The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD$");
   42 
   43 #include "opt_apic.h"
   44 #include "opt_atpic.h"
   45 #include "opt_compat.h"
   46 #include "opt_cpu.h"
   47 #include "opt_ddb.h"
   48 #include "opt_inet.h"
   49 #include "opt_isa.h"
   50 #include "opt_kstack_pages.h"
   51 #include "opt_maxmem.h"
   52 #include "opt_mp_watchdog.h"
   53 #include "opt_perfmon.h"
   54 #include "opt_platform.h"
   55 #include "opt_xbox.h"
   56 
   57 #include <sys/param.h>
   58 #include <sys/proc.h>
   59 #include <sys/systm.h>
   60 #include <sys/bio.h>
   61 #include <sys/buf.h>
   62 #include <sys/bus.h>
   63 #include <sys/callout.h>
   64 #include <sys/cons.h>
   65 #include <sys/cpu.h>
   66 #include <sys/eventhandler.h>
   67 #include <sys/exec.h>
   68 #include <sys/imgact.h>
   69 #include <sys/kdb.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/linker.h>
   73 #include <sys/lock.h>
   74 #include <sys/malloc.h>
   75 #include <sys/memrange.h>
   76 #include <sys/msgbuf.h>
   77 #include <sys/mutex.h>
   78 #include <sys/pcpu.h>
   79 #include <sys/ptrace.h>
   80 #include <sys/reboot.h>
   81 #include <sys/rwlock.h>
   82 #include <sys/sched.h>
   83 #include <sys/signalvar.h>
   84 #ifdef SMP
   85 #include <sys/smp.h>
   86 #endif
   87 #include <sys/syscallsubr.h>
   88 #include <sys/sysctl.h>
   89 #include <sys/sysent.h>
   90 #include <sys/sysproto.h>
   91 #include <sys/ucontext.h>
   92 #include <sys/vmmeter.h>
   93 
   94 #include <vm/vm.h>
   95 #include <vm/vm_extern.h>
   96 #include <vm/vm_kern.h>
   97 #include <vm/vm_page.h>
   98 #include <vm/vm_map.h>
   99 #include <vm/vm_object.h>
  100 #include <vm/vm_pager.h>
  101 #include <vm/vm_param.h>
  102 #include <vm/vm_phys.h>
  103 
  104 #ifdef DDB
  105 #ifndef KDB
  106 #error KDB must be enabled in order for DDB to work!
  107 #endif
  108 #include <ddb/ddb.h>
  109 #include <ddb/db_sym.h>
  110 #endif
  111 
  112 #ifdef PC98
  113 #include <pc98/pc98/pc98_machdep.h>
  114 #else
  115 #include <isa/rtc.h>
  116 #endif
  117 
  118 #include <net/netisr.h>
  119 
  120 #include <machine/bootinfo.h>
  121 #include <machine/clock.h>
  122 #include <machine/cpu.h>
  123 #include <machine/cputypes.h>
  124 #include <machine/intr_machdep.h>
  125 #include <x86/mca.h>
  126 #include <machine/md_var.h>
  127 #include <machine/metadata.h>
  128 #include <machine/mp_watchdog.h>
  129 #include <machine/pc/bios.h>
  130 #include <machine/pcb.h>
  131 #include <machine/pcb_ext.h>
  132 #include <machine/proc.h>
  133 #include <machine/reg.h>
  134 #include <machine/sigframe.h>
  135 #include <machine/specialreg.h>
  136 #include <x86/ucode.h>
  137 #include <machine/vm86.h>
  138 #include <x86/init.h>
  139 #ifdef PERFMON
  140 #include <machine/perfmon.h>
  141 #endif
  142 #ifdef SMP
  143 #include <machine/smp.h>
  144 #endif
  145 #ifdef FDT
  146 #include <x86/fdt.h>
  147 #endif
  148 
  149 #ifdef DEV_APIC
  150 #include <x86/apicvar.h>
  151 #endif
  152 
  153 #ifdef DEV_ISA
  154 #include <x86/isa/icu.h>
  155 #endif
  156 
  157 #ifdef XBOX
  158 #include <machine/xbox.h>
  159 
  160 int arch_i386_is_xbox = 0;
  161 uint32_t arch_i386_xbox_memsize = 0;
  162 #endif
  163 
  164 /* Sanity check for __curthread() */
  165 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  166 
  167 extern register_t init386(int first);
  168 extern void dblfault_handler(void);
  169 void identify_cpu(void);
  170 
  171 static void cpu_startup(void *);
  172 static void fpstate_drop(struct thread *td);
  173 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
  174     char *xfpusave, size_t xfpusave_len);
  175 static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
  176     char *xfpustate, size_t xfpustate_len);
  177 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  178 
  179 /* Intel ICH registers */
  180 #define ICH_PMBASE      0x400
  181 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  182 
  183 int     _udatasel, _ucodesel;
  184 u_int   basemem;
  185 
  186 #ifdef PC98
  187 int     need_pre_dma_flush;     /* If 1, use wbinvd befor DMA transfer. */
  188 int     need_post_dma_flush;    /* If 1, use invd after DMA transfer. */
  189 
  190 static int      ispc98 = 1;
  191 SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
  192 #endif
  193 
  194 int cold = 1;
  195 
  196 #ifdef COMPAT_43
  197 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  198 #endif
  199 #ifdef COMPAT_FREEBSD4
  200 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  201 #endif
  202 
  203 long Maxmem = 0;
  204 long realmem = 0;
  205 
  206 #ifdef PAE
  207 FEATURE(pae, "Physical Address Extensions");
  208 #endif
  209 
  210 /*
  211  * The number of PHYSMAP entries must be one less than the number of
  212  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  213  * physical address that is accessible by ISA DMA is split into two
  214  * PHYSSEG entries.
  215  */
  216 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  217 
  218 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  219 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  220 
  221 /* must be 2 less so 0 0 can signal end of chunks */
  222 #define PHYS_AVAIL_ARRAY_END (nitems(phys_avail) - 2)
  223 #define DUMP_AVAIL_ARRAY_END (nitems(dump_avail) - 2)
  224 
  225 struct kva_md_info kmi;
  226 
  227 static struct trapframe proc0_tf;
  228 struct pcpu __pcpu[MAXCPU];
  229 
  230 struct mtx icu_lock;
  231 
  232 struct mem_range_softc mem_range_softc;
  233 
  234  /* Default init_ops implementation. */
  235  struct init_ops init_ops = {
  236         .early_clock_source_init =      i8254_init,
  237         .early_delay =                  i8254_delay,
  238 #ifdef DEV_APIC
  239         .msi_init =                     msi_init,
  240 #endif
  241  };
  242 
  243 static void
  244 cpu_startup(dummy)
  245         void *dummy;
  246 {
  247         uintmax_t memsize;
  248         char *sysenv;
  249 
  250 #ifndef PC98
  251         /*
  252          * On MacBooks, we need to disallow the legacy USB circuit to
  253          * generate an SMI# because this can cause several problems,
  254          * namely: incorrect CPU frequency detection and failure to
  255          * start the APs.
  256          * We do this by disabling a bit in the SMI_EN (SMI Control and
  257          * Enable register) of the Intel ICH LPC Interface Bridge.
  258          */
  259         sysenv = kern_getenv("smbios.system.product");
  260         if (sysenv != NULL) {
  261                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  262                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  263                     strncmp(sysenv, "MacBook4,1", 10) == 0 ||
  264                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  265                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  266                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  267                     strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
  268                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  269                         if (bootverbose)
  270                                 printf("Disabling LEGACY_USB_EN bit on "
  271                                     "Intel ICH.\n");
  272                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  273                 }
  274                 freeenv(sysenv);
  275         }
  276 #endif /* !PC98 */
  277 
  278         /*
  279          * Good {morning,afternoon,evening,night}.
  280          */
  281         startrtclock();
  282         printcpuinfo();
  283         panicifcpuunsupported();
  284 #ifdef PERFMON
  285         perfmon_init();
  286 #endif
  287 
  288         /*
  289          * Display physical memory if SMBIOS reports reasonable amount.
  290          */
  291         memsize = 0;
  292         sysenv = kern_getenv("smbios.memory.enabled");
  293         if (sysenv != NULL) {
  294                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  295                 freeenv(sysenv);
  296         }
  297         if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
  298                 memsize = ptoa((uintmax_t)Maxmem);
  299         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  300         realmem = atop(memsize);
  301 
  302         /*
  303          * Display any holes after the first chunk of extended memory.
  304          */
  305         if (bootverbose) {
  306                 int indx;
  307 
  308                 printf("Physical memory chunk(s):\n");
  309                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  310                         vm_paddr_t size;
  311 
  312                         size = phys_avail[indx + 1] - phys_avail[indx];
  313                         printf(
  314                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  315                             (uintmax_t)phys_avail[indx],
  316                             (uintmax_t)phys_avail[indx + 1] - 1,
  317                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  318                 }
  319         }
  320 
  321         vm_ksubmap_init(&kmi);
  322 
  323         printf("avail memory = %ju (%ju MB)\n",
  324             ptoa((uintmax_t)vm_cnt.v_free_count),
  325             ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
  326 
  327         /*
  328          * Set up buffers, so they can be used to read disk labels.
  329          */
  330         bufinit();
  331         vm_pager_bufferinit();
  332         cpu_setregs();
  333 }
  334 
  335 /*
  336  * Send an interrupt to process.
  337  *
  338  * Stack is set up to allow sigcode stored
  339  * at top to call routine, followed by call
  340  * to sigreturn routine below.  After sigreturn
  341  * resets the signal mask, the stack, and the
  342  * frame pointer, it returns to the user
  343  * specified pc, psl.
  344  */
  345 #ifdef COMPAT_43
  346 static void
  347 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  348 {
  349         struct osigframe sf, *fp;
  350         struct proc *p;
  351         struct thread *td;
  352         struct sigacts *psp;
  353         struct trapframe *regs;
  354         int sig;
  355         int oonstack;
  356 
  357         td = curthread;
  358         p = td->td_proc;
  359         PROC_LOCK_ASSERT(p, MA_OWNED);
  360         sig = ksi->ksi_signo;
  361         psp = p->p_sigacts;
  362         mtx_assert(&psp->ps_mtx, MA_OWNED);
  363         regs = td->td_frame;
  364         oonstack = sigonstack(regs->tf_esp);
  365 
  366         /* Allocate space for the signal handler context. */
  367         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  368             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  369                 fp = (struct osigframe *)((uintptr_t)td->td_sigstk.ss_sp +
  370                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  371 #if defined(COMPAT_43)
  372                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  373 #endif
  374         } else
  375                 fp = (struct osigframe *)regs->tf_esp - 1;
  376 
  377         /* Build the argument list for the signal handler. */
  378         sf.sf_signum = sig;
  379         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  380         bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
  381         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  382                 /* Signal handler installed with SA_SIGINFO. */
  383                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  384                 sf.sf_siginfo.si_signo = sig;
  385                 sf.sf_siginfo.si_code = ksi->ksi_code;
  386                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  387                 sf.sf_addr = 0;
  388         } else {
  389                 /* Old FreeBSD-style arguments. */
  390                 sf.sf_arg2 = ksi->ksi_code;
  391                 sf.sf_addr = (register_t)ksi->ksi_addr;
  392                 sf.sf_ahu.sf_handler = catcher;
  393         }
  394         mtx_unlock(&psp->ps_mtx);
  395         PROC_UNLOCK(p);
  396 
  397         /* Save most if not all of trap frame. */
  398         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  399         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  400         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  401         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  402         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  403         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  404         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  405         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  406         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  407         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  408         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  409         sf.sf_siginfo.si_sc.sc_gs = rgs();
  410         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  411 
  412         /* Build the signal context to be used by osigreturn(). */
  413         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  414         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  415         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  416         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  417         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  418         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  419         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  420         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  421 
  422         /*
  423          * If we're a vm86 process, we want to save the segment registers.
  424          * We also change eflags to be our emulated eflags, not the actual
  425          * eflags.
  426          */
  427         if (regs->tf_eflags & PSL_VM) {
  428                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  429                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  430                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  431 
  432                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  433                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  434                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  435                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  436 
  437                 if (vm86->vm86_has_vme == 0)
  438                         sf.sf_siginfo.si_sc.sc_ps =
  439                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  440                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  441 
  442                 /* See sendsig() for comments. */
  443                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  444         }
  445 
  446         /*
  447          * Copy the sigframe out to the user's stack.
  448          */
  449         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  450                 PROC_LOCK(p);
  451                 sigexit(td, SIGILL);
  452         }
  453 
  454         regs->tf_esp = (int)fp;
  455         if (p->p_sysent->sv_sigcode_base != 0) {
  456                 regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
  457                     szosigcode;
  458         } else {
  459                 /* a.out sysentvec does not use shared page */
  460                 regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
  461         }
  462         regs->tf_eflags &= ~(PSL_T | PSL_D);
  463         regs->tf_cs = _ucodesel;
  464         regs->tf_ds = _udatasel;
  465         regs->tf_es = _udatasel;
  466         regs->tf_fs = _udatasel;
  467         load_gs(_udatasel);
  468         regs->tf_ss = _udatasel;
  469         PROC_LOCK(p);
  470         mtx_lock(&psp->ps_mtx);
  471 }
  472 #endif /* COMPAT_43 */
  473 
  474 #ifdef COMPAT_FREEBSD4
  475 static void
  476 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  477 {
  478         struct sigframe4 sf, *sfp;
  479         struct proc *p;
  480         struct thread *td;
  481         struct sigacts *psp;
  482         struct trapframe *regs;
  483         int sig;
  484         int oonstack;
  485 
  486         td = curthread;
  487         p = td->td_proc;
  488         PROC_LOCK_ASSERT(p, MA_OWNED);
  489         sig = ksi->ksi_signo;
  490         psp = p->p_sigacts;
  491         mtx_assert(&psp->ps_mtx, MA_OWNED);
  492         regs = td->td_frame;
  493         oonstack = sigonstack(regs->tf_esp);
  494 
  495         /* Save user context. */
  496         bzero(&sf, sizeof(sf));
  497         sf.sf_uc.uc_sigmask = *mask;
  498         sf.sf_uc.uc_stack = td->td_sigstk;
  499         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  500             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  501         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  502         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  503         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  504         bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
  505             sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
  506         bzero(sf.sf_uc.uc_mcontext.__spare__,
  507             sizeof(sf.sf_uc.uc_mcontext.__spare__));
  508         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  509 
  510         /* Allocate space for the signal handler context. */
  511         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  512             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  513                 sfp = (struct sigframe4 *)((uintptr_t)td->td_sigstk.ss_sp +
  514                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  515 #if defined(COMPAT_43)
  516                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  517 #endif
  518         } else
  519                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  520 
  521         /* Build the argument list for the signal handler. */
  522         sf.sf_signum = sig;
  523         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  524         bzero(&sf.sf_si, sizeof(sf.sf_si));
  525         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  526                 /* Signal handler installed with SA_SIGINFO. */
  527                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  528                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  529 
  530                 /* Fill in POSIX parts */
  531                 sf.sf_si.si_signo = sig;
  532                 sf.sf_si.si_code = ksi->ksi_code;
  533                 sf.sf_si.si_addr = ksi->ksi_addr;
  534         } else {
  535                 /* Old FreeBSD-style arguments. */
  536                 sf.sf_siginfo = ksi->ksi_code;
  537                 sf.sf_addr = (register_t)ksi->ksi_addr;
  538                 sf.sf_ahu.sf_handler = catcher;
  539         }
  540         mtx_unlock(&psp->ps_mtx);
  541         PROC_UNLOCK(p);
  542 
  543         /*
  544          * If we're a vm86 process, we want to save the segment registers.
  545          * We also change eflags to be our emulated eflags, not the actual
  546          * eflags.
  547          */
  548         if (regs->tf_eflags & PSL_VM) {
  549                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  550                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  551 
  552                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  553                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  554                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  555                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  556 
  557                 if (vm86->vm86_has_vme == 0)
  558                         sf.sf_uc.uc_mcontext.mc_eflags =
  559                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  560                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  561 
  562                 /*
  563                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  564                  * syscalls made by the signal handler.  This just avoids
  565                  * wasting time for our lazy fixup of such faults.  PSL_NT
  566                  * does nothing in vm86 mode, but vm86 programs can set it
  567                  * almost legitimately in probes for old cpu types.
  568                  */
  569                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  570         }
  571 
  572         /*
  573          * Copy the sigframe out to the user's stack.
  574          */
  575         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  576                 PROC_LOCK(p);
  577                 sigexit(td, SIGILL);
  578         }
  579 
  580         regs->tf_esp = (int)sfp;
  581         regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
  582             szfreebsd4_sigcode;
  583         regs->tf_eflags &= ~(PSL_T | PSL_D);
  584         regs->tf_cs = _ucodesel;
  585         regs->tf_ds = _udatasel;
  586         regs->tf_es = _udatasel;
  587         regs->tf_fs = _udatasel;
  588         regs->tf_ss = _udatasel;
  589         PROC_LOCK(p);
  590         mtx_lock(&psp->ps_mtx);
  591 }
  592 #endif  /* COMPAT_FREEBSD4 */
  593 
  594 void
  595 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  596 {
  597         struct sigframe sf, *sfp;
  598         struct proc *p;
  599         struct thread *td;
  600         struct sigacts *psp;
  601         char *sp;
  602         struct trapframe *regs;
  603         struct segment_descriptor *sdp;
  604         char *xfpusave;
  605         size_t xfpusave_len;
  606         int sig;
  607         int oonstack;
  608 
  609         td = curthread;
  610         p = td->td_proc;
  611         PROC_LOCK_ASSERT(p, MA_OWNED);
  612         sig = ksi->ksi_signo;
  613         psp = p->p_sigacts;
  614         mtx_assert(&psp->ps_mtx, MA_OWNED);
  615 #ifdef COMPAT_FREEBSD4
  616         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  617                 freebsd4_sendsig(catcher, ksi, mask);
  618                 return;
  619         }
  620 #endif
  621 #ifdef COMPAT_43
  622         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  623                 osendsig(catcher, ksi, mask);
  624                 return;
  625         }
  626 #endif
  627         regs = td->td_frame;
  628         oonstack = sigonstack(regs->tf_esp);
  629 
  630         if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) {
  631                 xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu);
  632                 xfpusave = __builtin_alloca(xfpusave_len);
  633         } else {
  634                 xfpusave_len = 0;
  635                 xfpusave = NULL;
  636         }
  637 
  638         /* Save user context. */
  639         bzero(&sf, sizeof(sf));
  640         sf.sf_uc.uc_sigmask = *mask;
  641         sf.sf_uc.uc_stack = td->td_sigstk;
  642         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  643             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  644         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  645         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  646         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  647         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  648         get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
  649         fpstate_drop(td);
  650         /*
  651          * Unconditionally fill the fsbase and gsbase into the mcontext.
  652          */
  653         sdp = &td->td_pcb->pcb_fsd;
  654         sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
  655             sdp->sd_lobase;
  656         sdp = &td->td_pcb->pcb_gsd;
  657         sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
  658             sdp->sd_lobase;
  659         bzero(sf.sf_uc.uc_mcontext.mc_spare2,
  660             sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
  661         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  662 
  663         /* Allocate space for the signal handler context. */
  664         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  665             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  666                 sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
  667 #if defined(COMPAT_43)
  668                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  669 #endif
  670         } else
  671                 sp = (char *)regs->tf_esp - 128;
  672         if (xfpusave != NULL) {
  673                 sp -= xfpusave_len;
  674                 sp = (char *)((unsigned int)sp & ~0x3F);
  675                 sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
  676         }
  677         sp -= sizeof(struct sigframe);
  678 
  679         /* Align to 16 bytes. */
  680         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  681 
  682         /* Build the argument list for the signal handler. */
  683         sf.sf_signum = sig;
  684         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  685         bzero(&sf.sf_si, sizeof(sf.sf_si));
  686         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  687                 /* Signal handler installed with SA_SIGINFO. */
  688                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  689                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  690 
  691                 /* Fill in POSIX parts */
  692                 sf.sf_si = ksi->ksi_info;
  693                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  694         } else {
  695                 /* Old FreeBSD-style arguments. */
  696                 sf.sf_siginfo = ksi->ksi_code;
  697                 sf.sf_addr = (register_t)ksi->ksi_addr;
  698                 sf.sf_ahu.sf_handler = catcher;
  699         }
  700         mtx_unlock(&psp->ps_mtx);
  701         PROC_UNLOCK(p);
  702 
  703         /*
  704          * If we're a vm86 process, we want to save the segment registers.
  705          * We also change eflags to be our emulated eflags, not the actual
  706          * eflags.
  707          */
  708         if (regs->tf_eflags & PSL_VM) {
  709                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  710                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  711 
  712                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  713                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  714                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  715                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  716 
  717                 if (vm86->vm86_has_vme == 0)
  718                         sf.sf_uc.uc_mcontext.mc_eflags =
  719                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  720                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  721 
  722                 /*
  723                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  724                  * syscalls made by the signal handler.  This just avoids
  725                  * wasting time for our lazy fixup of such faults.  PSL_NT
  726                  * does nothing in vm86 mode, but vm86 programs can set it
  727                  * almost legitimately in probes for old cpu types.
  728                  */
  729                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  730         }
  731 
  732         /*
  733          * Copy the sigframe out to the user's stack.
  734          */
  735         if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  736             (xfpusave != NULL && copyout(xfpusave,
  737             (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
  738             != 0)) {
  739                 PROC_LOCK(p);
  740                 sigexit(td, SIGILL);
  741         }
  742 
  743         regs->tf_esp = (int)sfp;
  744         regs->tf_eip = p->p_sysent->sv_sigcode_base;
  745         if (regs->tf_eip == 0)
  746                 regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
  747         regs->tf_eflags &= ~(PSL_T | PSL_D);
  748         regs->tf_cs = _ucodesel;
  749         regs->tf_ds = _udatasel;
  750         regs->tf_es = _udatasel;
  751         regs->tf_fs = _udatasel;
  752         regs->tf_ss = _udatasel;
  753         PROC_LOCK(p);
  754         mtx_lock(&psp->ps_mtx);
  755 }
  756 
  757 /*
  758  * System call to cleanup state after a signal
  759  * has been taken.  Reset signal mask and
  760  * stack state from context left by sendsig (above).
  761  * Return to previous pc and psl as specified by
  762  * context left by sendsig. Check carefully to
  763  * make sure that the user has not modified the
  764  * state to gain improper privileges.
  765  *
  766  * MPSAFE
  767  */
  768 #ifdef COMPAT_43
  769 int
  770 osigreturn(td, uap)
  771         struct thread *td;
  772         struct osigreturn_args /* {
  773                 struct osigcontext *sigcntxp;
  774         } */ *uap;
  775 {
  776         struct osigcontext sc;
  777         struct trapframe *regs;
  778         struct osigcontext *scp;
  779         int eflags, error;
  780         ksiginfo_t ksi;
  781 
  782         regs = td->td_frame;
  783         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  784         if (error != 0)
  785                 return (error);
  786         scp = &sc;
  787         eflags = scp->sc_ps;
  788         if (eflags & PSL_VM) {
  789                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  790                 struct vm86_kernel *vm86;
  791 
  792                 /*
  793                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  794                  * set up the vm86 area, and we can't enter vm86 mode.
  795                  */
  796                 if (td->td_pcb->pcb_ext == 0)
  797                         return (EINVAL);
  798                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  799                 if (vm86->vm86_inited == 0)
  800                         return (EINVAL);
  801 
  802                 /* Go back to user mode if both flags are set. */
  803                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  804                         ksiginfo_init_trap(&ksi);
  805                         ksi.ksi_signo = SIGBUS;
  806                         ksi.ksi_code = BUS_OBJERR;
  807                         ksi.ksi_addr = (void *)regs->tf_eip;
  808                         trapsignal(td, &ksi);
  809                 }
  810 
  811                 if (vm86->vm86_has_vme) {
  812                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  813                             (eflags & VME_USERCHANGE) | PSL_VM;
  814                 } else {
  815                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  816                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  817                             (eflags & VM_USERCHANGE) | PSL_VM;
  818                 }
  819                 tf->tf_vm86_ds = scp->sc_ds;
  820                 tf->tf_vm86_es = scp->sc_es;
  821                 tf->tf_vm86_fs = scp->sc_fs;
  822                 tf->tf_vm86_gs = scp->sc_gs;
  823                 tf->tf_ds = _udatasel;
  824                 tf->tf_es = _udatasel;
  825                 tf->tf_fs = _udatasel;
  826         } else {
  827                 /*
  828                  * Don't allow users to change privileged or reserved flags.
  829                  */
  830                 if (!EFL_SECURE(eflags, regs->tf_eflags)) {
  831                         return (EINVAL);
  832                 }
  833 
  834                 /*
  835                  * Don't allow users to load a valid privileged %cs.  Let the
  836                  * hardware check for invalid selectors, excess privilege in
  837                  * other selectors, invalid %eip's and invalid %esp's.
  838                  */
  839                 if (!CS_SECURE(scp->sc_cs)) {
  840                         ksiginfo_init_trap(&ksi);
  841                         ksi.ksi_signo = SIGBUS;
  842                         ksi.ksi_code = BUS_OBJERR;
  843                         ksi.ksi_trapno = T_PROTFLT;
  844                         ksi.ksi_addr = (void *)regs->tf_eip;
  845                         trapsignal(td, &ksi);
  846                         return (EINVAL);
  847                 }
  848                 regs->tf_ds = scp->sc_ds;
  849                 regs->tf_es = scp->sc_es;
  850                 regs->tf_fs = scp->sc_fs;
  851         }
  852 
  853         /* Restore remaining registers. */
  854         regs->tf_eax = scp->sc_eax;
  855         regs->tf_ebx = scp->sc_ebx;
  856         regs->tf_ecx = scp->sc_ecx;
  857         regs->tf_edx = scp->sc_edx;
  858         regs->tf_esi = scp->sc_esi;
  859         regs->tf_edi = scp->sc_edi;
  860         regs->tf_cs = scp->sc_cs;
  861         regs->tf_ss = scp->sc_ss;
  862         regs->tf_isp = scp->sc_isp;
  863         regs->tf_ebp = scp->sc_fp;
  864         regs->tf_esp = scp->sc_sp;
  865         regs->tf_eip = scp->sc_pc;
  866         regs->tf_eflags = eflags;
  867 
  868 #if defined(COMPAT_43)
  869         if (scp->sc_onstack & 1)
  870                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  871         else
  872                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  873 #endif
  874         kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
  875             SIGPROCMASK_OLD);
  876         return (EJUSTRETURN);
  877 }
  878 #endif /* COMPAT_43 */
  879 
  880 #ifdef COMPAT_FREEBSD4
  881 /*
  882  * MPSAFE
  883  */
  884 int
  885 freebsd4_sigreturn(td, uap)
  886         struct thread *td;
  887         struct freebsd4_sigreturn_args /* {
  888                 const ucontext4 *sigcntxp;
  889         } */ *uap;
  890 {
  891         struct ucontext4 uc;
  892         struct trapframe *regs;
  893         struct ucontext4 *ucp;
  894         int cs, eflags, error;
  895         ksiginfo_t ksi;
  896 
  897         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  898         if (error != 0)
  899                 return (error);
  900         ucp = &uc;
  901         regs = td->td_frame;
  902         eflags = ucp->uc_mcontext.mc_eflags;
  903         if (eflags & PSL_VM) {
  904                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  905                 struct vm86_kernel *vm86;
  906 
  907                 /*
  908                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  909                  * set up the vm86 area, and we can't enter vm86 mode.
  910                  */
  911                 if (td->td_pcb->pcb_ext == 0)
  912                         return (EINVAL);
  913                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  914                 if (vm86->vm86_inited == 0)
  915                         return (EINVAL);
  916 
  917                 /* Go back to user mode if both flags are set. */
  918                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  919                         ksiginfo_init_trap(&ksi);
  920                         ksi.ksi_signo = SIGBUS;
  921                         ksi.ksi_code = BUS_OBJERR;
  922                         ksi.ksi_addr = (void *)regs->tf_eip;
  923                         trapsignal(td, &ksi);
  924                 }
  925                 if (vm86->vm86_has_vme) {
  926                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  927                             (eflags & VME_USERCHANGE) | PSL_VM;
  928                 } else {
  929                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  930                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  931                             (eflags & VM_USERCHANGE) | PSL_VM;
  932                 }
  933                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  934                 tf->tf_eflags = eflags;
  935                 tf->tf_vm86_ds = tf->tf_ds;
  936                 tf->tf_vm86_es = tf->tf_es;
  937                 tf->tf_vm86_fs = tf->tf_fs;
  938                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  939                 tf->tf_ds = _udatasel;
  940                 tf->tf_es = _udatasel;
  941                 tf->tf_fs = _udatasel;
  942         } else {
  943                 /*
  944                  * Don't allow users to change privileged or reserved flags.
  945                  */
  946                 if (!EFL_SECURE(eflags, regs->tf_eflags)) {
  947                         uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
  948                             td->td_proc->p_pid, td->td_name, eflags);
  949                         return (EINVAL);
  950                 }
  951 
  952                 /*
  953                  * Don't allow users to load a valid privileged %cs.  Let the
  954                  * hardware check for invalid selectors, excess privilege in
  955                  * other selectors, invalid %eip's and invalid %esp's.
  956                  */
  957                 cs = ucp->uc_mcontext.mc_cs;
  958                 if (!CS_SECURE(cs)) {
  959                         uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
  960                             td->td_proc->p_pid, td->td_name, cs);
  961                         ksiginfo_init_trap(&ksi);
  962                         ksi.ksi_signo = SIGBUS;
  963                         ksi.ksi_code = BUS_OBJERR;
  964                         ksi.ksi_trapno = T_PROTFLT;
  965                         ksi.ksi_addr = (void *)regs->tf_eip;
  966                         trapsignal(td, &ksi);
  967                         return (EINVAL);
  968                 }
  969 
  970                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  971         }
  972 
  973 #if defined(COMPAT_43)
  974         if (ucp->uc_mcontext.mc_onstack & 1)
  975                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  976         else
  977                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  978 #endif
  979         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  980         return (EJUSTRETURN);
  981 }
  982 #endif  /* COMPAT_FREEBSD4 */
  983 
  984 /*
  985  * MPSAFE
  986  */
  987 int
  988 sys_sigreturn(td, uap)
  989         struct thread *td;
  990         struct sigreturn_args /* {
  991                 const struct __ucontext *sigcntxp;
  992         } */ *uap;
  993 {
  994         ucontext_t uc;
  995         struct proc *p;
  996         struct trapframe *regs;
  997         ucontext_t *ucp;
  998         char *xfpustate;
  999         size_t xfpustate_len;
 1000         int cs, eflags, error, ret;
 1001         ksiginfo_t ksi;
 1002 
 1003         p = td->td_proc;
 1004 
 1005         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
 1006         if (error != 0)
 1007                 return (error);
 1008         ucp = &uc;
 1009         if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
 1010                 uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
 1011                     td->td_name, ucp->uc_mcontext.mc_flags);
 1012                 return (EINVAL);
 1013         }
 1014         regs = td->td_frame;
 1015         eflags = ucp->uc_mcontext.mc_eflags;
 1016         if (eflags & PSL_VM) {
 1017                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
 1018                 struct vm86_kernel *vm86;
 1019 
 1020                 /*
 1021                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
 1022                  * set up the vm86 area, and we can't enter vm86 mode.
 1023                  */
 1024                 if (td->td_pcb->pcb_ext == 0)
 1025                         return (EINVAL);
 1026                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
 1027                 if (vm86->vm86_inited == 0)
 1028                         return (EINVAL);
 1029 
 1030                 /* Go back to user mode if both flags are set. */
 1031                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
 1032                         ksiginfo_init_trap(&ksi);
 1033                         ksi.ksi_signo = SIGBUS;
 1034                         ksi.ksi_code = BUS_OBJERR;
 1035                         ksi.ksi_addr = (void *)regs->tf_eip;
 1036                         trapsignal(td, &ksi);
 1037                 }
 1038 
 1039                 if (vm86->vm86_has_vme) {
 1040                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
 1041                             (eflags & VME_USERCHANGE) | PSL_VM;
 1042                 } else {
 1043                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
 1044                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
 1045                             (eflags & VM_USERCHANGE) | PSL_VM;
 1046                 }
 1047                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
 1048                 tf->tf_eflags = eflags;
 1049                 tf->tf_vm86_ds = tf->tf_ds;
 1050                 tf->tf_vm86_es = tf->tf_es;
 1051                 tf->tf_vm86_fs = tf->tf_fs;
 1052                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
 1053                 tf->tf_ds = _udatasel;
 1054                 tf->tf_es = _udatasel;
 1055                 tf->tf_fs = _udatasel;
 1056         } else {
 1057                 /*
 1058                  * Don't allow users to change privileged or reserved flags.
 1059                  */
 1060                 if (!EFL_SECURE(eflags, regs->tf_eflags)) {
 1061                         uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
 1062                             td->td_proc->p_pid, td->td_name, eflags);
 1063                         return (EINVAL);
 1064                 }
 1065 
 1066                 /*
 1067                  * Don't allow users to load a valid privileged %cs.  Let the
 1068                  * hardware check for invalid selectors, excess privilege in
 1069                  * other selectors, invalid %eip's and invalid %esp's.
 1070                  */
 1071                 cs = ucp->uc_mcontext.mc_cs;
 1072                 if (!CS_SECURE(cs)) {
 1073                         uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
 1074                             td->td_proc->p_pid, td->td_name, cs);
 1075                         ksiginfo_init_trap(&ksi);
 1076                         ksi.ksi_signo = SIGBUS;
 1077                         ksi.ksi_code = BUS_OBJERR;
 1078                         ksi.ksi_trapno = T_PROTFLT;
 1079                         ksi.ksi_addr = (void *)regs->tf_eip;
 1080                         trapsignal(td, &ksi);
 1081                         return (EINVAL);
 1082                 }
 1083 
 1084                 if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
 1085                         xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
 1086                         if (xfpustate_len > cpu_max_ext_state_size -
 1087                             sizeof(union savefpu)) {
 1088                                 uprintf(
 1089                             "pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
 1090                                     p->p_pid, td->td_name, xfpustate_len);
 1091                                 return (EINVAL);
 1092                         }
 1093                         xfpustate = __builtin_alloca(xfpustate_len);
 1094                         error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
 1095                             xfpustate, xfpustate_len);
 1096                         if (error != 0) {
 1097                                 uprintf(
 1098         "pid %d (%s): sigreturn copying xfpustate failed\n",
 1099                                     p->p_pid, td->td_name);
 1100                                 return (error);
 1101                         }
 1102                 } else {
 1103                         xfpustate = NULL;
 1104                         xfpustate_len = 0;
 1105                 }
 1106                 ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate,
 1107                     xfpustate_len);
 1108                 if (ret != 0)
 1109                         return (ret);
 1110                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1111         }
 1112 
 1113 #if defined(COMPAT_43)
 1114         if (ucp->uc_mcontext.mc_onstack & 1)
 1115                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1116         else
 1117                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1118 #endif
 1119 
 1120         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1121         return (EJUSTRETURN);
 1122 }
 1123 
 1124 /*
 1125  * Reset registers to default values on exec.
 1126  */
 1127 void
 1128 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
 1129 {
 1130         struct trapframe *regs;
 1131         struct pcb *pcb;
 1132         register_t saved_eflags;
 1133 
 1134         regs = td->td_frame;
 1135         pcb = td->td_pcb;
 1136 
 1137         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1138         pcb->pcb_gs = _udatasel;
 1139         load_gs(_udatasel);
 1140 
 1141         mtx_lock_spin(&dt_lock);
 1142         if (td->td_proc->p_md.md_ldt)
 1143                 user_ldt_free(td);
 1144         else
 1145                 mtx_unlock_spin(&dt_lock);
 1146   
 1147         /*
 1148          * Reset the fs and gs bases.  The values from the old address
 1149          * space do not make sense for the new program.  In particular,
 1150          * gsbase might be the TLS base for the old program but the new
 1151          * program has no TLS now.
 1152          */
 1153         set_fsbase(td, 0);
 1154         set_gsbase(td, 0);
 1155 
 1156         saved_eflags = regs->tf_eflags & PSL_T;
 1157         bzero((char *)regs, sizeof(struct trapframe));
 1158         regs->tf_eip = imgp->entry_addr;
 1159         regs->tf_esp = stack;
 1160         regs->tf_eflags = PSL_USER | saved_eflags;
 1161         regs->tf_ss = _udatasel;
 1162         regs->tf_ds = _udatasel;
 1163         regs->tf_es = _udatasel;
 1164         regs->tf_fs = _udatasel;
 1165         regs->tf_cs = _ucodesel;
 1166 
 1167         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1168         regs->tf_ebx = imgp->ps_strings;
 1169 
 1170         /*
 1171          * Reset the hardware debug registers if they were in use.
 1172          * They won't have any meaning for the newly exec'd process.  
 1173          */
 1174         if (pcb->pcb_flags & PCB_DBREGS) {
 1175                 pcb->pcb_dr0 = 0;
 1176                 pcb->pcb_dr1 = 0;
 1177                 pcb->pcb_dr2 = 0;
 1178                 pcb->pcb_dr3 = 0;
 1179                 pcb->pcb_dr6 = 0;
 1180                 pcb->pcb_dr7 = 0;
 1181                 if (pcb == curpcb) {
 1182                         /*
 1183                          * Clear the debug registers on the running
 1184                          * CPU, otherwise they will end up affecting
 1185                          * the next process we switch to.
 1186                          */
 1187                         reset_dbregs();
 1188                 }
 1189                 pcb->pcb_flags &= ~PCB_DBREGS;
 1190         }
 1191 
 1192         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1193 
 1194         /*
 1195          * Drop the FP state if we hold it, so that the process gets a
 1196          * clean FP state if it uses the FPU again.
 1197          */
 1198         fpstate_drop(td);
 1199 
 1200         /*
 1201          * XXX - Linux emulator
 1202          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1203          * on it.
 1204          */
 1205         td->td_retval[1] = 0;
 1206 }
 1207 
 1208 void
 1209 cpu_setregs(void)
 1210 {
 1211         unsigned int cr0;
 1212 
 1213         cr0 = rcr0();
 1214 
 1215         /*
 1216          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1217          *
 1218          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1219          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1220          * bit to control the trap, because setting the CR0_EM bit does
 1221          * not cause WAIT instructions to trap.  It's important to trap
 1222          * WAIT instructions - otherwise the "wait" variants of no-wait
 1223          * control instructions would degenerate to the "no-wait" variants
 1224          * after FP context switches but work correctly otherwise.  It's
 1225          * particularly important to trap WAITs when there is no NPX -
 1226          * otherwise the "wait" variants would always degenerate.
 1227          *
 1228          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1229          * Setting it should fail or do nothing on lesser processors.
 1230          */
 1231         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1232         load_cr0(cr0);
 1233         load_gs(_udatasel);
 1234 }
 1235 
 1236 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1237 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1238         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1239 
 1240 static char bootmethod[16] = "BIOS";
 1241 SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
 1242     "System firmware boot method");
 1243 
 1244 /*
 1245  * Initialize 386 and configure to run kernel
 1246  */
 1247 
 1248 /*
 1249  * Initialize segments & interrupt table
 1250  */
 1251 
 1252 int _default_ldt;
 1253 
 1254 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1255 union descriptor ldt[NLDT];             /* local descriptor table */
 1256 static struct gate_descriptor idt0[NIDT];
 1257 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1258 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1259 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1260 
 1261 static struct i386tss dblfault_tss;
 1262 static char dblfault_stack[PAGE_SIZE];
 1263 
 1264 extern  vm_offset_t     proc0kstack;
 1265 
 1266 
 1267 /*
 1268  * software prototypes -- in more palatable form.
 1269  *
 1270  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1271  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1272  */
 1273 struct soft_segment_descriptor gdt_segs[] = {
 1274 /* GNULL_SEL    0 Null Descriptor */
 1275 {       .ssd_base = 0x0,
 1276         .ssd_limit = 0x0,
 1277         .ssd_type = 0,
 1278         .ssd_dpl = SEL_KPL,
 1279         .ssd_p = 0,
 1280         .ssd_xx = 0, .ssd_xx1 = 0,
 1281         .ssd_def32 = 0,
 1282         .ssd_gran = 0           },
 1283 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1284 {       .ssd_base = 0x0,
 1285         .ssd_limit = 0xfffff,
 1286         .ssd_type = SDT_MEMRWA,
 1287         .ssd_dpl = SEL_KPL,
 1288         .ssd_p = 1,
 1289         .ssd_xx = 0, .ssd_xx1 = 0,
 1290         .ssd_def32 = 1,
 1291         .ssd_gran = 1           },
 1292 /* GUFS_SEL     2 %fs Descriptor for user */
 1293 {       .ssd_base = 0x0,
 1294         .ssd_limit = 0xfffff,
 1295         .ssd_type = SDT_MEMRWA,
 1296         .ssd_dpl = SEL_UPL,
 1297         .ssd_p = 1,
 1298         .ssd_xx = 0, .ssd_xx1 = 0,
 1299         .ssd_def32 = 1,
 1300         .ssd_gran = 1           },
 1301 /* GUGS_SEL     3 %gs Descriptor for user */
 1302 {       .ssd_base = 0x0,
 1303         .ssd_limit = 0xfffff,
 1304         .ssd_type = SDT_MEMRWA,
 1305         .ssd_dpl = SEL_UPL,
 1306         .ssd_p = 1,
 1307         .ssd_xx = 0, .ssd_xx1 = 0,
 1308         .ssd_def32 = 1,
 1309         .ssd_gran = 1           },
 1310 /* GCODE_SEL    4 Code Descriptor for kernel */
 1311 {       .ssd_base = 0x0,
 1312         .ssd_limit = 0xfffff,
 1313         .ssd_type = SDT_MEMERA,
 1314         .ssd_dpl = SEL_KPL,
 1315         .ssd_p = 1,
 1316         .ssd_xx = 0, .ssd_xx1 = 0,
 1317         .ssd_def32 = 1,
 1318         .ssd_gran = 1           },
 1319 /* GDATA_SEL    5 Data Descriptor for kernel */
 1320 {       .ssd_base = 0x0,
 1321         .ssd_limit = 0xfffff,
 1322         .ssd_type = SDT_MEMRWA,
 1323         .ssd_dpl = SEL_KPL,
 1324         .ssd_p = 1,
 1325         .ssd_xx = 0, .ssd_xx1 = 0,
 1326         .ssd_def32 = 1,
 1327         .ssd_gran = 1           },
 1328 /* GUCODE_SEL   6 Code Descriptor for user */
 1329 {       .ssd_base = 0x0,
 1330         .ssd_limit = 0xfffff,
 1331         .ssd_type = SDT_MEMERA,
 1332         .ssd_dpl = SEL_UPL,
 1333         .ssd_p = 1,
 1334         .ssd_xx = 0, .ssd_xx1 = 0,
 1335         .ssd_def32 = 1,
 1336         .ssd_gran = 1           },
 1337 /* GUDATA_SEL   7 Data Descriptor for user */
 1338 {       .ssd_base = 0x0,
 1339         .ssd_limit = 0xfffff,
 1340         .ssd_type = SDT_MEMRWA,
 1341         .ssd_dpl = SEL_UPL,
 1342         .ssd_p = 1,
 1343         .ssd_xx = 0, .ssd_xx1 = 0,
 1344         .ssd_def32 = 1,
 1345         .ssd_gran = 1           },
 1346 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1347 {       .ssd_base = 0x400,
 1348         .ssd_limit = 0xfffff,
 1349         .ssd_type = SDT_MEMRWA,
 1350         .ssd_dpl = SEL_KPL,
 1351         .ssd_p = 1,
 1352         .ssd_xx = 0, .ssd_xx1 = 0,
 1353         .ssd_def32 = 1,
 1354         .ssd_gran = 1           },
 1355 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1356 {
 1357         .ssd_base = 0x0,
 1358         .ssd_limit = sizeof(struct i386tss)-1,
 1359         .ssd_type = SDT_SYS386TSS,
 1360         .ssd_dpl = 0,
 1361         .ssd_p = 1,
 1362         .ssd_xx = 0, .ssd_xx1 = 0,
 1363         .ssd_def32 = 0,
 1364         .ssd_gran = 0           },
 1365 /* GLDT_SEL     10 LDT Descriptor */
 1366 {       .ssd_base = (int) ldt,
 1367         .ssd_limit = sizeof(ldt)-1,
 1368         .ssd_type = SDT_SYSLDT,
 1369         .ssd_dpl = SEL_UPL,
 1370         .ssd_p = 1,
 1371         .ssd_xx = 0, .ssd_xx1 = 0,
 1372         .ssd_def32 = 0,
 1373         .ssd_gran = 0           },
 1374 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1375 {       .ssd_base = (int) ldt,
 1376         .ssd_limit = (512 * sizeof(union descriptor)-1),
 1377         .ssd_type = SDT_SYSLDT,
 1378         .ssd_dpl = 0,
 1379         .ssd_p = 1,
 1380         .ssd_xx = 0, .ssd_xx1 = 0,
 1381         .ssd_def32 = 0,
 1382         .ssd_gran = 0           },
 1383 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1384 {       .ssd_base = (int) &dblfault_tss,
 1385         .ssd_limit = sizeof(struct i386tss)-1,
 1386         .ssd_type = SDT_SYS386TSS,
 1387         .ssd_dpl = 0,
 1388         .ssd_p = 1,
 1389         .ssd_xx = 0, .ssd_xx1 = 0,
 1390         .ssd_def32 = 0,
 1391         .ssd_gran = 0           },
 1392 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1393 {       .ssd_base = 0,
 1394         .ssd_limit = 0xfffff,
 1395         .ssd_type = SDT_MEMERA,
 1396         .ssd_dpl = 0,
 1397         .ssd_p = 1,
 1398         .ssd_xx = 0, .ssd_xx1 = 0,
 1399         .ssd_def32 = 0,
 1400         .ssd_gran = 1           },
 1401 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1402 {       .ssd_base = 0,
 1403         .ssd_limit = 0xfffff,
 1404         .ssd_type = SDT_MEMERA,
 1405         .ssd_dpl = 0,
 1406         .ssd_p = 1,
 1407         .ssd_xx = 0, .ssd_xx1 = 0,
 1408         .ssd_def32 = 0,
 1409         .ssd_gran = 1           },
 1410 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1411 {       .ssd_base = 0,
 1412         .ssd_limit = 0xfffff,
 1413         .ssd_type = SDT_MEMRWA,
 1414         .ssd_dpl = 0,
 1415         .ssd_p = 1,
 1416         .ssd_xx = 0, .ssd_xx1 = 0,
 1417         .ssd_def32 = 1,
 1418         .ssd_gran = 1           },
 1419 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1420 {       .ssd_base = 0,
 1421         .ssd_limit = 0xfffff,
 1422         .ssd_type = SDT_MEMRWA,
 1423         .ssd_dpl = 0,
 1424         .ssd_p = 1,
 1425         .ssd_xx = 0, .ssd_xx1 = 0,
 1426         .ssd_def32 = 0,
 1427         .ssd_gran = 1           },
 1428 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1429 {       .ssd_base = 0,
 1430         .ssd_limit = 0xfffff,
 1431         .ssd_type = SDT_MEMRWA,
 1432         .ssd_dpl = 0,
 1433         .ssd_p = 1,
 1434         .ssd_xx = 0, .ssd_xx1 = 0,
 1435         .ssd_def32 = 0,
 1436         .ssd_gran = 1           },
 1437 /* GNDIS_SEL    18 NDIS Descriptor */
 1438 {       .ssd_base = 0x0,
 1439         .ssd_limit = 0x0,
 1440         .ssd_type = 0,
 1441         .ssd_dpl = 0,
 1442         .ssd_p = 0,
 1443         .ssd_xx = 0, .ssd_xx1 = 0,
 1444         .ssd_def32 = 0,
 1445         .ssd_gran = 0           },
 1446 };
 1447 
 1448 static struct soft_segment_descriptor ldt_segs[] = {
 1449         /* Null Descriptor - overwritten by call gate */
 1450 {       .ssd_base = 0x0,
 1451         .ssd_limit = 0x0,
 1452         .ssd_type = 0,
 1453         .ssd_dpl = 0,
 1454         .ssd_p = 0,
 1455         .ssd_xx = 0, .ssd_xx1 = 0,
 1456         .ssd_def32 = 0,
 1457         .ssd_gran = 0           },
 1458         /* Null Descriptor - overwritten by call gate */
 1459 {       .ssd_base = 0x0,
 1460         .ssd_limit = 0x0,
 1461         .ssd_type = 0,
 1462         .ssd_dpl = 0,
 1463         .ssd_p = 0,
 1464         .ssd_xx = 0, .ssd_xx1 = 0,
 1465         .ssd_def32 = 0,
 1466         .ssd_gran = 0           },
 1467         /* Null Descriptor - overwritten by call gate */
 1468 {       .ssd_base = 0x0,
 1469         .ssd_limit = 0x0,
 1470         .ssd_type = 0,
 1471         .ssd_dpl = 0,
 1472         .ssd_p = 0,
 1473         .ssd_xx = 0, .ssd_xx1 = 0,
 1474         .ssd_def32 = 0,
 1475         .ssd_gran = 0           },
 1476         /* Code Descriptor for user */
 1477 {       .ssd_base = 0x0,
 1478         .ssd_limit = 0xfffff,
 1479         .ssd_type = SDT_MEMERA,
 1480         .ssd_dpl = SEL_UPL,
 1481         .ssd_p = 1,
 1482         .ssd_xx = 0, .ssd_xx1 = 0,
 1483         .ssd_def32 = 1,
 1484         .ssd_gran = 1           },
 1485         /* Null Descriptor - overwritten by call gate */
 1486 {       .ssd_base = 0x0,
 1487         .ssd_limit = 0x0,
 1488         .ssd_type = 0,
 1489         .ssd_dpl = 0,
 1490         .ssd_p = 0,
 1491         .ssd_xx = 0, .ssd_xx1 = 0,
 1492         .ssd_def32 = 0,
 1493         .ssd_gran = 0           },
 1494         /* Data Descriptor for user */
 1495 {       .ssd_base = 0x0,
 1496         .ssd_limit = 0xfffff,
 1497         .ssd_type = SDT_MEMRWA,
 1498         .ssd_dpl = SEL_UPL,
 1499         .ssd_p = 1,
 1500         .ssd_xx = 0, .ssd_xx1 = 0,
 1501         .ssd_def32 = 1,
 1502         .ssd_gran = 1           },
 1503 };
 1504 
 1505 void
 1506 setidt(idx, func, typ, dpl, selec)
 1507         int idx;
 1508         inthand_t *func;
 1509         int typ;
 1510         int dpl;
 1511         int selec;
 1512 {
 1513         struct gate_descriptor *ip;
 1514 
 1515         ip = idt + idx;
 1516         ip->gd_looffset = (int)func;
 1517         ip->gd_selector = selec;
 1518         ip->gd_stkcpy = 0;
 1519         ip->gd_xx = 0;
 1520         ip->gd_type = typ;
 1521         ip->gd_dpl = dpl;
 1522         ip->gd_p = 1;
 1523         ip->gd_hioffset = ((int)func)>>16 ;
 1524 }
 1525 
 1526 extern inthand_t
 1527         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1528         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1529         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1530         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1531         IDTVEC(xmm),
 1532 #ifdef KDTRACE_HOOKS
 1533         IDTVEC(dtrace_ret),
 1534 #endif
 1535 #ifdef XENHVM
 1536         IDTVEC(xen_intr_upcall),
 1537 #endif
 1538         IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1539 
 1540 #ifdef DDB
 1541 /*
 1542  * Display the index and function name of any IDT entries that don't use
 1543  * the default 'rsvd' entry point.
 1544  */
 1545 DB_SHOW_COMMAND(idt, db_show_idt)
 1546 {
 1547         struct gate_descriptor *ip;
 1548         int idx;
 1549         uintptr_t func;
 1550 
 1551         ip = idt;
 1552         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1553                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1554                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1555                         db_printf("%3d\t", idx);
 1556                         db_printsym(func, DB_STGY_PROC);
 1557                         db_printf("\n");
 1558                 }
 1559                 ip++;
 1560         }
 1561 }
 1562 
 1563 /* Show privileged registers. */
 1564 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1565 {
 1566         uint64_t idtr, gdtr;
 1567 
 1568         idtr = ridt();
 1569         db_printf("idtr\t0x%08x/%04x\n",
 1570             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 1571         gdtr = rgdt();
 1572         db_printf("gdtr\t0x%08x/%04x\n",
 1573             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 1574         db_printf("ldtr\t0x%04x\n", rldt());
 1575         db_printf("tr\t0x%04x\n", rtr());
 1576         db_printf("cr0\t0x%08x\n", rcr0());
 1577         db_printf("cr2\t0x%08x\n", rcr2());
 1578         db_printf("cr3\t0x%08x\n", rcr3());
 1579         db_printf("cr4\t0x%08x\n", rcr4());
 1580         if (rcr4() & CR4_XSAVE)
 1581                 db_printf("xcr0\t0x%016llx\n", rxcr(0));
 1582         if (amd_feature & (AMDID_NX | AMDID_LM))
 1583                 db_printf("EFER\t0x%016llx\n", rdmsr(MSR_EFER));
 1584         if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
 1585                 db_printf("FEATURES_CTL\t0x%016llx\n",
 1586                     rdmsr(MSR_IA32_FEATURE_CONTROL));
 1587         if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
 1588             cpu_vendor_id == CPU_VENDOR_AMD) && CPUID_TO_FAMILY(cpu_id) >= 6)
 1589                 db_printf("DEBUG_CTL\t0x%016llx\n", rdmsr(MSR_DEBUGCTLMSR));
 1590         if (cpu_feature & CPUID_PAT)
 1591                 db_printf("PAT\t0x%016llx\n", rdmsr(MSR_PAT));
 1592 }
 1593 
 1594 DB_SHOW_COMMAND(dbregs, db_show_dbregs)
 1595 {
 1596 
 1597         db_printf("dr0\t0x%08x\n", rdr0());
 1598         db_printf("dr1\t0x%08x\n", rdr1());
 1599         db_printf("dr2\t0x%08x\n", rdr2());
 1600         db_printf("dr3\t0x%08x\n", rdr3());
 1601         db_printf("dr6\t0x%08x\n", rdr6());
 1602         db_printf("dr7\t0x%08x\n", rdr7());     
 1603 }
 1604 #endif
 1605 
 1606 void
 1607 sdtossd(sd, ssd)
 1608         struct segment_descriptor *sd;
 1609         struct soft_segment_descriptor *ssd;
 1610 {
 1611         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1612         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1613         ssd->ssd_type  = sd->sd_type;
 1614         ssd->ssd_dpl   = sd->sd_dpl;
 1615         ssd->ssd_p     = sd->sd_p;
 1616         ssd->ssd_def32 = sd->sd_def32;
 1617         ssd->ssd_gran  = sd->sd_gran;
 1618 }
 1619 
 1620 #if !defined(PC98)
 1621 static int
 1622 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
 1623     int *physmap_idxp)
 1624 {
 1625         int i, insert_idx, physmap_idx;
 1626 
 1627         physmap_idx = *physmap_idxp;
 1628         
 1629         if (length == 0)
 1630                 return (1);
 1631 
 1632 #ifndef PAE
 1633         if (base > 0xffffffff) {
 1634                 printf("%uK of memory above 4GB ignored\n",
 1635                     (u_int)(length / 1024));
 1636                 return (1);
 1637         }
 1638 #endif
 1639 
 1640         /*
 1641          * Find insertion point while checking for overlap.  Start off by
 1642          * assuming the new entry will be added to the end.
 1643          */
 1644         insert_idx = physmap_idx + 2;
 1645         for (i = 0; i <= physmap_idx; i += 2) {
 1646                 if (base < physmap[i + 1]) {
 1647                         if (base + length <= physmap[i]) {
 1648                                 insert_idx = i;
 1649                                 break;
 1650                         }
 1651                         if (boothowto & RB_VERBOSE)
 1652                                 printf(
 1653                     "Overlapping memory regions, ignoring second region\n");
 1654                         return (1);
 1655                 }
 1656         }
 1657 
 1658         /* See if we can prepend to the next entry. */
 1659         if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
 1660                 physmap[insert_idx] = base;
 1661                 return (1);
 1662         }
 1663 
 1664         /* See if we can append to the previous entry. */
 1665         if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
 1666                 physmap[insert_idx - 1] += length;
 1667                 return (1);
 1668         }
 1669 
 1670         physmap_idx += 2;
 1671         *physmap_idxp = physmap_idx;
 1672         if (physmap_idx == PHYSMAP_SIZE) {
 1673                 printf(
 1674                 "Too many segments in the physical address map, giving up\n");
 1675                 return (0);
 1676         }
 1677 
 1678         /*
 1679          * Move the last 'N' entries down to make room for the new
 1680          * entry if needed.
 1681          */
 1682         for (i = physmap_idx; i > insert_idx; i -= 2) {
 1683                 physmap[i] = physmap[i - 2];
 1684                 physmap[i + 1] = physmap[i - 1];
 1685         }
 1686 
 1687         /* Insert the new entry. */
 1688         physmap[insert_idx] = base;
 1689         physmap[insert_idx + 1] = base + length;
 1690         return (1);
 1691 }
 1692 
 1693 static int
 1694 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 1695 {
 1696         if (boothowto & RB_VERBOSE)
 1697                 printf("SMAP type=%02x base=%016llx len=%016llx\n",
 1698                     smap->type, smap->base, smap->length);
 1699 
 1700         if (smap->type != SMAP_TYPE_MEMORY)
 1701                 return (1);
 1702 
 1703         return (add_physmap_entry(smap->base, smap->length, physmap,
 1704             physmap_idxp));
 1705 }
 1706 
 1707 static void
 1708 add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
 1709     int *physmap_idxp)
 1710 {
 1711         struct bios_smap *smap, *smapend;
 1712         u_int32_t smapsize;
 1713         /*
 1714          * Memory map from INT 15:E820.
 1715          *
 1716          * subr_module.c says:
 1717          * "Consumer may safely assume that size value precedes data."
 1718          * ie: an int32_t immediately precedes SMAP.
 1719          */
 1720         smapsize = *((u_int32_t *)smapbase - 1);
 1721         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 1722 
 1723         for (smap = smapbase; smap < smapend; smap++)
 1724                 if (!add_smap_entry(smap, physmap, physmap_idxp))
 1725                         break;
 1726 }
 1727 #endif /* !PC98 */
 1728 
 1729 static void
 1730 basemem_setup(void)
 1731 {
 1732         vm_paddr_t pa;
 1733         pt_entry_t *pte;
 1734         int i;
 1735 
 1736         if (basemem > 640) {
 1737                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 1738                         basemem);
 1739                 basemem = 640;
 1740         }
 1741 
 1742         /*
 1743          * XXX if biosbasemem is now < 640, there is a `hole'
 1744          * between the end of base memory and the start of
 1745          * ISA memory.  The hole may be empty or it may
 1746          * contain BIOS code or data.  Map it read/write so
 1747          * that the BIOS can write to it.  (Memory from 0 to
 1748          * the physical end of the kernel is mapped read-only
 1749          * to begin with and then parts of it are remapped.
 1750          * The parts that aren't remapped form holes that
 1751          * remain read-only and are unused by the kernel.
 1752          * The base memory area is below the physical end of
 1753          * the kernel and right now forms a read-only hole.
 1754          * The part of it from PAGE_SIZE to
 1755          * (trunc_page(biosbasemem * 1024) - 1) will be
 1756          * remapped and used by the kernel later.)
 1757          *
 1758          * This code is similar to the code used in
 1759          * pmap_mapdev, but since no memory needs to be
 1760          * allocated we simply change the mapping.
 1761          */
 1762         for (pa = trunc_page(basemem * 1024);
 1763              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 1764                 pmap_kenter(KERNBASE + pa, pa);
 1765 
 1766         /*
 1767          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 1768          * the vm86 page table so that vm86 can scribble on them using
 1769          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 1770          * page 0, at least as initialized here?
 1771          */
 1772         pte = (pt_entry_t *)vm86paddr;
 1773         for (i = basemem / 4; i < 160; i++)
 1774                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 1775 }
 1776 
 1777 /*
 1778  * Populate the (physmap) array with base/bound pairs describing the
 1779  * available physical memory in the system, then test this memory and
 1780  * build the phys_avail array describing the actually-available memory.
 1781  *
 1782  * If we cannot accurately determine the physical memory map, then use
 1783  * value from the 0xE801 call, and failing that, the RTC.
 1784  *
 1785  * Total memory size may be set by the kernel environment variable
 1786  * hw.physmem or the compile-time define MAXMEM.
 1787  *
 1788  * XXX first should be vm_paddr_t.
 1789  */
 1790 #ifdef PC98
 1791 static void
 1792 getmemsize(int first)
 1793 {
 1794         int off, physmap_idx, pa_indx, da_indx;
 1795         u_long physmem_tunable, memtest;
 1796         vm_paddr_t physmap[PHYSMAP_SIZE];
 1797         pt_entry_t *pte;
 1798         quad_t dcons_addr, dcons_size;
 1799         int i;
 1800         int pg_n;
 1801         u_int extmem;
 1802         u_int under16;
 1803         vm_paddr_t pa;
 1804 
 1805         bzero(physmap, sizeof(physmap));
 1806 
 1807         /* XXX - some of EPSON machines can't use PG_N */
 1808         pg_n = PG_N;
 1809         if (pc98_machine_type & M_EPSON_PC98) {
 1810                 switch (epson_machine_id) {
 1811 #ifdef WB_CACHE
 1812                 default:
 1813 #endif
 1814                 case EPSON_PC486_HX:
 1815                 case EPSON_PC486_HG:
 1816                 case EPSON_PC486_HA:
 1817                         pg_n = 0;
 1818                         break;
 1819                 }
 1820         }
 1821 
 1822         under16 = pc98_getmemsize(&basemem, &extmem);
 1823         basemem_setup();
 1824 
 1825         physmap[0] = 0;
 1826         physmap[1] = basemem * 1024;
 1827         physmap_idx = 2;
 1828         physmap[physmap_idx] = 0x100000;
 1829         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 1830 
 1831         /*
 1832          * Now, physmap contains a map of physical memory.
 1833          */
 1834 
 1835 #ifdef SMP
 1836         /* make hole for AP bootstrap code */
 1837         physmap[1] = mp_bootaddress(physmap[1]);
 1838 #endif
 1839 
 1840         /*
 1841          * Maxmem isn't the "maximum memory", it's one larger than the
 1842          * highest page of the physical address space.  It should be
 1843          * called something like "Maxphyspage".  We may adjust this 
 1844          * based on ``hw.physmem'' and the results of the memory test.
 1845          */
 1846         Maxmem = atop(physmap[physmap_idx + 1]);
 1847 
 1848 #ifdef MAXMEM
 1849         Maxmem = MAXMEM / 4;
 1850 #endif
 1851 
 1852         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1853                 Maxmem = atop(physmem_tunable);
 1854 
 1855         /*
 1856          * By default keep the memtest enabled.  Use a general name so that
 1857          * one could eventually do more with the code than just disable it.
 1858          */
 1859         memtest = 1;
 1860         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 1861 
 1862         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1863             (boothowto & RB_VERBOSE))
 1864                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1865 
 1866         /*
 1867          * If Maxmem has been increased beyond what the system has detected,
 1868          * extend the last memory segment to the new limit.
 1869          */ 
 1870         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 1871                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 1872 
 1873         /*
 1874          * We need to divide chunk if Maxmem is larger than 16MB and
 1875          * under 16MB area is not full of memory.
 1876          * (1) system area (15-16MB region) is cut off
 1877          * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
 1878          */
 1879         if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
 1880                 /* 15M - 16M region is cut off, so need to divide chunk */
 1881                 physmap[physmap_idx + 1] = under16 * 1024;
 1882                 physmap_idx += 2;
 1883                 physmap[physmap_idx] = 0x1000000;
 1884                 physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
 1885         }
 1886 
 1887         /* call pmap initialization to make new kernel address space */
 1888         pmap_bootstrap(first);
 1889 
 1890         /*
 1891          * Size up each available chunk of physical memory.
 1892          */
 1893         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1894         pa_indx = 0;
 1895         da_indx = 1;
 1896         phys_avail[pa_indx++] = physmap[0];
 1897         phys_avail[pa_indx] = physmap[0];
 1898         dump_avail[da_indx] = physmap[0];
 1899         pte = CMAP3;
 1900 
 1901         /*
 1902          * Get dcons buffer address
 1903          */
 1904         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1905             getenv_quad("dcons.size", &dcons_size) == 0)
 1906                 dcons_addr = 0;
 1907 
 1908         /*
 1909          * physmap is in bytes, so when converting to page boundaries,
 1910          * round up the start address and round down the end address.
 1911          */
 1912         for (i = 0; i <= physmap_idx; i += 2) {
 1913                 vm_paddr_t end;
 1914 
 1915                 end = ptoa((vm_paddr_t)Maxmem);
 1916                 if (physmap[i + 1] < end)
 1917                         end = trunc_page(physmap[i + 1]);
 1918                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1919                         int tmp, page_bad, full;
 1920                         int *ptr = (int *)CADDR3;
 1921 
 1922                         full = FALSE;
 1923                         /*
 1924                          * block out kernel memory as not available.
 1925                          */
 1926                         if (pa >= KERNLOAD && pa < first)
 1927                                 goto do_dump_avail;
 1928 
 1929                         /*
 1930                          * block out dcons buffer
 1931                          */
 1932                         if (dcons_addr > 0
 1933                             && pa >= trunc_page(dcons_addr)
 1934                             && pa < dcons_addr + dcons_size)
 1935                                 goto do_dump_avail;
 1936 
 1937                         page_bad = FALSE;
 1938                         if (memtest == 0)
 1939                                 goto skip_memtest;
 1940 
 1941                         /*
 1942                          * map page into kernel: valid, read/write,non-cacheable
 1943                          */
 1944                         *pte = pa | PG_V | PG_RW | pg_n;
 1945                         invltlb();
 1946 
 1947                         tmp = *(int *)ptr;
 1948                         /*
 1949                          * Test for alternating 1's and 0's
 1950                          */
 1951                         *(volatile int *)ptr = 0xaaaaaaaa;
 1952                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1953                                 page_bad = TRUE;
 1954                         /*
 1955                          * Test for alternating 0's and 1's
 1956                          */
 1957                         *(volatile int *)ptr = 0x55555555;
 1958                         if (*(volatile int *)ptr != 0x55555555)
 1959                                 page_bad = TRUE;
 1960                         /*
 1961                          * Test for all 1's
 1962                          */
 1963                         *(volatile int *)ptr = 0xffffffff;
 1964                         if (*(volatile int *)ptr != 0xffffffff)
 1965                                 page_bad = TRUE;
 1966                         /*
 1967                          * Test for all 0's
 1968                          */
 1969                         *(volatile int *)ptr = 0x0;
 1970                         if (*(volatile int *)ptr != 0x0)
 1971                                 page_bad = TRUE;
 1972                         /*
 1973                          * Restore original value.
 1974                          */
 1975                         *(int *)ptr = tmp;
 1976 
 1977 skip_memtest:
 1978                         /*
 1979                          * Adjust array of valid/good pages.
 1980                          */
 1981                         if (page_bad == TRUE)
 1982                                 continue;
 1983                         /*
 1984                          * If this good page is a continuation of the
 1985                          * previous set of good pages, then just increase
 1986                          * the end pointer. Otherwise start a new chunk.
 1987                          * Note that "end" points one higher than end,
 1988                          * making the range >= start and < end.
 1989                          * If we're also doing a speculative memory
 1990                          * test and we at or past the end, bump up Maxmem
 1991                          * so that we keep going. The first bad page
 1992                          * will terminate the loop.
 1993                          */
 1994                         if (phys_avail[pa_indx] == pa) {
 1995                                 phys_avail[pa_indx] += PAGE_SIZE;
 1996                         } else {
 1997                                 pa_indx++;
 1998                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1999                                         printf(
 2000                 "Too many holes in the physical address space, giving up\n");
 2001                                         pa_indx--;
 2002                                         full = TRUE;
 2003                                         goto do_dump_avail;
 2004                                 }
 2005                                 phys_avail[pa_indx++] = pa;     /* start */
 2006                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2007                         }
 2008                         physmem++;
 2009 do_dump_avail:
 2010                         if (dump_avail[da_indx] == pa) {
 2011                                 dump_avail[da_indx] += PAGE_SIZE;
 2012                         } else {
 2013                                 da_indx++;
 2014                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2015                                         da_indx--;
 2016                                         goto do_next;
 2017                                 }
 2018                                 dump_avail[da_indx++] = pa;     /* start */
 2019                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2020                         }
 2021 do_next:
 2022                         if (full)
 2023                                 break;
 2024                 }
 2025         }
 2026         *pte = 0;
 2027         invltlb();
 2028         
 2029         /*
 2030          * XXX
 2031          * The last chunk must contain at least one page plus the message
 2032          * buffer to avoid complicating other code (message buffer address
 2033          * calculation, etc.).
 2034          */
 2035         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2036             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 2037                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2038                 phys_avail[pa_indx--] = 0;
 2039                 phys_avail[pa_indx--] = 0;
 2040         }
 2041 
 2042         Maxmem = atop(phys_avail[pa_indx]);
 2043 
 2044         /* Trim off space for the message buffer. */
 2045         phys_avail[pa_indx] -= round_page(msgbufsize);
 2046 
 2047         /* Map the message buffer. */
 2048         for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
 2049                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2050                     off);
 2051 }
 2052 #else /* PC98 */
 2053 static void
 2054 getmemsize(int first)
 2055 {
 2056         int has_smap, off, physmap_idx, pa_indx, da_indx;
 2057         u_long memtest;
 2058         vm_paddr_t physmap[PHYSMAP_SIZE];
 2059         pt_entry_t *pte;
 2060         quad_t dcons_addr, dcons_size, physmem_tunable;
 2061         int hasbrokenint12, i, res;
 2062         u_int extmem;
 2063         struct vm86frame vmf;
 2064         struct vm86context vmc;
 2065         vm_paddr_t pa;
 2066         struct bios_smap *smap, *smapbase;
 2067         caddr_t kmdp;
 2068 
 2069         has_smap = 0;
 2070 #ifdef XBOX
 2071         if (arch_i386_is_xbox) {
 2072                 /*
 2073                  * We queried the memory size before, so chop off 4MB for
 2074                  * the framebuffer and inform the OS of this.
 2075                  */
 2076                 physmap[0] = 0;
 2077                 physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
 2078                 physmap_idx = 0;
 2079                 goto physmap_done;
 2080         }
 2081 #endif
 2082         bzero(&vmf, sizeof(vmf));
 2083         bzero(physmap, sizeof(physmap));
 2084         basemem = 0;
 2085 
 2086         /*
 2087          * Tell the physical memory allocator about pages used to store
 2088          * the kernel and preloaded data.  See kmem_bootstrap_free().
 2089          */
 2090         vm_phys_add_seg((vm_paddr_t)KERNLOAD, trunc_page(first));
 2091 
 2092         /*
 2093          * Check if the loader supplied an SMAP memory map.  If so,
 2094          * use that and do not make any VM86 calls.
 2095          */
 2096         physmap_idx = 0;
 2097         kmdp = preload_search_by_type("elf kernel");
 2098         if (kmdp == NULL)
 2099                 kmdp = preload_search_by_type("elf32 kernel");
 2100         smapbase = (struct bios_smap *)preload_search_info(kmdp,
 2101             MODINFO_METADATA | MODINFOMD_SMAP);
 2102         if (smapbase != NULL) {
 2103                 add_smap_entries(smapbase, physmap, &physmap_idx);
 2104                 has_smap = 1;
 2105                 goto have_smap;
 2106         }
 2107 
 2108         /*
 2109          * Some newer BIOSes have a broken INT 12H implementation
 2110          * which causes a kernel panic immediately.  In this case, we
 2111          * need use the SMAP to determine the base memory size.
 2112          */
 2113         hasbrokenint12 = 0;
 2114         TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
 2115         if (hasbrokenint12 == 0) {
 2116                 /* Use INT12 to determine base memory size. */
 2117                 vm86_intcall(0x12, &vmf);
 2118                 basemem = vmf.vmf_ax;
 2119                 basemem_setup();
 2120         }
 2121 
 2122         /*
 2123          * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
 2124          * the kernel page table so we can use it as a buffer.  The
 2125          * kernel will unmap this page later.
 2126          */
 2127         pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
 2128         vmc.npages = 0;
 2129         smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
 2130         res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
 2131         KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
 2132 
 2133         vmf.vmf_ebx = 0;
 2134         do {
 2135                 vmf.vmf_eax = 0xE820;
 2136                 vmf.vmf_edx = SMAP_SIG;
 2137                 vmf.vmf_ecx = sizeof(struct bios_smap);
 2138                 i = vm86_datacall(0x15, &vmf, &vmc);
 2139                 if (i || vmf.vmf_eax != SMAP_SIG)
 2140                         break;
 2141                 has_smap = 1;
 2142                 if (!add_smap_entry(smap, physmap, &physmap_idx))
 2143                         break;
 2144         } while (vmf.vmf_ebx != 0);
 2145 
 2146 have_smap:
 2147         /*
 2148          * If we didn't fetch the "base memory" size from INT12,
 2149          * figure it out from the SMAP (or just guess).
 2150          */
 2151         if (basemem == 0) {
 2152                 for (i = 0; i <= physmap_idx; i += 2) {
 2153                         if (physmap[i] == 0x00000000) {
 2154                                 basemem = physmap[i + 1] / 1024;
 2155                                 break;
 2156                         }
 2157                 }
 2158 
 2159                 /* XXX: If we couldn't find basemem from SMAP, just guess. */
 2160                 if (basemem == 0)
 2161                         basemem = 640;
 2162                 basemem_setup();
 2163         }
 2164 
 2165         if (physmap[1] != 0)
 2166                 goto physmap_done;
 2167 
 2168         /*
 2169          * If we failed to find an SMAP, figure out the extended
 2170          * memory size.  We will then build a simple memory map with
 2171          * two segments, one for "base memory" and the second for
 2172          * "extended memory".  Note that "extended memory" starts at a
 2173          * physical address of 1MB and that both basemem and extmem
 2174          * are in units of 1KB.
 2175          *
 2176          * First, try to fetch the extended memory size via INT 15:E801.
 2177          */
 2178         vmf.vmf_ax = 0xE801;
 2179         if (vm86_intcall(0x15, &vmf) == 0) {
 2180                 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
 2181         } else {
 2182                 /*
 2183                  * If INT15:E801 fails, this is our last ditch effort
 2184                  * to determine the extended memory size.  Currently
 2185                  * we prefer the RTC value over INT15:88.
 2186                  */
 2187 #if 0
 2188                 vmf.vmf_ah = 0x88;
 2189                 vm86_intcall(0x15, &vmf);
 2190                 extmem = vmf.vmf_ax;
 2191 #else
 2192                 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
 2193 #endif
 2194         }
 2195 
 2196         /*
 2197          * Special hack for chipsets that still remap the 384k hole when
 2198          * there's 16MB of memory - this really confuses people that
 2199          * are trying to use bus mastering ISA controllers with the
 2200          * "16MB limit"; they only have 16MB, but the remapping puts
 2201          * them beyond the limit.
 2202          *
 2203          * If extended memory is between 15-16MB (16-17MB phys address range),
 2204          *      chop it to 15MB.
 2205          */
 2206         if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
 2207                 extmem = 15 * 1024;
 2208 
 2209         physmap[0] = 0;
 2210         physmap[1] = basemem * 1024;
 2211         physmap_idx = 2;
 2212         physmap[physmap_idx] = 0x100000;
 2213         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 2214 
 2215 physmap_done:
 2216         /*
 2217          * Now, physmap contains a map of physical memory.
 2218          */
 2219 
 2220 #ifdef SMP
 2221         /* make hole for AP bootstrap code */
 2222         physmap[1] = mp_bootaddress(physmap[1]);
 2223 #endif
 2224 
 2225         /*
 2226          * Maxmem isn't the "maximum memory", it's one larger than the
 2227          * highest page of the physical address space.  It should be
 2228          * called something like "Maxphyspage".  We may adjust this 
 2229          * based on ``hw.physmem'' and the results of the memory test.
 2230          *
 2231          * This is especially confusing when it is much larger than the
 2232          * memory size and is displayed as "realmem".
 2233          */
 2234         Maxmem = atop(physmap[physmap_idx + 1]);
 2235 
 2236 #ifdef MAXMEM
 2237         Maxmem = MAXMEM / 4;
 2238 #endif
 2239 
 2240         if (TUNABLE_QUAD_FETCH("hw.physmem", &physmem_tunable))
 2241                 Maxmem = atop(physmem_tunable);
 2242 
 2243         /*
 2244          * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
 2245          * the amount of memory in the system.
 2246          */
 2247         if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
 2248                 Maxmem = atop(physmap[physmap_idx + 1]);
 2249 
 2250         /*
 2251          * By default enable the memory test on real hardware, and disable
 2252          * it if we appear to be running in a VM.  This avoids touching all
 2253          * pages unnecessarily, which doesn't matter on real hardware but is
 2254          * bad for shared VM hosts.  Use a general name so that
 2255          * one could eventually do more with the code than just disable it.
 2256          */
 2257         memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
 2258         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 2259 
 2260         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 2261             (boothowto & RB_VERBOSE))
 2262                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 2263 
 2264         /*
 2265          * If Maxmem has been increased beyond what the system has detected,
 2266          * extend the last memory segment to the new limit.
 2267          */ 
 2268         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 2269                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 2270 
 2271         /* call pmap initialization to make new kernel address space */
 2272         pmap_bootstrap(first);
 2273 
 2274         /*
 2275          * Size up each available chunk of physical memory.
 2276          */
 2277         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 2278         pa_indx = 0;
 2279         da_indx = 1;
 2280         phys_avail[pa_indx++] = physmap[0];
 2281         phys_avail[pa_indx] = physmap[0];
 2282         dump_avail[da_indx] = physmap[0];
 2283         pte = CMAP3;
 2284 
 2285         /*
 2286          * Get dcons buffer address
 2287          */
 2288         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 2289             getenv_quad("dcons.size", &dcons_size) == 0)
 2290                 dcons_addr = 0;
 2291 
 2292         /*
 2293          * physmap is in bytes, so when converting to page boundaries,
 2294          * round up the start address and round down the end address.
 2295          */
 2296         for (i = 0; i <= physmap_idx; i += 2) {
 2297                 vm_paddr_t end;
 2298 
 2299                 end = ptoa((vm_paddr_t)Maxmem);
 2300                 if (physmap[i + 1] < end)
 2301                         end = trunc_page(physmap[i + 1]);
 2302                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 2303                         int tmp, page_bad, full;
 2304                         int *ptr = (int *)CADDR3;
 2305 
 2306                         full = FALSE;
 2307                         /*
 2308                          * block out kernel memory as not available.
 2309                          */
 2310                         if (pa >= KERNLOAD && pa < first)
 2311                                 goto do_dump_avail;
 2312 
 2313                         /*
 2314                          * block out dcons buffer
 2315                          */
 2316                         if (dcons_addr > 0
 2317                             && pa >= trunc_page(dcons_addr)
 2318                             && pa < dcons_addr + dcons_size)
 2319                                 goto do_dump_avail;
 2320 
 2321                         page_bad = FALSE;
 2322                         if (memtest == 0)
 2323                                 goto skip_memtest;
 2324 
 2325                         /*
 2326                          * map page into kernel: valid, read/write,non-cacheable
 2327                          */
 2328                         *pte = pa | PG_V | PG_RW | PG_N;
 2329                         invltlb();
 2330 
 2331                         tmp = *(int *)ptr;
 2332                         /*
 2333                          * Test for alternating 1's and 0's
 2334                          */
 2335                         *(volatile int *)ptr = 0xaaaaaaaa;
 2336                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 2337                                 page_bad = TRUE;
 2338                         /*
 2339                          * Test for alternating 0's and 1's
 2340                          */
 2341                         *(volatile int *)ptr = 0x55555555;
 2342                         if (*(volatile int *)ptr != 0x55555555)
 2343                                 page_bad = TRUE;
 2344                         /*
 2345                          * Test for all 1's
 2346                          */
 2347                         *(volatile int *)ptr = 0xffffffff;
 2348                         if (*(volatile int *)ptr != 0xffffffff)
 2349                                 page_bad = TRUE;
 2350                         /*
 2351                          * Test for all 0's
 2352                          */
 2353                         *(volatile int *)ptr = 0x0;
 2354                         if (*(volatile int *)ptr != 0x0)
 2355                                 page_bad = TRUE;
 2356                         /*
 2357                          * Restore original value.
 2358                          */
 2359                         *(int *)ptr = tmp;
 2360 
 2361 skip_memtest:
 2362                         /*
 2363                          * Adjust array of valid/good pages.
 2364                          */
 2365                         if (page_bad == TRUE)
 2366                                 continue;
 2367                         /*
 2368                          * If this good page is a continuation of the
 2369                          * previous set of good pages, then just increase
 2370                          * the end pointer. Otherwise start a new chunk.
 2371                          * Note that "end" points one higher than end,
 2372                          * making the range >= start and < end.
 2373                          * If we're also doing a speculative memory
 2374                          * test and we at or past the end, bump up Maxmem
 2375                          * so that we keep going. The first bad page
 2376                          * will terminate the loop.
 2377                          */
 2378                         if (phys_avail[pa_indx] == pa) {
 2379                                 phys_avail[pa_indx] += PAGE_SIZE;
 2380                         } else {
 2381                                 pa_indx++;
 2382                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 2383                                         printf(
 2384                 "Too many holes in the physical address space, giving up\n");
 2385                                         pa_indx--;
 2386                                         full = TRUE;
 2387                                         goto do_dump_avail;
 2388                                 }
 2389                                 phys_avail[pa_indx++] = pa;     /* start */
 2390                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2391                         }
 2392                         physmem++;
 2393 do_dump_avail:
 2394                         if (dump_avail[da_indx] == pa) {
 2395                                 dump_avail[da_indx] += PAGE_SIZE;
 2396                         } else {
 2397                                 da_indx++;
 2398                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2399                                         da_indx--;
 2400                                         goto do_next;
 2401                                 }
 2402                                 dump_avail[da_indx++] = pa;     /* start */
 2403                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2404                         }
 2405 do_next:
 2406                         if (full)
 2407                                 break;
 2408                 }
 2409         }
 2410         *pte = 0;
 2411         invltlb();
 2412         
 2413         /*
 2414          * XXX
 2415          * The last chunk must contain at least one page plus the message
 2416          * buffer to avoid complicating other code (message buffer address
 2417          * calculation, etc.).
 2418          */
 2419         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2420             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 2421                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2422                 phys_avail[pa_indx--] = 0;
 2423                 phys_avail[pa_indx--] = 0;
 2424         }
 2425 
 2426         Maxmem = atop(phys_avail[pa_indx]);
 2427 
 2428         /* Trim off space for the message buffer. */
 2429         phys_avail[pa_indx] -= round_page(msgbufsize);
 2430 
 2431         /* Map the message buffer. */
 2432         for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
 2433                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2434                     off);
 2435 }
 2436 #endif /* PC98 */
 2437 
 2438 static void
 2439 i386_kdb_init(void)
 2440 {
 2441 #ifdef DDB
 2442         db_fetch_ksymtab(bootinfo.bi_symtab, bootinfo.bi_esymtab);
 2443 #endif
 2444         kdb_init();
 2445 #ifdef KDB
 2446         if (boothowto & RB_KDB)
 2447                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2448 #endif
 2449 }
 2450 
 2451 register_t
 2452 init386(int first)
 2453 {
 2454         struct gate_descriptor *gdp;
 2455         int gsel_tss, metadata_missing, x, pa;
 2456         struct pcpu *pc;
 2457         struct xstate_hdr *xhdr;
 2458         caddr_t kmdp;
 2459         size_t ucode_len;
 2460         int late_console;
 2461 
 2462         thread0.td_kstack = proc0kstack;
 2463         thread0.td_kstack_pages = TD0_KSTACK_PAGES;
 2464 
 2465         /*
 2466          * This may be done better later if it gets more high level
 2467          * components in it. If so just link td->td_proc here.
 2468          */
 2469         proc_linkup0(&proc0, &thread0);
 2470 
 2471 #ifdef PC98
 2472         /*
 2473          * Initialize DMAC
 2474          */
 2475         pc98_init_dmac();
 2476 #endif
 2477 
 2478         metadata_missing = 0;
 2479         if (bootinfo.bi_modulep) {
 2480                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 2481                 preload_bootstrap_relocate(KERNBASE);
 2482         } else {
 2483                 metadata_missing = 1;
 2484         }
 2485 
 2486         if (bootinfo.bi_envp != 0)
 2487                 init_static_kenv((char *)bootinfo.bi_envp + KERNBASE, 0);
 2488         else
 2489                 init_static_kenv(NULL, 0);
 2490 
 2491         /*
 2492          * Re-evaluate CPU features if we loaded a microcode update.
 2493          */
 2494         ucode_len = ucode_load_bsp(first);
 2495         if (ucode_len != 0) {
 2496                 identify_cpu();
 2497                 first = roundup2(first + ucode_len, PAGE_SIZE);
 2498         }
 2499 
 2500         identify_hypervisor();
 2501 
 2502         /* Init basic tunables, hz etc */
 2503         init_param1();
 2504 
 2505         /*
 2506          * Make gdt memory segments.  All segments cover the full 4GB
 2507          * of address space and permissions are enforced at page level.
 2508          */
 2509         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 2510         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 2511         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 2512         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 2513         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 2514         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 2515 
 2516         pc = &__pcpu[0];
 2517         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 2518         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2519         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2520 
 2521         for (x = 0; x < NGDT; x++)
 2522                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2523 
 2524         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 2525         r_gdt.rd_base =  (int) gdt;
 2526         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2527         lgdt(&r_gdt);
 2528 
 2529         pcpu_init(pc, 0, sizeof(struct pcpu));
 2530         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2531                 pmap_kenter(pa + KERNBASE, pa);
 2532         dpcpu_init((void *)(first + KERNBASE), 0);
 2533         first += DPCPU_SIZE;
 2534         PCPU_SET(prvspace, pc);
 2535         PCPU_SET(curthread, &thread0);
 2536         /* Non-late cninit() and printf() can be moved up to here. */
 2537 
 2538         /*
 2539          * Initialize mutexes.
 2540          *
 2541          * icu_lock: in order to allow an interrupt to occur in a critical
 2542          *           section, to set pcpu->ipending (etc...) properly, we
 2543          *           must be able to get the icu lock, so it can't be
 2544          *           under witness.
 2545          */
 2546         mutex_init();
 2547         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2548 
 2549         /* make ldt memory segments */
 2550         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2551         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2552         for (x = 0; x < nitems(ldt_segs); x++)
 2553                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2554 
 2555         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2556         lldt(_default_ldt);
 2557         PCPU_SET(currentldt, _default_ldt);
 2558 
 2559         /* exceptions */
 2560         for (x = 0; x < NIDT; x++)
 2561                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2562                     GSEL(GCODE_SEL, SEL_KPL));
 2563         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2564             GSEL(GCODE_SEL, SEL_KPL));
 2565         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2566             GSEL(GCODE_SEL, SEL_KPL));
 2567         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2568             GSEL(GCODE_SEL, SEL_KPL));
 2569         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2570             GSEL(GCODE_SEL, SEL_KPL));
 2571         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2572             GSEL(GCODE_SEL, SEL_KPL));
 2573         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2574             GSEL(GCODE_SEL, SEL_KPL));
 2575         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2576             GSEL(GCODE_SEL, SEL_KPL));
 2577         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2578             , GSEL(GCODE_SEL, SEL_KPL));
 2579         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2580         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2581             GSEL(GCODE_SEL, SEL_KPL));
 2582         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2583             GSEL(GCODE_SEL, SEL_KPL));
 2584         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2585             GSEL(GCODE_SEL, SEL_KPL));
 2586         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2587             GSEL(GCODE_SEL, SEL_KPL));
 2588         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2589             GSEL(GCODE_SEL, SEL_KPL));
 2590         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2591             GSEL(GCODE_SEL, SEL_KPL));
 2592         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2593             GSEL(GCODE_SEL, SEL_KPL));
 2594         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2595             GSEL(GCODE_SEL, SEL_KPL));
 2596         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2597             GSEL(GCODE_SEL, SEL_KPL));
 2598         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2599             GSEL(GCODE_SEL, SEL_KPL));
 2600         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2601             GSEL(GCODE_SEL, SEL_KPL));
 2602 #ifdef KDTRACE_HOOKS
 2603         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
 2604             GSEL(GCODE_SEL, SEL_KPL));
 2605 #endif
 2606 #ifdef XENHVM
 2607         setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_KPL,
 2608             GSEL(GCODE_SEL, SEL_KPL));
 2609 #endif
 2610 
 2611         r_idt.rd_limit = sizeof(idt0) - 1;
 2612         r_idt.rd_base = (int) idt;
 2613         lidt(&r_idt);
 2614 
 2615 #ifdef XBOX
 2616         /*
 2617          * The following code queries the PCI ID of 0:0:0. For the XBOX,
 2618          * This should be 0x10de / 0x02a5.
 2619          *
 2620          * This is exactly what Linux does.
 2621          */
 2622         outl(0xcf8, 0x80000000);
 2623         if (inl(0xcfc) == 0x02a510de) {
 2624                 arch_i386_is_xbox = 1;
 2625                 pic16l_setled(XBOX_LED_GREEN);
 2626 
 2627                 /*
 2628                  * We are an XBOX, but we may have either 64MB or 128MB of
 2629                  * memory. The PCI host bridge should be programmed for this,
 2630                  * so we just query it. 
 2631                  */
 2632                 outl(0xcf8, 0x80000084);
 2633                 arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
 2634         }
 2635 #endif /* XBOX */
 2636 
 2637         /*
 2638          * Initialize the clock before the console so that console
 2639          * initialization can use DELAY().
 2640          */
 2641         clock_init();
 2642 
 2643         finishidentcpu();       /* Final stage of CPU initialization */
 2644         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2645             GSEL(GCODE_SEL, SEL_KPL));
 2646         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2647             GSEL(GCODE_SEL, SEL_KPL));
 2648         initializecpu();        /* Initialize CPU registers */
 2649         initializecpucache();
 2650 
 2651         /* pointer to selector slot for %fs/%gs */
 2652         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2653 
 2654         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2655             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2656         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2657             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2658 #if defined(PAE) || defined(PAE_TABLES)
 2659         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 2660 #else
 2661         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2662 #endif
 2663         dblfault_tss.tss_eip = (int)dblfault_handler;
 2664         dblfault_tss.tss_eflags = PSL_KERNEL;
 2665         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2666             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2667         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2668         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2669         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2670 
 2671         /* Initialize the tss (except for the final esp0) early for vm86. */
 2672         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2673             thread0.td_kstack_pages * PAGE_SIZE - 16);
 2674         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2675         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2676         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 2677         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 2678         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 2679         ltr(gsel_tss);
 2680 
 2681         /* Initialize the PIC early for vm86 calls. */
 2682 #ifdef DEV_ISA
 2683 #ifdef DEV_ATPIC
 2684 #ifndef PC98
 2685         elcr_probe();
 2686 #endif
 2687         atpic_startup();
 2688 #else
 2689         /* Reset and mask the atpics and leave them shut down. */
 2690         atpic_reset();
 2691 
 2692         /*
 2693          * Point the ICU spurious interrupt vectors at the APIC spurious
 2694          * interrupt handler.
 2695          */
 2696         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2697             GSEL(GCODE_SEL, SEL_KPL));
 2698         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2699             GSEL(GCODE_SEL, SEL_KPL));
 2700 #endif
 2701 #endif
 2702 
 2703         /*
 2704          * The console and kdb should be initialized even earlier than here,
 2705          * but some console drivers don't work until after getmemsize().
 2706          * Default to late console initialization to support these drivers.
 2707          * This loses mainly printf()s in getmemsize() and early debugging.
 2708          */
 2709         late_console = 1;
 2710         TUNABLE_INT_FETCH("debug.late_console", &late_console);
 2711         if (!late_console) {
 2712                 cninit();
 2713                 i386_kdb_init();
 2714         }
 2715 
 2716         kmdp = preload_search_by_type("elf kernel");
 2717         link_elf_ireloc(kmdp);
 2718 
 2719         vm86_initialize();
 2720         getmemsize(first);
 2721         init_param2(physmem);
 2722 
 2723         /* now running on new page tables, configured,and u/iom is accessible */
 2724 
 2725         if (late_console)
 2726                 cninit();
 2727 
 2728         if (metadata_missing)
 2729                 printf("WARNING: loader(8) metadata is missing!\n");
 2730 
 2731         if (late_console)
 2732                 i386_kdb_init();
 2733 
 2734         msgbufinit(msgbufp, msgbufsize);
 2735         npxinit(true);
 2736         /*
 2737          * Set up thread0 pcb after npxinit calculated pcb + fpu save
 2738          * area size.  Zero out the extended state header in fpu save
 2739          * area.
 2740          */
 2741         thread0.td_pcb = get_pcb_td(&thread0);
 2742         thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0);
 2743         bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
 2744         if (use_xsave) {
 2745                 xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
 2746                     1);
 2747                 xhdr->xstate_bv = xsave_mask;
 2748         }
 2749         PCPU_SET(curpcb, thread0.td_pcb);
 2750         /* Move esp0 in the tss to its final place. */
 2751         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2752         PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
 2753         gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;     /* clear busy bit */
 2754         ltr(gsel_tss);
 2755 
 2756         /* make a call gate to reenter kernel with */
 2757         gdp = &ldt[LSYS5CALLS_SEL].gd;
 2758 
 2759         x = (int) &IDTVEC(lcall_syscall);
 2760         gdp->gd_looffset = x;
 2761         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 2762         gdp->gd_stkcpy = 1;
 2763         gdp->gd_type = SDT_SYS386CGT;
 2764         gdp->gd_dpl = SEL_UPL;
 2765         gdp->gd_p = 1;
 2766         gdp->gd_hioffset = x >> 16;
 2767 
 2768         /* XXX does this work? */
 2769         /* XXX yes! */
 2770         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2771         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2772 
 2773         /* transfer to user mode */
 2774 
 2775         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2776         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2777 
 2778         /* setup proc 0's pcb */
 2779         thread0.td_pcb->pcb_flags = 0;
 2780 #if defined(PAE) || defined(PAE_TABLES)
 2781         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 2782 #else
 2783         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2784 #endif
 2785         thread0.td_pcb->pcb_ext = 0;
 2786         thread0.td_frame = &proc0_tf;
 2787 
 2788         cpu_probe_amdc1e();
 2789 
 2790 #ifdef FDT
 2791         x86_init_fdt();
 2792 #endif
 2793 
 2794         /* Location of kernel stack for locore */
 2795         return ((register_t)thread0.td_pcb);
 2796 }
 2797 
 2798 void
 2799 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 2800 {
 2801 
 2802         pcpu->pc_acpi_id = 0xffffffff;
 2803 }
 2804 
 2805 #ifndef PC98
 2806 static int
 2807 smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
 2808 {
 2809         struct bios_smap *smapbase;
 2810         struct bios_smap_xattr smap;
 2811         caddr_t kmdp;
 2812         uint32_t *smapattr;
 2813         int count, error, i;
 2814 
 2815         /* Retrieve the system memory map from the loader. */
 2816         kmdp = preload_search_by_type("elf kernel");
 2817         if (kmdp == NULL)
 2818                 kmdp = preload_search_by_type("elf32 kernel");
 2819         smapbase = (struct bios_smap *)preload_search_info(kmdp,
 2820             MODINFO_METADATA | MODINFOMD_SMAP);
 2821         if (smapbase == NULL)
 2822                 return (0);
 2823         smapattr = (uint32_t *)preload_search_info(kmdp,
 2824             MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
 2825         count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
 2826         error = 0;
 2827         for (i = 0; i < count; i++) {
 2828                 smap.base = smapbase[i].base;
 2829                 smap.length = smapbase[i].length;
 2830                 smap.type = smapbase[i].type;
 2831                 if (smapattr != NULL)
 2832                         smap.xattr = smapattr[i];
 2833                 else
 2834                         smap.xattr = 0;
 2835                 error = SYSCTL_OUT(req, &smap, sizeof(smap));
 2836         }
 2837         return (error);
 2838 }
 2839 SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
 2840     smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
 2841 #endif /* !PC98 */
 2842 
 2843 void
 2844 spinlock_enter(void)
 2845 {
 2846         struct thread *td;
 2847         register_t flags;
 2848 
 2849         td = curthread;
 2850         if (td->td_md.md_spinlock_count == 0) {
 2851                 flags = intr_disable();
 2852                 td->td_md.md_spinlock_count = 1;
 2853                 td->td_md.md_saved_flags = flags;
 2854         } else
 2855                 td->td_md.md_spinlock_count++;
 2856         critical_enter();
 2857 }
 2858 
 2859 void
 2860 spinlock_exit(void)
 2861 {
 2862         struct thread *td;
 2863         register_t flags;
 2864 
 2865         td = curthread;
 2866         critical_exit();
 2867         flags = td->td_md.md_saved_flags;
 2868         td->td_md.md_spinlock_count--;
 2869         if (td->td_md.md_spinlock_count == 0)
 2870                 intr_restore(flags);
 2871 }
 2872 
 2873 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 2874 static void f00f_hack(void *unused);
 2875 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 2876 
 2877 static void
 2878 f00f_hack(void *unused)
 2879 {
 2880         struct gate_descriptor *new_idt;
 2881         vm_offset_t tmp;
 2882 
 2883         if (!has_f00f_bug)
 2884                 return;
 2885 
 2886         GIANT_REQUIRED;
 2887 
 2888         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 2889 
 2890         tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
 2891         if (tmp == 0)
 2892                 panic("kmem_malloc returned 0");
 2893 
 2894         /* Put the problematic entry (#6) at the end of the lower page. */
 2895         new_idt = (struct gate_descriptor*)
 2896             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 2897         bcopy(idt, new_idt, sizeof(idt0));
 2898         r_idt.rd_base = (u_int)new_idt;
 2899         lidt(&r_idt);
 2900         idt = new_idt;
 2901         pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
 2902 }
 2903 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 2904 
 2905 /*
 2906  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 2907  * we want to start a backtrace from the function that caused us to enter
 2908  * the debugger. We have the context in the trapframe, but base the trace
 2909  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 2910  * enough for a backtrace.
 2911  */
 2912 void
 2913 makectx(struct trapframe *tf, struct pcb *pcb)
 2914 {
 2915 
 2916         pcb->pcb_edi = tf->tf_edi;
 2917         pcb->pcb_esi = tf->tf_esi;
 2918         pcb->pcb_ebp = tf->tf_ebp;
 2919         pcb->pcb_ebx = tf->tf_ebx;
 2920         pcb->pcb_eip = tf->tf_eip;
 2921         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 2922         pcb->pcb_gs = rgs();
 2923 }
 2924 
 2925 int
 2926 ptrace_set_pc(struct thread *td, u_long addr)
 2927 {
 2928 
 2929         td->td_frame->tf_eip = addr;
 2930         return (0);
 2931 }
 2932 
 2933 int
 2934 ptrace_single_step(struct thread *td)
 2935 {
 2936 
 2937         PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
 2938         if ((td->td_frame->tf_eflags & PSL_T) == 0) {
 2939                 td->td_frame->tf_eflags |= PSL_T;
 2940                 td->td_dbgflags |= TDB_STEP;
 2941         }
 2942         return (0);
 2943 }
 2944 
 2945 int
 2946 ptrace_clear_single_step(struct thread *td)
 2947 {
 2948         PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
 2949         td->td_frame->tf_eflags &= ~PSL_T;
 2950         td->td_dbgflags &= ~TDB_STEP;
 2951         return (0);
 2952 }
 2953 
 2954 int
 2955 fill_regs(struct thread *td, struct reg *regs)
 2956 {
 2957         struct pcb *pcb;
 2958         struct trapframe *tp;
 2959 
 2960         tp = td->td_frame;
 2961         pcb = td->td_pcb;
 2962         regs->r_gs = pcb->pcb_gs;
 2963         return (fill_frame_regs(tp, regs));
 2964 }
 2965 
 2966 int
 2967 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 2968 {
 2969 
 2970         regs->r_fs = tp->tf_fs;
 2971         regs->r_es = tp->tf_es;
 2972         regs->r_ds = tp->tf_ds;
 2973         regs->r_edi = tp->tf_edi;
 2974         regs->r_esi = tp->tf_esi;
 2975         regs->r_ebp = tp->tf_ebp;
 2976         regs->r_ebx = tp->tf_ebx;
 2977         regs->r_edx = tp->tf_edx;
 2978         regs->r_ecx = tp->tf_ecx;
 2979         regs->r_eax = tp->tf_eax;
 2980         regs->r_eip = tp->tf_eip;
 2981         regs->r_cs = tp->tf_cs;
 2982         regs->r_eflags = tp->tf_eflags;
 2983         regs->r_esp = tp->tf_esp;
 2984         regs->r_ss = tp->tf_ss;
 2985         regs->r_err = 0;
 2986         regs->r_trapno = 0;
 2987         return (0);
 2988 }
 2989 
 2990 int
 2991 set_regs(struct thread *td, struct reg *regs)
 2992 {
 2993         struct pcb *pcb;
 2994         struct trapframe *tp;
 2995 
 2996         tp = td->td_frame;
 2997         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 2998             !CS_SECURE(regs->r_cs))
 2999                 return (EINVAL);
 3000         pcb = td->td_pcb;
 3001         tp->tf_fs = regs->r_fs;
 3002         tp->tf_es = regs->r_es;
 3003         tp->tf_ds = regs->r_ds;
 3004         tp->tf_edi = regs->r_edi;
 3005         tp->tf_esi = regs->r_esi;
 3006         tp->tf_ebp = regs->r_ebp;
 3007         tp->tf_ebx = regs->r_ebx;
 3008         tp->tf_edx = regs->r_edx;
 3009         tp->tf_ecx = regs->r_ecx;
 3010         tp->tf_eax = regs->r_eax;
 3011         tp->tf_eip = regs->r_eip;
 3012         tp->tf_cs = regs->r_cs;
 3013         tp->tf_eflags = regs->r_eflags;
 3014         tp->tf_esp = regs->r_esp;
 3015         tp->tf_ss = regs->r_ss;
 3016         pcb->pcb_gs = regs->r_gs;
 3017         return (0);
 3018 }
 3019 
 3020 int
 3021 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 3022 {
 3023 
 3024         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 3025             P_SHOULDSTOP(td->td_proc),
 3026             ("not suspended thread %p", td));
 3027         npxgetregs(td);
 3028         if (cpu_fxsr)
 3029                 npx_fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm,
 3030                     (struct save87 *)fpregs);
 3031         else
 3032                 bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs,
 3033                     sizeof(*fpregs));
 3034         return (0);
 3035 }
 3036 
 3037 int
 3038 set_fpregs(struct thread *td, struct fpreg *fpregs)
 3039 {
 3040 
 3041         critical_enter();
 3042         if (cpu_fxsr)
 3043                 npx_set_fpregs_xmm((struct save87 *)fpregs,
 3044                     &get_pcb_user_save_td(td)->sv_xmm);
 3045         else
 3046                 bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87,
 3047                     sizeof(*fpregs));
 3048         npxuserinited(td);
 3049         critical_exit();
 3050         return (0);
 3051 }
 3052 
 3053 /*
 3054  * Get machine context.
 3055  */
 3056 int
 3057 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 3058 {
 3059         struct trapframe *tp;
 3060         struct segment_descriptor *sdp;
 3061 
 3062         tp = td->td_frame;
 3063 
 3064         PROC_LOCK(curthread->td_proc);
 3065         mcp->mc_onstack = sigonstack(tp->tf_esp);
 3066         PROC_UNLOCK(curthread->td_proc);
 3067         mcp->mc_gs = td->td_pcb->pcb_gs;
 3068         mcp->mc_fs = tp->tf_fs;
 3069         mcp->mc_es = tp->tf_es;
 3070         mcp->mc_ds = tp->tf_ds;
 3071         mcp->mc_edi = tp->tf_edi;
 3072         mcp->mc_esi = tp->tf_esi;
 3073         mcp->mc_ebp = tp->tf_ebp;
 3074         mcp->mc_isp = tp->tf_isp;
 3075         mcp->mc_eflags = tp->tf_eflags;
 3076         if (flags & GET_MC_CLEAR_RET) {
 3077                 mcp->mc_eax = 0;
 3078                 mcp->mc_edx = 0;
 3079                 mcp->mc_eflags &= ~PSL_C;
 3080         } else {
 3081                 mcp->mc_eax = tp->tf_eax;
 3082                 mcp->mc_edx = tp->tf_edx;
 3083         }
 3084         mcp->mc_ebx = tp->tf_ebx;
 3085         mcp->mc_ecx = tp->tf_ecx;
 3086         mcp->mc_eip = tp->tf_eip;
 3087         mcp->mc_cs = tp->tf_cs;
 3088         mcp->mc_esp = tp->tf_esp;
 3089         mcp->mc_ss = tp->tf_ss;
 3090         mcp->mc_len = sizeof(*mcp);
 3091         get_fpcontext(td, mcp, NULL, 0);
 3092         sdp = &td->td_pcb->pcb_fsd;
 3093         mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3094         sdp = &td->td_pcb->pcb_gsd;
 3095         mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3096         mcp->mc_flags = 0;
 3097         mcp->mc_xfpustate = 0;
 3098         mcp->mc_xfpustate_len = 0;
 3099         bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
 3100         return (0);
 3101 }
 3102 
 3103 /*
 3104  * Set machine context.
 3105  *
 3106  * However, we don't set any but the user modifiable flags, and we won't
 3107  * touch the cs selector.
 3108  */
 3109 int
 3110 set_mcontext(struct thread *td, mcontext_t *mcp)
 3111 {
 3112         struct trapframe *tp;
 3113         char *xfpustate;
 3114         int eflags, ret;
 3115 
 3116         tp = td->td_frame;
 3117         if (mcp->mc_len != sizeof(*mcp) ||
 3118             (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
 3119                 return (EINVAL);
 3120         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 3121             (tp->tf_eflags & ~PSL_USERCHANGE);
 3122         if (mcp->mc_flags & _MC_HASFPXSTATE) {
 3123                 if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
 3124                     sizeof(union savefpu))
 3125                         return (EINVAL);
 3126                 xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
 3127                 ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
 3128                     mcp->mc_xfpustate_len);
 3129                 if (ret != 0)
 3130                         return (ret);
 3131         } else
 3132                 xfpustate = NULL;
 3133         ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
 3134         if (ret != 0)
 3135                 return (ret);
 3136         tp->tf_fs = mcp->mc_fs;
 3137         tp->tf_es = mcp->mc_es;
 3138         tp->tf_ds = mcp->mc_ds;
 3139         tp->tf_edi = mcp->mc_edi;
 3140         tp->tf_esi = mcp->mc_esi;
 3141         tp->tf_ebp = mcp->mc_ebp;
 3142         tp->tf_ebx = mcp->mc_ebx;
 3143         tp->tf_edx = mcp->mc_edx;
 3144         tp->tf_ecx = mcp->mc_ecx;
 3145         tp->tf_eax = mcp->mc_eax;
 3146         tp->tf_eip = mcp->mc_eip;
 3147         tp->tf_eflags = eflags;
 3148         tp->tf_esp = mcp->mc_esp;
 3149         tp->tf_ss = mcp->mc_ss;
 3150         td->td_pcb->pcb_gs = mcp->mc_gs;
 3151         return (0);
 3152 }
 3153 
 3154 static void
 3155 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
 3156     size_t xfpusave_len)
 3157 {
 3158         size_t max_len, len;
 3159 
 3160         mcp->mc_ownedfp = npxgetregs(td);
 3161         bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
 3162             sizeof(mcp->mc_fpstate));
 3163         mcp->mc_fpformat = npxformat();
 3164         if (!use_xsave || xfpusave_len == 0)
 3165                 return;
 3166         max_len = cpu_max_ext_state_size - sizeof(union savefpu);
 3167         len = xfpusave_len;
 3168         if (len > max_len) {
 3169                 len = max_len;
 3170                 bzero(xfpusave + max_len, len - max_len);
 3171         }
 3172         mcp->mc_flags |= _MC_HASFPXSTATE;
 3173         mcp->mc_xfpustate_len = len;
 3174         bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
 3175 }
 3176 
 3177 static int
 3178 set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
 3179     size_t xfpustate_len)
 3180 {
 3181         int error;
 3182 
 3183         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 3184                 return (0);
 3185         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 3186             mcp->mc_fpformat != _MC_FPFMT_XMM)
 3187                 return (EINVAL);
 3188         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
 3189                 /* We don't care what state is left in the FPU or PCB. */
 3190                 fpstate_drop(td);
 3191                 error = 0;
 3192         } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 3193             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 3194                 error = npxsetregs(td, (union savefpu *)&mcp->mc_fpstate,
 3195                     xfpustate, xfpustate_len);
 3196         } else
 3197                 return (EINVAL);
 3198         return (error);
 3199 }
 3200 
 3201 static void
 3202 fpstate_drop(struct thread *td)
 3203 {
 3204 
 3205         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 3206         critical_enter();
 3207         if (PCPU_GET(fpcurthread) == td)
 3208                 npxdrop();
 3209         /*
 3210          * XXX force a full drop of the npx.  The above only drops it if we
 3211          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 3212          *
 3213          * XXX I don't much like npxgetregs()'s semantics of doing a full
 3214          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 3215          * We only need to drop to !PCB_INITDONE in sendsig().  But
 3216          * sendsig() is the only caller of npxgetregs()... perhaps we just
 3217          * have too many layers.
 3218          */
 3219         curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
 3220             PCB_NPXUSERINITDONE);
 3221         critical_exit();
 3222 }
 3223 
 3224 int
 3225 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 3226 {
 3227         struct pcb *pcb;
 3228 
 3229         if (td == NULL) {
 3230                 dbregs->dr[0] = rdr0();
 3231                 dbregs->dr[1] = rdr1();
 3232                 dbregs->dr[2] = rdr2();
 3233                 dbregs->dr[3] = rdr3();
 3234                 dbregs->dr[4] = rdr4();
 3235                 dbregs->dr[5] = rdr5();
 3236                 dbregs->dr[6] = rdr6();
 3237                 dbregs->dr[7] = rdr7();
 3238         } else {
 3239                 pcb = td->td_pcb;
 3240                 dbregs->dr[0] = pcb->pcb_dr0;
 3241                 dbregs->dr[1] = pcb->pcb_dr1;
 3242                 dbregs->dr[2] = pcb->pcb_dr2;
 3243                 dbregs->dr[3] = pcb->pcb_dr3;
 3244                 dbregs->dr[4] = 0;
 3245                 dbregs->dr[5] = 0;
 3246                 dbregs->dr[6] = pcb->pcb_dr6;
 3247                 dbregs->dr[7] = pcb->pcb_dr7;
 3248         }
 3249         return (0);
 3250 }
 3251 
 3252 int
 3253 set_dbregs(struct thread *td, struct dbreg *dbregs)
 3254 {
 3255         struct pcb *pcb;
 3256         int i;
 3257 
 3258         if (td == NULL) {
 3259                 load_dr0(dbregs->dr[0]);
 3260                 load_dr1(dbregs->dr[1]);
 3261                 load_dr2(dbregs->dr[2]);
 3262                 load_dr3(dbregs->dr[3]);
 3263                 load_dr4(dbregs->dr[4]);
 3264                 load_dr5(dbregs->dr[5]);
 3265                 load_dr6(dbregs->dr[6]);
 3266                 load_dr7(dbregs->dr[7]);
 3267         } else {
 3268                 /*
 3269                  * Don't let an illegal value for dr7 get set.  Specifically,
 3270                  * check for undefined settings.  Setting these bit patterns
 3271                  * result in undefined behaviour and can lead to an unexpected
 3272                  * TRCTRAP.
 3273                  */
 3274                 for (i = 0; i < 4; i++) {
 3275                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 3276                                 return (EINVAL);
 3277                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 3278                                 return (EINVAL);
 3279                 }
 3280                 
 3281                 pcb = td->td_pcb;
 3282                 
 3283                 /*
 3284                  * Don't let a process set a breakpoint that is not within the
 3285                  * process's address space.  If a process could do this, it
 3286                  * could halt the system by setting a breakpoint in the kernel
 3287                  * (if ddb was enabled).  Thus, we need to check to make sure
 3288                  * that no breakpoints are being enabled for addresses outside
 3289                  * process's address space.
 3290                  *
 3291                  * XXX - what about when the watched area of the user's
 3292                  * address space is written into from within the kernel
 3293                  * ... wouldn't that still cause a breakpoint to be generated
 3294                  * from within kernel mode?
 3295                  */
 3296 
 3297                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 3298                         /* dr0 is enabled */
 3299                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 3300                                 return (EINVAL);
 3301                 }
 3302                         
 3303                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 3304                         /* dr1 is enabled */
 3305                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 3306                                 return (EINVAL);
 3307                 }
 3308                         
 3309                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 3310                         /* dr2 is enabled */
 3311                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 3312                                 return (EINVAL);
 3313                 }
 3314                         
 3315                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 3316                         /* dr3 is enabled */
 3317                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 3318                                 return (EINVAL);
 3319                 }
 3320 
 3321                 pcb->pcb_dr0 = dbregs->dr[0];
 3322                 pcb->pcb_dr1 = dbregs->dr[1];
 3323                 pcb->pcb_dr2 = dbregs->dr[2];
 3324                 pcb->pcb_dr3 = dbregs->dr[3];
 3325                 pcb->pcb_dr6 = dbregs->dr[6];
 3326                 pcb->pcb_dr7 = dbregs->dr[7];
 3327 
 3328                 pcb->pcb_flags |= PCB_DBREGS;
 3329         }
 3330 
 3331         return (0);
 3332 }
 3333 
 3334 /*
 3335  * Return > 0 if a hardware breakpoint has been hit, and the
 3336  * breakpoint was in user space.  Return 0, otherwise.
 3337  */
 3338 int
 3339 user_dbreg_trap(register_t dr6)
 3340 {
 3341         u_int32_t dr7;
 3342         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 3343         int nbp;            /* number of breakpoints that triggered */
 3344         caddr_t addr[4];    /* breakpoint addresses */
 3345         int i;
 3346 
 3347         bp = dr6 & DBREG_DR6_BMASK;
 3348         if (bp == 0) {
 3349                 /*
 3350                  * None of the breakpoint bits are set meaning this
 3351                  * trap was not caused by any of the debug registers
 3352                  */
 3353                 return 0;
 3354         }
 3355 
 3356         dr7 = rdr7();
 3357         if ((dr7 & 0x000000ff) == 0) {
 3358                 /*
 3359                  * all GE and LE bits in the dr7 register are zero,
 3360                  * thus the trap couldn't have been caused by the
 3361                  * hardware debug registers
 3362                  */
 3363                 return 0;
 3364         }
 3365 
 3366         nbp = 0;
 3367 
 3368         /*
 3369          * at least one of the breakpoints were hit, check to see
 3370          * which ones and if any of them are user space addresses
 3371          */
 3372 
 3373         if (bp & 0x01) {
 3374                 addr[nbp++] = (caddr_t)rdr0();
 3375         }
 3376         if (bp & 0x02) {
 3377                 addr[nbp++] = (caddr_t)rdr1();
 3378         }
 3379         if (bp & 0x04) {
 3380                 addr[nbp++] = (caddr_t)rdr2();
 3381         }
 3382         if (bp & 0x08) {
 3383                 addr[nbp++] = (caddr_t)rdr3();
 3384         }
 3385 
 3386         for (i = 0; i < nbp; i++) {
 3387                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 3388                         /*
 3389                          * addr[i] is in user space
 3390                          */
 3391                         return nbp;
 3392                 }
 3393         }
 3394 
 3395         /*
 3396          * None of the breakpoints are in user space.
 3397          */
 3398         return 0;
 3399 }
 3400 
 3401 #ifdef KDB
 3402 
 3403 /*
 3404  * Provide inb() and outb() as functions.  They are normally only available as
 3405  * inline functions, thus cannot be called from the debugger.
 3406  */
 3407 
 3408 /* silence compiler warnings */
 3409 u_char inb_(u_short);
 3410 void outb_(u_short, u_char);
 3411 
 3412 u_char
 3413 inb_(u_short port)
 3414 {
 3415         return inb(port);
 3416 }
 3417 
 3418 void
 3419 outb_(u_short port, u_char data)
 3420 {
 3421         outb(port, data);
 3422 }
 3423 
 3424 #endif /* KDB */

Cache object: bf1821017f2f9fd45c0f4c2266ce66c2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.