem * 1024;
 2244         physmap_idx = 2;
 2245         physmap[physmap_idx] = 0x100000;
 2246         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 2247 
 2248         /*
 2249          * Now, physmap contains a map of physical memory.
 2250          */
 2251 
 2252 #ifdef SMP
 2253         /* make hole for AP bootstrap code */
 2254         physmap[1] = mp_bootaddress(physmap[1]);
 2255 #endif
 2256 
 2257         /*
 2258          * Maxmem isn't the "maximum memory", it's one larger than the
 2259          * highest page of the physical address space.  It should be
 2260          * called something like "Maxphyspage".  We may adjust this 
 2261          * based on ``hw.physmem'' and the results of the memory test.
 2262          */
 2263         Maxmem = atop(physmap[physmap_idx + 1]);
 2264 
 2265 #ifdef MAXMEM
 2266         Maxmem = MAXMEM / 4;
 2267 #endif
 2268 
 2269         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 2270                 Maxmem = atop(physmem_tunable);
 2271 
 2272         /*
 2273          * By default keep the memtest enabled.  Use a general name so that
 2274          * one could eventually do more with the code than just disable it.
 2275          */
 2276         memtest = 1;
 2277         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 2278 
 2279         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 2280             (boothowto & RB_VERBOSE))
 2281                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 2282 
 2283         /*
 2284          * If Maxmem has been increased beyond what the system has detected,
 2285          * extend the last memory segment to the new limit.
 2286          */ 
 2287         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 2288                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 2289 
 2290         /*
 2291          * We need to divide chunk if Maxmem is larger than 16MB and
 2292          * under 16MB area is not full of memory.
 2293          * (1) system area (15-16MB region) is cut off
 2294          * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
 2295          */
 2296         if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
 2297                 /* 15M - 16M region is cut off, so need to divide chunk */
 2298                 physmap[physmap_idx + 1] = under16 * 1024;
 2299                 physmap_idx += 2;
 2300                 physmap[physmap_idx] = 0x1000000;
 2301                 physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
 2302         }
 2303 
 2304         /* call pmap initialization to make new kernel address space */
 2305         pmap_bootstrap(first);
 2306 
 2307         /*
 2308          * Size up each available chunk of physical memory.
 2309          */
 2310         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 2311         pa_indx = 0;
 2312         da_indx = 1;
 2313         phys_avail[pa_indx++] = physmap[0];
 2314         phys_avail[pa_indx] = physmap[0];
 2315         dump_avail[da_indx] = physmap[0];
 2316         pte = CMAP3;
 2317 
 2318         /*
 2319          * Get dcons buffer address
 2320          */
 2321         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 2322             getenv_quad("dcons.size", &dcons_size) == 0)
 2323                 dcons_addr = 0;
 2324 
 2325         /*
 2326          * physmap is in bytes, so when converting to page boundaries,
 2327          * round up the start address and round down the end address.
 2328          */
 2329         for (i = 0; i <= physmap_idx; i += 2) {
 2330                 vm_paddr_t end;
 2331 
 2332                 end = ptoa((vm_paddr_t)Maxmem);
 2333                 if (physmap[i + 1] < end)
 2334                         end = trunc_page(physmap[i + 1]);
 2335                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 2336                         int tmp, page_bad, full;
 2337                         int *ptr = (int *)CADDR3;
 2338 
 2339                         full = FALSE;
 2340                         /*
 2341                          * block out kernel memory as not available.
 2342                          */
 2343                         if (pa >= KERNLOAD && pa < first)
 2344                                 goto do_dump_avail;
 2345 
 2346                         /*
 2347                          * block out dcons buffer
 2348                          */
 2349                         if (dcons_addr > 0
 2350                             && pa >= trunc_page(dcons_addr)
 2351                             && pa < dcons_addr + dcons_size)
 2352                                 goto do_dump_avail;
 2353 
 2354                         page_bad = FALSE;
 2355                         if (memtest == 0)
 2356                                 goto skip_memtest;
 2357 
 2358                         /*
 2359                          * map page into kernel: valid, read/write,non-cacheable
 2360                          */
 2361                         *pte = pa | PG_V | PG_RW | pg_n;
 2362                         invltlb();
 2363 
 2364                         tmp = *(int *)ptr;
 2365                         /*
 2366                          * Test for alternating 1's and 0's
 2367                          */
 2368                         *(volatile int *)ptr = 0xaaaaaaaa;
 2369                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 2370                                 page_bad = TRUE;
 2371                         /*
 2372                          * Test for alternating 0's and 1's
 2373                          */
 2374                         *(volatile int *)ptr = 0x55555555;
 2375                         if (*(volatile int *)ptr != 0x55555555)
 2376                                 page_bad = TRUE;
 2377                         /*
 2378                          * Test for all 1's
 2379                          */
 2380                         *(volatile int *)ptr = 0xffffffff;
 2381                         if (*(volatile int *)ptr != 0xffffffff)
 2382                                 page_bad = TRUE;
 2383                         /*
 2384                          * Test for all 0's
 2385                          */
 2386                         *(volatile int *)ptr = 0x0;
 2387                         if (*(volatile int *)ptr != 0x0)
 2388                                 page_bad = TRUE;
 2389                         /*
 2390                          * Restore original value.
 2391                          */
 2392                         *(int *)ptr = tmp;
 2393 
 2394 skip_memtest:
 2395                         /*
 2396                          * Adjust array of valid/good pages.
 2397                          */
 2398                         if (page_bad == TRUE)
 2399                                 continue;
 2400                         /*
 2401                          * If this good page is a continuation of the
 2402                          * previous set of good pages, then just increase
 2403                          * the end pointer. Otherwise start a new chunk.
 2404                          * Note that "end" points one higher than end,
 2405                          * making the range >= start and < end.
 2406                          * If we're also doing a speculative memory
 2407                          * test and we at or past the end, bump up Maxmem
 2408                          * so that we keep going. The first bad page
 2409                          * will terminate the loop.
 2410                          */
 2411                         if (phys_avail[pa_indx] == pa) {
 2412                                 phys_avail[pa_indx] += PAGE_SIZE;
 2413                         } else {
 2414                                 pa_indx++;
 2415                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 2416                                         printf(
 2417                 "Too many holes in the physical address space, giving up\n");
 2418                                         pa_indx--;
 2419                                         full = TRUE;
 2420                                         goto do_dump_avail;
 2421                                 }
 2422                                 phys_avail[pa_indx++] = pa;     /* start */
 2423                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2424                         }
 2425                         physmem++;
 2426 do_dump_avail:
 2427                         if (dump_avail[da_indx] == pa) {
 2428                                 dump_avail[da_indx] += PAGE_SIZE;
 2429                         } else {
 2430                                 da_indx++;
 2431                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2432                                         da_indx--;
 2433                                         goto do_next;
 2434                                 }
 2435                                 dump_avail[da_indx++] = pa;     /* start */
 2436                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2437                         }
 2438 do_next:
 2439                         if (full)
 2440                                 break;
 2441                 }
 2442         }
 2443         *pte = 0;
 2444         invltlb();
 2445         
 2446         /*
 2447          * XXX
 2448          * The last chunk must contain at least one page plus the message
 2449          * buffer to avoid complicating other code (message buffer address
 2450          * calculation, etc.).
 2451          */
 2452         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2453             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 2454                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2455                 phys_avail[pa_indx--] = 0;
 2456                 phys_avail[pa_indx--] = 0;
 2457         }
 2458 
 2459         Maxmem = atop(phys_avail[pa_indx]);
 2460 
 2461         /* Trim off space for the message buffer. */
 2462         phys_avail[pa_indx] -= round_page(msgbufsize);
 2463 
 2464         /* Map the message buffer. */
 2465         for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
 2466                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2467                     off);
 2468 
 2469         PT_UPDATES_FLUSH();
 2470 }
 2471 #else /* PC98 */
 2472 static void
 2473 getmemsize(int first)
 2474 {
 2475         int has_smap, off, physmap_idx, pa_indx, da_indx;
 2476         u_long physmem_tunable, memtest;
 2477         vm_paddr_t physmap[PHYSMAP_SIZE];
 2478         pt_entry_t *pte;
 2479         quad_t dcons_addr, dcons_size;
 2480 #ifndef XEN
 2481         int hasbrokenint12, i, res;
 2482         u_int extmem;
 2483         struct vm86frame vmf;
 2484         struct vm86context vmc;
 2485         vm_paddr_t pa;
 2486         struct bios_smap *smap, *smapbase, *smapend;
 2487         u_int32_t smapsize;
 2488         caddr_t kmdp;
 2489 #endif
 2490 
 2491         has_smap = 0;
 2492 #if defined(XEN)
 2493         Maxmem = xen_start_info->nr_pages - init_first;
 2494         physmem = Maxmem;
 2495         basemem = 0;
 2496         physmap[0] = init_first << PAGE_SHIFT;
 2497         physmap[1] = ptoa(Maxmem) - round_page(msgbufsize);
 2498         physmap_idx = 0;
 2499 #else
 2500 #ifdef XBOX
 2501         if (arch_i386_is_xbox) {
 2502                 /*
 2503                  * We queried the memory size before, so chop off 4MB for
 2504                  * the framebuffer and inform the OS of this.
 2505                  */
 2506                 physmap[0] = 0;
 2507                 physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
 2508                 physmap_idx = 0;
 2509                 goto physmap_done;
 2510         }
 2511 #endif
 2512         bzero(&vmf, sizeof(vmf));
 2513         bzero(physmap, sizeof(physmap));
 2514         basemem = 0;
 2515 
 2516         /*
 2517          * Check if the loader supplied an SMAP memory map.  If so,
 2518          * use that and do not make any VM86 calls.
 2519          */
 2520         physmap_idx = 0;
 2521         smapbase = NULL;
 2522         kmdp = preload_search_by_type("elf kernel");
 2523         if (kmdp == NULL)
 2524                 kmdp = preload_search_by_type("elf32 kernel");
 2525         if (kmdp != NULL)
 2526                 smapbase = (struct bios_smap *)preload_search_info(kmdp,
 2527                     MODINFO_METADATA | MODINFOMD_SMAP);
 2528         if (smapbase != NULL) {
 2529                 /*
 2530                  * subr_module.c says:
 2531                  * "Consumer may safely assume that size value precedes data."
 2532                  * ie: an int32_t immediately precedes SMAP.
 2533                  */
 2534                 smapsize = *((u_int32_t *)smapbase - 1);
 2535                 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 2536                 has_smap = 1;
 2537 
 2538                 for (smap = smapbase; smap < smapend; smap++)
 2539                         if (!add_smap_entry(smap, physmap, &physmap_idx))
 2540                                 break;
 2541                 goto have_smap;
 2542         }
 2543 
 2544         /*
 2545          * Some newer BIOSes have a broken INT 12H implementation
 2546          * which causes a kernel panic immediately.  In this case, we
 2547          * need use the SMAP to determine the base memory size.
 2548          */
 2549         hasbrokenint12 = 0;
 2550         TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
 2551         if (hasbrokenint12 == 0) {
 2552                 /* Use INT12 to determine base memory size. */
 2553                 vm86_intcall(0x12, &vmf);
 2554                 basemem = vmf.vmf_ax;
 2555                 basemem_setup();
 2556         }
 2557 
 2558         /*
 2559          * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
 2560          * the kernel page table so we can use it as a buffer.  The
 2561          * kernel will unmap this page later.
 2562          */
 2563         pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
 2564         vmc.npages = 0;
 2565         smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
 2566         res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
 2567         KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
 2568 
 2569         vmf.vmf_ebx = 0;
 2570         do {
 2571                 vmf.vmf_eax = 0xE820;
 2572                 vmf.vmf_edx = SMAP_SIG;
 2573                 vmf.vmf_ecx = sizeof(struct bios_smap);
 2574                 i = vm86_datacall(0x15, &vmf, &vmc);
 2575                 if (i || vmf.vmf_eax != SMAP_SIG)
 2576                         break;
 2577                 has_smap = 1;
 2578                 if (!add_smap_entry(smap, physmap, &physmap_idx))
 2579                         break;
 2580         } while (vmf.vmf_ebx != 0);
 2581 
 2582 have_smap:
 2583         /*
 2584          * If we didn't fetch the "base memory" size from INT12,
 2585          * figure it out from the SMAP (or just guess).
 2586          */
 2587         if (basemem == 0) {
 2588                 for (i = 0; i <= physmap_idx; i += 2) {
 2589                         if (physmap[i] == 0x00000000) {
 2590                                 basemem = physmap[i + 1] / 1024;
 2591                                 break;
 2592                         }
 2593                 }
 2594 
 2595                 /* XXX: If we couldn't find basemem from SMAP, just guess. */
 2596                 if (basemem == 0)
 2597                         basemem = 640;
 2598                 basemem_setup();
 2599         }
 2600 
 2601         if (physmap[1] != 0)
 2602                 goto physmap_done;
 2603 
 2604         /*
 2605          * If we failed to find an SMAP, figure out the extended
 2606          * memory size.  We will then build a simple memory map with
 2607          * two segments, one for "base memory" and the second for
 2608          * "extended memory".  Note that "extended memory" starts at a
 2609          * physical address of 1MB and that both basemem and extmem
 2610          * are in units of 1KB.
 2611          *
 2612          * First, try to fetch the extended memory size via INT 15:E801.
 2613          */
 2614         vmf.vmf_ax = 0xE801;
 2615         if (vm86_intcall(0x15, &vmf) == 0) {
 2616                 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
 2617         } else {
 2618                 /*
 2619                  * If INT15:E801 fails, this is our last ditch effort
 2620                  * to determine the extended memory size.  Currently
 2621                  * we prefer the RTC value over INT15:88.
 2622                  */
 2623 #if 0
 2624                 vmf.vmf_ah = 0x88;
 2625                 vm86_intcall(0x15, &vmf);
 2626                 extmem = vmf.vmf_ax;
 2627 #else
 2628                 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
 2629 #endif
 2630         }
 2631 
 2632         /*
 2633          * Special hack for chipsets that still remap the 384k hole when
 2634          * there's 16MB of memory - this really confuses people that
 2635          * are trying to use bus mastering ISA controllers with the
 2636          * "16MB limit"; they only have 16MB, but the remapping puts
 2637          * them beyond the limit.
 2638          *
 2639          * If extended memory is between 15-16MB (16-17MB phys address range),
 2640          *      chop it to 15MB.
 2641          */
 2642         if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
 2643                 extmem = 15 * 1024;
 2644 
 2645         physmap[0] = 0;
 2646         physmap[1] = basemem * 1024;
 2647         physmap_idx = 2;
 2648         physmap[physmap_idx] = 0x100000;
 2649         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 2650 
 2651 physmap_done:
 2652 #endif  
 2653         /*
 2654          * Now, physmap contains a map of physical memory.
 2655          */
 2656 
 2657 #ifdef SMP
 2658         /* make hole for AP bootstrap code */
 2659         physmap[1] = mp_bootaddress(physmap[1]);
 2660 #endif
 2661 
 2662         /*
 2663          * Maxmem isn't the "maximum memory", it's one larger than the
 2664          * highest page of the physical address space.  It should be
 2665          * called something like "Maxphyspage".  We may adjust this 
 2666          * based on ``hw.physmem'' and the results of the memory test.
 2667          */
 2668         Maxmem = atop(physmap[physmap_idx + 1]);
 2669 
 2670 #ifdef MAXMEM
 2671         Maxmem = MAXMEM / 4;
 2672 #endif
 2673 
 2674         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 2675                 Maxmem = atop(physmem_tunable);
 2676 
 2677         /*
 2678          * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
 2679          * the amount of memory in the system.
 2680          */
 2681         if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
 2682                 Maxmem = atop(physmap[physmap_idx + 1]);
 2683 
 2684         /*
 2685          * By default enable the memory test on real hardware, and disable
 2686          * it if we appear to be running in a VM.  This avoids touching all
 2687          * pages unnecessarily, which doesn't matter on real hardware but is
 2688          * bad for shared VM hosts.  Use a general name so that
 2689          * one could eventually do more with the code than just disable it.
 2690          */
 2691         memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
 2692         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 2693 
 2694         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 2695             (boothowto & RB_VERBOSE))
 2696                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 2697 
 2698         /*
 2699          * If Maxmem has been increased beyond what the system has detected,
 2700          * extend the last memory segment to the new limit.
 2701          */ 
 2702         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 2703                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 2704 
 2705         /* call pmap initialization to make new kernel address space */
 2706         pmap_bootstrap(first);
 2707 
 2708         /*
 2709          * Size up each available chunk of physical memory.
 2710          */
 2711         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 2712         pa_indx = 0;
 2713         da_indx = 1;
 2714         phys_avail[pa_indx++] = physmap[0];
 2715         phys_avail[pa_indx] = physmap[0];
 2716         dump_avail[da_indx] = physmap[0];
 2717         pte = CMAP3;
 2718 
 2719         /*
 2720          * Get dcons buffer address
 2721          */
 2722         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 2723             getenv_quad("dcons.size", &dcons_size) == 0)
 2724                 dcons_addr = 0;
 2725 
 2726 #ifndef XEN
 2727         /*
 2728          * physmap is in bytes, so when converting to page boundaries,
 2729          * round up the start address and round down the end address.
 2730          */
 2731         for (i = 0; i <= physmap_idx; i += 2) {
 2732                 vm_paddr_t end;
 2733 
 2734                 end = ptoa((vm_paddr_t)Maxmem);
 2735                 if (physmap[i + 1] < end)
 2736                         end = trunc_page(physmap[i + 1]);
 2737                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 2738                         int tmp, page_bad, full;
 2739                         int *ptr = (int *)CADDR3;
 2740 
 2741                         full = FALSE;
 2742                         /*
 2743                          * block out kernel memory as not available.
 2744                          */
 2745                         if (pa >= KERNLOAD && pa < first)
 2746                                 goto do_dump_avail;
 2747 
 2748                         /*
 2749                          * block out dcons buffer
 2750                          */
 2751                         if (dcons_addr > 0
 2752                             && pa >= trunc_page(dcons_addr)
 2753                             && pa < dcons_addr + dcons_size)
 2754                                 goto do_dump_avail;
 2755 
 2756                         page_bad = FALSE;
 2757                         if (memtest == 0)
 2758                                 goto skip_memtest;
 2759 
 2760                         /*
 2761                          * map page into kernel: valid, read/write,non-cacheable
 2762                          */
 2763                         *pte = pa | PG_V | PG_RW | PG_N;
 2764                         invltlb();
 2765 
 2766                         tmp = *(int *)ptr;
 2767                         /*
 2768                          * Test for alternating 1's and 0's
 2769                          */
 2770                         *(volatile int *)ptr = 0xaaaaaaaa;
 2771                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 2772                                 page_bad = TRUE;
 2773                         /*
 2774                          * Test for alternating 0's and 1's
 2775                          */
 2776                         *(volatile int *)ptr = 0x55555555;
 2777                         if (*(volatile int *)ptr != 0x55555555)
 2778                                 page_bad = TRUE;
 2779                         /*
 2780                          * Test for all 1's
 2781                          */
 2782                         *(volatile int *)ptr = 0xffffffff;
 2783                         if (*(volatile int *)ptr != 0xffffffff)
 2784                                 page_bad = TRUE;
 2785                         /*
 2786                          * Test for all 0's
 2787                          */
 2788                         *(volatile int *)ptr = 0x0;
 2789                         if (*(volatile int *)ptr != 0x0)
 2790                                 page_bad = TRUE;
 2791                         /*
 2792                          * Restore original value.
 2793                          */
 2794                         *(int *)ptr = tmp;
 2795 
 2796 skip_memtest:
 2797                         /*
 2798                          * Adjust array of valid/good pages.
 2799                          */
 2800                         if (page_bad == TRUE)
 2801                                 continue;
 2802                         /*
 2803                          * If this good page is a continuation of the
 2804                          * previous set of good pages, then just increase
 2805                          * the end pointer. Otherwise start a new chunk.
 2806                          * Note that "end" points one higher than end,
 2807                          * making the range >= start and < end.
 2808                          * If we're also doing a speculative memory
 2809                          * test and we at or past the end, bump up Maxmem
 2810                          * so that we keep going. The first bad page
 2811                          * will terminate the loop.
 2812                          */
 2813                         if (phys_avail[pa_indx] == pa) {
 2814                                 phys_avail[pa_indx] += PAGE_SIZE;
 2815                         } else {
 2816                                 pa_indx++;
 2817                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 2818                                         printf(
 2819                 "Too many holes in the physical address space, giving up\n");
 2820                                         pa_indx--;
 2821                                         full = TRUE;
 2822                                         goto do_dump_avail;
 2823                                 }
 2824                                 phys_avail[pa_indx++] = pa;     /* start */
 2825                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2826                         }
 2827                         physmem++;
 2828 do_dump_avail:
 2829                         if (dump_avail[da_indx] == pa) {
 2830                                 dump_avail[da_indx] += PAGE_SIZE;
 2831                         } else {
 2832                                 da_indx++;
 2833                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2834                                         da_indx--;
 2835                                         goto do_next;
 2836                                 }
 2837                                 dump_avail[da_indx++] = pa;     /* start */
 2838                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2839                         }
 2840 do_next:
 2841                         if (full)
 2842                                 break;
 2843                 }
 2844         }
 2845         *pte = 0;
 2846         invltlb();
 2847 #else
 2848         phys_avail[0] = physfree;
 2849         phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2850         dump_avail[0] = 0;      
 2851         dump_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2852         
 2853 #endif
 2854         
 2855         /*
 2856          * XXX
 2857          * The last chunk must contain at least one page plus the message
 2858          * buffer to avoid complicating other code (message buffer address
 2859          * calculation, etc.).
 2860          */
 2861         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2862             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 2863                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2864                 phys_avail[pa_indx--] = 0;
 2865                 phys_avail[pa_indx--] = 0;
 2866         }
 2867 
 2868         Maxmem = atop(phys_avail[pa_indx]);
 2869 
 2870         /* Trim off space for the message buffer. */
 2871         phys_avail[pa_indx] -= round_page(msgbufsize);
 2872 
 2873         /* Map the message buffer. */
 2874         for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
 2875                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2876                     off);
 2877 
 2878         PT_UPDATES_FLUSH();
 2879 }
 2880 #endif /* PC98 */
 2881 
 2882 #ifdef XEN
 2883 #define MTOPSIZE (1<<(14 + PAGE_SHIFT))
 2884 
 2885 register_t
 2886 init386(first)
 2887         int first;
 2888 {
 2889         unsigned long gdtmachpfn;
 2890         int error, gsel_tss, metadata_missing, x, pa;
 2891         struct pcpu *pc;
 2892 #ifdef CPU_ENABLE_SSE
 2893         struct xstate_hdr *xhdr;
 2894 #endif
 2895         struct callback_register event = {
 2896                 .type = CALLBACKTYPE_event,
 2897                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
 2898         };
 2899         struct callback_register failsafe = {
 2900                 .type = CALLBACKTYPE_failsafe,
 2901                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
 2902         };
 2903 
 2904         thread0.td_kstack = proc0kstack;
 2905         thread0.td_kstack_pages = KSTACK_PAGES;
 2906 
 2907         /*
 2908          * This may be done better later if it gets more high level
 2909          * components in it. If so just link td->td_proc here.
 2910          */
 2911         proc_linkup0(&proc0, &thread0);
 2912 
 2913         metadata_missing = 0;
 2914         if (xen_start_info->mod_start) {
 2915                 preload_metadata = (caddr_t)xen_start_info->mod_start;
 2916                 preload_bootstrap_relocate(KERNBASE);
 2917         } else {
 2918                 metadata_missing = 1;
 2919         }
 2920         if (envmode == 1)
 2921                 kern_envp = static_env;
 2922         else if ((caddr_t)xen_start_info->cmd_line)
 2923                 kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
 2924 
 2925         boothowto |= xen_boothowto(kern_envp);
 2926         
 2927         /* Init basic tunables, hz etc */
 2928         init_param1();
 2929 
 2930         /*
 2931          * XEN occupies a portion of the upper virtual address space 
 2932          * At its base it manages an array mapping machine page frames 
 2933          * to physical page frames - hence we need to be able to 
 2934          * access 4GB - (64MB  - 4MB + 64k) 
 2935          */
 2936         gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2937         gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2938         gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2939         gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2940         gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2941         gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2942         gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2943         gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2944 
 2945         pc = &__pcpu[0];
 2946         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2947         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2948 
 2949         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
 2950         bzero(gdt, PAGE_SIZE);
 2951         for (x = 0; x < NGDT; x++)
 2952                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2953 
 2954         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2955 
 2956         gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
 2957         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
 2958         PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);    
 2959         lgdt(&r_gdt);
 2960         gdtset = 1;
 2961 
 2962         if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
 2963                 panic("set_trap_table failed - error %d\n", error);
 2964         }
 2965         
 2966         error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
 2967         if (error == 0)
 2968                 error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
 2969 #if     CONFIG_XEN_COMPAT <= 0x030002
 2970         if (error == -ENOXENSYS)
 2971                 HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
 2972                     (unsigned long)Xhypervisor_callback,
 2973                     GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
 2974 #endif
 2975         pcpu_init(pc, 0, sizeof(struct pcpu));
 2976         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2977                 pmap_kenter(pa + KERNBASE, pa);
 2978         dpcpu_init((void *)(first + KERNBASE), 0);
 2979         first += DPCPU_SIZE;
 2980         physfree += DPCPU_SIZE;
 2981         init_first += DPCPU_SIZE / PAGE_SIZE;
 2982 
 2983         PCPU_SET(prvspace, pc);
 2984         PCPU_SET(curthread, &thread0);
 2985 
 2986         /*
 2987          * Initialize mutexes.
 2988          *
 2989          * icu_lock: in order to allow an interrupt to occur in a critical
 2990          *           section, to set pcpu->ipending (etc...) properly, we
 2991          *           must be able to get the icu lock, so it can't be
 2992          *           under witness.
 2993          */
 2994         mutex_init();
 2995         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2996 
 2997         /* make ldt memory segments */
 2998         PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
 2999         bzero(ldt, PAGE_SIZE);
 3000         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 3001         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 3002         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 3003                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 3004 
 3005         default_proc_ldt.ldt_base = (caddr_t)ldt;
 3006         default_proc_ldt.ldt_len = 6;
 3007         _default_ldt = (int)&default_proc_ldt;
 3008         PCPU_SET(currentldt, _default_ldt);
 3009         PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
 3010         xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
 3011         
 3012 #if defined(XEN_PRIVILEGED)
 3013         /*
 3014          * Initialize the i8254 before the console so that console
 3015          * initialization can use DELAY().
 3016          */
 3017         i8254_init();
 3018 #endif
 3019         
 3020         /*
 3021          * Initialize the console before we print anything out.
 3022          */
 3023         cninit();
 3024 
 3025         if (metadata_missing)
 3026                 printf("WARNING: loader(8) metadata is missing!\n");
 3027 
 3028 #ifdef DEV_ISA
 3029 #ifdef DEV_ATPIC
 3030         elcr_probe();
 3031         atpic_startup();
 3032 #else
 3033         /* Reset and mask the atpics and leave them shut down. */
 3034         atpic_reset();
 3035 
 3036         /*
 3037          * Point the ICU spurious interrupt vectors at the APIC spurious
 3038          * interrupt handler.
 3039          */
 3040         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 3041             GSEL(GCODE_SEL, SEL_KPL));
 3042         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 3043             GSEL(GCODE_SEL, SEL_KPL));
 3044 #endif
 3045 #endif
 3046 
 3047 #ifdef DDB
 3048         ksym_start = bootinfo.bi_symtab;
 3049         ksym_end = bootinfo.bi_esymtab;
 3050 #endif
 3051 
 3052         kdb_init();
 3053 
 3054 #ifdef KDB
 3055         if (boothowto & RB_KDB)
 3056                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 3057 #endif
 3058 
 3059         finishidentcpu();       /* Final stage of CPU initialization */
 3060         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 3061             GSEL(GCODE_SEL, SEL_KPL));
 3062         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 3063             GSEL(GCODE_SEL, SEL_KPL));
 3064         initializecpu();        /* Initialize CPU registers */
 3065         initializecpucache();
 3066 
 3067         /* pointer to selector slot for %fs/%gs */
 3068         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 3069 
 3070         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 3071             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 3072         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 3073             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 3074 #if defined(PAE) || defined(PAE_TABLES)
 3075         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 3076 #else
 3077         dblfault_tss.tss_cr3 = (int)IdlePTD;
 3078 #endif
 3079         dblfault_tss.tss_eip = (int)dblfault_handler;
 3080         dblfault_tss.tss_eflags = PSL_KERNEL;
 3081         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 3082             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 3083         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 3084         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 3085         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 3086 
 3087         vm86_initialize();
 3088         getmemsize(first);
 3089         init_param2(physmem);
 3090 
 3091         /* now running on new page tables, configured,and u/iom is accessible */
 3092 
 3093         msgbufinit(msgbufp, msgbufsize);
 3094 #ifdef DEV_NPX
 3095         npxinit(true);
 3096 #endif
 3097         /*
 3098          * Set up thread0 pcb after npxinit calculated pcb + fpu save
 3099          * area size.  Zero out the extended state header in fpu save
 3100          * area.
 3101          */
 3102         thread0.td_pcb = get_pcb_td(&thread0);
 3103         bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
 3104 #ifdef CPU_ENABLE_SSE
 3105         if (use_xsave) {
 3106                 xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
 3107                     1);
 3108                 xhdr->xstate_bv = xsave_mask;
 3109         }
 3110 #endif
 3111         PCPU_SET(curpcb, thread0.td_pcb);
 3112         /* make an initial tss so cpu can get interrupt stack on syscall! */
 3113         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 3114         PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
 3115         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 3116         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 3117         HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
 3118             PCPU_GET(common_tss.tss_esp0));
 3119         
 3120         /* transfer to user mode */
 3121 
 3122         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 3123         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 3124 
 3125         /* setup proc 0's pcb */
 3126         thread0.td_pcb->pcb_flags = 0;
 3127 #if defined(PAE) || defined(PAE_TABLES)
 3128         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 3129 #else
 3130         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 3131 #endif
 3132         thread0.td_pcb->pcb_ext = 0;
 3133         thread0.td_frame = &proc0_tf;
 3134         thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
 3135         thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
 3136 
 3137         cpu_probe_amdc1e();
 3138 
 3139         /* Location of kernel stack for locore */
 3140         return ((register_t)thread0.td_pcb);
 3141 }
 3142 
 3143 #else
 3144 register_t
 3145 init386(first)
 3146         int first;
 3147 {
 3148         struct gate_descriptor *gdp;
 3149         int gsel_tss, metadata_missing, x, pa;
 3150         struct pcpu *pc;
 3151 #ifdef CPU_ENABLE_SSE
 3152         struct xstate_hdr *xhdr;
 3153 #endif
 3154 
 3155         thread0.td_kstack = proc0kstack;
 3156         thread0.td_kstack_pages = KSTACK_PAGES;
 3157 
 3158         /*
 3159          * This may be done better later if it gets more high level
 3160          * components in it. If so just link td->td_proc here.
 3161          */
 3162         proc_linkup0(&proc0, &thread0);
 3163 
 3164 #ifdef PC98
 3165         /*
 3166          * Initialize DMAC
 3167          */
 3168         pc98_init_dmac();
 3169 #endif
 3170 
 3171         metadata_missing = 0;
 3172         if (bootinfo.bi_modulep) {
 3173                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 3174                 preload_bootstrap_relocate(KERNBASE);
 3175         } else {
 3176                 metadata_missing = 1;
 3177         }
 3178         if (envmode == 1)
 3179                 kern_envp = static_env;
 3180         else if (bootinfo.bi_envp)
 3181                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 3182 
 3183         /* Init basic tunables, hz etc */
 3184         init_param1();
 3185 
 3186         /*
 3187          * Make gdt memory segments.  All segments cover the full 4GB
 3188          * of address space and permissions are enforced at page level.
 3189          */
 3190         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 3191         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 3192         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 3193         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 3194         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 3195         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 3196 
 3197         pc = &__pcpu[0];
 3198         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 3199         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 3200         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 3201 
 3202         for (x = 0; x < NGDT; x++)
 3203                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 3204 
 3205         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 3206         r_gdt.rd_base =  (int) gdt;
 3207         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 3208         lgdt(&r_gdt);
 3209 
 3210         pcpu_init(pc, 0, sizeof(struct pcpu));
 3211         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 3212                 pmap_kenter(pa + KERNBASE, pa);
 3213         dpcpu_init((void *)(first + KERNBASE), 0);
 3214         first += DPCPU_SIZE;
 3215         PCPU_SET(prvspace, pc);
 3216         PCPU_SET(curthread, &thread0);
 3217 
 3218         /*
 3219          * Initialize mutexes.
 3220          *
 3221          * icu_lock: in order to allow an interrupt to occur in a critical
 3222          *           section, to set pcpu->ipending (etc...) properly, we
 3223          *           must be able to get the icu lock, so it can't be
 3224          *           under witness.
 3225          */
 3226         mutex_init();
 3227         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 3228 
 3229         /* make ldt memory segments */
 3230         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 3231         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 3232         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 3233                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 3234 
 3235         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 3236         lldt(_default_ldt);
 3237         PCPU_SET(currentldt, _default_ldt);
 3238 
 3239         /* exceptions */
 3240         for (x = 0; x < NIDT; x++)
 3241                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 3242                     GSEL(GCODE_SEL, SEL_KPL));
 3243         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 3244             GSEL(GCODE_SEL, SEL_KPL));
 3245         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 3246             GSEL(GCODE_SEL, SEL_KPL));
 3247         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 3248             GSEL(GCODE_SEL, SEL_KPL));
 3249         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 3250             GSEL(GCODE_SEL, SEL_KPL));
 3251         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 3252             GSEL(GCODE_SEL, SEL_KPL));
 3253         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 3254             GSEL(GCODE_SEL, SEL_KPL));
 3255         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 3256             GSEL(GCODE_SEL, SEL_KPL));
 3257         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 3258             , GSEL(GCODE_SEL, SEL_KPL));
 3259         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 3260         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 3261             GSEL(GCODE_SEL, SEL_KPL));
 3262         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 3263             GSEL(GCODE_SEL, SEL_KPL));
 3264         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 3265             GSEL(GCODE_SEL, SEL_KPL));
 3266         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 3267             GSEL(GCODE_SEL, SEL_KPL));
 3268         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 3269             GSEL(GCODE_SEL, SEL_KPL));
 3270         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 3271             GSEL(GCODE_SEL, SEL_KPL));
 3272         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 3273             GSEL(GCODE_SEL, SEL_KPL));
 3274         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 3275             GSEL(GCODE_SEL, SEL_KPL));
 3276         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 3277             GSEL(GCODE_SEL, SEL_KPL));
 3278         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 3279             GSEL(GCODE_SEL, SEL_KPL));
 3280         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 3281             GSEL(GCODE_SEL, SEL_KPL));
 3282 #ifdef KDTRACE_HOOKS
 3283         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
 3284             GSEL(GCODE_SEL, SEL_KPL));
 3285 #endif
 3286 #ifdef XENHVM
 3287         setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_UPL,
 3288             GSEL(GCODE_SEL, SEL_KPL));
 3289 #endif
 3290 
 3291         r_idt.rd_limit = sizeof(idt0) - 1;
 3292         r_idt.rd_base = (int) idt;
 3293         lidt(&r_idt);
 3294 
 3295 #ifdef XBOX
 3296         /*
 3297          * The following code queries the PCI ID of 0:0:0. For the XBOX,
 3298          * This should be 0x10de / 0x02a5.
 3299          *
 3300          * This is exactly what Linux does.
 3301          */
 3302         outl(0xcf8, 0x80000000);
 3303         if (inl(0xcfc) == 0x02a510de) {
 3304                 arch_i386_is_xbox = 1;
 3305                 pic16l_setled(XBOX_LED_GREEN);
 3306 
 3307                 /*
 3308                  * We are an XBOX, but we may have either 64MB or 128MB of
 3309                  * memory. The PCI host bridge should be programmed for this,
 3310                  * so we just query it. 
 3311                  */
 3312                 outl(0xcf8, 0x80000084);
 3313                 arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
 3314         }
 3315 #endif /* XBOX */
 3316 
 3317         /*
 3318          * Initialize the i8254 before the console so that console
 3319          * initialization can use DELAY().
 3320          */
 3321         i8254_init();
 3322 
 3323         /*
 3324          * Initialize the console before we print anything out.
 3325          */
 3326         cninit();
 3327 
 3328         if (metadata_missing)
 3329                 printf("WARNING: loader(8) metadata is missing!\n");
 3330 
 3331 #ifdef DEV_ISA
 3332 #ifdef DEV_ATPIC
 3333 #ifndef PC98
 3334         elcr_probe();
 3335 #endif
 3336         atpic_startup();
 3337 #else
 3338         /* Reset and mask the atpics and leave them shut down. */
 3339         atpic_reset();
 3340 
 3341         /*
 3342          * Point the ICU spurious interrupt vectors at the APIC spurious
 3343          * interrupt handler.
 3344          */
 3345         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 3346             GSEL(GCODE_SEL, SEL_KPL));
 3347         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 3348             GSEL(GCODE_SEL, SEL_KPL));
 3349 #endif
 3350 #endif
 3351 
 3352 #ifdef DDB
 3353         ksym_start = bootinfo.bi_symtab;
 3354         ksym_end = bootinfo.bi_esymtab;
 3355 #endif
 3356 
 3357         kdb_init();
 3358 
 3359 #ifdef KDB
 3360         if (boothowto & RB_KDB)
 3361                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 3362 #endif
 3363 
 3364         finishidentcpu();       /* Final stage of CPU initialization */
 3365         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 3366             GSEL(GCODE_SEL, SEL_KPL));
 3367         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 3368             GSEL(GCODE_SEL, SEL_KPL));
 3369         initializecpu();        /* Initialize CPU registers */
 3370         initializecpucache();
 3371 
 3372         /* pointer to selector slot for %fs/%gs */
 3373         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 3374 
 3375         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 3376             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 3377         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 3378             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 3379 #if defined(PAE) || defined(PAE_TABLES)
 3380         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 3381 #else
 3382         dblfault_tss.tss_cr3 = (int)IdlePTD;
 3383 #endif
 3384         dblfault_tss.tss_eip = (int)dblfault_handler;
 3385         dblfault_tss.tss_eflags = PSL_KERNEL;
 3386         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 3387             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 3388         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 3389         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 3390         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 3391 
 3392         vm86_initialize();
 3393         getmemsize(first);
 3394         init_param2(physmem);
 3395 
 3396         /* now running on new page tables, configured,and u/iom is accessible */
 3397 
 3398         msgbufinit(msgbufp, msgbufsize);
 3399 #ifdef DEV_NPX
 3400         npxinit(true);
 3401 #endif
 3402         /*
 3403          * Set up thread0 pcb after npxinit calculated pcb + fpu save
 3404          * area size.  Zero out the extended state header in fpu save
 3405          * area.
 3406          */
 3407         thread0.td_pcb = get_pcb_td(&thread0);
 3408         bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
 3409 #ifdef CPU_ENABLE_SSE
 3410         if (use_xsave) {
 3411                 xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
 3412                     1);
 3413                 xhdr->xstate_bv = xsave_mask;
 3414         }
 3415 #endif
 3416         PCPU_SET(curpcb, thread0.td_pcb);
 3417         /* make an initial tss so cpu can get interrupt stack on syscall! */
 3418         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 3419         PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
 3420         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 3421         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 3422         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 3423         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 3424         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 3425         ltr(gsel_tss);
 3426 
 3427         /* make a call gate to reenter kernel with */
 3428         gdp = &ldt[LSYS5CALLS_SEL].gd;
 3429 
 3430         x = (int) &IDTVEC(lcall_syscall);
 3431         gdp->gd_looffset = x;
 3432         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 3433         gdp->gd_stkcpy = 1;
 3434         gdp->gd_type = SDT_SYS386CGT;
 3435         gdp->gd_dpl = SEL_UPL;
 3436         gdp->gd_p = 1;
 3437         gdp->gd_hioffset = x >> 16;
 3438 
 3439         /* XXX does this work? */
 3440         /* XXX yes! */
 3441         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 3442         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 3443 
 3444         /* transfer to user mode */
 3445 
 3446         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 3447         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 3448 
 3449         /* setup proc 0's pcb */
 3450         thread0.td_pcb->pcb_flags = 0;
 3451 #if defined(PAE) || defined(PAE_TABLES)
 3452         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 3453 #else
 3454         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 3455 #endif
 3456         thread0.td_pcb->pcb_ext = 0;
 3457         thread0.td_frame = &proc0_tf;
 3458 
 3459         cpu_probe_amdc1e();
 3460 
 3461 #ifdef FDT
 3462         x86_init_fdt();
 3463 #endif
 3464 
 3465         /* Location of kernel stack for locore */
 3466         return ((register_t)thread0.td_pcb);
 3467 }
 3468 #endif
 3469 
 3470 void
 3471 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 3472 {
 3473 
 3474         pcpu->pc_acpi_id = 0xffffffff;
 3475 }
 3476 
 3477 #ifndef PC98
 3478 static int
 3479 smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
 3480 {
 3481         struct bios_smap *smapbase;
 3482         struct bios_smap_xattr smap;
 3483         caddr_t kmdp;
 3484         uint32_t *smapattr;
 3485         int count, error, i;
 3486 
 3487         /* Retrieve the system memory map from the loader. */
 3488         kmdp = preload_search_by_type("elf kernel");
 3489         if (kmdp == NULL)
 3490                 kmdp = preload_search_by_type("elf32 kernel");
 3491         if (kmdp == NULL)
 3492                 return (0);
 3493         smapbase = (struct bios_smap *)preload_search_info(kmdp,
 3494             MODINFO_METADATA | MODINFOMD_SMAP);
 3495         if (smapbase == NULL)
 3496                 return (0);
 3497         smapattr = (uint32_t *)preload_search_info(kmdp,
 3498             MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
 3499         count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
 3500         error = 0;
 3501         for (i = 0; i < count; i++) {
 3502                 smap.base = smapbase[i].base;
 3503                 smap.length = smapbase[i].length;
 3504                 smap.type = smapbase[i].type;
 3505                 if (smapattr != NULL)
 3506                         smap.xattr = smapattr[i];
 3507                 else
 3508                         smap.xattr = 0;
 3509                 error = SYSCTL_OUT(req, &smap, sizeof(smap));
 3510         }
 3511         return (error);
 3512 }
 3513 SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
 3514     smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
 3515 #endif /* !PC98 */
 3516 
 3517 void
 3518 spinlock_enter(void)
 3519 {
 3520         struct thread *td;
 3521         register_t flags;
 3522 
 3523         td = curthread;
 3524         if (td->td_md.md_spinlock_count == 0) {
 3525                 flags = intr_disable();
 3526                 td->td_md.md_spinlock_count = 1;
 3527                 td->td_md.md_saved_flags = flags;
 3528         } else
 3529                 td->td_md.md_spinlock_count++;
 3530         critical_enter();
 3531 }
 3532 
 3533 void
 3534 spinlock_exit(void)
 3535 {
 3536         struct thread *td;
 3537         register_t flags;
 3538 
 3539         td = curthread;
 3540         critical_exit();
 3541         flags = td->td_md.md_saved_flags;
 3542         td->td_md.md_spinlock_count--;
 3543         if (td->td_md.md_spinlock_count == 0)
 3544                 intr_restore(flags);
 3545 }
 3546 
 3547 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 3548 static void f00f_hack(void *unused);
 3549 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 3550 
 3551 static void
 3552 f00f_hack(void *unused)
 3553 {
 3554         struct gate_descriptor *new_idt;
 3555         vm_offset_t tmp;
 3556 
 3557         if (!has_f00f_bug)
 3558                 return;
 3559 
 3560         GIANT_REQUIRED;
 3561 
 3562         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 3563 
 3564         tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
 3565         if (tmp == 0)
 3566                 panic("kmem_malloc returned 0");
 3567 
 3568         /* Put the problematic entry (#6) at the end of the lower page. */
 3569         new_idt = (struct gate_descriptor*)
 3570             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 3571         bcopy(idt, new_idt, sizeof(idt0));
 3572         r_idt.rd_base = (u_int)new_idt;
 3573         lidt(&r_idt);
 3574         idt = new_idt;
 3575         pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
 3576 }
 3577 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 3578 
 3579 /*
 3580  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 3581  * we want to start a backtrace from the function that caused us to enter
 3582  * the debugger. We have the context in the trapframe, but base the trace
 3583  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 3584  * enough for a backtrace.
 3585  */
 3586 void
 3587 makectx(struct trapframe *tf, struct pcb *pcb)
 3588 {
 3589 
 3590         pcb->pcb_edi = tf->tf_edi;
 3591         pcb->pcb_esi = tf->tf_esi;
 3592         pcb->pcb_ebp = tf->tf_ebp;
 3593         pcb->pcb_ebx = tf->tf_ebx;
 3594         pcb->pcb_eip = tf->tf_eip;
 3595         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 3596 }
 3597 
 3598 int
 3599 ptrace_set_pc(struct thread *td, u_long addr)
 3600 {
 3601 
 3602         td->td_frame->tf_eip = addr;
 3603         return (0);
 3604 }
 3605 
 3606 int
 3607 ptrace_single_step(struct thread *td)
 3608 {
 3609         td->td_frame->tf_eflags |= PSL_T;
 3610         return (0);
 3611 }
 3612 
 3613 int
 3614 ptrace_clear_single_step(struct thread *td)
 3615 {
 3616         td->td_frame->tf_eflags &= ~PSL_T;
 3617         return (0);
 3618 }
 3619 
 3620 int
 3621 fill_regs(struct thread *td, struct reg *regs)
 3622 {
 3623         struct pcb *pcb;
 3624         struct trapframe *tp;
 3625 
 3626         tp = td->td_frame;
 3627         pcb = td->td_pcb;
 3628         regs->r_gs = pcb->pcb_gs;
 3629         return (fill_frame_regs(tp, regs));
 3630 }
 3631 
 3632 int
 3633 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 3634 {
 3635         regs->r_fs = tp->tf_fs;
 3636         regs->r_es = tp->tf_es;
 3637         regs->r_ds = tp->tf_ds;
 3638         regs->r_edi = tp->tf_edi;
 3639         regs->r_esi = tp->tf_esi;
 3640         regs->r_ebp = tp->tf_ebp;
 3641         regs->r_ebx = tp->tf_ebx;
 3642         regs->r_edx = tp->tf_edx;
 3643         regs->r_ecx = tp->tf_ecx;
 3644         regs->r_eax = tp->tf_eax;
 3645         regs->r_eip = tp->tf_eip;
 3646         regs->r_cs = tp->tf_cs;
 3647         regs->r_eflags = tp->tf_eflags;
 3648         regs->r_esp = tp->tf_esp;
 3649         regs->r_ss = tp->tf_ss;
 3650         return (0);
 3651 }
 3652 
 3653 int
 3654 set_regs(struct thread *td, struct reg *regs)
 3655 {
 3656         struct pcb *pcb;
 3657         struct trapframe *tp;
 3658 
 3659         tp = td->td_frame;
 3660         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 3661             !CS_SECURE(regs->r_cs))
 3662                 return (EINVAL);
 3663         pcb = td->td_pcb;
 3664         tp->tf_fs = regs->r_fs;
 3665         tp->tf_es = regs->r_es;
 3666         tp->tf_ds = regs->r_ds;
 3667         tp->tf_edi = regs->r_edi;
 3668         tp->tf_esi = regs->r_esi;
 3669         tp->tf_ebp = regs->r_ebp;
 3670         tp->tf_ebx = regs->r_ebx;
 3671         tp->tf_edx = regs->r_edx;
 3672         tp->tf_ecx = regs->r_ecx;
 3673         tp->tf_eax = regs->r_eax;
 3674         tp->tf_eip = regs->r_eip;
 3675         tp->tf_cs = regs->r_cs;
 3676         tp->tf_eflags = regs->r_eflags;
 3677         tp->tf_esp = regs->r_esp;
 3678         tp->tf_ss = regs->r_ss;
 3679         pcb->pcb_gs = regs->r_gs;
 3680         return (0);
 3681 }
 3682 
 3683 #ifdef CPU_ENABLE_SSE
 3684 static void
 3685 fill_fpregs_xmm(sv_xmm, sv_87)
 3686         struct savexmm *sv_xmm;
 3687         struct save87 *sv_87;
 3688 {
 3689         register struct env87 *penv_87 = &sv_87->sv_env;
 3690         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3691         int i;
 3692 
 3693         bzero(sv_87, sizeof(*sv_87));
 3694 
 3695         /* FPU control/status */
 3696         penv_87->en_cw = penv_xmm->en_cw;
 3697         penv_87->en_sw = penv_xmm->en_sw;
 3698         penv_87->en_tw = penv_xmm->en_tw;
 3699         penv_87->en_fip = penv_xmm->en_fip;
 3700         penv_87->en_fcs = penv_xmm->en_fcs;
 3701         penv_87->en_opcode = penv_xmm->en_opcode;
 3702         penv_87->en_foo = penv_xmm->en_foo;
 3703         penv_87->en_fos = penv_xmm->en_fos;
 3704 
 3705         /* FPU registers */
 3706         for (i = 0; i < 8; ++i)
 3707                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 3708 }
 3709 
 3710 static void
 3711 set_fpregs_xmm(sv_87, sv_xmm)
 3712         struct save87 *sv_87;
 3713         struct savexmm *sv_xmm;
 3714 {
 3715         register struct env87 *penv_87 = &sv_87->sv_env;
 3716         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3717         int i;
 3718 
 3719         /* FPU control/status */
 3720         penv_xmm->en_cw = penv_87->en_cw;
 3721         penv_xmm->en_sw = penv_87->en_sw;
 3722         penv_xmm->en_tw = penv_87->en_tw;
 3723         penv_xmm->en_fip = penv_87->en_fip;
 3724         penv_xmm->en_fcs = penv_87->en_fcs;
 3725         penv_xmm->en_opcode = penv_87->en_opcode;
 3726         penv_xmm->en_foo = penv_87->en_foo;
 3727         penv_xmm->en_fos = penv_87->en_fos;
 3728 
 3729         /* FPU registers */
 3730         for (i = 0; i < 8; ++i)
 3731                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 3732 }
 3733 #endif /* CPU_ENABLE_SSE */
 3734 
 3735 int
 3736 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 3737 {
 3738 
 3739         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 3740             P_SHOULDSTOP(td->td_proc),
 3741             ("not suspended thread %p", td));
 3742 #ifdef DEV_NPX
 3743         npxgetregs(td);
 3744 #else
 3745         bzero(fpregs, sizeof(*fpregs));
 3746 #endif
 3747 #ifdef CPU_ENABLE_SSE
 3748         if (cpu_fxsr)
 3749                 fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm,
 3750                     (struct save87 *)fpregs);
 3751         else
 3752 #endif /* CPU_ENABLE_SSE */
 3753                 bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs,
 3754                     sizeof(*fpregs));
 3755         return (0);
 3756 }
 3757 
 3758 int
 3759 set_fpregs(struct thread *td, struct fpreg *fpregs)
 3760 {
 3761 
 3762 #ifdef CPU_ENABLE_SSE
 3763         if (cpu_fxsr)
 3764                 set_fpregs_xmm((struct save87 *)fpregs,
 3765                     &get_pcb_user_save_td(td)->sv_xmm);
 3766         else
 3767 #endif /* CPU_ENABLE_SSE */
 3768                 bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87,
 3769                     sizeof(*fpregs));
 3770 #ifdef DEV_NPX
 3771         npxuserinited(td);
 3772 #endif
 3773         return (0);
 3774 }
 3775 
 3776 /*
 3777  * Get machine context.
 3778  */
 3779 int
 3780 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 3781 {
 3782         struct trapframe *tp;
 3783         struct segment_descriptor *sdp;
 3784 
 3785         tp = td->td_frame;
 3786 
 3787         PROC_LOCK(curthread->td_proc);
 3788         mcp->mc_onstack = sigonstack(tp->tf_esp);
 3789         PROC_UNLOCK(curthread->td_proc);
 3790         mcp->mc_gs = td->td_pcb->pcb_gs;
 3791         mcp->mc_fs = tp->tf_fs;
 3792         mcp->mc_es = tp->tf_es;
 3793         mcp->mc_ds = tp->tf_ds;
 3794         mcp->mc_edi = tp->tf_edi;
 3795         mcp->mc_esi = tp->tf_esi;
 3796         mcp->mc_ebp = tp->tf_ebp;
 3797         mcp->mc_isp = tp->tf_isp;
 3798         mcp->mc_eflags = tp->tf_eflags;
 3799         if (flags & GET_MC_CLEAR_RET) {
 3800                 mcp->mc_eax = 0;
 3801                 mcp->mc_edx = 0;
 3802                 mcp->mc_eflags &= ~PSL_C;
 3803         } else {
 3804                 mcp->mc_eax = tp->tf_eax;
 3805                 mcp->mc_edx = tp->tf_edx;
 3806         }
 3807         mcp->mc_ebx = tp->tf_ebx;
 3808         mcp->mc_ecx = tp->tf_ecx;
 3809         mcp->mc_eip = tp->tf_eip;
 3810         mcp->mc_cs = tp->tf_cs;
 3811         mcp->mc_esp = tp->tf_esp;
 3812         mcp->mc_ss = tp->tf_ss;
 3813         mcp->mc_len = sizeof(*mcp);
 3814         get_fpcontext(td, mcp, NULL, 0);
 3815         sdp = &td->td_pcb->pcb_fsd;
 3816         mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3817         sdp = &td->td_pcb->pcb_gsd;
 3818         mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3819         mcp->mc_flags = 0;
 3820         mcp->mc_xfpustate = 0;
 3821         mcp->mc_xfpustate_len = 0;
 3822         bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
 3823         return (0);
 3824 }
 3825 
 3826 /*
 3827  * Set machine context.
 3828  *
 3829  * However, we don't set any but the user modifiable flags, and we won't
 3830  * touch the cs selector.
 3831  */
 3832 int
 3833 set_mcontext(struct thread *td, mcontext_t *mcp)
 3834 {
 3835         struct trapframe *tp;
 3836         char *xfpustate;
 3837         int eflags, ret;
 3838 
 3839         tp = td->td_frame;
 3840         if (mcp->mc_len != sizeof(*mcp) ||
 3841             (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
 3842                 return (EINVAL);
 3843         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 3844             (tp->tf_eflags & ~PSL_USERCHANGE);
 3845         if (mcp->mc_flags & _MC_HASFPXSTATE) {
 3846                 if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
 3847                     sizeof(union savefpu))
 3848                         return (EINVAL);
 3849                 xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
 3850                 ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
 3851                     mcp->mc_xfpustate_len);
 3852                 if (ret != 0)
 3853                         return (ret);
 3854         } else
 3855                 xfpustate = NULL;
 3856         ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
 3857         if (ret != 0)
 3858                 return (ret);
 3859         tp->tf_fs = mcp->mc_fs;
 3860         tp->tf_es = mcp->mc_es;
 3861         tp->tf_ds = mcp->mc_ds;
 3862         tp->tf_edi = mcp->mc_edi;
 3863         tp->tf_esi = mcp->mc_esi;
 3864         tp->tf_ebp = mcp->mc_ebp;
 3865         tp->tf_ebx = mcp->mc_ebx;
 3866         tp->tf_edx = mcp->mc_edx;
 3867         tp->tf_ecx = mcp->mc_ecx;
 3868         tp->tf_eax = mcp->mc_eax;
 3869         tp->tf_eip = mcp->mc_eip;
 3870         tp->tf_eflags = eflags;
 3871         tp->tf_esp = mcp->mc_esp;
 3872         tp->tf_ss = mcp->mc_ss;
 3873         td->td_pcb->pcb_gs = mcp->mc_gs;
 3874         return (0);
 3875 }
 3876 
 3877 static void
 3878 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
 3879     size_t xfpusave_len)
 3880 {
 3881 #ifdef CPU_ENABLE_SSE
 3882         size_t max_len, len;
 3883 #endif
 3884 
 3885 #ifndef DEV_NPX
 3886         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 3887         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 3888         bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 3889 #else
 3890         mcp->mc_ownedfp = npxgetregs(td);
 3891         bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
 3892             sizeof(mcp->mc_fpstate));
 3893         mcp->mc_fpformat = npxformat();
 3894 #ifdef CPU_ENABLE_SSE
 3895         if (!use_xsave || xfpusave_len == 0)
 3896                 return;
 3897         max_len = cpu_max_ext_state_size - sizeof(union savefpu);
 3898         len = xfpusave_len;
 3899         if (len > max_len) {
 3900                 len = max_len;
 3901                 bzero(xfpusave + max_len, len - max_len);
 3902         }
 3903         mcp->mc_flags |= _MC_HASFPXSTATE;
 3904         mcp->mc_xfpustate_len = len;
 3905         bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
 3906 #endif
 3907 #endif
 3908 }
 3909 
 3910 static int
 3911 set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
 3912     size_t xfpustate_len)
 3913 {
 3914         union savefpu *fpstate;
 3915         int error;
 3916 
 3917         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 3918                 return (0);
 3919         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 3920             mcp->mc_fpformat != _MC_FPFMT_XMM)
 3921                 return (EINVAL);
 3922         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
 3923                 /* We don't care what state is left in the FPU or PCB. */
 3924                 fpstate_drop(td);
 3925                 error = 0;
 3926         } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 3927             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 3928 #ifdef DEV_NPX
 3929                 fpstate = (union savefpu *)&mcp->mc_fpstate;
 3930 #ifdef CPU_ENABLE_SSE
 3931                 if (cpu_fxsr)
 3932                         fpstate->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
 3933 #endif
 3934                 error = npxsetregs(td, fpstate, xfpustate, xfpustate_len);
 3935 #else
 3936                 error = EINVAL;
 3937 #endif
 3938         } else
 3939                 return (EINVAL);
 3940         return (error);
 3941 }
 3942 
 3943 static void
 3944 fpstate_drop(struct thread *td)
 3945 {
 3946 
 3947         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 3948         critical_enter();
 3949 #ifdef DEV_NPX
 3950         if (PCPU_GET(fpcurthread) == td)
 3951                 npxdrop();
 3952 #endif
 3953         /*
 3954          * XXX force a full drop of the npx.  The above only drops it if we
 3955          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 3956          *
 3957          * XXX I don't much like npxgetregs()'s semantics of doing a full
 3958          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 3959          * We only need to drop to !PCB_INITDONE in sendsig().  But
 3960          * sendsig() is the only caller of npxgetregs()... perhaps we just
 3961          * have too many layers.
 3962          */
 3963         curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
 3964             PCB_NPXUSERINITDONE);
 3965         critical_exit();
 3966 }
 3967 
 3968 int
 3969 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 3970 {
 3971         struct pcb *pcb;
 3972 
 3973         if (td == NULL) {
 3974                 dbregs->dr[0] = rdr0();
 3975                 dbregs->dr[1] = rdr1();
 3976                 dbregs->dr[2] = rdr2();
 3977                 dbregs->dr[3] = rdr3();
 3978                 dbregs->dr[4] = rdr4();
 3979                 dbregs->dr[5] = rdr5();
 3980                 dbregs->dr[6] = rdr6();
 3981                 dbregs->dr[7] = rdr7();
 3982         } else {
 3983                 pcb = td->td_pcb;
 3984                 dbregs->dr[0] = pcb->pcb_dr0;
 3985                 dbregs->dr[1] = pcb->pcb_dr1;
 3986                 dbregs->dr[2] = pcb->pcb_dr2;
 3987                 dbregs->dr[3] = pcb->pcb_dr3;
 3988                 dbregs->dr[4] = 0;
 3989                 dbregs->dr[5] = 0;
 3990                 dbregs->dr[6] = pcb->pcb_dr6;
 3991                 dbregs->dr[7] = pcb->pcb_dr7;
 3992         }
 3993         return (0);
 3994 }
 3995 
 3996 int
 3997 set_dbregs(struct thread *td, struct dbreg *dbregs)
 3998 {
 3999         struct pcb *pcb;
 4000         int i;
 4001 
 4002         if (td == NULL) {
 4003                 load_dr0(dbregs->dr[0]);
 4004                 load_dr1(dbregs->dr[1]);
 4005                 load_dr2(dbregs->dr[2]);
 4006                 load_dr3(dbregs->dr[3]);
 4007                 load_dr4(dbregs->dr[4]);
 4008                 load_dr5(dbregs->dr[5]);
 4009                 load_dr6(dbregs->dr[6]);
 4010                 load_dr7(dbregs->dr[7]);
 4011         } else {
 4012                 /*
 4013                  * Don't let an illegal value for dr7 get set.  Specifically,
 4014                  * check for undefined settings.  Setting these bit patterns
 4015                  * result in undefined behaviour and can lead to an unexpected
 4016                  * TRCTRAP.
 4017                  */
 4018                 for (i = 0; i < 4; i++) {
 4019                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 4020                                 return (EINVAL);
 4021                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 4022                                 return (EINVAL);
 4023                 }
 4024                 
 4025                 pcb = td->td_pcb;
 4026                 
 4027                 /*
 4028                  * Don't let a process set a breakpoint that is not within the
 4029                  * process's address space.  If a process could do this, it
 4030                  * could halt the system by setting a breakpoint in the kernel
 4031                  * (if ddb was enabled).  Thus, we need to check to make sure
 4032                  * that no breakpoints are being enabled for addresses outside
 4033                  * process's address space.
 4034                  *
 4035                  * XXX - what about when the watched area of the user's
 4036                  * address space is written into from within the kernel
 4037                  * ... wouldn't that still cause a breakpoint to be generated
 4038                  * from within kernel mode?
 4039                  */
 4040 
 4041                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 4042                         /* dr0 is enabled */
 4043                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 4044                                 return (EINVAL);
 4045                 }
 4046                         
 4047                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 4048                         /* dr1 is enabled */
 4049                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 4050                                 return (EINVAL);
 4051                 }
 4052                         
 4053                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 4054                         /* dr2 is enabled */
 4055                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 4056                                 return (EINVAL);
 4057                 }
 4058                         
 4059                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 4060                         /* dr3 is enabled */
 4061                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 4062                                 return (EINVAL);
 4063                 }
 4064 
 4065                 pcb->pcb_dr0 = dbregs->dr[0];
 4066                 pcb->pcb_dr1 = dbregs->dr[1];
 4067                 pcb->pcb_dr2 = dbregs->dr[2];
 4068                 pcb->pcb_dr3 = dbregs->dr[3];
 4069                 pcb->pcb_dr6 = dbregs->dr[6];
 4070                 pcb->pcb_dr7 = dbregs->dr[7];
 4071 
 4072                 pcb->pcb_flags |= PCB_DBREGS;
 4073         }
 4074 
 4075         return (0);
 4076 }
 4077 
 4078 /*
 4079  * Return > 0 if a hardware breakpoint has been hit, and the
 4080  * breakpoint was in user space.  Return 0, otherwise.
 4081  */
 4082 int
 4083 user_dbreg_trap(void)
 4084 {
 4085         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 4086         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 4087         int nbp;            /* number of breakpoints that triggered */
 4088         caddr_t addr[4];    /* breakpoint addresses */
 4089         int i;
 4090         
 4091         dr7 = rdr7();
 4092         if ((dr7 & 0x000000ff) == 0) {
 4093                 /*
 4094                  * all GE and LE bits in the dr7 register are zero,
 4095                  * thus the trap couldn't have been caused by the
 4096                  * hardware debug registers
 4097                  */
 4098                 return 0;
 4099         }
 4100 
 4101         nbp = 0;
 4102         dr6 = rdr6();
 4103         bp = dr6 & 0x0000000f;
 4104 
 4105         if (!bp) {
 4106                 /*
 4107                  * None of the breakpoint bits are set meaning this
 4108                  * trap was not caused by any of the debug registers
 4109                  */
 4110                 return 0;
 4111         }
 4112 
 4113         /*
 4114          * at least one of the breakpoints were hit, check to see
 4115          * which ones and if any of them are user space addresses
 4116          */
 4117 
 4118         if (bp & 0x01) {
 4119                 addr[nbp++] = (caddr_t)rdr0();
 4120         }
 4121         if (bp & 0x02) {
 4122                 addr[nbp++] = (caddr_t)rdr1();
 4123         }
 4124         if (bp & 0x04) {
 4125                 addr[nbp++] = (caddr_t)rdr2();
 4126         }
 4127         if (bp & 0x08) {
 4128                 addr[nbp++] = (caddr_t)rdr3();
 4129         }
 4130 
 4131         for (i = 0; i < nbp; i++) {
 4132                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 4133                         /*
 4134                          * addr[i] is in user space
 4135                          */
 4136                         return nbp;
 4137                 }
 4138         }
 4139 
 4140         /*
 4141          * None of the breakpoints are in user space.
 4142          */
 4143         return 0;
 4144 }
 4145 
 4146 #ifdef KDB
 4147 
 4148 /*
 4149  * Provide inb() and outb() as functions.  They are normally only available as
 4150  * inline functions, thus cannot be called from the debugger.
 4151  */
 4152 
 4153 /* silence compiler warnings */
 4154 u_char inb_(u_short);
 4155 void outb_(u_short, u_char);
 4156 
 4157 u_char
 4158 inb_(u_short port)
 4159 {
 4160         return inb(port);
 4161 }
 4162 
 4163 void
 4164 outb_(u_short port, u_char data)
 4165 {
 4166         outb(port, data);
 4167 }
 4168 
 4169 #endif /* KDB */

Cache object: 0a804647ef4bdb6ba1b9fe0d8c07cf6c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.